
ELEC-H410
Simulation of the dsPIC(1) page 1

Simulation of the dsPIC(1)

1 Purpose

 use a simulator and to understand its utility

 learn the instruction set and the assembly language, starting from the code produced by the
compiler. See the link between high-level language instructions and machine code

 be aware of the limitations of small micro-controllers

2 Useful Documents
In the folder \Useful Documents

 Introduction to MPLAB

 The Explorer16 board

 MPLAB C30 C Compiler User’s guide

 dsPIC30F/33F Programmer’s Reference Manual_70157B.pdf

 dsPIC33FJXXXGPX06/X08/X10 Data Sheet_70286C.pdf

3 Addressing modes

Work
1. In the "Programmer's Reference Manual", identify the various addressing modes

2. Give an example of instruction illustrating each addressing mode and instructions using multiple

addressing modes, explain how they work.

3. What is the size of an instruction? Is this coherent with the CPU architecture found in the
Datasheet?

4. Examine the notion of "format" of the instruction and show by examples that the size of the
instruction introduces limitations in the range of each addressing mode or the size of constants.

4 Types of the variables
Configuration of the environment

 Launch the IDE MPLAB

 Open the workspace (File>Open Workspace) "Simul_dsPIC1.mcw" which already includes
o the choice of the microcontroller
o the configuration of the debugger in the simulation mode which enables you to execute

and debug the code in your development environment, without any microcontroller
hardware

 Display the following windows in your IDE
o C source code
o Output for error messages
o Disassembly listing (right-click in the window and check "Symbolic Disassembly")
o Memory Usage : amount of memory used for program and data
o Stopwatch : number of cycles required to execute each instruction
o Watch window to observe the registers and variables
o File Register : to dump the Data Memory

 Save your workspace under another name (File>Save Workspace as) to be able to reuse it any
time

Header Files
Notice the presence of the file p33FJ256GP710.h in the header files. Double-click on it and browse its
content.

 Have a look for instance at lines related to the I/O port PORTA and explain the utility of this
header file

 Remark and explain the use of the adjective "volatile"

ELEC-H410
Simulation of the dsPIC(1) page 2

initvar.c

 Add the source file initvar.c to the project if it is not and browse it

 What are the various types of variables accepted by the compiler and their min-max range? (cf
MPLAB C30 C Compiler Users guides). Convert the min-max range in decimal.

 Are the integer types signed or unsigned if you do not specify it explicitly?

 add Datatypes.h in the header files of your project, browse its contents and observe the improved
legibility of the new definitions

variables.c

 Replace the file initvar.c by variables.c

 Make the line numbers appear in the C source (right-click on window->Properties->C File Type -
>line numbers)

 Click on "Build all" to compile and link every file of the project. Ignore the warnings for the
moment.

REM : the assembly code begins with the "lnk" instruction which will allocate a "stack frame" for the
local variables of the function main(). Refer to 4.7.4 of the "dsPIC30F/33F Programmer’s Reference
Manual_70157B.pdf" for the explanation of stack frames and the use of W15 as a Stack Pointer and
W14 as a Frame Pointer

 Observe in the assembly code the initialization of the different variables; advance in the program
using breakpoints and step-by-step mode (both in C and in ASM) and observe the state of the
variables in the "Watch" window (trick: add W14 to the Watch Window); you can change the
properties of the Watch Window to observe the values of the variables in different bases.

 Where are the different variables stored?

 Describe how variables are initialized? What are the difference between the different types and
the addressing mode(s)

 Observe the number of instructions necessary to the initialize of each variable thanks to the
"Stopwatch" window

 Observe attentively the values of the various variables in the "Watch" window. Comments ?

 Observe attentively the values of the various variables in the "File register" window. In particular
see how the INT32U and INT64U are stored and the mental effort required if you want to analyse
long variables in memory. Are all variables initialized correctly ?

 Pay attention to the warnings appearing in the "Output" window, are they justified ?

 The code defines a global variable glob1. Where is it defined ? Observe how to place this variable
in a register (the grammar can vary depending on the compiler, but the keyword register is always
used).
REM: A global cannot be initialized in its declaration

An unambiguous definition of the variable types
The size of certain types of variable can changes from one processor to another; for example the
default size of the int standard can be puzzling because it depends on the size of the data bus (but
not always)

 for 8-bit µP it can be 8 bits, but in the most cases it is 16 bits

 for 16-bit µP it is 16 bits

 for 32-bit µP it can be 16 bits, or 32 bits

Moreover, the fact that a char or an integer is signed or unsigned by default depends on the
compiler and on the options of the compiler.
It is always a good practice to improve the portability of the code i.e. to minimize the modifications
when you want to migrate to another processor. For this reason it is wise to gather, all which
depends on the µP in a few files, so that only those well-identified files have to be modified for
another processor. Here you will use the header file Datatypes.h to redefine the types of the
variables to avoid any unambiguity.

ELEC-H410
Simulation of the dsPIC(1) page 3

variables2.c

 Replace the file variables.c by variables2.c. Observe the warnings and the actual results in the
watch window. What is the problem? What is the difference between signed and unsigned
variables ?

assign.c

 replace variables.c by assign.c and compile.

 Observe and comment the way variables are accessed compared to variables.c

 Observe the way assignations work

