Real-time Scheduling on Multiprocessors

Joél Goossens Sanjoy Baruah Shelby Funk

Joél Goossens
Université Libre de Bruxelles
Département d’Informatique CP 212
B-1050 Bruxelles, Belgium
E-mail: Joel.Goossens@ulb.ac.be

Sanjoy Baruah & Shelby Funk
The University of North Carolina
Chapel Hill, North Carolina
USA
E-mail: {baruah,shelby}@cs.unc.edu

1

In hard-real-time systems, there are certain basic units of work, known as jobs,
which must be executed in a timely manner. In one popular model of hard-real-time
systems, each job is assumed to be characterized by three parameters — an arrival
time, an execution requirement, and a deadline, with the interpretation that the
job must be executed for an amount equal to its execution requirement between its

Abstract

We have recently been studying the scheduling of real-time systems upon
uniform and identical multiprocessor platforms. In particular, we have been
exploring the use of EDF-scheduling in such systems; this paper summarizes
some of our recent findings in this field.

It has previously been shown that EDF is not optimal for multiprocessors
in the sense that it is upon uniprocessors. Nevertheless, EDF remains a good
algorithm to use in multiprocessor systems — we formally justify this state-
ment, by obtaining conditions which permit us to determine whether a task
system can be scheduled to meet all deadlines using EDF upon a given uni-
form multiprocessor platform, provided we know it to be feasible upon some
other uniform multiprocessor platform.

We apply this result to obtain a test for determining whether a periodic task
system can be scheduled using EDF upon any given uniform multiprocessor
platform. For the problem of scheduling periodic task systems upon identical
multiprocessors, we propose a new priority-driven scheduling algorithm that
is provably superior to EDF for this purpose.

keywords: Multiprocessors scheduling; periodic tasks; Earliest Deadline
First.

Introduction

arrival time and its deadline.

The scheduling of hard-real-time systems has been much studied, particularly
upon uniprocessor platforms — upon machines in which there is exactly one shared
processor available, and all the jobs in the system are required to execute on this
single shared processor. In such systems, it have been proven that the earliest
deadline first scheduling algorithm (EDF) is an optimal scheduling algorithm in the
sense that if a real-time system can be scheduled such that all jobs complete by their
deadlines, then EDF will also schedule the system such that all jobs complete by
their deadlines.

In multiprocessor platforms there are several processors available upon which
these jobs may execute. Not very much is known about real-time scheduling upon
multiprocessors; for example, no multiprocessor analog to the uniprocessor optimal-
ity of EDF is known. In this paper, we will be studying the scheduling of hard-real-
time systems on multiprocessor platforms, under the following assumptions:

Job preemption is permitted. That is, a job executing on a processor may be
preempted prior to completing execution, and its execution may be resumed
later. We assume that there is no penalty associated with such preemption.

Job migration s permitted. That is, a job that has been preempted on a par-
ticular processor may resume execution on the same or a different processor.
Once again, we assume that there is no penalty associated with such migration.

Job parallelism is forbidden. That is, each job may execute on at most one
processor at any given instant in time.

A taxonomy of multiprocessor platforms. In much previous work concerning
hard-real-time scheduling on multiprocessors, it has been assumed that all proces-
sors are identical. However, scheduling theorists distinguish between at least three
different kinds of multiprocessor machines:

Identical parallel machines: These are multiprocessors in which all the proces-
sors are identical, in the sense that they have the same computing power.

Uniform parallel machines: By contrast, each processor in a uniform parallel
machine is characterized by its own computing capacity, with the interpreta-
tion that a job that executes on a processor of computing capacity s for ¢ time
units completes s X t units of execution. (Observe that identical parallel ma-
chines are a special case of uniform parallel machines, in which the computing
capacities of all processors are equal.)

Unrelated parallel machines: In unrelated parallel machines, there is an execu-
tion rate r; ; associated with each job-processor ordered pair (J;, P;), with the
interpretation that job J; completes (r;; X t) units of execution by executing
on processor P; for ¢ time units.

Our results. We have recently been studying the scheduling of real-time systems
upon uniform and identical multiprocessor platforms. In particular, we have been
exploring the use of EDF-scheduling in such systems; this paper summarizes some
of our recent findings in this field.

e It has previously been shown that EDF is not optimal for multiprocessors
in the sense that it is upon uniprocessors. Nevertheless, EDF remains a good
algorithm to use in multiprocessor systems — we formally justify this statement,
by obtaining conditions (Theorem 2) which permit us to determine whether a
task system can be scheduled to meet all deadlines using EDF upon a given
uniform multiprocessor platform, provided we know it to be feasible upon some
other uniform multiprocessor platform.

e We apply this result (Section 3.1) to obtain a test for determining whether a
periodic task system [8] can be scheduled using EDF upon any given uniform
multiprocessor platform.

e For the problem of scheduling periodic task systems upon identical multipro-
cessors, we propose (Section 4) a new priority-driven scheduling algorithm that
is provably superior to EDF for this purpose.

Organization of this document. The remainder of this paper is organized as
follows. In Section 2, we describe our system, our task/job model, and formally
specify our EDF implementation for multiprocessor platforms. In Section 3, we
present our major results concerning the on-line scheduling of real-time jobs upon
uniform multiprocessor platforms using EDF. In Section 3.1, we apply this technique
to the scheduling of periodic task systems on uniform multiprocessor platforms. In
Section 4, we apply the theory developed in Section 3 to obtain utilization-based
EDF-schedulability bounds for periodic task systems upon identical multiprocessors.
We propose a new priority-driven scheduling algorithm which is provably superior
to EDF for the scheduling of periodic real-time task systems upon identical multi-
processors. In Section 5, we summarize the results presented in this paper.

2 Definitions and assumptions

Throughout this paper, we will consider the scheduling of hard-real-time systems
upon a uniform multiprocessor platform comprised of m processors (since identical
multiprocessors are a special case of uniform multiprocessors, our results apply to
identical multiprocessors as well — where more specialized results are derivable for
the identical multiprocessor case, we will point this out explicitly).

2.1 Processor model

We begin with some basic notation used to describe a uniform multiprocessor plat-
form .

Definition 1 Let m denote an m-processor multiprocessor platform with processor
speeds Sy, ..., Sm, where s; > s;.1 for i = 1,...,m — 1. The following attributes of
7 are defined:

m(7): denotes the number of processors in 7: m(r) & m.

s;(m): denotes the speed of the i’ fastest processor of m: s;(m) = s;.

S(r): denotes 7’s cumulative processing power: S(m) & 70 g, ().
A(m): We define an additional parameter A\(7) as follows:
et m(m)—1 Sy si(m)
A7) F max ==L (1)
k=1 sk()

]

Intuitively, the parameter A(7) measures the degree of “identicalness” of T —
the closer 7 is to being an identical system, the larger the value of A\(w). This value
has an upper bound of (m(mw) — 1), which occurs when 7 consists of m(m) identical
processors. At the other extreme, A(7) is arbitrarily small when the processors have
very different speeds. For example, \(7) < € for the m(7)-processor platform where
sip1(m) < R si(m) fori=1,...,m(m) — 1.

2.2 Job model

We will assume that a hard-real-time system may be modelled as an arbitrary col-
lection of individual jobs. Each job J; = (rj,¢;,d;) is characterized by an arrival
time 7, an execution requirement c;, and a deadline d;, with the interpretation that
this job needs to execute for ¢; units over the interval [r;, d;).

Periodic tasks. The periodic task model [8] has proven very useful for the mod-
elling and analysis of real-time computer application systems. In this model, each
recurring real-time process is modelled as a periodic task, and is characterized
by two parameters — an execution requirement and a period. (While the ex-
ecution time may be any non-negative number, deadlines are assumed here to be
non-negative rational numbers.) In this section, we will study the scheduling of real-
time systems that can be completely modelled as finite collections of such periodic
tasks. Accordingly, we will model a real-time system 7 def {11, Ts,...,T,} as being
comprised of a collection of n periodic tasks. We will assume that all the system
parameters — the number of tasks in the system, and the execution-requirement and
period parameters of each task — are a priori known. Each periodic task generates
an infinite sequence of jobs which need to be executed by the system. A periodic
task T; = (e;, p;) with execution-requirement parameter e; and period parameter p;
generates a job at each instant k- p;, which needs to execute for e; units by a deadline
of (k+1) - p;, for all non-negative integers k. (In the remainder of this section, we

will often use the symbol 7 itself to denote the infinite collection of jobs generated
by the tasks in periodic task system 7.)

We define the utilization u; of task T; to be the ratio of its execution requirement
to its period: u; def ei/pi- Without loss of generality, we assume that the tasks in 7
are indexed according to non-increasing utilization: u; > wu;yq for all 7, 1 <17 < n.

Work-conserving scheduling algorithms. In the context of uniprocessor schedul-
ing, a work-conserving scheduling algorithm is defined to be one that never idles the
processor while there is any active job awaiting execution. This definition extends
in a rather straightforward manner to the identical multiprocessor case: an algo-
rithm for scheduling on identical multiprocessors is defined to be work-conserving if
it never leaves any processor idle while there remain active jobs awaiting execution.

We define a uniform multiprocessor scheduling algorithm to be work-conserving
if and only if it satisfies the following conditions:

e No processor is idled while there are active jobs awaiting execution.

e If at some instant there are fewer than m active jobs awaiting execution (recall
that m denotes the number of processors in the uniform multiprocessor plat-
form), then the active jobs are executed upon the fastest processors. That is,
it is the case that at any instant ¢ if the j’th-slowest processor is idled by the
work-conserving scheduling algorithm, then the k’th-slowest processor is also
idled at instant ¢, for all & > j.

EDF on uniform processors. Recall that the earliest deadline first scheduling
algorithm (EDF') chooses for execution at each instant in time the currently active
job[s] that have the smallest deadlines. In this research, we assume that EDF is
implemented upon uniform multiprocessor systems according to the following rules:

1. No processor is idled while there is an active job awaiting execution.

2. When fewer than m jobs are active, they are required to execute upon the
fastest processors while the slowest are idled.

3. Higher priority jobs are executed on faster processors. More formally, if the
J'th-slowest processor is executing job J, at time ¢ under our EDF imple-
mentation, it must be the case that the deadline of J, is not greater than
the deadlines of jobs (if any) executing on the (j + 1)’th-, (j + 2)’th-, ...,
m’th-slowest processors.

The first two conditions above imply that EDF is a work-conserving scheduling
algorithm.

EDF is known to be an optimal scheduling algorithm in uniprocessor systems
— a task set 7 is feasible on a uniprocessor 7 if and only if it is EDF-schedulable
on 7. Unfortunately, EDF is not optimal on multiprocessors since there are tasks

sets that are feasible on some multiprocessors but will miss deadlines if EDF is
used [1]. There are nevertheless significant advantages to using EDF for scheduling
on multiprocessor platforms. While it is beyond the scope of this paper to describe
in detail these advantages, some important ones are listed below:

e Very efficient implementations of EDF have been designed (see, e.g., [9]).

e It can be shown that when a set of jobs is scheduled using EDF, then the total
number of preemptions is bounded from above by the number of jobs in the
set.

e [t can be similarly be shown that the total number of interprocessor migrations
that of individual jobs is bounded from above by the number of jobs.

3 Theoretical foundations

It follows from the result of Hong and Leung [7] that no uniform multiprocessor on-
line scheduling algorithm can be optimal. Suppose that a given set of jobs is known to
be feasible on a given m-processor uniform multiprocessor platform 7. In this section,
we obtain conditions upon some other m-processor uniform multiprocessor platform
7" under which the EDF scheduling algorithm guarantees to meet all deadlines for
this set of jobs on 7’. In Lemma 1 below, we first prove a general result that relates
the amount of work done at each instant in time by any work-conserving scheduling
algorithm (such as EDF) executing on 7’ with the amount of work done by an
optimal scheduling algorithm executing on 7, when both algorithms are executing
the same set of jobs. We use this lemma in Theorem 2 to determine conditions
under which EDF executing on 7’ will meet all deadlines of a set of jobs known to
be feasible on 7.
First, some additional notation.

Definition 2 (W (A, 7,I,t).) Let I denote any set of jobs, and 7 any uniform mul-
tiprocessor platform. For any algorithm A and time instant ¢ > 0, let W (A, 7, I,t)
denote the amount of work done by algorithm A on jobs of I over the interval [0, t),
while executing on 7. [|

Lemma 1 below specifies a condition (Condition 2 below) upon the uniform mul-
tiprocessor platforms 7 and 7' under which any work-conserving algorithm A’ (such
as EDF) executing on 7’ is guaranteed to complete at least as much work by each
instant in time ¢ as any other algorithm A (including an optimal algorithm) execut-
ing on 7, when both algorithms are executing on any set of jobs I. This condition
is expressed as a constraint on the parameter \(7’) of the uniform multiprocessor
platform 7’. Condition 2 expresses the additional computing capacity needed by
7' (i.e., the amount by which the total computing capacity of 7’ must exceed that
of m) in terms of this A\(n') parameter, and the speed of the fastest processor in
7w — the smaller the value of A\(7') (the more 7" deviates from being an identical
multiprocessor), the smaller the amount of this excess processing capacity needed.

Lemma 1 ([2]) Let 7 and 7' denote uniform multiprocessor platforms. Let A
denote any m(m)-processor uniform multiprocessor scheduling algorithm, and A’
any work-conserving m(n')-processor uniform multiprocessor scheduling algorithm.
If the following condition is satisfied by platforms 7 and #’:

S(") > XNx') « s1(m) + S(m) (2)

then for any collection of jobs I and any time-instant ¢ > 0,
WA« I,t) > W(A,mI,t) . (3)

|

Lemma 1 allows us to reason about the total execution of work-conserving algo-
rithms. The next theorem shows that we can use this knowledge to deduce whether
a work-conserving algorithm can feasibly schedule a task set: it states that any
collection of jobs I that is feasible on a uniform multiprocessor platform 7 will be
scheduled to meet all deadlines by Algorithm EDF on any platform 7’ satisfying
Condition 2 of Lemma 1.

Theorem 2 ([2]) Let I denote an instance of jobs that is feasible on an uniform
multiprocessor platform 7. Let 7' denote another uniform multiprocessor platform.
If Condition 2 of Lemma, 1 is satisfied by platforms 7 and 7'

S(r") > AN#') - sy(m) + S(w)

then I will meet all deadlines when scheduled using the EDF algorithm executing
on 7',

|
As an immediate corollary to Theorem 2 above, we obtain the result of Phillips,
Stein, Torng, and Wein [10] concerning EDF-scheduling on identical multiprocessors:

Corollary 3 If a set of jobs is feasible on an identical m-processor platform, then
the same set of jobs will be scheduled to meet all deadlines by EDF on an identical
m-processor platform in which the individual processors are (2 — %) times as fast as
in the original system.

|

Theorem 2 characterizes a uniform multiprocessor platform 7" according to its
parameter “A(7')” (as defined in Equation 1), and relates the EDF-feasibility of a
system, known to be feasible on some platform 7, to the cumulative capacities of
7 and 7', the speed s;(m) of the fastest processor in 7, and this parameter A(7’) of
platform 7’. Theorem 4 below asserts that, for this particular characterization of
a uniform multiprocessor system, the bound represented by Theorem 2 is a tight
one and EDF is optimal in the sense that no other on-line scheduling algorithm can
make a better guarantee:

Theorem 4 ([2]) There exist uniform multiprocessor platforms 7 and 7’ and an
instance I of hard-real-time jobs such that

e Instance [is feasible on platform =,
e The relationship between the various parameters of 7 and 7’ is as follows
S(r")y = Ar") - s1(m) + S(m) — e . (4)

(where € is assumed to be an arbitrarily small positive number; i.e., the con-
dition of Theorem 2 is not satisfied by an arbitrarily small amount e.)

e Instance [is infeasible on uniform multiprocessor platform 7’.

3.1 EDF-scheduling of periodic tasks

In this section, we apply the theory developed in the previous section to the schedul-
ing of periodic task, systems on uniform multiprocessor platforms.

Lemma 5 ([2]) Let 7 = {T},...,T,} denote a collection of periodic tasks indexed

according to non-increasing utilization (i.e., u; > w;;; for all i, 1 < i < n, where
def .
.= &

i = 5£). 7 is feasible on m = [uy, ..., up).

Theorem 6 ([2]) Let 7' denote a uniform multiprocessor platform. Periodic task
system 7 will meet all deadlines when scheduled on 7" using EDF, if the following
condition holds

S > Na") - uy + U,. (5)

def
Where U,, = 31", u;.

Proof. Immediately follows from Theorem 2 and Lemma 5. []
We now illustrate the use of Theorem 6 by an example.

Example 7 Consider a task system 7 comprised of five tasks:
7 ={(15,10), (4,5), (12,20), (6, 15), (2,10)};

for this system, u; = 1.5, uy = 0.8, uz = 0.6, uy = 0.4, and us = 0.2. Suppose that
7 is to be EDF-scheduled on the uniform multiprocessor platform 7’ = [3,1,0.5] —
will all deadlines be met?

By Equation 1, the value of A\, for the uniform multiprocessor platform 7’ is

1+0.5 0.5 1

Av = max(—g—, 77) = 5.,

the total computing capacity is

34+14+05=45,

and U,, = 3.5.
The Condition 5 is therefore

45 > 05-1.5435
=45 > 0.75+35
=45 > 4.25
and 7 can consequently be scheduled by EDF to meet all deadlines on 7' [|

4 Priority-driven algorithms

In this section, we extend the theory developed in Section 3 to obtain utilization-
based EDF-schedulablity bounds for periodic task systems upon identical multipro-
Cessors.

Lemma 8 ([3]) Let 7 denote a uniform multiprocessor platform, and 7’ an identical
multiprocessor platform comprised of m' unit-capacity processors. Let A denote
any uniform multiprocessor scheduling algorithm, and A" any work-conserving m/'-
processor identical multiprocessor scheduling algorithm. If the following condition
is satisfied:
. S(m) —s1(n)
1 —s1(m)

then for any collection of jobs I and any time-instant ¢ > 0,

(6)

WA, 7, 1,8) > W(A,x,1,t) . (7)

|

The following theorem applies Lemma 8 to the case where the work-conserving
algorithm A’ of Lemma 8 is Algorithm EDF, and algorithm A of Lemma 8 is an
optimal (offline) scheduler.

Theorem 9 ([3]) Let 7 denote a uniform multiprocessor platform. Let I denote
an instance of jobs that is feasible on 7. Let 7’ denote an identical multiprocessor
platform comprised of m' unit-capacity processors. If Condition 6 of Lemma 8 is
satisfied, then I will meet all deadlines when scheduled using the EDF algorithm
executing on 7'.

4.1 EDF-scheduling of periodic task systems

Lemma 8 and Theorem 9 above are applicable to on-line scheduling — the charac-
teristics of jobs need not be known prior to their arrival times. Although scheduling
a periodic task system is not an on-line problem in the sense that all task parame-
ters are assumed known beforehand, these results nevertheless turn out to be useful
towards developing a framework for scheduling periodic task systems on multipro-
Cessors.

Recall that 7 = {7}, T»,...,T,} denotes a periodic task system comprised of n
tasks, indexed in order of non-increasing utilization. We introduce the notation 7%
to refer to the task system comprised of the (n — i 4+ 1) minimum-utilization tasks
in 7:

O AT T, T
(According to this notation, 7 = 7(1).)

By a direct application Theorem 9, we obtain below a sufficient condition for a
periodic task system to be successfully scheduled by EDF. By Theorem 9, periodic
task system 7 is feasible on some uniform multiprocessor platform 7 with cumulative
computing capacity S; = U(7), in which the fastest processor has speed s, = u;.
Hence by Theorem 9, we obtain the following theorem:

Theorem 10 ([3]) Periodic task system 7 can be EDF-scheduled upon an identical
multiprocessor platform comprised of m unit-capacity processors, provided

m> [&})

].-Ul
]

(Note that, as u; — 1, the right-hand side of Inequality 8 approaches co. However, the number of

processors needed for EDF to successfully schedule 7 cannot exceed the number of tasks n; hence
U(7)—u1
1—u1

the right-hand side of Inequality 8 could be replaced by min(n, { -‘). For reasons of algebraic

simplicity, we do not make this explicit in the remainder of this paper.)
Theorem 11 follows by algebraic simplification of Equation 8:

Theorem 11 ([3]) Periodic task system 7 can be EDF-scheduled upon m unit-
speed identical processors, provided its cumulative utilization is bounded from above
as follows:

Ulr) <m—uy-(m—1). (9)

]
It turns out that the bounds of Theorem 10 and 11 are in fact tight:

Theorem 12 ([3]) Let m denote any positive integer > 1, u; any real number
satisfying 0 < w; < 1, and e an arbitrarily small positive real number, € < u;.
EDF cannot schedule some periodic task systems with cumulative utilization m —
u1(m — 1) + € in which the largest-utilization task has utilization equal to u;, upon
m unit-speed processors.

4.2 Priority-driven scheduling of periodic task systems

Different scheduling algorithms differ from one another in the manner in which pri-
orities get assigned to individual jobs by the algorithms. Some scheduling algorithms
are observed to have certain desirable features in terms of ease (and efficiency) of
implementation, particularly upon multiprocessor platforms. Some of the important
characteristics of such algorithms were studied by Ha and Liu [5, 6, 4], who proposed
the following definition:

Definition 3 (Priority-driven algorithms [6].) A scheduling algorithm is said
to be a priority driven scheduling algorithm if and only if it satisfies the condition
that for every pair of jobs J; and J;, if J; has higher priority than J; at some instant
in time, then J; always has higher priority than J;. []

By this definition, Algorithm EDF is a priority-driven algorithm while the least
laxity algorithm is not.

If we are not tied to using EDF, but can instead use any priority-driven scheduling
algorithm, we can often schedule a periodic task system 7 upon fewer than the
[(U(1) —uy1)/(1 —uy)| processors mandated by Theorems 10 and 12. Recall that
tasks in 7 are indexed according to non-increasing utilization (i.e., u; > u; 41 for all

i, 1 < i < n), and consider the following priority-driven scheduling algorithm:

Algorithm EDF®) assigns priorities to jobs of tasks in 7 according to the following
rule:

For all ¢ < k, T;’s jobs are assigned highest priority (ties broken arbitrarily) — this
is trivially achieved within an EDF implementation by setting all deadlines of
T; equal to —oo.

For all ¢« > k, T;’s jobs are assigned priorities according to EDF.

That is, Algorithm EDF®) assigns highest priority to jobs generated by the k — 1
tasks in 7 that have highest utilizations, and assigns priorities according to deadline
to jobs generated by all other tasks in 7. (Thus, “pure” EDF is EDF().)

Theorem 13 ([3]) Periodic task system 7 will be scheduled to meet all deadlines
on m unit-speed processors by Algorithm EDF®*), where

iy

— (10)

et |

Corollary 14 ([3]) Periodic task system 7 will be scheduled to meet all deadlines

h Memin (7) % min {(k —1)+ {Ul(%k;m } (11)

unit-capacity processors by a priority-driven scheduling algorithm.

Algorithm PriD. Based upon Corollary 14 above, we propose the following priority-
driven scheduling algorithm for scheduling periodic task systems upon identical mul-
tiprocessors: Given a periodic task system 7 = {11, T5,...,T,} with u; < u;y, for
all 7, 1 < i < n, Algorithm PriD computes mpy,(7) according to Equation 11, and
schedules 7 by Algorithm EDF*min(7)),

Example 15 Consider a task system 7 comprised of five tasks:
T= {(97 10)7 (147 19)7 (17 3)7 (27 7)7 (17 5)}5

for this system, u; = 0.9, uy = 14/19 ~ 0.737, ug = 1/3, uy = 2/7 ~ 0.286, and
us = 0.2; U(T) consequently equals ~ 2.457.

It may be verified that for this task system, the right-hand side of Equation 11
is minimized for k£ = 3; hence, ki, (7) = 3 and mp;n (1) equals

0.286 + 0.2
-1 - =
3 ”[1_0.334}
B - [0.48%
N 0.667

= 3

That is, 7 can be scheduled to meet all deadlines by Algorithm EDF®) on 3 proces-
Sors.

By contrast, Theorem 10 can only guarantee that all deadlines will be met upon
[mw ~ [1.557/0.1] = 16 processors, if 7 were scheduled using EDF.

1—uy

Experimental evaluation

Above, we proposed a new priority-driven scheduling algorithm — Algorithm PriD
— and proved that this algorithm often makes better use of available computing
resources than “pure” EDF. We now experimentally evaluate Algorithm PriD and
compare its performance with that of EDF.

In our experiments we shall study our technique based on randomly chosen sys-
tems. We are cognizant that it is in general very difficult to draw accurate conclu-
sions regarding the benefits of a proposed technique from “simulations”, since these
benefits often depend in a non-obvious way upon the many parameters of the real-
time system — in particular on the (distribution of the) system characteristics (the
number of tasks, the load of the system, etc.). It is of course not possible to consider
all distributions of real-time systems in our simulations; moreover, it is difficult to
determine which distributions are reasonable, and which are not. For some of our
simulation experiments, we have therefore made use of the pseudo-random task set
generator developed by Ripoll et al. [11] for evaluating a feasibility-analysis algo-
rithm, which they have very generously made available to us. Workloads generated
by the Ripoll et al. generator have been widely used for experimentally evaluat-
ing real-time scheduling algorithms, and these experiments have been revealed to
the larger research community for several years now. We believe that using this
task generator provides a context for our simulation results, and allows them to be
compared with other results performed by other researchers.

We use the pseudo-random periodic task set generator proposed by Ripoll and
colleagues, with the same parameters as in [11] except the utilization factor of the
system which is uniformly drawn from interval [1,10], the computation times are

25 T T T T T T T T

priDI

pure EDF --------

15

10

Figure 1: Average number of processors needed, as a function of total utilization
U(r).

uniformly chosen from the interval [1,20], the deadlines from the interval [2,170],
and the periods from the interval [3,670]. Figure 1 shows the average (i.e., the
arithmetic mean) number of processors needed by Algorithms PriD and EDF as a
function of total utilization U(7).

Mixed systems. The experiments described above indicate that Algorithm PriD
tends to require fewer processors than pure EDF in general, in order to schedule a
given periodic task system. The benefits of Algorithm PriD seem to be even more
significant if the utilizations of the tasks are less homogeneous than is the case for
task systems generated by the Ripoll et al. generator [11], but instead tend to be
clustered around two different values; i.e., most tasks in the set of tasks can be
classified into two categories: “heavy” and “light” tasks.

In this set of experiments, we can no longer use the task-generator proposed by
Ripoll and colleagues (which generates systems of a given total utilization). Our
task-generation methodology is instead as follows: we choose values for the average
utilization of the heavy tasks 7;, and the average utilization of the light tasks Ty,
and generate task systems comprised of 50 tasks as follows:

1. ny3 < 0;

2. Generate! n; heavy tasks:

Lhormal(z, o) represents a pseudo-random number generator which uses the normal distribution
(with an average of T and a standard deviation of o) restricted to values in the interval (0, 1).

200 T T T T T T T

EDF(K) —— |
pure EDF-~-----

180 - -
160 | i
140 | i
120 - -
100 — .
80 — -
60 -

20 1 1 1 1 1 1 1 1 1

nl

Figure 2: Average number of processors needed, as a function of number of heavy
tasks (T, = 0.8; T, = 0.4).

u; < normal(Zy,07) t=1,...,n1;

3. Generate 50 — n; light tasks:
u; < normal(Zs,02) i=ny+1,...,n;

4. Re-order the utilization factors such that uy > ugy > -+ > uy;

5. Mmin < ming_; {(k -1+ [w-‘ };

1—upg

6. mypiy <—min{m |m>0AU(T) < z.zi1}§

7. np < ni+1;

oo

. if ny < 50 repeat from step 2.

Figures 2 and 3 show the average number of processors needed by Algorithms PriD
and EDF, as a function of the number of heavy tasks n,. These graphs are obtained
by applying the above algorithm to a large number of randomly chosen utilization
factors. Figure 2 corresponds to the case where T; = 0.8 and T, = 0.4. Figure 3
corresponds to the case where T; = 0.95 and Ty = 0.1. In both cases, we observe
that Algorithm PriD compares more favorably to EDF, than was the case with task-
systems generated according to the Ripoll et al. task-generator [11].

1000 T T T T T T T T T

EDF(k) — .-
pure EDF -------<
900 S

800 | i
700 | i
600 - -
500 |- §
400 | 4
300 | i
200 |]

100 . .

0 g 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

nl

Figure 3: Average number of processors needed, as a function of number of heavy
tasks (T, = 0.95; T, = 0.1).

5 Conclusion

In this paper, we summarized some of our recent findings in the field of on-line
scheduling on multiprocessors. We have first presented our major result: a ressource
augmentation technique to use EDF on multiprocessors and its application to the
scheduling of periodic task systems. We have applied the theory to obtain utilization-
based EDF-schedulability bounds for periodic task systems upon identical multipro-
cessors. We proposed a new priority-driven scheduling algorithm which is provably
prior to EDF for scheduling of periodic real-time task systems upon identical mul-
tiprocessors.

References

[1] DurALL, S. K., AND Liu, C. L. On a real-time scheduling problem. Operations
Research 26 (1978), 127-140.

[2] Funk, S., GOOSSENS, J., AND BARUAH, S. On-line scheduling on uniform
multiprocessors. In Proceedings of the 22" Real-Time Systems Symposium
(London, England, December 2001), IEEE Computer Society Press, pp. 183—
192.

3]

GoOOssENS, J., FUuNK, S., AND BARUAH, S. Priority-driven scheduling of pe-
riodic task systems on multiprocessors. Real-Time Systems: The International
Journal of Time-Critical Computing (2001). Accepted for publication.

HaA, R. Validating timing constraints in multiprocessor and distributed systems.
PhD thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1995. Available as Technical Report No. UIUCDCS-R-95-1907.

Ha, R., axDp Liu, J. W. S. Validating timing constraints in multiproces-
sor and distributed real-time systems. Tech. Rep. UITUCDCS-R-93-1833, De-
partment of Computer Science, University of Illinois at Urbana-Champaign,
October 1993.

HaA, R., axDp Liu, J. W. S. Validating timing constraints in multiproces-
sor and distributed real-time systems. In Proceedings of the 1/th IEEE Inter-
national Conference on Distributed Computing Systems (Los Alamitos, June
1994), IEEE Computer Society Press.

Hong, K., AND LEUNG, J. On-line scheduling of real-time tasks. In Proceed-

ings of the Real-Time Systems Symposium (Huntsville, Alabama, December
1988), IEEE, pp. 244-250.

Liu, C., AND LAYLAND, J. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM 20, 1 (1973), 46-61.

Mok, A. Task management techniques for enforcing ED scheduling on a peri-
odic task set. In Proc. 5th IEEE Workshop on Real-Time Software and Oper-
ating Systems (Washington D.C., May 1988), pp. 42-46.

PuiLrips, C. A., STEIN, C., TORNG, E., AND WEIN, J. Optimal time-
critical scheduling via resource augmentation. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing (El Paso, Texas, 4-6
May 1997), pp. 140-149.

RipoLL, I., CrRESPO, A., AND MoK, A. K. Improvement in feasibility testing
for real-time tasks. Real-Time Systems: The International Journal of Time-
Critical Computing 11 (1996), 19-39.

