
ELEC-H-410 2010/11
Realization of an application under µC/OSII (2) page 1

Realization of an application under µCOSII (2)

Useful document are on the lab server, in the folder: MesDocuments/ELEC-H-410/Useful Documents:
• uCOS-II-RefMan.pdf

1 The lab

Throughout this second lab, you will learn how to manage the dependencies between tasks.

Sharing resources

The simplest way to make two tasks communicate is to use structures of shared data: most of the time
they are global variables. It is then necessary to establish a mechanism of protection to control the
access to these variables.

Open the project ressource_sharing

- analyze the code, knowing that each task is executed only once (use of OSTaskSuspend() is

called at the end of the for loop), which should be the value of the global variable cntr at the end
of the execution.

- Compile and execute the code.
- Using a watch window, check the value of cntr. Is this the expected result? Why? (Use the logic

analyser to help)

To protect the shared variables, uC/OS-II proposes two main solutions: masking the interruptions or
using a mutex.

The 1st solution is very efficient, but can only be used for very short lapses of time (shorter than the
critical sections created by the RTOS itself), otherwise the latency time of the interruptions is
increased and preemption of the task is blocked, which is against real-time.

The mutex (see chapter over priority-driven systems) is a convenient way to protect shared data, while
still handling interrupts and authorize the preemption of the running task.

Note: when a task acquires a resource via OSMutexPend(), it should not forget to release it via
OSMutexPost(). A pseudo code is given hereunder.

The first 2 lines create a mutex by:

- declaring a pointer with the type OS_EVENT: it will point to your mutex. This declaration must
be global, so that the mutex is visible from anywhere in the program

OS_EVENT *ResourceMutex;
ResourceMutex=OSMutexCreate(20,&err)

void function()
{
 INT8U err ;
 ...
 OSMutexPend(ResourceMutex, 0, &err);

 operations on the shared resource ...

 OSMutexPost(ResourceMutex);
 ...
}

ELEC-H-410 2010/11
Realization of an application under µC/OSII (2) page 2

- creating the mutex. The first parameter indicates the maximum priority that the task owning
the mutex can get.

For more details, see µC/OSII user's manual pp 58-67.

Exercice 1 :
Modify the code of the Ressource_Sharing project by using a mutex to obtain the expected result for
cntr.

Deadlock problem

Improper use of the mutex (or of any other mechanism of synchronization between tasks) can bring
to a situation where no task can execute anymore.

• Open the Deadlock project and launch its execution.
• Observe using the logic analyzer that no task is executed although the tasks should be periodic
• Find the reason of this deadlock by drawing a time graph of the different calls to the mutexes

Exercice 2 :
Fix this problem using the parameter timeout of OSMutexPend().

Pririty inheritance

uC/OSII uses a particular version of the priority inheritance. During the creation of the mutex, it is
possible to define a priority which a task T1 will inherit if T1 blocks a higher priority task Tn. To
correctly work, it is absolutely necessary to raise the priority above that of all the tasks using the
mutex. Moreover, this priority shouldn't be used by any other task of the system. We insist however on
the fact that this implementation of priority inheritance should perhaps be called "priority raising" to
avoid the confusion with the normal priority inheritance protocol (see lecture notes chapter 4)

• Open the project Prio_inheritance.
• Observe the mechanism with the logic analyzer.

Use of a semaphore

The semaphores (in a flag version) allow a synchronization between tasks or between an interrupt
service routine (ISR) and a task.

In the following example,Task1 immediately goes to the "waiting" state until another Task2 has
reached a certain point of its execution, then Task1 begins its execution.

ELEC-H-410 2010/11
Realization of an application under µC/OSII (2) page 3

It should be noted that several "flags" can be posted in the same semaphore (counting semaphore).
Thus a task can require that an event occurs several times before resuming its execution. In the same
way, several tasks can synchronize on the same event if this event posts several flags in the same
semaphore (each task gets one of the flags).

For more information, see uC/OSII user's manual pp 92-97.

• Open the project entitled SpeexRTOS.

This project contains two tasks:

• AppTaskSpeex, which decodes a sound by batches of 64 samples (long execution time).
• AppTaskDac which reads the decoded samples and sends them at 1kHz to a DAC connected

to a loudspeaker.

A first semaphore was placed in this code so that the first samples are not send to the DAC (by
AppTaskDAC) before they actually have been decoded by AppTaskSpeex.

Exercice 3:
Use an additional semaphore so that a new batch of decoded samples is not written in one of the two
buffers (buf0[] or buf1[]) by AppTaskSpeex before the previous batch has been completely send to the
loudspeaker by AppTaskDac.

Mailboxes

Until now, we saw that the use of global variables made it possible to exchange information between
two tasks. This method however presents some disadvantages among which the fact that a task is
not automatically informed of a change of the variable. It is thus necessary that the task checks it
periodically (polling) or to announce any change via a mutex or semaphore.

To make this exchange easier, uC/OSII implements another protocol: mailboxes.

OS_EVENT *startTask1;

Task1()
{
 for(;;)
 {
 INT8U err;
 OSSemPend(startTask1, 0, &err);//Task 1 goes "waiting"
 //start of Task1
 ...
 }
}

Task2()
{
 for(;;)
 {
 //begin of Task2...

 OSSemPost(startTask1); //Task1 goes to "ready"

 // other instructions of Task2...
 }
}

ELEC-H-410 2010/11
Realization of an application under µC/OSII (2) page 4

A task or an ISR can deposit a message in a mailbox. In a similar way, one or more tasks can receive
a message in this mailbox.

Note: when we speaks about "message" under µC/OS-II, it actually acts of a pointer to a structure.
The type of structure must obviously be known as well by the transmitting task as by the receiving
task(s)

If a task wishes to receive a message coming from a void mailbox, it is suspended until the arrival of
the message, or during a lapse of time defined by the application. Each mailbox is thus associated to
a waiting list containing these suspended tasks. When the message is posted, it’s the highest priority
waiting task that receives the message.

All information about the functions of uC/OS-II allowing the management of the mailboxes can be
found in the user's manual pp 32-43 .

• Open the project Mailbox.

This project contains two tasks :

• Task_KeyScan is the task which manages the keyboard: if a new key is pressed, the
KeyBuffer variable contains the ASCII code of this key. The task is reactivated every 25ms to
detect the actions of the user. KeyboardScan() is the function in charge of scanning the matrix
keyboard, it is defined in the file Keyboard.c.

• Task_Display displays a character on the LCD screen. The function DispStr() is defined in the
file LCD.c containing all the functions pre-written for the LCD. You will find a short explanation
of these fonctions in the LCD.h file.

Exercice 4:
Create a mailbox allowing to transmit the characters pressed on the keyboard to the task displaying
the characters on the screen.

