Global Multiprocessor Scheduling

Quentin Delhaye

Université Libre de Bruxelles ELEC-H410 Real-Time Systems

June 6th 2014

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ つ へ で
1/18

2 EDF

Partitioned and Global Scheduling Notations Global and Partitioned are incomparable

Partitioned and Global Scheduling

Partitioned Assign each task to a processor: Bin-Packing problem (NP-Complete)

- Forbid task migration
- Uniprocessor scheduling

Global • Schedule jobs

Allow migration

They are incomparable.

Introduction

EDF EDF^(k) PFAIR Conclusion References

Partitioned and Global Scheduling Notations Global and Partitioned are incomparable

Notations

- e Execution time
- D Absolute deadline
- T Period
- au Set of tasks
- m Number of processors
- ${\sf U}$ Utilisation

Partitioned and Global Scheduling Notations Global and Partitioned are incomparable

Global and Partitioned are incomparable

Some systems are schedulable using global FJP algorithm, but not partitioned.

	е	Т	D
τ_1	2	3	2
τ_2	3	4	3
$ au_3$	5	12	12

- If m = 2, partitioning fails: $U(\tau_i) + U(\tau_j) > 1$ $\forall i \neq j$
- Global scheduling succedes if τ_3 has the lowest priority.

Partitioned and Global Scheduling Notations Global and Partitioned are incomparable

Global and Partitioned are incomparable

Some systems are schedulable using partitioned FJP algorithm, but not global.

	е	Т	D	
τ_1	2	3	2	
τ_2	3	4	3	
τ_3	4	12	12	
$ au_4$	3	12	12	

- Partitioned: τ_1 and τ_3 on m_1 and the rest on m_2 .
- Global fails: τ_1 and τ_2 are scheduled each on one processor, τ_3 or τ_4 migrates to fill the idle units, the other one fails (no job parallelism).

Any Sporadic Implicit-Deadline System is schedulable using global EDF on m processors if

$$U(\tau) \le m - (m - 1)U_{max} \tag{1}$$

If we suppose $U(au_i) \geq U(au_{i+1})$, $\forall i \in [1, n-1]$, we have:

$$m \ge \left\lceil \frac{U(\tau) - U(\tau_1)}{1 - U(\tau_1)} \right\rceil$$
(2)

Poor results if $U_{max} \approx 1$, EDF^(k) can improve that.

Introduction EDF EDF(k) PFAIR Conclusion References

Scheduling Algorithm Example

EDF^(k)– Scheduling Algorithm

• Set of states with the lowest utilization:

$$\tau^{(i)} = \{\tau_i, \tau_{i+1}, ..., \tau_n\}$$

• $\forall i < k$, give maximum priority to jobs of τ_i .

• $\forall i \geq k$, assign priorities according to EDF.

A sporadic implicit-deadline system is schedulable on m processors using $\mathsf{EDF}^{(k)}$ if

$$m = (k - 1) + \left\lceil \frac{U(\tau^{(k+1)})}{1 - U(\tau_k)} \right\rceil$$
(3)

 Introduction EDF EDF(k) Scheduling Algorithm PFAIR Example Conclusion References

As a corollary, we can minimize m:

$$m_{\min}(\tau) = \min_{k \in [1,n]} \left\{ (k-1) + \left\lceil \frac{U(\tau^{(k+1)})}{1 - U(\tau_k)} \right\rceil \right\}$$
(4)

Introduction EDF EDF(k) PFAIR Conclusion References

Scheduling Algorithm Example

	е	D	U	
τ_1	9	10	0.9	
τ_2	14	19	0.737	
τ_3	1	3	0.333	
$ au_4$	2	7	0.286	
τ_5	1	5	0.2	
τ_6	1	10	0.1	
τ	-	-	2.557	

- Equation 4 is minimal for k = 3, leading to $m_{min}^{EDF^{(3)}} = 3$.
- Using EDF and equation 2 would have lead to $m_{min}^{EDF} = 16$.

Lag Scheduling Example

- We now consider a synchronous implicit-deadline periodic tasks system and a quantum-based scheduler (*i.e.* discrete).
- Schedule function: $S : \tau \times \mathbb{Z} \mapsto \{0, 1\}$. $S(\tau_i, t) = 1$ if τ_i is scheduled in [t, t + 1)
- Ideal fair schedule: τ_i receives $U(\tau_i) \times t$ processor units in [0, t).

Introduction EDF EDF(k) PFAIR Conclusion References

Difference between the ideal and real scheduling:

$$lag(\tau_i, t) = U(\tau_i) \cdot t - \sum_{\delta=0}^{t-1} S(\tau_i, \delta)$$
(5)

• A schedule is PFAIR iff:

$$-1 < \log(au_i, t) < 1$$
 $\forall au_i \in au, t \in \mathbb{Z}$ (6)

Scheduling

• At each time unit, schedule the *m* tasks having the largest positive lag.

Lag Scheduling Example

Example

	е	D	U
τ_1	1	10	0.1
τ_2	1	4	0.25
τ_3	2	6	0.333
τ_4	1	3	0.333
τ_5	1	2	0.5
τ	-	-	1.52

Introduction EDF EDF(k) PFAIR Conclusion References	Lag Scheduling Example
References	

lag	1	2	3	4	5	6	7
τ_1	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3
τ_2	-0.75	-0.5	-0.25	0	-0.75	-0.5	-0.25
τ_3	1/3	-1/3	0	-2/3	-1/3	0	-2/3
τ_4	1/3	2/3	0	-2/3	-1/3	0	-2/3
τ_5	0.5	0	-0.5	0	-0.5	0	0.5
	8	9	10	11	12	13	14
τ_1	-0.2	-0.1	0	-0.9	-0.8	-0.7	-0.6
τ_2	0	-0.75	-0.5	-0.25	0	-0.75	-0.5
τ_3	-1/3	0	-2/3	-1/3	0	-2/3	-1/3
τ_4	-1/3	0	-2/3	-1/3	0	1/3	0
τ_5	0	-0.5	0	-0.5	0	0.5	0

Lag Scheduling Example

Lag Scheduling Example

Drawbacks • Lots of preemptions

- Lots of migrations
- Lots of computations

Advantage PFAIR is optimal for a periodic synchronous implicit-deadline system iff

$$U(\tau) \le m$$
 and $U_{max} \le 1$ (7)

- Field under extensive study.
- Implementation trickier than for uniprocessor.
- PFAIR optimal because we know the release times beforehand, but there exists no online optimal scheduler.

J. Goossens.

Operating systems II, 2013.

S. Funk J. Goossens and S. Baruah. Priority-driven scheduling of periodic task systems on multiprocessors.

Real-Time Systems: The International Journal of Time-Critical Computing, 2003.

A. Srinivasan and S. K. Baruah.

Deadline-based scheduling of periodic task systems on multiprocessors.

In Information Proceeding Letters, 2002.