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1. BACKGROUND

Today, real-time embedded systems are found in many diverse application areas, in-
cluding automotive electronics, avionics, telecommunications, space systems, medical
imaging, and consumer electronics. In all of these areas, there is rapid technological
progress.

Companies building embedded real-time systems are driven by a profit motive. To
succeed, they aim to meet the needs and desires of their customers by providing systems
that are more capable, more flexible, and more effective than those of their competitors,
and by bringing these systems to market earlier. This desire for technological progress
has resulted in a rapid increase in both software complexity and the processing de-
mands placed on the underlying hardware.

To address demands for increasing processor performance, silicon vendors no longer
concentrate wholly on the miniaturization needed to increase processor clock speeds,
as this approach has led to problems with both high power consumption and excessive
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heat dissipation. Instead, there is now an increasing trend toward using multiprocessor
platforms for high-end real-time applications.

A key date in the move toward multiprocessor systems was May 7, 2004 [Bertogna
2007], when Intel canceled the successor to the Pentium P4 processor called Tejas, due
to extremely high power consumption [Lammers 2004]. Dynamic power consumption,
the power lost charging and discharging capacitive load, is a dominant factor for chip
designs using technology above the 100-nm level; however, for sub-100-nm technology,
transistor leakage current becomes important. This is because, as the dimensions of the
gates and oxide layers are reduced, so is their electrical resistance. The result is that
leakage current and hence power dissipation rapidly increases with further miniatur-
ization. This problem can be partially ameliorated by running at a lower voltage, which
reduces power consumption due to both dynamic and leakage sources; however, reduc-
ing voltage also limits the maximum operating frequency, restricting performance. A
solution to this problem is to limit miniaturization and operating frequencies, and,
instead, to use multiple processors on a single chip. On July 27, 2006, 2 years after the
cancellation of Tejas, Intel released the Core Duo processor. In future, it is expected
that the high-end processing performance will be provided by using a large number of
processor cores on a single chip. For example, the Intel Teraflop Research Chip (Polaris),
announced on Feb 11, 2007, has 80 processor cores providing 1 Teraflop performance
at 3 GHz.

Multicore processors from other vendors include, from AMD: Opteron, Phenom,
Turion 64, Radeon, and Firestream; from Analog Devices: Blackfin; from Azul
Systems: Vega 1, Vega 2, Vega 3; from ARM: MPCore; from Cavium Networks: Octeon;
from Freescale Semiconductor: QorlQ; from IBM: POWER4, POWER5, POWER6,
PowerPC970, Xenon (X-Box 360); from Intel: Core Duo, Core 2 Duo, Core 2 Quad,
Core i3, i5, i7, i7 Extreme Edition family, Itanium 2, Pentium D, Pentium Dual-Core,
Polaris, Xeon; from Nvidia: GeForce 9, GeForce 200, Tesla; from NXP Nexperia; from
Sun Microsystems: MAJC 5200, UltraSPARC IV, UltraSPARC T1, UltraSPARC T2;
from Texas Instruments: TMS320C80 MVP; from Tilera: TILE64; from XMOS: XS-G4.

By 2009, there was clear evidence of a strong trend toward using multicore proces-
sors in embedded systems that require hard real-time performance. Chip Downing,
Director of Business Development, A&D, at WindRiver, noted in the October 2009 edi-
tion of Avionics magazine, “We see a strong trend towards multicore in aerospace and
defense” [Downing 2009]. The same article explained that “the advantage for avionics
is that multicore chips can significantly reduce the Size, Weight and Power (SWaP) re-
quirements” [Downing 2009]. A similar trend is also evident in automotive electronics,
[Leteinturier 2007], and in space/satellite systems, where the European Space Agency
(ESA) is supporting development of suitable multicore processors (LEON3). Mobile
phones and related devices already exploit multiprocessor platforms.

1.1. Multiprocessor Real-Time Systems and Scheduling

Systems are referred to as real-time when their correct behavior depends not only on the
operations they perform being logically correct, but also on the time at which they are
performed. For example in avionics, flight control software must execute within a fixed
time interval in order to accurately control the aircraft. In automotive electronics there
are tight time constraints on engine management and transmission control systems
that derive from the mechanical systems that they control.

Guaranteeing real-time performance while making the most effective use of the avail-
able processing capacity requires the use of efficient scheduling policies or algorithms
supported by accurate schedulability analysis techniques. These analysis techniques
need to be capable of analyzing the worst-case behavior of the application under a
given scheduling policy, thus providing proof, subject to a set of assumptions about
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application behavior, that timing constraints will always be met during operation of
the system.

Research into uniprocessor real-time scheduling can trace its origins back to the late
1960s and early 1970s with significant research effort and advances made in the 1980s
and 1990s. The interested reader is referred to Audsley et al. [1996] and Sha et al.
[2004], which provide historical accounts of the most important advances in the field of
uniprocessor scheduling during those decades. Today, although there is still significant
scope for further research, uniprocessor real-time scheduling theory can be viewed as
reasonably mature, with a large number of key results documented in textbooks such as
those by Burns and Wellings [2009], Buttazzo [2005], and Liu [2000], and successfully
transferred into industrial practice.

Multiprocessor real-time scheduling theory also has it origins in the late 1960s and
early 1970s. Liu [1969, p. 28] noted that multiprocessor real-time scheduling is intrin-
sically a much more difficult problem than uniprocessor scheduling:

“Few of the results obtained for a single processor generalize directly to the multiple processor case;
bringing in additional processors adds a new dimension to the scheduling problem. The simple fact
that a task can use only one processor even when several processors are free at the same time adds a
surprising amount of difficulty to the scheduling of multiple processors.”

The seminal paper of Dhall and Liu [1978] heavily influenced the course of research
in this area for two decades. During the 1980s and 1990s, conventional wisdom was
that global approaches to multiprocessor scheduling, where tasks may migrate from
one processor to another, suffered from the so-called “Dhall effect,” and were therefore
inferior to partitioned approaches, with a fixed allocation of tasks to processors. Re-
search efforts therefore focused almost exclusively on partitioned approaches. It was
not until Phillips et al. [1997] showed that the Dhall effect was more of a problem with
high-utilization tasks than it was with global scheduling algorithms that there was
renewed interest in global scheduling algorithms.

In the late 1990s silicon vendors such as IBM and AMD began research into the de-
velopment of multicore processors, with IBM releasing the first nonembedded dual-core
processor, the POWER4, in 2001. This trend away from increasing processing capac-
ity via ever higher clock speeds toward increasing performance via multiple processor
cores became evident to the real-time systems research community. This resulted in
significant research effort being focused on the problem of real-time multiprocessor
scheduling. While markedly more articles have been published in this area since 2000
than before, and significant progress has been made, there are still many open ques-
tions and research challenges that remain.

This article presents a survey of multiprocessor real-time scheduling algorithms
and schedulability analysis techniques, from the origins of the field in the late 1960s
up to the latest research published at the end of 2009. The aim of the survey is to
provide a classification of existing research, both providing a perspective on the area
and identifying significant open issues and future research directions.

1.2. Organization

The remainder of the article is organized as follows: Section 2 provides a classification of
multiprocessor systems, and algorithms. It describes the basic system and task models,
and defines the terminology and notation used. Section 3 describes metrics that can
be used to compare the performance of different multiprocessor real-time scheduling
algorithms and their analyses. Section 4 describes a set of fundamental results that
are independent of specific scheduling algorithms. This is followed by an overview of
partitioned and global approaches to multiprocessor real-time scheduling, in Sections
5 and 6, respectively. Section 7 outlines hybrid approaches that attempt to combine the
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best attributes of both partitioned and global approaches. Section 8 describes research
into protocols and analyses for accessing mutually exclusive shared resources. Section
9 reports on the latest empirical research. Finally, Section 10 identifies key open issues
in the field, and Section 11 provides some concluding remarks.

2. SYSTEM MODELS, TERMINOLOGY, AND NOTATION

This section provides a primer on the terminology and notation used in multiprocessor
scheduling research. It is aimed both at helping new researchers entering the field and
providing a consistent nomenclature that has yet to fully emerge from the research
community.

2.1. Classification of Multiprocessor Systems

From the perspective of scheduling, multiprocessor systems can be classified into three
categories.

(1) Heterogeneous. The processors are different; hence the rate of execution of a task
depends on both the processor and the task. Indeed, not all tasks may be able to
execute on all processors.

(2) Homogeneous. The processors are identical; hence the rate of execution of all tasks
is the same on all processors.

(3) Uniform. The rate of execution of a task depends only on the speed of the processor.
Thus a processor of speed 2 will execute all tasks at exactly twice the rate of a
processor of speed 1.

In this survey, we are concerned with homogeneous multiprocessor systems, compris-
ing m processors.

2.2. Periodic and Sporadic Task Models

The aim of multiprocessor real-time scheduling is to execute the set of tasks that make
up an application, on the multiprocessor system, such that their time constraints are
always met. An application (or taskset τ ) is assumed to comprise a static set of n
tasks (τ1 · · · τn). When fixed-priority scheduling is used, the task number is also used to
indicate a unique priority i, from 1 to n (where n is the lowest priority).

The overwhelming majority of the research into multiprocessor real-time scheduling
focuses on two simple task models: the periodic task model and the sporadic task model.
In both models, tasks give rise to a potentially infinite sequence of invocations (or jobs).
In the periodic task model, the jobs of a task arrive strictly periodically, separated by
a fixed time interval. In the sporadic task model, each job of a task may arrive at any
time once a minimum interarrival time has elapsed since the arrival of the previous
job of the same task.

Periodic tasksets may be classified as synchronous if there is some point in time
at which all of the tasks arrive simultaneously, or asynchronous, where task arrival
times are separated by fixed offsets and there is no simultaneous arrival time. In the
sporadic task model, the arrival times of the jobs of different tasks are assumed to be
independent.

Intratask parallelism is not permitted by either model; hence, at any given time,
each job may execute on at most one processor. Also, it is assumed, unless otherwise
stated, that only a single job of a task is ready to execute at any given time. Further, it
is assumed that once a job starts to execute it will not suspend itself.

Each task τi is characterized by: its relative deadline Di, worst-case execution time
Ci, and minimum interarrival time or period Ti. The utilization ui, of task τi is given by
Ci/Ti. The utilization usum of a taskset is the sum of the utilizations of all of its tasks.
A task’s worst-case response time Ri is defined as the longest time from a job of that
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task arriving to it completing execution. The hyperperiod H(τ ) of a taskset is defined
as the least common multiple of the task periods.

There are three levels of constraint on task deadlines that are studied in the litera-
ture.

(1) Implicit deadlines. All task deadlines are equal to their periods (Di = Ti).
(2) Constrained deadlines. All task deadlines are less than or equal to their periods

(Di ≤ Ti).
(3) Arbitrary deadlines. Task deadlines may be less than, equal to, or greater than

their periods.

Most of the published research assumes that tasks are independent and so cannot be
blocked from executing by another task other than due to contention for the processors.
Section 8 outlines research into policies that permit access to mutually exclusive re-
sources lifting the restriction of independence. They consider the blocking time during
which tasks can be prevented from executing due to other tasks accessing mutually
exclusive shared resources.

As a result of preemption and subsequent resumption, a job may, in the case of
global scheduling, migrate from one processor to another. The cost of preemption,
migration, and the runtime operation of the scheduler is generally assumed to be either
negligible, or subsumed into the worst-case execution time of each task. Empirical
research considering the effects of such overheads is outlined in Section 9.

2.3. Taxonomy of Multiprocessor Scheduling Algorithms

Multiprocessor scheduling can be viewed as attempting to solve two problems.

(1) The allocation problem, or on which processor a task should execute.
(2) The priority problem, or when, and in what order with respect to jobs of other tasks,

each job should execute.

Scheduling algorithms for multiprocessor systems can be classified according to when
changes to priority and allocation can be made (referred to as migration-based and
priority-based classifications [Carpenter et al. 2004]).

Allocation

(1) No migration. Each task is allocated to a processor and no migration is permitted.
(2) Task-level migration. The jobs of a task may execute on different processors; how-

ever, each job can only execute on a single processor.
(3) Job-level migration. A single job can migrate to and execute on different processors;

however, parallel execution of a job is not permitted.

Priority

(1) Fixed task priority. Each task has a single fixed priority applied to all of its jobs.
(2) Fixed job priority. The jobs of a task may have different priorities, but each job has a

single static priority. An example of this is earliest deadline first (EDF) scheduling.
(3) Dynamic priority. A single job may have different priorities at different times, for

example least laxity first (LLF) scheduling.

Scheduling algorithms where no migration is permitted are referred to as partitioned,
those where migration is permitted are referred to as global. As the majority of research
into global scheduling algorithms has focused on models where arbitrary migration (job-
level migration) is permitted, in the remainder of this article we will use the term global
to mean job-level migration and provide clarification indicating when only task-level
migration is permitted.
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A scheduling algorithm is said to be work-conserving if it does not permit there to be
any time at which a processor is idle and there is a task ready to execute. Partitioned
scheduling algorithms are not work-conserving, as a processor may become idle, but
cannot be used by ready tasks allocated to a different processor.

Scheduling algorithms can be further classified as follows.

(1) Preemptive. Tasks can be preempted by a higher priority task at any time.
(2) Nonpreemptive. Once a task starts executing, it will not be preempted and will

therefore execute until completion.
(3) Cooperative. Tasks may only be preempted at defined scheduling points within their

execution. Effectively, execution of a task consists of a series of nonpreemptable
sections.

In this survey, we focus only on preemptive scheduling algorithms.

2.4. Schedulability, Feasibility, and Optimality

A taskset is said to be feasible with respect to a given system if there exists some
scheduling algorithm that can schedule all possible sequences of jobs that may be
generated by the taskset on that system without missing any deadlines.

A scheduling algorithm is said to be optimal with respect to a system and a task
model if it can schedule all of the tasksets that comply with the task model and are
feasible on the system.

A scheduling algorithm is said to be clairvoyant if it makes use of information about
future events, such as the precise arrival times of sporadic tasks, or actual execution
times, which are not generally known until they happen.

A task is referred to as schedulable according to a given scheduling algorithm if
its worst-case response time under that scheduling algorithm is less than or equal
to its deadline. Similarly, a taskset is referred to as schedulable according to a given
scheduling algorithm if all of its tasks are schedulable.

A schedulability test is termed sufficient, with respect to a scheduling algorithm
and a system if all of the tasksets that are deemed schedulable according to the test
are in fact schedulable. Similarly, a schedulability test is termed necessary if all of the
tasksets that are deemed unschedulable according to the test are in fact unschedulable.
A schedulability test that is both sufficient and necessary is referred to as exact.

2.5. Processor Demand Function

The concepts of processor demand bound function h(t) and processor load [Baruah et al.
1990a, 1990b] are used extensively in the analysis of multiprocessor scheduling. The
processor demand bound function h(t) corresponds to the maximum amount of task
execution that can be released in a time interval [0, t) and also has to complete in that
interval.

h(t) =
n∑

i=1

max
(

0,

⌊
t − Di

Ti

⌋
+ 1

)
Ci. (1)

The processor load is the maximum value of the processor demand bound divided by
the length of the time interval.

load(τ ) = max
∀t

(
h(t)

t

)
. (2)

As a taskset cannot possibly be schedulable according to any algorithm if the total
execution that is released in an interval and must also complete in that interval ex-
ceeds the available processing capacity, the processor load provides a simple necessary
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Table I. Notation

Symbol Description
τi Task i at priority level i
Bi Blocking time at priority level i
Ci Worst-case execution time of task τi
Di Relative deadline of task τi
δi Density of task τi ,δi = Ci/ min(Di, Ti)
δmax Maximum density of any task in the taskset
δsum Taskset density (sum of task densities)
fA Speedup factor (resource augmentation factor) for scheduling

algorithm A
h(t) Processor demand in the interval [0,t)
H(τ ) Hyperperiod of the taskset
load(τ ) Processor load of taskset τ

load(τ, k) Processor load of taskset τ , due to tasks of priority higher
than or equal to k

m Number of processors
MA(τ ) Minimum number of processors needed to schedule taskset τ

using scheduling algorithm A
n Number of tasks
N Number of jobs (typically in the hyperperiod of the taskset)
Ri Worst-case response time of task τi
�A Approximation ratio for scheduling algorithm A
t Time
Ti Minimum interarrival time of task τi
ui Utilization of task τi
umax Maximum utilization of any task in the taskset
usum Taskset utilization
UA Utilization upper bound for scheduling algorithm A

condition for taskset feasibility [Baruah and Fisher 2005]:

load(τ ) ≤ m, (3)

where m is the number of processors.

2.6. Notation

For ease of reference, Table I provides a summary of the notation used in the rest of
the article. Note that some of this notation refers to concepts introduced in subsequent
sections. This notation has been chosen to reflect common usage. Standardizing on a
common notation such as this would ease communication of results among the research
community.

3. PERFORMANCE METRICS

In this section, we describe four performance metrics that have been used to compare
the effectiveness of different multiprocessor scheduling algorithms and schedulability
analyses. These are (i) utilization bounds, (ii) approximation ratios, (iii) resource aug-
mentation or speedup factors, and (iv) empirical measures, such as the percentage of
tasksets that are found to be schedulable.

3.1. Utilization Bounds

For implicit-deadline tasksets, worst-case utilization bounds are a useful performance
metric. The worst-case utilization bound UA for a scheduling algorithm A is defined as
the minimum utilization of any implicit-deadline taskset that is only just schedulable
according to algorithm A. Hence there exist implicit-deadline tasksets with total uti-
lization infinitesimally greater than UA that are unschedulable according to algorithm
A. Conversely, there are no implicit-deadline tasksets with total utilisation usum ≤ UA
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that are unschedulable according to algorithm A. Hence UA can be used as a simple
sufficient, but not necessary, schedulability test.

3.2. Approximation Ratio

The approximation ratio is a way of comparing the performance of a scheduling al-
gorithm A with that of an optimal algorithm. For example, consider the problem of
determining the minimum number of processors required to schedule a given taskset
τ . Let the number of processors required according to an optimal algorithm be MO(τ )
and the number required according to algorithm A be MA(τ ); then the approximation
ratio �A of algorithm A is given by

�A = lim
MO(τ )→∞

(
max

∀τ

(
MA(τ )
MO(τ )

))
. (4)

Note that �A ≥ 1, with smaller values of the approximation ratio indicative of a more
effective scheduling algorithm, and �A = 1 implying an optimal algorithm. Scheduling
algorithms are referred to as approximate if they have a finite approximation ratio.

3.3. Resource Augmentation

The resource augmentation factor [Kalyanasundaram, and Pruhs 1995] is an alterna-
tive method of comparing the performance of a scheduling algorithm A with that of an
optimal algorithm. Rather than considering the increased number of processors that
would be required to obtain schedulability under algorithm A, the resource augmenta-
tion factor instead considers the increase in processing speed that would be required,
assuming a linear decrease in task execution times with processing speed.

The resource augmentation or speedup factor f for a scheduling algorithm A is de-
fined as the minimum factor by which the speed of all m processors would need to
be increased such that all tasksets that are feasible (i.e., schedulable according to an
optimal scheduling algorithm) on m processors of speed 1 become schedulable under
algorithm A.

Let τ be a taskset that is feasible on a system of m processors of unit processing
speed. Now assume that, using scheduling algorithm A, taskset τ is just schedulable
on a system of m processors, each of speed f (τ ). The resource augmentation or speedup
factor fA for algorithm A is given by

fA = max
∀m,∀τ

( f (τ )) (5)

Note that fA ≥ 1, with smaller values indicative of a more effective algorithm, and
fA = 1 implying an optimal algorithm.

3.4. Empirical Measures

A comparative measure of the effectiveness of different scheduling algorithms and their
analyses can be obtained by evaluating the number of randomly generated tasksets
that each deems schedulable. Ideally, the number of tasksets deemed schedulable by
a schedulability test would be compared to the number of feasible tasksets generated;
however, as exact feasibility tests are not known for the case of sporadic tasksets
and are potentially intractable for periodic tasksets, researchers have typically used
this empirical measure to compare the relative performance of two or more sufficient
schedulability tests/scheduling algorithms. In these empirical comparisons, it is impor-
tant to use a taskset generation algorithm that is unbiased [Bini and Buttazzo 2005],
and ideally one that allows tasksets to be generated that comply with a specified pa-
rameter setting. That way the dependency of schedulability test effectiveness on each
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taskset parameter can be examined by varying that parameter, while holding all other
parameters constant, thus avoiding any confounding effects.

Other useful empirical techniques used by researchers include simulation of the
schedule produced by different algorithms to determine the number of preemptions and
migrations. While simulation cannot in general prove schedulability, it can prove that
a taskset is unschedulable if the simulation reveals a deadline miss. Hence simulation
can also be used as a sufficient test of unschedulability.

4. FUNDAMENTAL RESULTS

In this section, we describe a set of fundamental results about multiprocessor real-time
scheduling that are independent of specific scheduling algorithms. These results cover
optimality, feasibility, comparability, predictability, sustainability, and anomalies.

4.1. Optimality

As noted in Section 2.4 a scheduling algorithm is referred to as optimal if it can
schedule all of the tasksets that can be scheduled by any other algorithm, that is, all
of the feasible tasksets.

Horn [1974] gave an O(N3) algorithm (where N is the number of jobs) that is able
to determine an optimal multiprocessor schedule for any arbitrary set of completely
determined jobs where all of the arrival times and execution times are known a priori.
This algorithm can be applied to a set of strictly periodic tasks, by considering all
of the jobs in the hyperperiod; however, the O(N3) complexity means that it is only
tractable for tasksets with a relatively short hyperperiod. This method is not applicable
to sporadic tasksets where arrival times are not known in advance.

Hong and Leung [1988, 1992] proved that there is no optimal online scheduling al-
gorithm for the case of an arbitrary collection of jobs that have more than one distinct
deadline, and are scheduled on more than one processor. Hong and Leung [1988, 1992]
showed that such an algorithm would require knowledge of future arrivals and execu-
tion times to avoid making decisions that lead to deadline misses; hence optimality in
this case is impossible without clairvoyance. This result was extended by Dertouzos and
Mok [1989], who showed that knowledge of arrival times is necessary for optimality,
even if execution times are known.

Subsequently, Fisher [2007] proved that there is no optimal online algorithm for
sporadic tasksets with constrained or arbitrary deadlines, by showing that such an
algorithm would also require clairvoyance. Optimal algorithms are, however, known
for periodic tasksets with implicit deadlines; see Section 6.3.

4.2. Feasibility

Horn [1974] observed the following necessary and sufficient condition for the feasibility
of implicit-deadline periodic tasksets:

usum ≤ m. (6)

For constrained and arbitrary deadline tasksets, the above condition is necessary, but
not sufficient. A tighter necessary condition given by Baruah and Fisher [2005] is

load(τ ) ≤ m. (7)

Baker and Cirinei [2006] improved upon this necessary feasibility condition by con-
sidering the modified processor load, that is, the processor load including task execution
that must unavoidably take place within a time interval [0, t), even though the task
release time or deadline is not actually within the interval.

load∗(τ ) ≤ m. (8)
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Baker and Cirinei [2006] showed that an upper bound on the modified processor load
load∗(τ ) can be found by considering a synchronous arrival sequence, with the modified
processor load calculated from the modified processor demand bound function for each
task:

h∗(t) = h(t) +
n∑

i=1

max
(

0, t − max
(

0,

⌊
t − Di

Ti

⌋
+ 1

)
Ti − Di + Ci

)
. (9)

Cucu and Goossens [2006] showed that the taskset hyperperiod (0, H(τ )] is a fea-
sibility interval for implicit- and constrained-deadline synchronous periodic tasksets,
scheduled by a deterministic and memoryless1 algorithm. For any such algorithm, for
example, global EDF, an exact schedulability test can be obtained by checking if the
schedule generated misses any deadlines in (0, H(τ )]. Further, an exact feasibility test
for fixed-job-priority scheduling could in theory be achieved by checking the schedule
for all N! possible job priority orderings. It is not currently known if (0, H(τ )] is a
feasibility interval for arbitrary deadline tasksets, under fixed-job-priority scheduling.

As far as we are aware, no exact feasibility test has yet been determined for sporadic
tasksets scheduling by a fixed-job-priority algorithm.

Cucu and Goossens [2007] investigated the feasibility problem for fixed-task-priority
algorithms. For this case, the above result for implicit- and constrained-deadline syn-
chronous periodic tasksets holds as fixed-task-priority algorithms are both determin-
istic and memoryless. For arbitrary deadline periodic tasksets, Cucu and Goossens
[2007] showed that the hyperperiod (0, H(τ )] is a feasibility interval provided that all
previously released jobs are completed by H(τ ). For asynchronous, periodic task sys-
tems, Cucu and Goossens [2007] showed that longer intervals are required to prove
exact schedulability.

Cucu [2008] noted that, using the feasibility interval (0, H(τ )] and checking all n!
possible task priority orderings, it is in theory possible to determine exact feasibility for
periodic tasksets scheduled using fixed-task priorities; however, this approach quickly
becomes intractable as taskset cardinality increases.

As far as we are aware, no exact feasibility test or optimal priority ordering algorithm
is known for sporadic tasksets scheduled using fixed-task priorities.

Fisher and Baruah [2007] devised a sufficient feasibility test for global scheduling
of general task models. This test determines if a global scheduling algorithm exists
that is able to schedule the taskset of interest. Unfortunately knowing that such an
algorithm exists is of limited value without knowing what the algorithm is. The test,
given by Equation (10) for sporadic tasksets with arbitrary deadlines, is sufficient as
there are tasksets which it deems infeasible which are in fact feasible.

load(τ ) <
m− (m− 2)δmax

1 + δmax
. (10)

Fisher and Baruah [2007] showed that this feasibility test has a resource augmentation
bound or speedup factor of 1/(

√
2 − 1) ≈ 2.41, meaning that any sporadic taskset that

is feasible on m processors of speed (
√

2 − 1) will be deemed feasible by the test on
m processors of unit speed. Baruah and Fisher and [2008a] also derived a sufficient
feasibility test for nonmigratory (i.e., partitioned) scheduling. This test states that
there exists a partitioning of the tasks that is schedulable using EDF, which is an

1A memoryless algorithm makes scheduling decisions based only on the currently ready tasks, not on previous
scheduling decisions.
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Table II. Maximum Utilisation Bounds

Class Maximum utilization bound
Global (job-level migration),
dynamic priority

m

All other classes (m+ 1)/2 (Andersson et al. [2001])

optimal uniprocessor scheduling algorithm, provided that

load(τ ) ≤ 1
3

(m− (m− 1)δmax). (11)

4.3. Comparability

In comparing the tasksets that can be scheduled by two different multiprocessor
scheduling algorithms A and B, there are three possible outcomes.

(1) Dominance. Algorithm A is said to dominate algorithm B, if all of the tasksets that
are schedulable according to algorithm B are also schedulable according to algo-
rithm A, and tasksets exist that are schedulable according to A, but not according
to B.

(2) Equivalence. Algorithms A and B are equivalent, if all of the tasksets that are
schedulable according to algorithm B are also schedulable according to algorithm
A, and vice versa.

(3) Incomparable. Algorithms A and B are incomparable, if there exist tasksets that
are schedulable according to algorithm A, but not according to algorithm B and vice
versa.

Carpenter et al. [2004] considered the relationships between the nine different
classes of multiprocessor scheduling algorithm, comprising the combinations of the
three migration-based and the three priority based categories described in Section 2.3.
The key comparability results of Carpenter et al. [2004] are as follows.

—Global (i.e., job-level migration), dynamic priority scheduling dominates all other
classes.

—All three classes with fixed task priorities (partitioned, task-level migration, and
job-level migration) are incomparable. (Leung and Whitehead [1982] had previously
shown that these partitioned and job-level migration classes are incomparable).

—All three partitioned classes (fixed-task priority, fixed-job priority, and dynamic pri-
ority) are incomparable with respect to all three task-level migration classes.

We note that, unlike uniprocessor scheduling where an optimal scheduling algorithm
for periodic and sporadic tasksets exists in the fixed-job-priority class (i.e. EDF), in the
case of multiprocessor scheduling, dynamic job priorities are essential for optimality.

The maximum possible utilization bounds, applicable to periodic tasksets with im-
plicit deadlines, are given in Table II for algorithms in the various classes.

4.4. Predictability

Ha and Liu [1994] defined the concept of scheduling algorithm predictability. A schedul-
ing algorithm is referred to as predictable if the response times of jobs cannot be in-
creased by decreases in their execution times, with all other parameters remaining
constant. Predictability is an important property, as in real systems task execution
times are almost always variable up to some worst-case value. Ha and Liu [1994]
proved that all priority-driven, that is, fixed-task priority or fixed-job priority, preemp-
tive scheduling algorithms for multiprocessor systems are predictable. We note that,
for any dynamic priority scheduling algorithm, it is necessary to prove predictability
before the algorithm can be considered useful.
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4.5. Sustainability

Baruah and Burns [2006] introduced the concept of sustainability. A scheduling algo-
rithm is said to be sustainable with respect to a task model, if and only if schedulability
of any taskset compliant with the model implies schedulability of the same taskset mod-
ified by (i) decreasing execution times, (ii) increasing periods or interarrival times, and
(iii) increasing deadlines. Similarly, a schedulability test is referred to as sustainable if
these changes cannot result in a taskset that was previously deemed schedulable by the
test becoming unschedulable. We note that the modified taskset may not necessarily be
deemed schedulable by the test. A schedulability test is referred to as self-sustainable
[Baker and Baruah 2009] if such a modified taskset is always deemed schedulable by
the test. We note that it is possible to devise sustainable sufficient schedulability tests
for a scheduling algorithm that is unsustainable when an exact schedulability test is
applied.

While EDF and fixed-priority scheduling are sustainable algorithms with respect to
uniprocessor scheduling for both synchronous periodic and sporadic tasksets, the same
is not true of global EDF and global fixed-task priority multiprocessor scheduling. This
point is illustrated by the scheduling anomalies discussed in the next section. The
sustainability of schedulability tests for global EDF has been investigated by Baker
and Baruah [2009] and is discussed further in Section 6.1.

4.6. Anomalies

A scheduling anomaly occurs when a change in taskset parameters results in a counter-
intuitive effect on schedulability. For example, increasing task periods while keeping
all other parameters constant results in lower overall processor utilization, and so
might reasonably be expected to improve schedulability; however, in some cases, this
can result in the taskset becoming unschedulable. This effect is referred to as a period
anomaly and is evidence of unsustainability.

4.6.1. Period and Execution Time Anomalies. In partitioned approaches to multiprocessor
scheduling, anomalies exist in the task allocation/bin-packing algorithms used. These
anomalies occur when a change in a parameter such as an increase in the period or
a decrease in the worst-case execution time of a task results in a different allocation,
which is then deemed to be unschedulable. Such anomalies are known to exist for EDF
scheduling, in particular with FF (first-fit) and FFDU (first-fit decreasing utilization)
allocation [Graham 1972]. These anomalies also exist for many fixed-task priority
partitioning algorithms [Andersson 2003].

Andersson [2003] showed that global fixed-task priority scheduling of periodic
tasksets using an exact schedulability test is also subject to period anomalies. In effect,
the schedulability test is unsustainable with respect to increasing task periods.

Period anomalies are known to exist for global fixed-task priority scheduling of syn-
chronous periodic tasksets, and for global optimal scheduling (full migration, dynamic
priorities) of synchronous periodic tasksets. The interested reader is referred to Chap-
ter 5 of Andersson [2003] for a set of illustrative examples.

4.6.2. Critical Instant Effect. Lauzac et al. [1998] showed that under global fixed-task
priority scheduling, a task does not necessarily have its worst-case response time
when released simultaneously with all higher-priority tasks. This happens because
simultaneous release may not be the scenario that results in all processors being
occupied by higher-priority tasks for the longest possible time during the interval over
which the task of interest is active.

In multiprocessor scheduling, there are scenarios or patterns of task release which
result in a longer response time for a low-priority task than that obtained by considering
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Fig. 1. Critical instant effect.

simultaneous release. These scenarios are characterized by a pattern of execution
where, when the low-priority task executes, zero or only a few higher-priority tasks
are executing on other processors, and, when other higher-priority tasks do execute,
they do so together so that all processors are occupied and the low-priority task cannot
execute.

The critical instant effect is a fundamental difference between global multiprocessor
scheduling and partitioned/uniprocessor scheduling. In uniprocessor scheduling, syn-
chronous release is known to represent the worst-case scenario for both periodic and
sporadic tasksets.

The critical instant effect is illustrated by Figure 1. The task parameters (Ci,Di,Ti)
are as follows: τ1(2,2,8), τ2(2,2,10), τ3(4,6,8), τ4(4,7,8). The lowest-priority task τ4 misses
its deadline at time t = 13, despite meeting its deadline on the first invocation following
simultaneous release of all four tasks. This happens because the higher-priority tasks
occupy both processors for four time units in the interval [8, 15), whereas they only
occupy both processors for two time units in the interval [0, 7).

Andersson [2003] observed that this effect has implications for priority assignment
policies. In particular, the exact response time of a task is dependent on both the set
of higher-priority tasks and their specific priority order. This implies that a greedy
approach to priority assignment as used by Audsley’s [1991, 2001] optimal priority
assignment algorithm for the uniprocessor case is not applicable to the multiproces-
sor case, when schedulability analysis uses exact response times. Davis and Burns
[2009] showed that this does not, however, rule out the use of Audsley’s algorithm in
conjunction with some sufficient schedulability tests.

The critical instant effect is also an issue in the analysis of global fixed-job priority
scheduling. Baruah [2007] remarked that, “no finite collection of worst-case job arrival
sequences has been identified for the global scheduling of sporadic task systems” (page
121). This problem remains one of the key open questions in the field today.

5. PARTITIONED SCHEDULING

In this section, we review the key research results in partitioned approaches to multi-
processor real-time scheduling.

Partitioned scheduling has the following advantages compared to global scheduling.

—If a task overruns its worst-case execution time budget, then it can only affect other
tasks on the same processor.

—As each task only runs on a single processor, there is no penalty in terms of migra-
tion cost. For example, a job that is started on one processor, then preempted and
resumed on another, must have its context restored on the second processor. This
can result in additional communication loads and cache misses that would not occur
in the partitioned/nonmigration case. This problem could be mitigated by allowing
only task, as opposed to job-level migration, or by co-operative/nonpreemptive execu-
tion, although the latter could result in significant loss of schedulability due to long
nonpreemptive sections.
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Table III. Approximation Ratios

Algorithm Approximation Ratio (�A) Reference
RMNF 2.67 Dhall and Liu [1978]
RMFF 2.33 Oh and Son [1993]
RMBF 2.33 Oh and Son [1993]
RRM-FF 2 Oh and Son [1995]
FFDUF 2 Davari and Dhall [1986]
RMST 1/(1 − umax) Burchard et al. [1995]
RMGT 7/4 Burchard et al. [1995]
RMMatching 3/2 Rothvoss [2009]
EDF-FF 1.7 Garey and Johnson [1979]
EDF-BF 1.7 Garey and Johnson [1979]

—Partitioned approaches use a separate run-queue per processor rather than a single
global queue. For large systems, the overheads of manipulating a single global queue
can become excessive.

From a practical perspective, the main advantage of using a partitioning approach
to multiprocessor scheduling is that, once an allocation of tasks to processors has been
achieved, a wealth of real-time scheduling techniques and analyses for uniprocessor
systems can be applied.

The following optimality results for uniprocessor scheduling had a strong influence on
research into partitioned multiprocessor scheduling. Considering preemptive unipro-
cessor scheduling using fixed-task priorities, rate monotonic (RM) priority assignment
is the optimal priority assignment policy for synchronous periodic or sporadic tasksets
with implicit deadlines [Liu and Layland 1973]. Similarly, deadline monotonic (DM)
priority assignment is optimal for such tasksets with constrained-deadlines [Leung and
Whitehead 1982]. (We note that DM is not optimal for tasksets with arbitrary dead-
lines [Lehoczky 1990], or for asynchronous periodic tasksets; however, Audsley’s [1991,
2001] priority assignment algorithm is known to be optimal in these cases). Consider-
ing preemptive uniprocessor scheduling using fixed-job priorities, EDF is the optimal
scheduling algorithm for sporadic tasksets independent of the deadline constraints
[Dertouzos 1974].

The main disadvantage of the partitioning approach to multiprocessor scheduling is
that the task allocation problem is analogous to the bin packing problem and is known
to be NP-Hard [Garey and Johnson 1979].

5.1. Implicit-Deadline Tasksets

Early research into partitioned multiprocessor scheduling by Dhall and Liu [1978],
Davari and Dhall [1986], Oh and Son [1993, 1995], and Burchard et al. [1995] exam-
ined the use of EDF or fixed-priority scheduling using rate monotonic (RM) priority
assignment, on each processor, combined with bin packing heuristics such as first fit
(FF), next fit (NF), best fit (BF), and worst fit (WF), and task orderings such as de-
creasing utilisation (DU) for task allocation. In the following sections, these algorithms
are referred to by their abbreviated names, for example RMBF means rate monotonic
(fixed-priority) scheduling with best-fit task allocation.

5.1.1. Approximation Ratio. Table III gives the approximation ratio required for each
of these algorithms for periodic tasksets with implicit deadlines. Recently, Rothvoss
[2009] devised an O(n3) partitioning algorithm called RMMatching and showed that
it has an approximation ratio of 3/2, improving upon the previous best approxima-
tion ratio of 7/4 for the fixed-task priority algorithm RMGT [Burchard et al. 1995].
(Note Table III is drawn from Zapata and Alvarez [2004] with some corrections and
additions.)
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While these approximation ratios enable a comparison to be made between the dif-
ferent algorithms, their practical use as a schedulability test is severely limited. This is
because determining the minimum number of processors required by an optimal algo-
rithm is, as noted above, an NP-hard problem. Also, the approximation ratio only holds
as the number of processors required in the optimal case tends to infinity. Further, the
utilization bounds that can be derived from these approximation ratios are pessimistic
[Oh and Baker 1998].

5.1.2. Utilization Bounds. Andersson et al. [2001] showed that, for periodic tasksets
with implicit deadlines, the largest worst-case utilization bound for any partitioning
algorithm is

UOPT = (m+ 1)/2. (12)

Equation (12) holds because m + 1 tasks with execution time 1 + ε and a period of
2 cannot be scheduled on m processors regardless of the allocation algorithm used.
The difficulties that partitioned scheduling has allocating large utilization tasks were
recognized early on by the research community, leading to a significant thread of
research during the 1990s aimed at determining utilization bounds as a function of
umax, the highest utilization of any task in the taskset.

Burchard et al. [1995] provided utilization bounds for the RMST (“small tasks”)
algorithm, which attempts to place tasks with periods that are close to harmonics of
each other on the same processor. This algorithm favors tasks with utilization < 1/2:

URMST = (m− 2)(1 − umax) + 1 − ln 2. (13)

Burchard et al. [1995] also provided utilization bounds for the RMGT (“general tasks”)
algorithm, which separates tasks into two groups depending on whether their utiliza-
tion is above or below 1/3:

URMGT = 1
2

(
m− 5

2
ln 2 + 1

3

)
≈ 0.5(m− 1.42). (14)

Oh and Baker [1998] showed that RM-FFDU has a utilization bound given by

URM−FFDU = m(21/2 − 1) ≈ 0.41m. (15)

Oh and Baker [1998] also showed that the utilization bound for any fixed-task priority
partitioning algorithm is upper bounded by

UOPT(FTP) < (m+ 1)/(1 + 21/(m+1)). (16)

Lopez et al. [2003, 2004a, 2004b] subsequently generalized the above result for RM-
FFDU, and also provided more complex bounds based on the number of tasks and the
value of umax for RMBF, RMFF, and RMWF.

Andersson and Jonsson [2003] showed that the RBOUND-MP-NFR algorithm has a
utilization bound of

URBOUND−MP−NFR = m/2. (17)

This result shows that a fixed-task priority partitioning algorithm exists that is an
optimal partitioning approach in the limited sense that its utilization bound is the
maximum possible for any partitioning algorithm. We note that this does not mean
that it is an optimal partitioning algorithm in the sense that it can schedule any
taskset that is schedulable according to any other partitioning algorithm.
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Lopez et al. [2000] showed that, using EDF, the lowest utilization bound for any
reasonable2 allocation algorithm is given by

LRA = m− (m− 1)umax (18)

and that the highest utilization bound of any reasonable allocation algorithm is

HRA = (�1/umax� m+ 1)
(�1/umax� + 1)

. (19)

(Note, these limits assume that n > m/(�1/umax�).)
Lopez et al. [2000] showed that all reasonable allocation algorithms that order tasks

by decreasing utilization achieve the higher limit, as do EDF-BF and EDF-FF. Further,
EDF-WF, but not EDF-WFDU, achieves the lower limit. When umax = 1, the limit given
by Equation (19), becomes the same as Equation (12); hence EDF-FF and EDF-BF are
also “optimal” partitioning approaches in the limited sense that their utilization bounds
are as large as that, of any partitioning algorithm. We note that, for applications with
“small” tasks, RMST and EDF-FF provide reasonably high utilization bounds. For
example, assuming m = 10 and umax = 0.25, the utilization bounds for RMST and
EDF-FF are 63% and 82%, respectively.

5.2. Constrained and Arbitrary Deadline Tasksets

Baruah and Fisher [2005] showed that EDF-FFD (decreasing density) is able to sched-
ule any arbitrary-deadline sporadic taskset provided that

δsum ≤
{

m− (m− 1)δmax, δmax ≤ 1/2,

m/2 + δmax, δmax ≥ 1/2.
(20)

However, the resource augmentation factor for EDF-FFD is not finite.
Baruah and Fisher [2005, 2006, 2007] also developed an algorithm called EDF-FFID

based on ordering tasks by increasing relative deadline, and using a sufficient test
based on a linear upper bound for the processor demand bound function to determine
schedulability. They showed that EDF-FFID is able to schedule any sporadic taskset
with constrained deadlines provided that

m ≥
(

2load(τ ) − δmax

1 − δmax

)
. (21)

For tasksets with arbitrary deadlines, the test becomes

m ≥ load(τ ) − δmax

1 − δmax
+ usum − umax

1 − umax
. (22)

The resource augmentation or speedup factor required by this algorithm is

(2 − 1/m) for tasksets with implicit deadlines;
(3 − 1/m) for tasksets with constrained deadlines;
(4 − 2/m) for tasksets with arbitrary deadlines.

Fisher et al. [2006] applied a similar approach to the problem of partitioning using
fixed-task priority scheduling using deadline monotonic priority assignment. The algo-
rithm FFB-FFD (from the author’s surnames) is based on ordering tasks by decreasing
relative deadline, and using a sufficient test based on a linear upper bound on the pro-
cessor request bound function to determine schedulability. They showed that FFB-FFD

2A reasonable allocation algorithm is one that only fails to allocate a task once there is no processor on which
the task will fit.
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is able to schedule any sporadic taskset with constrained deadlines provided that

m ≥ load(τ ) + usum − δmax

1 − δmax
. (23)

For tasksets with arbitrary deadlines, the test becomes

m ≥ load(τ ) + usum − δmax

1 − δmax
+ usum − umax

1 − umax
. (24)

Fisher et al. [2006] showed that the resource augmentation or speedup factor required
by this algorithm is

(3 − 1/m) for tasksets with constrained deadlines;
(4 − 2/m) for tasksets with arbitrary deadlines.

6. GLOBAL SCHEDULING

In this section we outline the key research results in global multiprocessor scheduling
where tasks are permitted to migrate from one processor to another.

Global scheduling has the following advantages compared to partitioned scheduling.

—There are typically fewer context switches/preemptions when global scheduling is
used. This is because the scheduler will only preempt a task when there are no
processors idle [Andersson and Jonsson 2000a].

—Spare capacity created when a task executes for less than its worst-case execution
time can be utilized by all other tasks, not just those on the same processor.

—If a task overruns its worst-case execution time budget, then there is arguably a
lower probability of deadline failure as worst-case behavior of the entire system,
with all tasks taking worst-case execution times, worst-case phasing occurring, etc.,
is less likely across multiple processors than it is on a single processor.

—Global scheduling is more appropriate for open systems, as there is no need to run
load balancing/task allocation algorithms when the set of tasks changes.

The majority of the research into global real-time scheduling has focused on ap-
proaches that permit job-level migration, where a job may be preempted on one proces-
sor and resumed on another. In the descriptions that follow, job-level migration should
be assumed unless task-level migration, where each job executes on a single processor
but jobs of the same task may execute on different processors, is explicitly stated.

The seminal work of Dhall and Liu [1978] considered global scheduling of periodic
tasksets with implicit deadlines on m processors. They showed that the utilization
bound for global EDF scheduling is 1 + ε, for arbitrarily small ε. This occurs when
there are m tasks with short periods/deadlines and infinitesimal utilization, and one
task with a longer period/deadline and a utilization that approaches 1. This Dhall effect
led to a general view that global approaches to multiprocessor scheduling are inferior
to partitioned approaches. As a result, throughout the 1980s and early 1990s, the
majority of research into multiprocessor real-time scheduling focused on partitioned
approaches, as described in the previous section.

Phillips et al. [1997] showed that augmenting a system by increasing processor speed
is more effective than augmenting a system by adding processors. They showed that the
resource augmentation or speedup factor required for global EDF is at most (2 − 1/m).
This result also applies to global least laxity first (LLF), which can schedule any
taskset that is schedulable by global EDF. The resource augmentation results of Phillips
et al. [1997], along with research by Funk et al. [2001] into uniform multiprocessor
scheduling, led to the observation that for the Dhall effect to occur at least one task
is needed with very high utilization. This observation was exploited in much of the
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subsequent research to provide utilization bounds that are dependent on the maximum
task utilization umax.

6.1. Global Fixed-Job-Priority Scheduling

6.1.1. Implicit Deadline Tasksets. Andersson et al. [2001] considered utilization bounds
for periodic tasksets with implicit deadlines. They showed that the maximum utiliza-
tion bound for any global fixed job priority algorithm is

UOPT = (m+ 1)/2. (25)

Srinvasan and Baruah [2002] proposed the EDF-US[ς ] algorithm that gives the high-
est priority to tasks with utilization greater than the threshold ς , with ties broken
arbitrarily. Setting the threshold to m/(2m − 1) results in a utilization bound that is
independent of umax:

UEDF−U S[m/(2m−1)] = m2/(2m− 1). (26)

Goossens et al. [2003] derived a utilization bound for global EDF applicable to peri-
odic tasksets with implicit deadlines and showed that this bound is tight:

UEDF = m− (m− 1)umax. (27)

Baruah and Carpenter [2003] showed that this same utilization bound applies to global
EDF scheduling, assuming task-level migration. Goossens et al. [2003] also proposed
an algorithm called EDF(k) that assigns the highest priority to the k tasks with the
highest utilization. They showed that a sufficient schedulability condition for EDF(k)
is

m ≥ (k − 1) +
⌈

usum − uk

1 − uk

⌉
, (28)

where uk is the utilization of the kth task, in order of decreasing utilization.
Baker [2005] (see also Baker and Baruah [2007a]) showed that setting the thresh-

old used in EDF-US[ς ] to 1/2 results in the following utilization bound which is the
maximum possible bound for this class of algorithm [Andersson et al. 2001]:

UEDF−U S[1/2] = (m+ 1)/2. (29)

Baker [2005] also proposed a variant of EDF(k) called EDF(kmin), where kmin is the
minimum value of k for which the sufficient test in Equation (29) holds. Baker [2005]
showed that the utilization bound for EDF(kmin) is also

UEDF[kmin] = (m+ 1)/2. (30)

Again, this is the maximum possible utilization bound for this class of scheduling
algorithm. However, EDF(kmin) dominates EDF-US[1/2] in terms of the tasksets that
it can schedule.

6.1.2. Constrained and Arbitrary-Deadline Tasksets. The proof of the utilization bound given
in Equation (27) was extended by Bertogna et al. [2005b] to the case of sporadic tasksets
with constrained deadlines and by Baker and Baruah [2007b] to the arbitrary-deadline
case, giving the following sufficient schedulability test based on task density:

δsum ≤ m− (m− 1)δmax. (31)

Bertogna [2007] also adapted the utilization separation approach of EDF-US to the
case of sporadic tasksets with constrained and arbitrary deadlines, forming the EDF-
DS[ς ] algorithm. This algorithm gives the highest priority to tasks with density greater
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Fig. 2. Problem window.

than the threshold ς . Bertogna [2007] showed that a sporadic taskset is schedulable
according to EDF-DS[1/2] provided that

δsum ≤ (m+ 1)/2. (32)

Baker [2003] developed a general strategy for determining the schedulability of spo-
radic tasksets. The outline of this basic strategy is as follows.

(1) Consider an interval, referred to as the problem window, at the end of which a
deadline is missed (see Figure 2), for example the interval [rk, dk] from the release
to the deadline of some job of task τk.

(2) Establish a condition necessary for the job to miss its deadline, for example, all m
processors execute other jobs for more than Dk − Ck during the interval.

(3) Derive an upper bound IUB on the maximum interference in the interval due to
jobs of other tasks, including jobs released in the interval and so called carry-in
jobs that have not completed execution before the start of the interval.

(4) Form a necessary unschedulability test, in the form of an inequality between IUB

and the amount of execution necessary for a deadline to be missed.
(5) Negate this inequality to form a sufficient schedulability test.

The idea presented by Baker [2003] is that, if the job of task τk misses its deadline,
then the load in the interval must be at least m(1 − δk) + δk. In order to improve the
estimate of execution time carried in, Baker [2003] extended the interval back as far
as possible before the release of the job, such that the load remained just greater than
m(1 − δk) + δk. This gives the following sufficient schedulability test: a constrained-
deadline taskset is schedulable under preemptive global EDF scheduling if for every
task τk. ∑

∀i

min(1, βi) < m(1 − δk) + δk, (33)

where βi is an upper bound on the processor load due to task τi for any problem window
relating to τk. See Lemma 11 in Baker [2003] for a definition of βi. Baker [2005]
extended this approach to sporadic tasksets with arbitrary deadlines. We note that the
complexity of Baker’s test is O(n3) in the number of tasks. The basic strategy proposed
by Baker [2003] is a seminal result which has been built upon by a significant thread
of subsequent research.

Bertogna et al. [2005b] showed that the test proposed by Baker [2005] (Equation
(33)) does not dominate the extended version of test proposed by Goossens et al. [2003]
(Equation (31)). In fact, the test given by Equation (33) performs relatively poorly when
tasks with high individual utilizations are considered. Bertogna et al. [2005b] proposed
an alternative sufficient test based on the strategy of Baker, but using some simple
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observations to limit the amount of interference counted as falling in the problem
window. This sufficient test can be summarized as follows: a constrained-deadline
taskset is schedulable under preemptive global EDF scheduling if, for every task τk,
one of the following holds:∑

∀i =k

min(βk(i), 1 − δk) < m(1 − δk) or
∑
∀i =k

min(βk(i), 1 − δk) = m(1 − δk)

and ∃i = k : 0 < βk(i) ≤ 1 − δk, (34)

where

βk(i) = NiCi + min(Ci, (Dk − NiTi)0)
Dk

. (35)

The complexity of this test is O(n2) in the number of tasks.
We note that the schedulability tests given by Equations (33) and (34) become pes-

simistic when the number of tasks is much greater than the number of processors
(n � m). This happens because every task is counted as contributing some carry-in
interference. Further, these tests tend to perform poorly on tasksets where the param-
eters of different tasks are of different orders of magnitude.

Baruah [2007] derived a sufficient schedulability test for global EDF scheduling of
sporadic tasksets with constrained deadlines. This test uses the same basic approach as
Baker [2003] but extends the interval during which task execution is considered back
to some point in time t0 at which at least one of the m processors is idle. In this way,
the test limits the number of tasks that are counted as causing carry-in interference to
m − 1. For each task, the schedulability test presented by Baruah [2007] checks values
of Ak representing the time interval between t0 and the arrival of the first job of task
τk to miss its deadline. The range of values of Ak to be checked is constrained by the
following upper bound:

Ak ≤ C� − Dk(m− usum) + ∑
(Ti − Di)ui + mCk

m− usum
, (36)

where C� is the sum of the m − 1 largest task execution times.
Within this range of possible values for Ak, only those values where the proces-

sor demand bound function h(Ak + Dk) changes need to be checked, making the test
pseudopolynomial in complexity.

A constrained-deadline taskset is schedulable under preemptive global EDF schedul-
ing if, for every task τk, the following holds for all values of Ak:∑

∀i

I′
k(i) + I∈

k < m(Ak + Dk − Ck), (37)

where

I∈
k =

∑
∀i(m−1)l arg est

(I′′
k (i) − I′

k(i)),

I′
k =

{
min(hi(Ak + Dk), Ak + Dk − Ck), i = k,

min(hi(Ak + Dk) − Ck, Ak), i = k,

I′′
k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

⎛
⎝

⌊
Ak + Dk

Ti

⌋
Ci + min(Ci, (Ak + Dk) mod Ti)

Ak + Dk − Ck

⎞
⎠ , i = k,

min

⎛
⎝

⌊
Ak + Dk

Ti

⌋
Ci + min(Ci, (Ak + Dk) mod Ti − Ck

Ak

⎞
⎠ , i = k.
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Fig. 3. Densest packing for work-conserving algorithms.

Notably, the above test reverts to the processor load-based test (load(τ ) ≤ 1) for
uniprocessor systems [Baruah et al. 1990a, 1990b] when m = 1.

Building on their previous work Baker and Baruah [2008] derived a further sufficient
test for global EDF scheduling of sporadic tasksets with constrained deadlines, which
also limits the number of tasks that are counted as causing carry-in interference. This
processor load based test is given by Equation (38), where μ = m− (m− 1)δmax:

load(τ ) ≤ μ − (�μ� − 1)δmax. (38)

Baker and Baruah [2008] showed that the sufficient test given by Equation (38), com-
bined with global EDF scheduling, has a resource augmentation or speedup factor
of

f = 2

3 − √
5

≈ 2.62. (39)

This speedup factor is sufficient to compensate for both the nonoptimality of global
EDF and the sufficiency of the test.

Latter in the same year, Baruah and Baker [2008] extended the results given in
Baker and Baruah [2008] to sporadic tasksets with arbitrary deadlines, showing that
Equation (38) still applies. Baruah and Baker [2009] also extended their results to the
case where jobs of an arbitrary deadline task may execute in parallel on different pro-
cessors. They showed that, unlike the partitioned case (see Section 5.2), there appears
to be no performance penalty for permitting arbitrary deadlines. However, the analysis
provided is only sufficient, and the speedup factor derived is an upper bound, so it is
possible that the lack of a penalty could be an artifact of the analysis used.

Bertogna et al. [2008] presented a schedulability test for sporadic tasksets with con-
strained deadlines that is valid for any work conserving algorithm. This schedulability
test is based on a consideration of the densest possible packing of interfering jobs in
the problem window; see Figure 3.

Bertogna et al. [2008] showed that Wi(L) is an upper bound on the workload of task
τi in an interval of length L.

Wi(L) = Ni(L)Ci + min(Ci, L + Di − Ci − Ni(L)Ti), (40)

where Ni(L) is the maximum number of jobs of task τi that contribute all of their
execution time in the interval.

Ni(L) =
⌊

L + Di − Ci

Ti

⌋
. (41)

A taskset is therefore schedulable with any work-conserving global scheduling algo-
rithm if for each task τk∑

i =k

min(Wi(Dk), Dk − Ck + 1) < m(Dk − Ck + 1). (42)

Bertogna et al. [2008] extended this test to the specific cases of global EDF, and global
FP (fixed-task priority) scheduling (see Section 6.2.2). Under global EDF, they showed
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that a taskset is schedulable provided that for each task τk the following holds:∑
i =k

min
(
�i

k(Dk), Dk − Ck + 1
)

< m(Dk − Ck + 1), (43)

where

�i
k =

⌊
Dk

Ti

⌋
Ci + min

(
Ci, Dk −

⌊
Dk

Ti

⌋
Ti

)
.

Bertogna et al. [2008] further extended their approach via an iterative schedulability
test that calculates the slack for each task, and then uses this value to limit the
amount of carry-in interference and hence calculate a new value for the task slack. This
approach is also applicable to any work-conserving algorithm and was also specialized
for global EDF and global FP scheduling. They showed that the iterative test for global
EDF admits nearly as many randomly generated tasksets as the sufficient feasibility
test of Fisher and Baruah [2007]; see Section 4.2, Equation (10). This iterative test has
a complexity that is pseudopolynomial: O(n3 D2

max).
Baruah and Fisher [2008a] derived the following sufficient test for jobs of sporadic

tasks scheduled by global EDF. Note, load(τ, j) is the processor load due to all jobs
with higher priority than job j, and K is the largest ratio of task deadlines. As K may
potentially take any value, this test does not have a finite resource augmentation factor.

load(τ, j) ≤ 1
1 + K

(m− (m− 1)Cj/Dj). (44)

Baker and Baruah [2009] showed that the sufficient schedulability tests for global
EDF given in Baker [2005], Baker and Baruah [2008], and Bertogna et al. [2005b]
(Equations (33), (34) and (38)) are unsustainable with respect to increases in relative
deadline, and the test given by Baker and Baruah [2008] (Equation (38)) is unsus-
tainable with respect to decreases in worst-case execution times. That is, increases
in relative deadlines (decreases in worst-case execution times) can result in a taskset
being deemed unschedulable when it was previously deemed schedulable by the test.
Baruah and Baker [2009] improved the sufficient test given by Equation (38), making
it sustainable. The improved schedulability test is as follows:

load(τ ) ≤ max((μ − (�μ� − 1)δmax), ((�μ� − 1) − (�μ� − 2)δmax)), (45)

where μ = m− (m− 1)δmax.
Bonifaci et al. [2008] derived a sufficient schedulability test for global EDF scheduling

of sporadic tasksets with arbitrary deadlines which has a speedup factor of (2−1/m+ε)
for arbitrarily small ε. Recall that Phillips et al. [1997] showed that global EDF requires
m processors of speed (2 − 1/m) in order to schedule all tasksets that are feasible on m
processors of unit speed. The schedulability test introduced by Bonifaci et al. [2008] and
extended by Baruah et al. [2009] therefore has the property that there are no tasksets
that are feasible on m processors of unit speed that are not deemed to be schedulable
by the test under global EDF on m processors of speed (2 − 1/m). In this sense, the
test is speedup optimal, as no schedulability test exists for global EDF that requires a
smaller speedup factor.

6.2. Global Fixed-Task-Priority Scheduling

This section outlines research into global fixed-task priority scheduling. For conciseness
we use the following abbreviated descriptions for various scheduling algorithms: global
FP scheduling (meaning global fixed-task priority scheduling), global RM scheduling
(meaning global FP scheduling using rate monotonic priority ordering), and global DM
scheduling (meaning global FP scheduling using deadline monotonic priority ordering).
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6.2.1. Implicit Deadline Tasksets. As well as global EDF scheduling, discussed in Section
6.1, the seminal work of Dhall and Liu [1978] also considered global scheduling of peri-
odic tasksets with implicit deadlines on m processors. They showed that the utilization
bound for global RM scheduling is 1 + ε, for arbitrarily small ε. This occurs when there
are m tasks with short periods/deadlines and infinitesimally small utilization, and one
task with a longer period/deadline and utilization that approaches 1.

Andersson and Jonsson [2000a] designed the TkC priority assignment policy to cir-
cumvent the Dhall effect. TkC assigns priorities based on a task’s period Ti minus k
times its worst-case execution time Ci, where k is a real value computed on the basis
of the number of processors.

k = m− 1 + √
5m2 − 6m+ 1
2m

. (46)

Via an empirical investigation, Andersson and Jonsson [2000a] showed that TkC is an
effective priority assignment policy for periodic tasksets with implicit deadlines.

Andersson et al. [2001] showed that any periodic taskset with implicit deadlines can
be scheduled using global RM scheduling provided that

umax ≤ m/(3m− 2) and usum ≤ m2/(3m− 1). (47)

This result, albeit in a weaker form, also appeared in Baruah and Goossens [2003]:

umax ≤ 1/3 and usum ≤ m/3. (48)

Andersson et al. [2001] also proposed the RM-US[ς ] algorithm that gives the highest
priority to tasks with utilization greater than the threshold ς (with ties broken arbi-
trarily), and otherwise assigns priorities in RM order. Andersson et al. [2001] showed
that RM-US[m/(3m− 2)] has a utilization bound of

URM−U S[m/(3m−2)] = m2/(3m− 1). (49)

Lundberg [2002] showed that setting the threshold used in RM-US[ς ] to 0.375 re-
sults in the following utilization bound which is the maximum possible bound for this
algorithm:

URM−U S[0.375] ≈ 0.375m. (50)

Lundberg and Lennerstad [2007] gave a utilization bound of 3 − √
7 ≈ 0.354 for RM-

US[ς ], for aperiodic tasks where the utilization threshold is based on the maximum
synthetic utilization (see Lundberg and Lennerstad [2007] for a definition). Further,
they gave a formula for the utilization bound as a function of m.

Andersson and Jonsson [2003] showed that, for periodic tasksets with implicit dead-
lines, the maximum utilization bound for any global fixed-task priority scheduling
algorithm where priorities are defined as a scale-invariant function of task periods and
worst-case execution times is

UOPT ≤ (
√

2 − 1)m ≈ 0.41m. (51)

Bertogna et al. [2005a] tightened the bound for global RM scheduling to

usum ≤ m
2

(1 − umax) + umax. (52)

Andersson [2008] proposed a “slack monotonic” algorithm, where priorities are or-
dered according to the slack of each task given by Ti − Ci. This algorithm, called
SM-US, otherwise works in the same way as RM-US. Andersson [2008] showed that
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SM-US[2/(3 + √
5)] has the following utilization bound of for sporadic tasksets with

implicit deadlines:

USM−U S[2/(3+√
5)] = 2/(3 +

√
5)m ≈ 0.382m. (53)

Essentially the same result was obtained independently by Lundberg and Lennerstad
[2008] for aperiodic tasks where the utilization threshold is based on the maximum
synthetic utilization. They also gave a formula for the utilization bound based on the
number of processors, and showed that SM-US outperforms RM-US for m > 2.

6.2.2. Constrained and Arbitrary Deadline Tasksets. Andersson and Jonsson [2000b] gave
a simple, but pessimistic, response time upper bound applicable to sporadic tasksets
with constrained deadlines scheduled using fixed priorities. This response time upper
bound effectively assumes that the execution time of carried-in and carried-out jobs in
an interval is equal to the entire worst-case execution time of the task.

Rub
k ← Ck + 1

m

∑
i<k

(⌈
Rub

k

Ti

⌉
Ci + Ci

)
. (54)

Baker [2003, 2006a] applied the same general strategy described in Section 6.1.2 for
global EDF to global FP scheduling of sporadic tasksets with constrained deadlines.

Bertogna et al. [2005a] proved the following density bound for global DM scheduling
of sporadic tasksets with constrained deadlines:

δsum ≤ m
2

(1 − δmax) + δmax. (55)

Bertogna et al. [2005a] used the above result as the basis for a density-based test for
the hybrid DM-DS[ς ] algorithm. This algorithm gives the highest priority to at most
m − 1 tasks with density greater than the threshold ς , and otherwise assigns priorities
in deadline monotonic priority order. Under DM-DS[ς ] a taskset is schedulable provided
that

δsum ≤ ψς +

⎧⎪⎨
⎪⎩

δ(m) + ln
2

1 + δ(m)
, ψ = m− 1,

ς + m− ψ

2
(1 − ς ), ψ < m− 1,

(56)

where ψ is the number of “privileged” tasks with density higher than the threshold,
and δ(m) is the density of the mth highest density task.

Bertogna et al. [2005a] proved the following sufficient test for DM-DS[1/3]:

δsum ≤ m+ 1
3

. (57)

Bertogna et al. [2005a] also proposed the following alternative sufficient test based on
the strategy of Baker [2003], but using some simple observations to limit the amount
of interference counted as falling in the problem window.

A constrained-deadline taskset is schedulable under preemptive global DM scheduling
if, for every task τk, one of the following holds:∑

i<k

min(βk(i), 1 − δk) < m(1 − δk) or
∑
i<k

min(βk(i), 1 − δk) = m(1 − δk)

and ∃i = k : 0 < βk(i) ≤ 1 − δk, (58)

ACM Computing Surveys, Vol. 43, No. 4, Article 35, Publication date: October 2011.



Survey of Hard Real-Time Scheduling for Multiprocessor Systems 35:25

where

βk(i) = Ni,kCi + min(Ci, (Dk − Ni,kTi + Di − Ci)0)
Dk

and

Ni,k =
⌊

Dk − Ci

Ti

⌋
+ 1.

Fisher and Baruah [2006], derived a sufficient test for global DM scheduling of
sporadic tasksets with arbitrary deadlines, under the assumption that intratask par-
allelism, where jobs of the same task can execute in parallel on different processors, is
permitted, while interjob parallelism is not. This sufficient test for each task τk is as
follows:

load(τ, k) ≤ 1
1 + 2(max j∈hp(k)(Dj/Dk)

(m− (m− 1)Ck/Dk), (59)

where load(τ, k) is the processor load due to all tasks with priority higher than or equal
to k. Note, due to the use of deadline monotonic priority ordering, the minimum value
for the fractional term is 1/3.

Baruah [2007] derived an alternative sufficient test for global DM scheduling of
sporadic tasksets with constrained deadlines using a similar approach to Fisher and
Baruah [2006], but limiting the amount of carry-in execution in a different way. This
sufficient test for each task τk is as follows:

load(τ, k) ≤ 1
2

(m− (m− 1)Ck/Dk − C�(k)/Dk), (60)

where C�(k) is the sum of the m largest worst-case execution times of tasks of priority
k or higher. The above test can be weakened to

load(k) ≤ 1
2

(m− (m− 1)Ck/Dk)(1 − δmax(k)), (61)

where δmax(k) is the maximum density of any of the k highest-priority tasks. Baruah
[2007] showed that this schedulability test has a resource augmentation or speedup
factor for large m of (2 + √

3) ≈ 3.73, which compensates for both the nonoptimality of
global DM scheduling and the sufficiency of the test.

Baruah and Fisher [2008b] showed that the result derived in Fisher and Barauh
[2006], Equation (59), also applies to systems where intratask parallelism is not per-
mitted. They showed that DM is the optimal priority assignment policy with respect
to this schedulability test and that the test has a resource augmentation or speedup
factor of (4 − 1/m).

Bertogna et al. [2008] specialized their sufficient schedulability test for any work-
conserving algorithm, (see Section 6.1.2 Equation (42)), to global FP scheduling. They
showed that a sporadic taskset with constrained deadlines is schedulable under global
FP scheduling if for each task τk∑

i<k

min(Wi(Dk), Dk − Ck + 1) < m(Dk − Ck + 1), (62)

where Wi(L) is the bound on the workload of task τi in an interval of length L, given by
Equation (40).

Bertogna et al. [2008] extended their approach via an iterative schedulability test
that calculates the slack for each task, and then uses this value to limit the amount of
carry-in interference and hence calculate a new value for the task slack.
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Further, Bertogna and Cirinei [2007] showed how this approach could be adapted to
provide response time analysis for multiprocessor systems, by iteratively computing
an upper bound on the response time of each task, while using the response times of
higher-priority tasks to limit the carry-in interference from those tasks. This analysis
can be expressed as in the following fixed-point iteration:

Rub
k ← Ck + 1

m

∑
i<k

min
(
ICI
i

(
RUB

k

))
, (63)

where, assuming that τk is schedulable, ICI
i (RUB

k ) is an upper bound on the interference
due to task τi within the worst-case response time of τk, given by

ICI
i

(
RUB

k

) = min
(
WCI

i (RUB
k

)
, RUB

k − Ck + 1), (64)

where WCI
i (L) is a bound on the workload of task τi in an interval of length L, given by

WCI
i (L) = NCI

i (L)Ci + min
(
Ci, L + Rub

i − Ci − NCI
i (L)Ti

)
, (65)

and NCI
i (L) is the maximum number of jobs of task τi that contribute all of their

execution time in the interval:

NCI
i (L) =

⌊
L + Rub

i − Ci

Ti

⌋
. (66)

Guan et al. [2009] extended the response time analysis of Bertogna and Cirinei
[2007], limiting the amount of “carry-in” interference using ideas from Baruah [2007].
An important observation following from the analysis of Guan et al. [2009] concerns
the pattern of task execution that results in the worst-case response time for a job
of task τk under global FP scheduling: the worst-case response time for a job of task
τk occurs when that job is released at some time t when all m processors are busy
executing higher-priority tasks, and during the preceding time interval [t − ε, t) (for
some arbitrary value of ε) at least one processor was not occupied by a higher priority
task. Guan et al. [2009] showed that, if task τi does not have a carry-in job, then the
interference is given by

INC
i

(
RUB

k

) = min
(
W NC

i

(
RUB

k

)
, RUB

k − Ck + 1
)
, (67)

where

W NC
i (L) = NNC

i (L)Ci + min
(
Ci, L − NNC

i (L)Ti
)

(68)

and

NNC
i (L) =

⌊
L
Ti

⌋
. (69)

The difference between the two interference terms (Equations (64) and (67)) is given
by

IDIFF
i

(
RUB

k

) = ICI
i

(
RUB

k

) − INC
i

(
RUB

k

)
. (70)

Using this result, Guan et al. [2009] improved upon the response time test of Bertogna
and Cirinei [2007] as follows:

RUB
k ← Ck +

⎢⎢⎢⎣ 1
m

⎛
⎝ ∑

∀i∈hp(k)

INC
i

(
RUB

k

) +
∑

i∈Max(k,m−1)

IDIFF
i

(
RUB

k

)
⎞
⎠

⎥⎥⎥⎦ , (71)

where Max(k, m − 1) is the subset of tasks with higher priorities than τk, with the
m − 1 largest values of IDIFF

i (RUB
k ). The improved response time test of Guan et al.
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[2009] (Equation (71)) dominates the response time test of Bertogna and Cirinei [2007]
(Equation (63)), which in turn dominates the deadline-based test of Bertogna et al.
[2008]. Guan et al. [2009] also extended their response time test to tasksets with
arbitrary deadlines.

Davis and Burns [2009] showed that Audsley’s [1991, 2001] optimal priority as-
signment algorithm is applicable to some sufficient tests for global FP scheduling,
including those of Andersson and Jonsson [2000b] (Equation (54)) and Bertogna et al.
[2008] (Equation (62)). Davis and Burns [2009] also extended the TkC priority assign-
ment policy to sporadic tasksets to form the “DkC” priority assignment, which orders
task priorities based on their deadlines less some constant (given by Equation (46))
multiplied by their worst-case execution times.

6.3. Global Dynamic Priority Scheduling

In this section, we outline research into global dynamic priority scheduling algorithms.
A number of these algorithms are known to be optimal for periodic tasksets with
implicit deadlines (Pfair and its variants PD, PD2, ERFair, BF, and also SA [Khemka
and Shyamasundar 1997], and LLREF). However, it is known that there are no optimal
online (nonclairvoyant) algorithms for the preemptive scheduling of sporadic tasksets
on multiprocessors [Fisher 2007].

Global dynamic priority algorithms dominate algorithms in all other classes; how-
ever, their practical use can be problematic due to the potentially excessive overheads
caused by frequent preemption and migration.

6.3.1. Proportionate Fairness Algorithms. The Proportionate Fair (Pfair) algorithm was
introduced by Baruah et al. [1996]. Pfair is a schedule generation algorithm which is
applicable to periodic tasksets with implicit deadlines. Pfair is based on the idea of fluid
scheduling, where each task makes progress proportionate to its utilization (or weight
in Pfair terminology). Pfair scheduling divides the timeline into equal length quanta
or slots. At each time quanta t, the schedule allocates tasks to processors, such that
the accumulated processor time allocated to each task τi will be either �tui� or �tui�.
Baruah et al. [1996] showed that the Pfair algorithm is optimal for periodic tasksets
with implicit deadlines, and so has a utilization bound of

UPFAIR = m. (72)

In practice, however, the Pfair algorithm incurs very high overheads by making
scheduling decisions at each time quanta. Further, all processors need to synchronize
on the boundary between quanta when scheduling decisions are taken.

A number of variants on the Pfair approach have been introduced, including ERFair
[Anderson and Srinivasan 2000], PD [Baruah et al. 1995], and PD2 [Anderson and
Srinivasan 2001]. The Pfair algorithm ensures that the lag(τi, t), given by the amount
of execution time that should ideally have been allocated to task τi by time t (i.e., tui)
less the processing time actually allocated, lies strictly between −1 and +1 (i.e., −1
< lag < 1). ERFair lifts the restriction that this lag must be greater than −1, thus
allowing quanta of a job to execute before their PFair scheduling windows provided
that the previous quanta of the same job has completed execution. This makes ERFair
a work-conserving algorithm, whereas Pfair is not. PD [Baruah et al. 1995], and PD2

[Anderson and Srinivasan 2001] improved on the efficiency of Pfair by separating tasks
into groups of heavy (ui > 0.5) and light tasks.

Anderson and Srinivasan [2000] extended the PFair approach to sporadic tasksets,
showing that the EPDF (earliest pseudodeadline first) algorithm, a variant of PD, is
optimal for sporadic tasksets with implicit deadlines executing on two processors, but
is not optimal for more than two processors.
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Zhu et al. [2003] introduced the Boundary Fair (BF) algorithm. Zhu et al. [2003] rec-
ognized that implicit-deadline tasks can only miss deadlines at times which are period
boundaries. The BF algorithm is similar to Pfair; however, it only makes scheduling
decisions at period boundaries. At any such time tb, the difference between tbui and
the accumulated processor time allocated to each task τi is again less than one time
unit. In this sense BF is fair, but less fair than Pfair, as BF ensures only that pro-
portionate progress is made on all tasks at period boundaries, but not at other times.
Zhu et al. [2003] proved that BF is also an optimal algorithm for periodic tasksets
with implicit deadlines, and showed via an empirical evaluation that the number of
scheduling points is typically 25–50% of the number required for PD.

Holman and Anderson [2005] implemented Pfair scheduling on a symmetric multi-
processor. They found that the synchronized rescheduling of all processors every time
quanta caused significant bus contention due to data being reloaded into cache. To
address this problem, Holman and Anderson [2005] developed a variant of Pfair which
staggers the time quanta on each processor. This reduces bus contention, at the cost of
a reduction in schedulability. A task requiring a quanta every b slots, under Pfair, will
require a quanta every b − 1 slots with the staggered approach.

6.3.2. LLREF. Cho et al. [2006] introduced the LLREF algorithm, which is also optimal
for periodic tasksets with implicit deadlines. LLREF is based on the fluid scheduling
model, using a T-L plane abstraction. LLREF divides the timeline into sections sep-
arated by normal scheduling events, that is, task releases, and coincident deadlines.
At the start of each section, m tasks are selected to execute on the basis of largest
local remaining execution time first (LLREF). The local remaining execution time for
task τi at the start of section k is the amount of execution time that the task would be
allocated during that section in a fluid schedule, that is, tk

f ui, where tk
f is the length of

the section. The local remaining execution time decrements as a task executes during
the section. LLREF gives rise to additional scheduling events either when a running
task completes its local execution time, or a nonrunning task reaches a state where it
has no local laxity. At these additional scheduling points, the m tasks with the largest
local remaining execution time are again selected to execute. Cho et al. [2006] showed
that LLREF introduces at most an additional n scheduling events per section, giving
a total of at most n + 1 scheduling events per task release.

Funaoka et al. [2008] extended the LLREF approach, apportioning processing time
that would otherwise be unused among the tasks, and reapportioning processing time
when a task completes earlier than expected, thus creating a work-conserving algo-
rithm. Funaoka et al. [2008] showed that for taskset utilizations below 100% this
approach results in significantly fewer preemptions than LLREF.

Funk and Nadadur [2009] extended the LLREF approach, forming the LRE-TL algo-
rithm. The key observation of Funk and Nadadur [2009] was that, within each section,
there is no need to select tasks for execution based on largest local remaining execution
time. In fact, any task with remaining local execution time will do. This observation
greatly reduces the number of migrations per section, compared to LLREF. Funk and
Nadadur [2009] also showed how the LRE-TL algorithm could be applied to sporadic
tasksets and proved that it is optimal (utilization bound of 100%) for sporadic tasksets
with implicit deadlines.

6.3.3. EDZL. Lee [1994] introduced the Earliest Deadline until Zero Laxity (EDZL)
algorithm, and showed that it dominates global EDF scheduling. Indeed, EDZL results
in the same schedule as EDF until a situation is reached when a task will miss its
deadline unless it executes for all of the remaining time up to its deadline (zero laxity).
EDZL gives such a task the highest priority. Lee [1994] also showed that EDZL is
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suboptimal for two processors (see also Cho et al. [2002] and Park et al. [2005]). Here,
suboptimal is used to mean that EDZL can “schedule any feasible set of ready tasks.”
This weak form of optimality is appropriate for online scheduling algorithms, which
cannot take account of future arrival times. Piao et al. [2006] showed that EDZL is
completion time predictable in the sense defined by Ha and Liu [1994] (see Section
4.4). A simpler proof of predictability was given by Cirinei and Baker [2007], who
also developed a sufficient schedulability test for EDZL based on the fundamental
strategy of Baker [2003]: a sporadic task system is schedulable by EDZL on m identical
processors unless the following condition holds for at least m + 1 tasks and it holds
strictly (>) for at least one of them:∑

∀i =k

βi
k ≥ m(1 − λk), (73)

where, λk = Ci/�k and �k = min(Di, T i) and

βi
k = niCi + min(Ci, max(0,�k − niTi))

�k

Baker et al. [2008] refined the above sufficient test, and also gave an iterative
sufficient test for EDZL based on the approach taken by Bertogna et al. [2008] for
work-conserving algorithms and EDF. The test given by Equation (73) suffers from an
overestimation of the amount of carry-in interference, particularly for tasksets with
cardinality n � m. The iterative test of Baker et al. [2008] reduces this problem by
calculating a lower bound on the slack for each task, and then using this value to limit
the amount of carry-in interference and hence calculate a new value for the task slack.
The empirical evaluation by Baker et al. [2008] shows that this iterative test for EDZL
outperforms previous tests given in Cirinei and Baker [2007] and (as expected) similar
tests for global EDF.

Kato and Yamasaki [2008c], introduced Earliest Deadline until Critical Laxity, effec-
tively a variant of EDZL, which increases job priority on the basis of critical laxity at the
release or completion time of a job. This has the effect of reducing the maximum number
of context switches to two per job, the same as EDF, at the expense of slightly inferior
schedulability, when compared to EDZL. Kato and Yamasaki [2008c] also corrected a
minor flaw in the schedulability test for EDZL given by Cirinei and Baker [2007].

Chao et al. [2008] showed that the utilization bound for EDZL, assuming tasksets
with implicit deadlines and large m, is

UEDZL ≤ m(1 − 1/e) ≈ 0.63m, (74)

where e is Euler’s number 2.718.

7. HYBRID APPROACHES

Depending on the hardware architecture, the overheads incurred by global scheduling
can potentially be very high. The fact that jobs can migrate from one processor to
another can result in additional communication loads and cache misses, leading
to increased worst-case execution times that would not occur in the fully parti-
tioned/nonmigration case. However, fully partitioned approaches suffer from the
drawback that the available processing capacity can become fragmented, such that, al-
though in total a large amount of capacity is unused, no single processor has sufficient
capacity remaining to schedule further tasks. Indeed, the maximum utilization bound is
just 50% of the total processing capacity. In this section we outline recent research into
hybrid approaches which combine elements of both partitioned and global scheduling.
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7.1. Semipartitioned Approaches

One approach aimed at addressing the fragmentation of spare capacity in partitioned
systems is to split a small number of tasks between processors.

Andersson and Tovar [2006] introduced EKG, an approach to scheduling periodic
tasksets with implicit deadlines, based on partitioned scheduling, but splitting some
tasks into two components that execute at different times on different processors.
Andersson and Tovar [2006] showed that the utilization bound for EKG depends on
the parameter k, used to control division of tasks into groups of heavy and light tasks.
The utilization bound for EKG is given by

UEKG =
{

k/(k + 1), k < m,

1, k.
(75)

Hence the utilization bound is 100% for k = m. Further, the average number of pre-
emptions per job over the hyperperiod is bounded by 2k. Thus, as suggested by Ander-
sson and Tovar [2006], choosing a value of k = 2 gives a utilization bound of 66% and
at most an average of four preemptions per job.

Andersson and Bletsas [2008] developed the idea of job splitting to cater for sporadic
tasksets with implicit deadlines. In this case, each processor p executes at most two
split tasks, one also executed by processor p − 1 and one also executed by processor p
+ 1. Andersson et al. [2008] latter extended this approach to tasksets with arbitrary
deadlines. They showed that first fit and next fit are not good allocation strategies when
task splitting is employed. Instead, they order tasks by decreasing relative deadline
and try to fit all tasks on the first processor before then choosing the remaining task
with the shortest relative deadline to be split. At runtime, the split tasks are scheduled
at the start and end of fixed-duration time slots. The disadvantage of this approach is
that the capacity required for the split tasks is inflated if these slots are long, while the
number of preemptions is increased if the time slots are short. In the implicit deadline
case, Andersson and Bletsas [2008] showed that this approach has a utilization bound
of

U = 4(
√

δ(δ + 1) − δ) − 1, (76)

where δ effectively defines the slot length (Tmin/δ). This utilization bound equates to
approximately 88% for δ = 4. Further, the number of additional preemptions, per
processor, in an interval of length t is given by

3δ �t/Tmin� + 2. (77)

Bletsas and Andersson [2009] developed an alternative approach based on the con-
cept of notional processors. With this method, tasks are first allocated to physical
processors (heavy tasks first) until a task is encountered that cannot be assigned. Then
the workload assigned to each processor is restricted to periodic reserves and the spare
time slots between these reserves organized to form notional processors. (A notional
processor is formed from time slots on a number of physical processors which taken
together provide continuous execution capacity.) Bletsas and Andersson [2009] showed
that this method has a utilization bound of at least 66.6% for tasksets with implicit
deadlines, and that the total number of additional preemptions, beyond those caused
by task arrivals, is given by (

2m+
⌈m

3

⌉)⌈
t
S

⌉
, (78)

where t is the length of the time interval, and S is the minimum period of any task on
the processor considered.
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Kato and Yamasaki [2007] introduced the Ehd2-SIP algorithm. Ehd2-SIP is pre-
dominantly a partitioning algorithm, with each processor scheduled according to an
algorithm based on EDF; however, Ehd2-SIP splits at most m − 1 tasks into two por-
tions to be executed on two separate processors. EhD2-SIP has a utilization bound of
50%.

Kato and Yamasaki [2008a] presented a further semi-partitioning algorithm called
EDDP, also based on EDF. EDDP again splits at most m − 1 tasks across two processors.
The two portions of each split task are prevented from executing simultaneously by
EDDP, which instead defers execution of the portion of the task on the lower numbered
processor, while the portion on the higher numbered processor executes. During the
partitioning phase, EDDP places each heavy task with utilization greater than 65% on
its own processor. The light tasks are then allocated to the remaining processors, with
at most m − 1 tasks split into two portions. Kato and Yamasaki [2008a] showed that
EDDP has a utilization bound of 65% for periodic tasksets with implicit deadlines, and
performs well in terms of the typical number of context switches required, which is less
than that of EDF due to the placement strategy for heavy tasks. Subsequently, Kato
and Yamasaki [2008b] also extended this approach to fixed-task priority scheduling,
showing that the RMDP algorithm has a utilization bound of 50%.

Kato and Yamasaki [2009] developed a semipartitioning algorithm called DM-PM
(Deadline-Monotonic with Priority Migration), applicable to sporadic tasksets, and
using fixed-priority scheduling. DM-PM strictly dominates fully partitioned fixed-task
priority approaches, as tasks are only permitted to migrate if they won’t fit on any single
processor. Tasks chosen for migration are assigned the highest priority, with portions of
their execution time assigned to processors, effectively filling up the available capacity
of each processor in turn. At runtime, the execution of a migrating task is staggered
across a number of processors, with execution beginning on the next processor once
the portion assigned to the previous processor completes. Thus no job of a migrating
task returns to a processor it has previously executed on. Kato and Yamasaki [2009]
showed that DM-PM has a utilization bound of 50% for tasksets with implicit deadlines.
Subsequently, Kato et al. [2009] extended the same basic approach to EDF scheduling,
forming the EDF-WM algorithm (EDF with window-constrained migration).

Lakshmanan et al. [2009] developed a semipartitioning method based on fixed-
priority scheduling of sporadic tasksets with implicit or constrained deadlines. This
method, called PDMS HPTS, splits only a single task on each processor: the task with
the highest priority. Note that a split task may be chosen again for splitting if it has the
highest priority on another processor. PDMS HPTS takes advantage of the fact that,
under fixed-priority preemptive scheduling, the response time of the highest-priority
task on a processor is the same as its worst-case execution time, leaving the maximum
amount of the original task deadline available for the part of the task split on to another
processor. Lakshmanan et al. [2009] showed that for any task allocation PDMS HPTS
has a utilization bound of at least 60% for tasksets with implicit deadlines; however,
if tasks are allocated to processors in order of decreasing density (PDMS HPTS DS),
then this bound increases to 65%. Further, PDMS HPTS DS has a utilization bound
of 69.3% if the maximum utilization of any individual task is no greater than 0.41.
Notably, this is the same as the Liu and Layland [1973] bound for single-processor
systems, without the restriction to individual task utilization.

7.2. Clustering

Clustering can be thought of as a form of partitioning with the clusters effectively
forming a smaller number of faster processors to which tasks are allocated. Thus
capacity fragmentation is less of an issue than with partitioned approaches, while
the small number of processors in each cluster reduces global queue length and has
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the potential to reduce migration overheads, depending on the particular hardware
architecture. For example, processors in a cluster may share the same cache, reducing
the penalty in terms of increased worst-case execution time, of allowing tasks to migrate
from one processor to another.

Shin et al. [2008] derived schedulability analysis for multiprocessor systems, where
tasks are allocated to clusters of processors and scheduled according to global EDF on
processors within their cluster. Clusters are represented by a multiprocessor periodic
resource (MPR) abstraction and may be either physical, with a static mapping to pro-
cessors, or virtual, with a dynamic mapping to processors. Shin et al. [2008] developed
a hierarchical scheduling model and analysis appropriate to tasks executing within
MPRs which are then scheduled on the multiple processors. The algorithm proposed
was shown to be optimal for tasksets with implicit deadlines; however, the maximum
number of preemptions which can take place is m − 1 in an interval equal to the GCD
(greatest common divisor) of the task periods. We note that, in practice, this number of
context switches can be prohibitive.

Leontyev and Anderson [2008] developed a container-based hierarchical schedul-
ing scheme for multiprocessor systems executing both hard and soft real-time tasks.
Here, each container is allocated a specific bandwidth, which is provided via minimum
parallelism, using the maximum number of fully utilized processors and at most one
processor which is partially utilized. This partial bandwidth is provided by a periodic
server. Leontyev and Anderson [2008] showed how the tardiness of soft real-time tasks
can be bounded in this model, without any loss of utilization. Utilization loss does oc-
cur when hard-real-time tasks are included; however, this loss was shown to be small
provided that the utilization of hard real-time tasks is a small fraction of the total.

8. RESOURCE SHARING

The previous sections described partitioned, global, and hybrid scheduling algorithms
and analyses for simple periodic and sporadic task models where the execution of
one task is independent of the others. In this section, we discuss research lifting this
assumption of independence and therefore allowing tasks to share resources that have
to be accessed in mutual exclusion.

We note that with parallel access to shared resources there are a number of alter-
natives to the classic lock-based schemes. Lock-free algorithms [Anderson et al. 1997],
which are similar to those used in optimistic concurrency control in database systems,
allow immediate access to the resource, but latter check to see if there was a conflict
over this access. If there was, then computations are abandoned and the resource is
reaccessed. These algorithms are therefore lock-free, but can involve looping while the
task is waiting to gain conflict-free access. Another class of algorithms is termed wait-
free. Wait-free algorithms involve neither locks nor loops but multiple copies of the data
are required. An example of a wait-free scheme is the four-slot mechanism [Simpson
1990], which preserves independence of execution of a single reader and a single writer
over a shared data resource. This mechanism does, however, require memory space for
four copies of the data.

In uniprocessor systems, the Stack Resource Policy (SRP) [Baker 1991] and Priority
Ceiling Protocol (PCP) [Sha et al. 1990] are widely accepted as the most appropriate
mechanisms to use to provide access to mutually exclusive shared resources. Initial
research into suitable policies for multiprocessor real-time systems has built on these
uniprocessor lock-based protocols.

8.1. Partitioned Scheduling

Rajkumar et al. [1988] introduced a multiprocessor variant of the Priority Ceiling Pro-
tocol called MPCP, which is applicable to partitioned systems using fixed priorities.
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Under MPCP, the priority ceilings of global shared resources are set to levels that are
strictly higher than that of any task in the system. At runtime when a task attempts
to access a locked global resource, it is suspended, and waits in a prioritized queue as-
sociated with the resource. This allows lower-priority local tasks to continue executing.
When the resource is unlocked, then the task at the head of the queue waiting on it is
resumed and executes at the ceiling priority of the resource.

Allowing low-priority tasks to execute while a higher-priority task on the same pro-
cessor is blocked on a global resource has the important effect of permitting further
priority inversion. The low-priority task can attempt to access another locked global
resource with a higher ceiling and can therefore subsequently execute ahead of the
high-priority task even when the original resource is unlocked. MPCP has the restric-
tions that nested access to globally shared resources is not permitted, and that nesting
of local and global critical sections is not permitted. MPCP provides a bounded block-
ing time, with a sufficient schedulability test based on the utilization bound of Liu and
Layland [1973]. The blocking factor is made up of five different components, which are
summarized by Gai et al. [2003].

Chen et al. [1994] described a further variant of PCP called MDPCP, and provided
a simple sufficient test for partitioned EDF using this protocol. This test is based on
computing blocking factors due to four different types of blocking.

Gai et al. [2001] introduced the MSRP protocol based on SRP [Baker 1991]. MSRP is
again applicable to partitioned systems, using either fixed priorities or EDF. A signif-
icant difference between MSRP and MPCP is that, when a task is blocked on a global
resource under MSRP, it busy waits and is not preemptable. This behavior is referred
to as a spin-lock. A FIFO queue is again used to grant access to tasks waiting on a
global resource when it is unlocked. MSRP provides both a bounded blocking time and
bounded increases in task execution times due to the spin-locks. MSRP can also be
analyzed using a simple sufficient schedulability test. Under MSRP, task execution on
each processor is perfectly nested and so the tasks can share a single stack.

In comparison with MPCP, MSRP removes two of the five contributions to the block-
ing factor; however, the spin-locks consume processing time, which could otherwise be
used by other tasks. Further, MSRP has the advantage that it is significantly simpler
to implement than MPCP. A study performed by Gai et al. [2003] showed that MSRP
typically outperforms MPCP when global critical sections are short and access to local
resources dominates access to global resources.

8.2. Global Scheduling

Devi et al. [2006], considered the problem of accessing mutually exclusive shared re-
sources under global EDF scheduling. They suggested two simple approaches for short
nonnested access to shared data structures: spin-based queue locks [Mellor-Crummey
and Scott 1991] and lock-free synchronization. With spin-based queue locks, tasks wait-
ing for access to a resource busy-wait on a “spin variable” which is exclusive to that
task. When a task exits the resource, it updates the spin variable of the next task in
the queue. In the first approach suggested by Devi et al. [2006], the spin queue grants
access to resources in FIFO order, and further access to each resource is nonpreempt-
able; hence the longest time for which a task can be blocked waiting to access a global
shared resource, with access time e, on an m processor system is (min(m, c)−1)e, where
c is the number of tasks that access the resource. With lock-free synchronization, op-
erations on shared resources (data structures) are implemented as “retry-loops”; thus
operations are opportunistically attempted and, if there is contention, then they are
retried until they are successful. Devi et al. [2006] showed how simple schedulabil-
ity tests for global EDF can be modified to take account of the effects of spin-based
queue locking and lock-free synchronization using retries. The performance evaluation

ACM Computing Surveys, Vol. 43, No. 4, Article 35, Publication date: October 2011.



35:34 R. I. Davis and A. Burns

reported by Devi et al. [2006] suggests that the total overheads of spin-based queue
locks are significantly less than those of lock-free synchronization.

Block et al. [2007] introduced the Flexible Multiprocessor Locking Protocol (FMLP).
FMLP operates using a variant of global EDF (or other algorithms), which ensures that
a job can only be blocked by another nonpreemptable job when it is released or resumed.
FMLP divides resources into two types with long and short access times. Jobs waiting
to access a short resource do so by becoming nonpreemptable and busy-waiting. Jobs
waiting to access long resources do so by blocking on a semaphore queue, in which case
the job currently accessing the resource inherits the priority of the highest-priority job
in the queue. FMLP uses a simple method of avoiding deadlock by grouping resources
that can be nested and ensuring that only a single job can access the resources in a
group at any given time. FMLP has the advantage that it can handle nested resource
access without the requirement for tasks accessing nested resources to be allocated
the same processor, as is the case with MSRP. Further, FMLP optimizes the simple
case of nonnested access to short resources. Block et al. [2007] showed via some simple
experiments that FMLP has better performance than MSRP. This advantage is at least
partly due to the fact that FMLP removes the restriction on task allocation required
by MSRP.

Brandenburg et al. [2008b] examined the relative performance of blocking and
nonblocking approaches to accessing shared resources. The blocking approaches used
FMLP and considered both spinning, that is, busy-waiting, and suspending. The non-
blocking approaches considered were lock-free and wait-free. Brandenburg et al. con-
cluded that nonblocking approaches are preferable for small and simple resource ob-
jects and wait-free or spin-based algorithms are generally preferable for more complex
resource objects with longer access times. Suspension-based algorithms are almost
never better than spin-based variants.

9. EMPIRICAL INVESTIGATIONS

In this section, we review recent empirical investigations into the performance of mul-
tiprocessor scheduling algorithms and their associated schedulability tests.

9.1. Schedulability Test Performance

As well as producing theoretical results including approximation ratios, utilization
bounds, and speedup factors, many researchers have also used empirical methods to
investigate the relative performance of different real-time scheduling algorithms and
their analyses. The most commonly used metric is the number of randomly generated
tasksets that are deemed schedulable. This empirical metric is an important one in
real-time systems research. For techniques to be transferred into industrial practice,
it is essential that they are both simple and efficient, as well as highly effective for the
majority of realistic cases. While utilization/density-based tests and speedup factors are
useful performance indicators, they focus heavily on specific pathological tasksets. By
comparison, more general schedulability tests that take into account the parameters
of individual tasks have the potential to provide superior performance in the vast
majority of cases, something that is highlighted by empirical studies.

In empirical studies, parameters such as the number of tasks, the number of proces-
sors, taskset utilization, the range of task periods, the distribution of task deadlines,
and the distribution of individual task utilizations can be varied to examine the perfor-
mance of the algorithms and their schedulability tests over a range of different credible
scenarios.

Baker [2006b] made an empirical comparison between the best global EDF, and
partitioned EDF scheduling algorithms available in 2006. The empirical performance
measure used was the number of randomly generated tasksets that were schedulable
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according to each algorithm. The conclusion of this study was that, although the two
approaches are incomparable, the partitioned approach appeared to outperform the
global approach on this metric by a significant margin.

Considering global scheduling algorithms, in the simulation chapter of his thesis,
Bertogna [2007] showed that the iterative response time test for global FP scheduling
(Equation (63)) outperformed all other tests for global FP and global EDF scheduling
and also similar tests for EDZL (see Section 6.3.3) known at the time. Since real-time
system designers are interested in provable schedulability, Bertogna [2007] argued that
global FP scheduling can reasonably be regarded as one of the best global scheduling
techniques to use as it is simple to implement and is supported by a demonstrably
effective schedulability test.

Bertogna [2009] investigated the performance of the following schedulability tests
for global EDF:

—GFB, density-based test [Goossens et al. 2003];
—BAK [Baker 2005];
—BAR [Baruah 2007];
—LOAD, processor load-based test [Baruah and Baker 2009];
—BCL, [Bertogna et al. 2005b];
—RTA, response time analysis test [Bertogna and Cirinei 2007];
—FF-DBF, speedup optimal test [Baruah et al. 2009].

Bertogna [2009] showed that, of these tests, the RTA test [Bertogna and Cirinei 2007]
was the most effective in terms of the number of randomly generated tasksets deemed
to be schedulable, although the RTA test can only be shown to strictly dominate the
BCL test, and is incomparable with all of the other tests listed above. Bertogna [2009]
also sequentially applied the RTA test, the BAR test and the FF-DBF test to form a
composite test (COMP). This test utilizes intermediate information from the RTA test,
when it fails to show schedulability, to improve the performance of the BAR test. The
COMP test was shown to improve upon the performance of the RTA test.

Davis and Burns [2009] showed that, in global FP scheduling, the number of
randomly generated tasksets deemed schedulable using the schedulability tests of
Bertogna et al. [2008] is significantly increased by using Audsley’s [1991, 2001] opti-
mal priority assignment policy rather than deadline monotonic priority assignment.
The latter policy, although optimal for uniprocessor systems, was shown to perform
poorly in the multiprocessor case. Davis and Burns [2009] also showed that DkC is a
highly effective priority assignment policy for global FP schedulability tests that are
not compatible with the optimal priority assignment algorithm. Again, performance
was significantly better than with deadline monotonic priority assignment.

Davis and Burns [2009] also showed how the UUnifast method of taskset gener-
ation [Bini and Buttazzo 2005], which is the de facto standard for investigation of
schedulability test performance in uniprocessor systems, could be extended to the mul-
tiprocessor case. The resulting method, called UUnifast-Discard, generates tasksets
with specific parameter settings, thus facilitating an empirical study of schedulabil-
ity test effectiveness without the problem of confounding variables. We note that the
method of taskset generation used in Bertogna and Cirinei [2007] and Bertogna [2009],
while valid in comparing the performance of different schedulability tests, suffers from
a problem of confounding variables: as taskset utilization is increased, the average
cardinality of the tasksets generated increases, effectively linking these two variables
and so obscuring their individual influences on schedulability test effectiveness.

While empirical studies of schedulability test performance, such as those described
above, provide important information about the theoretical effectiveness of different al-
gorithms and their schedulability tests, they leave an important question unanswered.
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How does this theoretical performance translate in practice, when the overheads in-
volved in scheduling decisions, context switches, and migration are considered?

9.2. Measurements

Brandenburg et al. [2008a] measured the performance of various scheduling algorithms
and their overheads on a LITMUS testbed using a Sun UltraSPARC Niagra multicore
platform with 32 logical processors (actually four hardware threads running on each of
eight CPUs). Brandenburg et al. [2008a] examined partitioned, clustered, and global
approaches using EDF and Pfair algorithms. They found that the overheads of pure
Pfair meant it had very poor performance, while staggered Pfair performed much better
in practice. Global EDF scheduling performed poorly due to the overheads involved in
manipulating a lengthy global queue, accessible to all processors. Partitioned EDF
was shown to work best for hard real-time tasksets, except when the tasks had high
individual utilizations, when staggered Pfair was best. For soft real-time tasksets,
partitioned EDF was again effective unless the tasks had high individual utilizations
>0.5. Clustered EDF was also highly effective for soft-real time tasksets. The key
point that can be drawn from this work is that overheads are a significant issue for
multiprocessor real-time scheduling.

10. SUMMARY, OPEN ISSUES, AND DIRECTION FOR FUTURE RESEARCH

Although research into multiprocessor real-time scheduling and schedulability analy-
sis has advanced markedly since the seminal paper of Dhall and Liu [1978], there are
still significant and fundamental research challenges that remain. Global, clustered,
and semipartitioned approaches to multiprocessor scheduling offer potential solutions
for future complex high-performance real-times systems; however, few results can be
identified in these areas that are ready to be transferred into industrial practice.

10.1. Open Issues

The following are a selection of key open issues with existing research into multipro-
cessor real-time scheduling identified by this survey.

Limits on processor utilization. Fixed-job-priority and partitioning algorithms are in
the worst case capable of utilizing only 50% of the available processing resource. While
global dynamic algorithms can in some cases utilize up to 100%, their overheads are
typically prohibitive. Further research is needed into minimally dynamic algorithms,
and novel approaches to partitioning task execution that can increase guaranteed
processing capability without introducing significant overheads. Recent progress in
this area is summarized in Section 7.

Ineffective schedulability tests. For the sporadic task model, empirical studies have
shown that a large gap exists between the best sufficient schedulability tests currently
available for global fixed-job-priority and fixed-task priority scheduling and what may
be possible as indicated by feasibility/infeasibility tests. Closing this gap is a key area
for future research. Fundamental to this problem is the fact that “no finite collection
of worst-case job arrival sequences has been identified for the global scheduling of
sporadic task systems” [Baruah 2007, page 121].

Consideration of overheads. Advanced hardware features, such as cache architec-
tures, have a large impact on the cost of migration (at the task and job levels). Recent
experimental implementations [Brandenburg et al. 2008a] on multiprocessor platforms
have shown that the overheads of migration, context switching, and run-queue ma-
nipulation are a key issue for multiprocessor scheduling. Research into scheduling
algorithms and analysis needs to take appropriate account of such overheads. Further
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research is needed into algorithms that permit only task-level migration, or only permit
migration within a limited cluster of processors.

Limited task models for multiprocessor systems. The vast majority of existing re-
search into hard real-time scheduling on multiprocessors has addressed simple peri-
odic or sporadic task models originally developed with uniprocessor systems in mind.
More general task models are needed that can express both the benefits and overheads
of executing parts of the same task in parallel. Initial work in this area by Collette et
al. [2007, 2008] has considered the work-limited job parallelism of each task defined
by the rate at which it can execute on 1 to m processors. Another relevant model is the
task model of Edmonds and Pruhs [2009], which considers each task as being made
up of a number of phases each of which has an amount of computation that must be
completed in that phase and a speedup function indicating how the rate at which that
computation is executed increases with the degree of parallelism (number of processors
executing the phase). Work in the area of online scheduling methods covering scalable
tasks [Lee et al. 2003], and the application of divisible load theory [Bharadwaj et al.
1996; Robertazzi 2003; Veeravalli et al. 2003; Lin et al. 2007] are also of interest in this
respect.

As well as more expressive task models, more general models of processing supply
would provide a means of abstracting away from specific hardware platforms to a
virtual platform model, thus enabling composition. Initial work in this area by Bini
et al. [2009a, 2009b] has modeled the parallel supply of a virtual platform as a set of
m supply functions indicating how the minimum supply of processing capacity on 1 to
m processors varies as a function of time.

Limited policies for access to shared resources. Unlike uniprocessor systems, where
the Stack Resource Policy [Baker 1991] is widely accepted as the most effective protocol
to use to control mutually exclusive accesses to shared resources, there is no such
consensus for multiprocessor scheduling. Research in this area has indicated that
spin-based approaches appear to be preferable to suspension-based methods; however,
nonblocking approaches also perform well for simple resource accesses. It therefore
seems unlikely that there will be a single best solution here. Different forms of resource
sharing and different architectures are likely to require different forms of support.

10.2. Related Areas of Research

This survey covers research into hard real-time scheduling for homogeneous multi-
processor systems. There are a number of related areas that, while outside the scope
of the survey, are likely to be of interest to researchers and practitioners developing
multiprocessor real-time systems. These include the following.

—Worst-case execution time (WCET) analysis;
—Network/bus scheduling;
—Memory architectures;
—Scheduling of uniform and heterogeneous processors;
—Operating systems;
—Power consumption and dissipation;
—Scheduling tasks with soft real-time constraints, and
—Non-real-time issues such as load balancing.

In particular, WCET analysis of multicore systems presents a significant challenge.
Here, even with the simplest partitioned approaches to task allocation, tasks executing
on one processor can indirectly affect the WCET of tasks on other processors by con-
tending for shared hardware resources such as cache and network-on-chip [Quinones
et al. 2009]. A recent survey of WCET techniques [Wilhelm et al. 2008] concluded that
no static analysis currently exists for multicore processors which have such complex
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hardware interactions. Research in this area has either aimed to develop a fully stat-
ically analyzable multicore CPU, or to move from providing deterministic WCET es-
timates to providing probabilistic ones with a high degree of confidence [PROARTIS
2009].

As well as issues fundamental to multiprocessor scheduling set out in the previous
section, the confluence of WCET analysis and scheduling theory for multicore systems
represents a key area for future research. For example, the effects on task execution
time caused by contention for hardware resources, due to parallel execution of other
tasks, can be modeled as a scheduling effect or as an increase in WCET. At this level,
these two areas of research are closely interwoven.

11. CONCLUSIONS

Currently, progress in developing multiprocessor systems is a long way ahead of re-
search efforts to determine the best mechanisms, policies, and analysis to use in these
systems. At best, this can result in systems that are heavily overspecified and expen-
sive; at worst, it can lead to intermittent and unexpected timing faults that compromise
system reliability. Functionality, unit cost, time-to-market, and a reputation based on
product reliability are key factors for companies developing real-time embedded sys-
tems. All of these factors can be compromised by building systems using approaches
that lack the necessary theoretical underpinnings. Ultimately, multiprocessors will be
used in high-integrity real-time systems, and consequently, timing failures could affect
safety.

Future advances along the research directions indicated in this survey should help
resolve the key open issues identified. These advances hold the promise of providing
the effective and efficient mechanisms, policies, and analyses required for a sound
engineering-based approach to the development of complex commercial multiprocessor
real-time systems.
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