
© 2005 Microchip Technology Inc. DS51284D

MPLAB® C30
C COMPILER

USER’S GUIDE

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
DS51284D-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2005 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C30

USER’S GUIDE

Table of Contents
Preface ... 1

Chapter 1. Compiler Overview
1.1 Introduction ... 7
1.2 Highlights .. 7
1.3 MPLAB C30 Description ... 7
1.4 MPLAB C30 and Other Development Tools ... 7
1.5 MPLAB C30 Feature Set .. 9

Chapter 2. Differences Between MPLAB C30 and ANSI C
2.1 Introduction ... 11
2.2 Highlights .. 11
2.3 Keyword Differences .. 11
2.4 Statement Differences .. 27
2.5 Expression Differences .. 28

Chapter 3. Using MPLAB C30 C Compiler
3.1 Introduction ... 29
3.2 Highlights .. 29
3.3 Overview .. 29
3.4 File Naming Conventions ... 30
3.5 Options ... 30
3.6 Environment Variables ... 55
3.7 Predefined Constants ... 56
3.8 Compiling a Single File on the Command Line .. 56
3.9 Compiling Multiple Files on the Command Line ... 58

Chapter 4. MPLAB C30 C Compiler Runtime Environment
4.1 Introduction ... 59
4.2 Highlights .. 59
4.3 Address Spaces ... 59
4.4 Code and Data Sections .. 61
4.5 Startup and Initialization ... 63
4.6 Memory Spaces ... 64
4.7 Memory Models .. 65
4.8 Locating Code and Data ... 67
4.9 Software Stack ... 68
4.10 The C Stack Usage .. 69
4.11 The C Heap Usage ... 71
4.12 Function Call Conventions ... 72
4.13 Register Conventions ... 74
© 2005 Microchip Technology Inc. DS51284D-page iii

MPLAB® C30 User’s Guide
4.14 Bit Reversed and Modulo Addressing .. 75
4.15 Program Space Visibility (PSV) Usage .. 75

Chapter 5. Data Types
5.1 Introduction ... 77
5.2 Highlights .. 77
5.3 Data Representation .. 77
5.4 Integer .. 77
5.5 Floating Point ... 78
5.6 Pointers .. 78

Chapter 6. Device Support Files
6.1 Introduction ... 79
6.2 Highlights .. 79
6.3 Processor Header Files .. 79
6.4 Register Definition Files ... 80
6.5 Using SFRs .. 81
6.6 Using Macros ... 83
6.7 Accessing EEDATA from C Code .. 84

Chapter 7. Interrupts
7.1 Introduction ... 87
7.2 Highlights .. 87
7.3 Writing an Interrupt Service Routine .. 88
7.4 Writing the Interrupt Vector .. 90
7.5 Interrupt Service Routine Context Saving .. 92
7.6 Latency ... 93
7.7 Nesting Interrupts ... 93
7.8 Enabling/Disabling Interrupts ... 93
7.9 Sharing Memory Between Interrupt Service Routines and

Mainline Code ... 94

Chapter 8. Mixing Assembly Language and C Modules
8.1 Introduction ... 99
8.2 Highlights .. 99
8.3 Mixing Assembly Language and C Variables and Functions 99
8.4 Using Inline Assembly Language ... 101

Appendix A. Implementation-Defined Behavior
A.1 Introduction .. 105
A.2 Translation ... 106
A.3 Environment ... 106
A.4 Identifiers ... 107
A.5 Characters ... 107
A.6 Integers .. 108
A.7 Floating Point ... 108
A.8 Arrays and Pointers ... 109
A.9 Registers .. 109
DS51284D-page iv © 2005 Microchip Technology Inc.

Table of Contents
A.10 Structures, Unions, Enumerations and Bit-fields 110
A.11 Qualifiers .. 110
A.12 Declarators ... 110
A.13 Statements ... 110
A.14 Preprocessing Directives ... 111
A.15 Library Functions ... 112
A.16 Signals ... 113
A.17 Streams and Files .. 113
A.18 tmpfile .. 114
A.19 errno ... 114
A.20 Memory .. 114
A.21 abort ... 114
A.22 exit ... 114
A.23 getenv .. 115
A.24 system .. 115
A.25 strerror ... 115

Appendix B. MPLAB C30 C Compiler Diagnostics
B.1 Introduction .. 117
B.2 Errors ... 117
B.3 Warnings .. 136

Appendix C. MPLAB C18 vs. MPLAB C30 C Compiler
C.1 Introduction .. 157
C.2 Data Formats ... 158
C.3 Pointers .. 158
C.4 Storage Classes .. 158
C.5 Stack Usage .. 158
C.6 Storage Qualifiers .. 159
C.7 Predefined Macro Names .. 159
C.8 Integer Promotions .. 159
C.9 String Constants .. 159
C.10 Anonymous Structures .. 160
C.11 Access Memory ... 160
C.12 Inline Assembly .. 160
C.13 Pragmas .. 160
C.14 Memory Models ... 161
C.15 Calling Conventions ... 161
C.16 Startup Code .. 162
C.17 Compiler-Managed Resources .. 162
C.18 Optimizations ... 162
C.19 Object Module Format ... 162
C.20 Implementation-Defined Behavior ... 162
C.21 Bit-fields ... 163
© 2005 Microchip Technology Inc. DS51284D-page v

MPLAB® C30 User’s Guide
Appendix D. ASCII Character Set..165

Appendix E. GNU Free Documentation License..167

Glossary ...173

Index ...185

Worldwide Sales and Service ...193
DS51284D-page vi © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Preface
INTRODUCTION

The purpose of this document is to help you use Microchip’s MPLAB C30 C compiler
for dsPIC® DSC devices to develop your application. MPLAB C30 is a GCC-based
(GNU Compiler Collection) language tool, based on source code from the Free Soft-
ware Foundation (FSF). For more information about the FSF, see www.fsf.org.

Other GNU language tools available from Microchip are:

• MPLAB ASM30 Assembler
• MPLAB LINK30 Linker
• MPLAB LIB30 Librarian/Archiver

Items discussed in this chapter include:

• About This Guide
• Recommended Reading
• Troubleshooting
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools
and documentation are constantly evolving to meet customer needs, so some actual
dialogs and/or tool descriptions may differ from those in this document. Please refer
to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom
of each page, in front of the page number. The numbering convention for the DS
number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the
revision level of the document.

For the most up-to-date information on development tools, see the MPLAB IDE
on-line help. Select the Help menu, and then Topics to open a list of available on-line
help files.
© 2005 Microchip Technology Inc. DS51284D-page 1

MPLAB® C30 User’s Guide
ABOUT THIS GUIDE

Document Layout

This document describes how to use MPLAB C30 to develop your firmware. The
manual layout is as follows:

• Chapter 1: Compiler Overview – describes MPLAB C30, development tools and
feature set.

• Chapter 2: Differences between MPLAB C30 and ANSI C – describes the
differences between the C language supported by MPLAB C30 syntax and the
standard ANSI-89 C.

• Chapter 3: Using MPLAB C30 – describes how to use the MPLAB C30 compiler
from the command line.

• Chapter 4: MPLAB C30 Runtime Environment – describes the MPLAB C30
runtime model, including information on sections, initialization, memory models, the
software stack and much more.

• Chapter 5: Data Types – describes MPLAB C30 integer, floating point and pointer
data types.

• Chapter 6: Device Support Files – describes the MPLAB C30 header and register
definition files, as well as how to use with SFR’s.

• Chapter 7: Interrupts – describes how to use interrupts.

• Chapter 8: Mixing Assembly Language and C Modules – provides guidelines to
using MPLAB C30 with MPLAB ASM30 assembly language modules.

• Appendix A: Implementation-Defined Behavior – details MPLAB C30 specific
parameters described as implementation-defined in the ANSI standard.

• Appendix B: MPLAB C30 Diagnostics – lists error and warning messages
generated by MPLAB C30.

• Appendix C: Differences Between MPLAB C18 and MPLAB C30 – highlights the
differences between the PIC18XXXXX compiler (MPLAB C18) and the dsPIC DSC
compiler (MPLAB C30).

• Appendix D: ASCII Character Set – contains the ASCII character set.

• Appendix E: GNU Free Documentation License – usage license for the Free
Software Foundation.
DS51284D-page 2 © 2005 Microchip Technology Inc.

Preface
Conventions Used in this Guide

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or

dialog
“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

‘bnnnn A binary number where n is a
digit

‘b00100, ‘b10

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier font:
Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Italic Courier A variable argument file.o, where file can be
any valid filename

0xnnnn A hexadecimal number where
n is a hexadecimal digit

0xFFFF, 0x007A

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

© 2005 Microchip Technology Inc. DS51284D-page 3

MPLAB® C30 User’s Guide
RECOMMENDED READING

This user's guide describes how to use MPLAB C30. Other useful documents are listed
below. The following Microchip documents are available and recommended as
supplemental reference resources.

README Files

For the latest information on Microchip tools, read the associated README files (ASCII
text files) included with the software.

dsPIC® DSC Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools (MPLAB ASM30,
MPLAB LINK30 and MPLAB C30) for dsPIC Digital Signal Controllers (DSC’s).
Examples using the dsPIC DSC simulator, MPLAB SIM30, are provided.

MPLAB® ASM30, MPLAB LINK30 and Utilities User's Guide (DS51317)

A guide to using the dsPIC DSC assembler, MPLAB ASM30, dsPIC DSC linker,
MPLAB LINK30 and various dsPIC DSC utilities, including MPLAB LIB30
archiver/librarian.

GNU HTML Documentation

This documentation is provided on the language tool CD-ROM. It describes the
standard GNU development tools, upon which MPLAB C30 is based.

dsPIC30F Data Sheet General Purpose and Sensor Families (DS70083)

Data sheet for dsPIC30F Digital Signal Controller (DSC). Gives an overview of the
device and its architecture. Details memory organization, DSP operation and
peripheral functionality. Includes electrical characteristics.

dsPIC30F Family Reference Manual (DS70046)

Family reference guide explains the operation of the dsPIC30F MCU family
architecture and peripheral modules.

dsPIC30F Programmer’s Reference Manual (DS70030)

Programmer’s guide to dsPIC30F devices. Includes the programmer’s model and
instruction set.
DS51284D-page 4 © 2005 Microchip Technology Inc.

Preface
C Standards Information

American National Standard for Information Systems – Programming Language – C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability, and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P., and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

TROUBLESHOOTING

See the README files for information on common problems not addressed in this
document.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives
© 2005 Microchip Technology Inc. DS51284D-page 5

MPLAB® C30 User’s Guide
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers and other language
tools. These include the MPLAB C17, MPLAB C18 and MPLAB C30 C compilers;
MPASM™ and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30
object linkers; and MPLIB™ and MPLAB LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

• MPLAB IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM and MPLAB SIM30 simulators, MPLAB
IDE Project Manager and general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the PICSTART®
Plus development programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support@microchip.com

In addition, there is a Development Systems Information Line which lists the latest
versions of Microchip's development systems software products. This line also
provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:

1-800-755-2345 – United States and most of Canada

1-480-792-7302 – Other International Locations
DS51284D-page 6 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 1. Compiler Overview
1.1 INTRODUCTION

The dsPIC® family of Digital Signal Controllers (DSC) combines the high performance
required in DSP applications with standard microcontroller features needed for
embedded applications.

The dsPIC DSCs are fully supported by a complete set of software development tools,
including an optimizing C compiler, an assembler, a linker and an archiver/librarian.

This chapter provides an overview of these tools and introduces the features of the
optimizing C compiler, including how it works with the MPLAB ASM30 assembler and
MPLAB LINK30 linker. The assembler and linker are discussed in detail in the MPLAB
ASM30, MPLAB LINK30 and Utilities User's Guide, (DS51317).

1.2 HIGHLIGHTS

Items discussed in this chapter are:

• MPLAB C30 Description
• MPLAB C30 and Other Development Tools
• MPLAB C30 Feature Set

1.3 MPLAB C30 DESCRIPTION

MPLAB C30 is an ANSI x3.159-1989-compliant, optimizing C compiler that includes
language extensions for dsPIC DSC embedded-control applications. The compiler is a
Windows® console application that provides a platform for developing C code. The
compiler is a port of the GCC compiler from the Free Software Foundation.

1.4 MPLAB C30 AND OTHER DEVELOPMENT TOOLS

MPLAB C30 compiles C source files, producing assembly language files. These
compiler-generated files are assembled and linked with other object files and libraries
to produce the final application program in executable COFF or ELF file format. The
COFF or ELF file can be loaded into the MPLAB IDE, where it can be tested and
debugged, or the conversion utility can be used to convert the COFF or ELF file to
Intel® hex format, suitable for loading into the command-line simulator, or a device
programmer. See Figure 1-1 for an overview of the software development data flow.
© 2005 Microchip Technology Inc. DS51284D-page 7

MPLAB® C30 User’s Guide
FIGURE 1-1: SOFTWARE DEVELOPMENT TOOLS DATA FLOW

Object File Libraries
(*.a)

Assembler

Linker

C Source Files
(*.c)

C Compiler

Source Files (*.s)

Assembly Source
Files (*.s)

COFF/ELF Object Files
(*.o)

Executable File
(*.exe)

Archiver (Librarian)

MPLAB® IDE

Command-Line
Simulator

Compiler

Debug Tool

Driver
Program
DS51284D-page 8 © 2005 Microchip Technology Inc.

Compiler Overview
1.5 MPLAB C30 FEATURE SET

The MPLAB C30 C compiler is a full-featured, optimizing compiler that translates
standard ANSI C programs into dsPIC DSC assembly language source. The compiler
also supports many command-line options and language extensions that allow full
access to the dsPIC DSC device hardware capabilities, and afford fine control of the
compiler code generator. This section describes key features of the compiler.

1.5.1 ANSI C Standard

The MPLAB C30 compiler is a fully validated compiler that conforms to the ANSI C
standard as defined by the ANSI specification and described in Kernighan and
Ritchie's, The C Programming Language (second edition). The ANSI standard
includes extensions to the original C definition that are now standard features of the
language. These extensions enhance portability and offer increased capability.

1.5.2 Optimization

The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C source. The
optimization passes include high-level optimizations that are applicable to any C code,
as well as dsPIC DSC device-specific optimizations that take advantage of the partic-
ular features of the dsPIC DSC device architecture.

1.5.3 ANSI Standard Library Support

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions
have been validated, and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping, and math functions (trigonometric, exponential and hyperbolic). The standard
I/O functions for file handling are also included, and, as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution,
and may be used as a starting point for applications that require this capability.

1.5.4 Flexible Memory Models

The compiler supports both large and small code and data models. The small code
model takes advantage of more efficient forms of call and branch instructions, while the
small data model supports the use of compact instructions for accessing data in SFR
space.

The compiler supports two models for accessing constant data. The “constants in data”
model uses data memory which is initialized by the runtime library. The “constants in
code” model uses program memory which is accessed through the Program Space
Visibility (PSV) window.

1.5.5 Compiler Driver

MPLAB C30 includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled, and linked in a single step
(see Figure 1-1).
© 2005 Microchip Technology Inc. DS51284D-page 9

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 10 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 2. Differences Between MPLAB C30 and ANSI C
2.1 INTRODUCTION

This section discusses the differences between the C language supported by MPLAB
C30 syntax and 1989 standard ANSI C.

2.2 HIGHLIGHTS

Items discussed in this chapter are:

• Keyword Differences
• Statement Differences
• Expression Differences

2.3 KEYWORD DIFFERENCES

This section describes the keyword differences between plain ANSI C and the C
accepted by MPLAB C30. The new keywords are part of the base GCC implementa-
tion, and the discussion in this section is based on the standard GCC documentation,
tailored for the specific syntax and semantics of the MPLAB C30 port of GCC.

• Specifying Attributes of Variables
• Specifying Attributes of Functions
• Inline Functions
• Variables in Specified Registers
• Complex Numbers
• Double-Word Integers
• Referring to a Type with typeof
© 2005 Microchip Technology Inc. DS51284D-page 11

MPLAB® C30 User’s Guide
2.3.1 Specifying Attributes of Variables

The MPLAB C30 keyword __attribute__ allows you to specify special attributes of
variables or structure fields. This keyword is followed by an attribute specification inside
double parentheses. The following attributes are currently supported for variables:

• address (addr)

• aligned (alignment)

• deprecated

• far

• mode (mode)

• near

• noload

• packed

• persistent

• reverse (alignment)

• section ("section-name")

• sfr (address)

• space (space)

• transparent_union

• unordered

• unused

• weak

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __aligned__ instead of aligned). This allows you to use them
in header files without being concerned about a possible macro of the same name.

To specify multiple attributes, separate them by commas within the double
parentheses, for example:

 __attribute__ ((aligned (16), packed)).

address (addr)

The address attribute specifies an absolute address for the variable. This attribute
cannot be used in conjunction with a section attribute; the address attribute will take
precedence. A variable with the address attribute cannot be placed into the
auto_psv space (see the space() attribute or the -mconst-in-code option);
attempts to do so will cause a warning and the compiler will place the variable into the
psv space.

If the variable is to be placed into a PSV section, the address should be a program
memory address.

int var __attribute__ ((address(0x800)));
DS51284D-page 12 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
aligned (alignment)

This attribute specifies a minimum alignment for the variable, measured in bytes. The
alignment must be a power of two. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On the
dsPIC DSC device, this could be used in conjunction with an asm expression to access
DSP instructions and addressing modes that require aligned operands.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you
wish the compiler to use for a given variable. Alternatively, you can leave out the
alignment factor and just ask the compiler to align a variable to the maximum useful
alignment for the dsPIC DSC device. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification, the
compiler automatically sets the alignment for the declared variable to the largest
alignment for any data type on the target machine – which in the case of the dsPIC DSC
device, is two bytes (one word).

The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed (see below). The aligned attribute conflicts with the reverse
attribute. It is an error condition to specify both.

deprecated

The deprecated attribute causes the declaration to which it is attached to be specially
recognized by the compiler. When a deprecated function or variable is used, the
compiler will emit a warning.

A deprecated definition is still defined and, therefore, present in any object file. For
example, compiling the following file:

int __attribute__((__deprecated__)) i;
int main() {
 return i;
}

will produce the warning:

deprecated.c:4: warning: `i' is deprecated (declared
 at deprecated.c:1)

i is still defined in the resulting object file in the normal way.

far

The far attribute tells the compiler that the variable will not necessarily be allocated in
near (first 8 KB) data space, (i.e., the variable can be located anywhere in data
memory).
© 2005 Microchip Technology Inc. DS51284D-page 13

MPLAB® C30 User’s Guide
mode (mode)

This attribute specifies the data type for the declaration as whichever type corresponds
to the mode mode. This in effect lets you request an integer or floating point type
according to its width. Valid values for mode are as follows:

This attribute is useful for writing code that is portable across all supported MPLAB C30
targets. For example, the following function adds two 32-bit signed integers, and
returns a 32-bit signed integer result:

typedef int __attribute__((__mode__(SI))) int32;
int32
add32(int32 a, int32 b)
 {
 return(a+b);
 }

You may also specify a mode of byte or __byte__ to indicate the mode correspond-
ing to a one-byte integer, word or __word__ for the mode of a one-word integer, and
pointer or __pointer__ for the mode used to represent pointers.

near

The near attribute tells the compiler that the variable is allocated in near data space
(the first 8 KB of data memory). Such variables can sometimes be accessed more
efficiently than variables not allocated (or not known to be allocated) in near data
space.

int num __attribute__ ((near));

noload

The noload attribute indicates that space should be allocated for the variable, but that
initial values should not be loaded. This attribute could be useful if an application is
designed to load a variable into memory at runtime, such as from a serial EEPROM.

int table1[50] __attribute__ ((noload)) = { 0 };

Mode Width MPLAB C30 Type

QI 8 bits char

HI 16 bits int

SI 32 bits long

DI 64 bits long long

SF 32 bits float

DF 64 bits long double
DS51284D-page 14 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
packed

The packed attribute specifies that a variable or structure field should have the
smallest possible alignment – one byte for a variable, and one bit for a field, unless you
specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows a:

struct foo
{
 char a;
 int x[2] __attribute__ ((packed));
};

persistent

The persistent attribute specifies that the variable should not be initialized or
cleared at startup. A variable with the persistent attribute could be used to store state
information that will remain valid after a device reset.

int last_mode __attribute__ ((persistent));

reverse (alignment)

The reverse attribute specifies a minimum alignment for the ending address of a
variable, plus one. The alignment is specified in bytes and must be a power of two.
Reverse aligned variables can be used for decrementing modulo buffers in dsPIC DSC
assembly language. This attribute could be useful if an application defines variables in
C that will be accessed from assembly language.

int buf1[128] __attribute__ ((reverse(256)));

The reverse attribute conflicts with the aligned and section attributes. An attempt
to name a section for a reverse aligned variable will be ignored, with a warning. It is an
error condition to specify both reverse and aligned for the same variable. A
variable with the reverse attribute cannot be placed into the auto_psv space (see the
space() attribute or the -mconst-in-code option); attempts to do so will cause a
warning and the compiler will place the variable into the psv space.

section ("section-name")

By default, the compiler places the objects it generates in sections such as .data and
.bss. The section attribute allows you to override this behavior by specifying that a
variable (or function) lives in a particular section.

struct array {int i[32];}
struct array buf __attribute__ ((section("userdata"))) = {0};

The section attribute conflicts with the address and reverse attributes. In both
cases, the section name will be ignored with a warning. This attribute may also conflict
with the space attribute. See the space attribute description for more information.

Note: The device architecture requires that words be aligned on even byte
boundaries, so care must be taken when using the packed attribute to
avoid runtime addressing errors.
© 2005 Microchip Technology Inc. DS51284D-page 15

MPLAB® C30 User’s Guide
sfr (address)

The sfr attribute tells the compiler that the variable is allocated in near data space (the
first 8 KB of data memory), and also specifies the runtime address of the variable, using
the address parameter. Such variables can sometimes be accessed more efficiently
than variables not allocated (or not known to be allocated) in near data space.

extern volatile int __attribute__ ((sfr(0x200)))u1mod;

The use of the extern specifier is required in order to not produce an error.

space (space)

Normally, the compiler allocates variables in general data space. The space attribute
can be used to direct the compiler to allocate a variable in specific memory spaces.
Memory spaces are discussed further in Section 4.6 “Memory Spaces”. The
following arguments to the space attribute are accepted:

data

Allocate the variable in general data space. Variables in general data space can
be accessed using ordinary C statements. This is the default allocation.

xmemory

Allocate the variable in X data space. Variables in X data space can be accessed
using ordinary C statements. An example of xmemory space allocation is:

int x[32] __attribute__ ((space(xmemory)));

ymemory

Allocate the variable in Y data space. Variables in Y data space can be accessed
using ordinary C statements. An example of ymemory space allocation is:

int y[32] __attribute__ ((space(ymemory)));

prog

Allocate the variable in program space, in a section designated for executable
code. Variables in program space can not be accessed using ordinary C
statements. They must be explicity accessed by the programmer, usually using
table-access inline assembly instructions, or using the Program Space Visibility
Window.

auto_psv

Allocate the variable in program space, in a compiler-managed section
designated for automatic Program Space Visibility (PSV) window access.
Variables in auto_psv space can be read (but not written) using ordinary C
statements, and are subject to a maximum of 32K total space allocated. When
specifying space(auto_psv), it is not possible to assign a section name using
the section attribute; any section name will be ignored, with a warning. A
variable in the auto_psv space cannot be placed at a specific address or given a
reverse alignment.

Note: Variables placed in the auto_psv section are not loaded into data
memory at startup. This attribute may be useful for reducing RAM
usage.
DS51284D-page 16 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
psv

Allocate the variable in program space, in a section designated for Program
Space Visibility (PSV) window access. The linker will locate the section so that
the entire variable can be accessed using a single setting of the PSVPAG
register. Variables in PSV space are not managed by the compiler and can not
be accessed using ordinary C statements. They must be explicity accessed by
the programmer, usually using table-access inline assembly instructions, or
using the Program Space Visibility Window.

eedata

Allocate the variable in EEData space. Variables in EEData space can not be
accessed using ordinary C statements. They must be explicity accessed by the
programmer, usually using table-access inline assembly instructions, or using
the Program Space Visibility Window.

transparent_union

This attribute, attached to a function parameter which is a union, means that the
corresponding argument may have the type of any union member, but the argument is
passed as if its type were that of the first union member. The argument is passed to the
function using the calling conventions of the first member of the transparent union, not
the calling conventions of the union itself. All members of the union must have the same
machine representation; this is necessary for this argument passing to work properly.

unordered

The unordered attribute indicates that the placement of this variable may move rela-
tive to other variables within the current C source file. This is not ANSI C compliant, but
may allow the linker to make better use of memory gaps.

const int __attribute__ ((unordered)) i;

unused

This attribute, attached to a variable, means that the variable is meant to be possibly
unused. MPLAB C30 will not produce an unused variable warning for this variable.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol may be superseded by a global definition. When weak is applied to a reference
to an external symbol, the symbol is not required for linking. For example:

extern int __attribute__((__weak__)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise ‘0’ is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.
© 2005 Microchip Technology Inc. DS51284D-page 17

MPLAB® C30 User’s Guide
The weak attribute may be applied to functions as well as variables:

extern int __attribute__((__weak__))
 compress_data(void *buf);
int process(void *buf) {
 if (compress_data) {
 if (compress_data(buf) == -1) /* error */
 }
 /* process buf */
}

In the above code, the function compress_data will be used only if it is linked in from
some other module. Deciding whether or not to use the feature becomes a link-time
decision, not a compile time decision.

The affect of the weak attribute on a definition is more complicated and requires
multiple files to describe:

 /* weak1.c */
 int __attribute__((__weak__)) i;

 void foo() {

 i = 1;
 }

 /* weak2.c */
 int i;

 extern void foo(void);

 void bar() {
 i = 2;
 }

 main() {
 foo();
 bar();
 }

Here the definition in weak2.c of i causes the symbol to become a strong definition.
No link error is emitted and both i’s refer to the same storage location. Storage is
allocated for weak1.c’s version of i, but this space is not accessible.

There is no check to ensure that both versions of i have the same type; changing i in
weak2.c to be of type float will still allow a link, but the behavior of function foo will
be unexpected. foo will write a value into the least significant portion of our 32-bit float
value. Conversely, changing the type of the weak definition of i in weak1.c to type
float may cause disastrous results. We will be writing a 32-bit floating point value into
a 16-bit integer allocation, overwriting any variable stored immediately after our i.

In the cases where only weak definitions exist, the linker will choose the storage of the
first such definition. The remaining definitions become in-accessible.

The behavior is identical, regardless of the type of the symbol; functions and variables
behave in the same manner.
DS51284D-page 18 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
2.3.2 Specifying Attributes of Functions

In MPLAB C30, you declare certain things about functions called in your program which
help the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double
parentheses. The following attributes are currently supported for functions:

• address (addr)

• alias ("target")

• const

• deprecated

• far

• format (archetype, string-index, first-to-check)

• format_arg (string-index)

• near

• no_instrument_function

• noload

• noreturn

• section ("section-name")

• shadow

• unused

• weak

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __shadow__ instead of shadow). This allows you to use them in
header files without being concerned about a possible macro of the same name.

You can specify multiple attributes in a declaration by separating them by commas
within the double parentheses or by immediately following an attribute declaration with
another attribute declaration.

address (addr)

The address attribute specifies an absolute address for the function. This attribute
cannot be used in conjunction with a section attribute; the address attribute will take
precedence.

void foo() __attribute__ ((address(0x100))) {
...
}

alias ("target")

The alias attribute causes the declaration to be emitted as an alias for another symbol,
which must be specified.

Use of this attribute results in an external reference to target, which must be resolved
during the link phase.
© 2005 Microchip Technology Inc. DS51284D-page 19

MPLAB® C30 User’s Guide
const

Many functions do not examine any values except their arguments, and have no effects
except the return value. Such a function can be subject to common subexpression
elimination and loop optimization just as an arithmetic operator would be. These
functions should be declared with the attribute const. For example:

int square (int) __attribute__ ((const int));

says that the hypothetical function square is safe to call fewer times than the program
says.

Note that a function that has pointer arguments and examines the data pointed to must
not be declared const. Likewise, a function that calls a non-const function usually
must not be const. It does not make sense for a const function to have a void return
type.

deprecated

See Section 2.3.1 “Specifying Attributes of Variables” for information on the
deprecated attribute.

far

The far attribute tells the compiler that the function should not be called using a more
efficient form of the call instruction.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf, scanf or strftime
style arguments which should be type-checked against a format string. For example,
consider the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)
 __attribute__ ((format (printf, 2, 3)));

This causes the compiler to check the arguments in calls to my_printf for
consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should
be one of printf, scanf or strftime. The parameter string-index specifies
which argument is the format string argument (arguments are numbered from the left,
starting from 1), while first-to-check is the number of the first argument to check
against the format string. For functions where the arguments are not available to be
checked (such as vprintf), specify the third parameter as zero. In this case, the
compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so the
correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions that take format strings
as arguments, so that MPLAB C30 can check the calls to these functions for errors. The
compiler always checks formats for the ANSI library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and
vsprintf, whenever such warnings are requested (using -Wformat), so there is no
need to modify the header file stdio.h.
DS51284D-page 20 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
format_arg (string-index)

The format_arg attribute specifies that a function takes printf or scanf style
arguments, modifies it (for example, to translate it into another language), and passes
it to a printf or scanf style function. For example, consider the declaration:

extern char *
my_dgettext (char *my_domain, const char *my_format)
 __attribute__ ((format_arg (2)));

This causes the compiler to check the arguments in calls to my_dgettext, whose
result is passed to a printf, scanf or strftime type function for consistency with
the printf style format string argument my_format.

The parameter string-index specifies which argument is the format string
argument (starting from 1).

The format-arg attribute allows you to identify your own functions which modify
format strings, so that MPLAB C30 can check the calls to printf, scanf or
strftime function, whose operands are a call to one of your own function.

near

The near attribute tells the compiler that the function can be called using a more
efficient form of the call instruction.

no_instrument_function

If the command line option -finstrument-function is given, profiling function calls
will be generated at entry and exit of most user-compiled functions. Functions with this
attribute will not be so instrumented.

noload

The noload attribute indicates that space should be allocated for the function, but that
the actual code should not be loaded into memory. This attribute could be useful if an
application is designed to load a function into memory at runtime, such as from a serial
EEPROM.

void bar() __attribute__ ((noload)) {
...
}

noreturn

 A few standard library functions, such as abort and exit, cannot return. MPLAB C30
knows this automatically. Some programs define their own functions that never return.
You can declare them noreturn to tell the compiler this fact. For example:

void fatal (int i) __attribute__ ((noreturn));

void
fatal (int i)
{
 /* Print error message. */
 exit (1);
}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can
then optimize without regard to what would happen if fatal ever did return. This
makes slightly better code. Also, it helps avoid spurious warnings of uninitialized
variables.

It does not make sense for a noreturn function to have a return type other than void.
© 2005 Microchip Technology Inc. DS51284D-page 21

MPLAB® C30 User’s Guide
section ("section-name")

Normally, the compiler places the code it generates in the .text section. Sometimes,
however, you need additional sections, or you need certain functions to appear in
special sections. The section attribute specifies that a function lives in a particular
section. For example, consider the declaration:

extern void foobar (void)
__attribute__ ((section (".libtext")));

This puts the function foobar in the .libtext section.

The section attribute conflicts with the address attribute. The section name will be
ignored with a warning.

shadow

The shadow attribute causes the compiler to use the shadow registers rather than the
software stack for saving registers. This attribute is usually used in conjunction with the
interrupt attribute.

void __attribute__ ((interrupt, shadow)) _T1Interrupt (void)
interrupt [([save(list)] [, irq(irqid)]
[, altirq(altirqid)] [, preprologue(asm)]
)]

Use this option to indicate that the specified function is an interrupt handler. The com-
piler will generate function prologue and epilogue sequences suitable for use in an
interrupt handler when this attribute is present. The optional parameter save specifies
a list of variables to be saved and restored in the function prologue and epilogue,
respectively. The optional parameters irq and altirq specify interrupt vector table
ID’s to be used. The optional parameter preprologue specifies assembly code that
is to be emitted before the compiler-generated prologue code. See Chapter
7. “Interrupts” for a full description, including examples.

unused

This attribute, attached to a function, means that the function is meant to be possibly
unused. MPLAB C30 will not produce an unused function warning for this function.

weak

See Section 2.3.1 “Specifying Attributes of Variables” for information on the weak
attribute.

2.3.3 Inline Functions

By declaring a function inline, you can direct MPLAB C30 to integrate that function’s
code into the code for its callers. This usually makes execution faster by eliminating the
function-call overhead. In addition, if any of the actual argument values are constant,
their known values may permit simplifications at compile time, so that not all of the
inline function’s code needs to be included. The effect on code size is less predictable.
Machine code may be larger or smaller with inline functions, depending on the
particular case.

Note: Function inlining will only take place when the function’s definition is visible
(not just the prototype). In order to have a function inlined into more than
one source file, the function definition may be placed into a header file that
is included by each of the source files.
DS51284D-page 22 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
 (*a)++;
}

(If you are using the -traditional option or the -ansi option, write __inline__
instead of inline.) You can also make all “simple enough” functions inline with the
command-line option -finline-functions. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way, based on an
estimate of the function’s size.

Certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable-sized data,
use of computed goto and use of nonlocal goto. Using the command-line option
-Winline will warn when a function marked inline could not be substituted, and will
give the reason for the failure.

In MPLAB C30 syntax, the inline keyword does not affect the linkage of the function.

When a function is both inline and static, if all calls to the function are integrated
into the caller, and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, MPLAB C30 does not actually output
assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons
(in particular, calls that precede the function’s definition cannot be integrated, and
neither can recursive calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also be compiled
as usual if the program refers to its address, because that can’t be inlined. The compiler
will only eliminate inline functions if they are declared to be static and if the function
definition precedes all uses of the function.

When an inline function is not static, then the compiler must assume that there
may be calls from other source files. Since a global symbol can be defined only once
in any program, the function must not be defined in the other source files, so the calls
therein cannot be integrated. Therefore, a non-static inline function is always
compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you
refer to its address explicitly. Such an address becomes an external reference, as if you
had only declared the function, and had not defined it.

This combination of inline and extern has a similar effect to a macro. Put a function
definition in a header file with these keywords, and put another copy of the definition
(lacking inline and extern) in a library file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

Note: The inline keyword will only be recognized with -finline or optimiza-
tions enabled.
© 2005 Microchip Technology Inc. DS51284D-page 23

MPLAB® C30 User’s Guide
2.3.4 Variables in Specified Registers

MPLAB C30 allows you to put a few global variables into specified hardware registers.

You can also specify the register in which an ordinary register variable should be
allocated.

• Global register variables reserve registers throughout the program. This may be
useful in programs such as programming language interpreters which have a
couple of global variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The
compiler’s data flow analysis is capable of determining where the specified
registers contain live values, and where they are available for other uses. Stores
into local register variables may be deleted when they appear to be unused.
References to local register variables may be deleted, moved or simplified.

These local variables are sometimes convenient for use with the extended inline
assembly (see Chapter 8. “Mixing Assembly Language and C Modules”), if you
want to write one output of the assembler instruction directly into a particular register.
(This will work provided the register you specify fits the constraints specified for that
operand in the inline assembly statement).

2.3.4.1 DEFINING GLOBAL REGISTER VARIABLES

You can define a global register variable in MPLAB C30 like this:

register int *foo asm ("w8");

Here w8 is the name of the register which should be used. Choose a register that is
normally saved and restored by function calls (W8-W13), so that library routines will not
clobber it.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted, moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them especially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of
this variable (i.e., in a source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t
expect a global register variable to be available in the comparison-function that you
pass to qsort, since qsort might have put something else in that register. This
problem can be avoided by recompiling qsort with the same global register variable
definition.

If you want to recompile qsort or other source files that do not actually use your global
register variable, so that they will not use that register for any other purpose, then it
suffices to specify the compiler command-line option -ffixed-reg. You need not
actually add a global register declaration to their source code.

Note: Using too many registers, in particular register W0, may impair MPLAB
C30’s ability to compile.
DS51284D-page 24 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
A function that can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the
caller expects to find there on return. Therefore, the function that is the entry point into
the part of the program that uses the global register variable must explicitly save and
restore the value that belongs to its caller.

The library function longjmp will restore to each global register variable the value it
had at the time of the setjmp.

All global register variable declarations must precede all function definitions. If such a
declaration appears after function definitions, the register may be used for other
purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

2.3.4.2 SPECIFYING REGISTERS FOR LOCAL VARIABLES

You can define a local register variable with a specified register like this:

register int *foo asm ("w8");

Here w8 is the name of the register that should be used. Note that this is the same
syntax used for defining global register variables, but for a local variable it would appear
within a function.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live.
Using this feature may leave the compiler too few available registers to compile certain
functions.

This option does not ensure that MPLAB C30 will generate code that has this variable
in the register you specify at all times. You may not code an explicit reference to this
register in an asm statement and assume it will always refer to this variable.

Assignments to local register variables may be deleted when they appear to be
unused. References to local register variables may be deleted, moved or simplified.

2.3.5 Complex Numbers

MPLAB C30 supports complex data types. You can declare both complex integer types
and complex floating types, using the keyword __complex__.

For example, __complex__ float x; declares x as a variable whose real part and
imaginary part are both of type float. __complex__ short int y; declares y to have
real and imaginary parts of type short int.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they
are equivalent). For example, 2.5fi has type __complex__ float and 3i has type
__complex__ int. Such a constant is a purely imaginary value, but you can form any
complex value you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write __real__ exp.
Similarly, use __imag__ to extract the imaginary part. For example;

 __complex__ float z;
 float r;
 float i;

 r = __real__ z;
 i = __imag__ z;

The operator ‘~’ performs complex conjugation when used on a value with a complex
type.
© 2005 Microchip Technology Inc. DS51284D-page 25

MPLAB® C30 User’s Guide
MPLAB C30 can allocate complex automatic variables in a noncontiguous fashion; it’s
even possible for the real part to be in a register while the imaginary part is on the stack
(or vice-versa). The debugging information format has no way to represent noncontig-
uous allocations like these, so MPLAB C30 describes noncontiguous complex vari-
ables as two separate variables of noncomplex type. If the variable’s actual name is
foo, the two fictitious variables are named foo$real and foo$imag.

2.3.6 Double-Word Integers

MPLAB C30 supports data types for integers that are twice as long as long int.
Simply write long long int for a signed integer, or unsigned long long int
for an unsigned integer. To make an integer constant of type long long int, add the
suffix LL to the integer. To make an integer constant of type unsigned long long
int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction
and bitwise boolean operations on these types are open-coded, but division and shifts
are not open-coded. The operations that are not open-coded use special library
routines that come with MPLAB C30.

2.3.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with the typeof keyword. The
syntax for using this keyword looks like sizeof, but the construct acts semantically like
a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of
the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is a pointer to int.

If you are writing a header file that must work when included in ANSI C programs, write
__typeof__ instead of typeof.

A typeof construct can be used anywhere a typedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.

• This declares y with the type of what x points to:
typeof (*x) y;

• This declares y as an array of such values:
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of four pointers to char.
DS51284D-page 26 © 2005 Microchip Technology Inc.

Differences Between MPLAB C30 and ANSI C
2.4 STATEMENT DIFFERENCES

This section describes the statement differences between plain ANSI C and the C
accepted by MPLAB C30. The statement differences are part of the base GCC
implementation, and the discussion in the section is based on the standard GCC
documentation, tailored for the specific syntax and semantics of the MPLAB C30 port
of GCC.

• Labels as Values
• Conditionals with Omitted Operands
• Case Ranges

2.4.1 Labels as Values

You can get the address of a label defined in the current function (or a containing
function) with the unary operator ‘&&’. The value has type void *. This value is a
constant and can be used wherever a constant of that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the com-
puted goto statement, goto *exp;. For example:

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Such an array of label values serves a purpose much like that of the switch
statement. The switch statement is cleaner and therefore preferable to an array.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for fast dispatching.

This mechanism can be misused to jump to code in a different function. The compiler
cannot prevent this from happening, so care must be taken to ensure that target
addresses are valid for the current function.

Note: This does not check whether the subscript is in bounds. (Array indexing in
C never does.)
© 2005 Microchip Technology Inc. DS51284D-page 27

MPLAB® C30 User’s Guide
2.4.2 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first
operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression:

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to:

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When
it becomes useful is when the first operand does, or may (if it is a macro argument),
contain a side effect. Then repeating the operand in the middle would perform the side
effect twice. Omitting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

2.4.3 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one for each
integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case 'A' ... 'Z':

Be careful: Write spaces around the ..., otherwise it may be parsed incorrectly when
you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

2.5 EXPRESSION DIFFERENCES

This section describes the expression differences between plain ANSI C and the C
accepted by MPLAB C30.

2.5.1 Binary Constants

A sequence of binary digits preceded by 0b or 0B (the numeral ‘0’ followed by the letter
‘b’ or ‘B’) is taken to be a binary integer. The binary digits consist of the numerals ‘0’
and ‘1’. For example, the (decimal) number 255 can be written as 0b11111111.

Like other integer constants, a binary constant may be suffixed by the letter ‘u’ or ‘U’,
to specify that it is unsigned. A binary constant may also be suffixed by the letter ‘l’ or
‘L’, to specify that it is long. Similarly, the suffix ‘ll’ or ‘LL’ denotes a long long binary
constant.
DS51284D-page 28 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 3. Using MPLAB C30 C Compiler
3.1 INTRODUCTION

This chapter discusses using the MPLAB C30 C compiler on the command line. For
information on using MPLAB C30 with MPLAB® IDE, please refer to the dsPIC® DSC
Language Tools Getting Started (DS70094).

3.2 HIGHLIGHTS

Items discussed in this chapter are:

• Overview
• File Naming Conventions
• Options
• Environment Variables
• Compiling a Single File on the Command Line
• Compiling Multiple Files on the Command Line

3.3 OVERVIEW

The compilation driver program (pic30-gcc) compiles, assembles and links C and
assembly language modules and library archives. Most of the compiler command-line
options are common to all implementations of the GCC toolset. A few are specific to
the MPLAB C30 compiler.

The basic form of the compiler command line is:

pic30-gcc [options] files

The available options are described in Section 3.5 “Options”.

For example, to compile, assemble and link the C source file hello.c, creating the
absolute executable hello.exe.

pic30-gcc -o hello.exe hello.c

Note: Command line options and file name extensions are case-sensitive.
© 2005 Microchip Technology Inc. DS51284D-page 29

MPLAB® C30 User’s Guide
3.4 FILE NAMING CONVENTIONS

The compilation driver recognizes the following file extensions, which are
case-sensitive.

3.5 OPTIONS

MPLAB C30 has many options for controlling compilation, all of which are
case-sensitive.

• Options Specific to dsPIC DSC Devices
• Options for Controlling the Kind of Output
• Options for Controlling the C Dialect
• Options for Controlling Warnings and Errors
• Options for Debugging
• Options for Controlling Optimization
• Options for Controlling the Preprocessor
• Options for Assembling
• Options for Linking
• Options for Directory Search
• Options for Code Generation Conventions

TABLE 3-1: FILE NAMES

Extensions Definition

file.c A C source file that must be preprocessed.
file.h A header file (not to be compiled or linked).

file.i A C source file that should not be preprocessed.
file.o An object file.
file.p A pre procedural-abstraction assembly language file.

file.s Assembler code.
file.S Assembler code that must be preprocessed.
other A file to be passed to the linker.
DS51284D-page 30 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.1 Options Specific to dsPIC DSC Devices

For more information on the memory models, see Section 4.7 “Memory Models”.

TABLE 3-2: dsPIC® DSC DEVICE-SPECIFIC OPTIONS

Option Definition

-mconst-in-code Put constants in the auto_psv space. The compiler will access these
constants using the PSV window. (This is the default.)

-mconst-in-data Put constants in the data memory space.

-merrata=
id[,id]*

This option enables specific errata workarounds identified by id. Valid
values for id change from time to time and may not be required for a
particular variant. An id of list will display the currently supported
errata identifiers along with a brief description of the errata. An id of
all will enable all currently supported errata workarounds.

-mlarge-code Compile using the large code model. No assumptions are made about
the locality of called functions.
When this option is chosen, single functions that are larger than 32k
are not supported and may cause assembly-time errors since all
branches inside of a function are of the short form.

-mlarge-data Compile using the large data model. No assumptions are made about
the location of static and external variables.

-mpa(1) Enable the procedure abstraction optimization. There is no limit on the
nesting level.

-mpa=n(1) Enable the procedure abstraction optimization up to level n. If n is zero,
the optimization is disabled. If n is 1, first level of abstraction is allowed;
that is, instruction sequences in the source code may be abstracted
into a subroutine. If n is 2, a second level of abstraction is allowed; that
is, instructions that were put into a subroutine in the first level may be
abstracted into a subroutine one level deeper. This pattern continues
for larger values of n.
The net effect is to limit the subroutine call nesting depth to a maximum
of n.

-mno-pa(1) Do not enable the procedure abstraction optimization.
(This is the default.)

-momf=omf Selects the OMF (Object Module Format) to be used by the compiler.
The omf specifier can be one of the following:
coff Produce COFF object files. (This is the default.)
elf Produce ELF object files.
The debugging format used for ELF object files is DWARF 2.0.

-msmall-code Compile using the small code model. Called functions are assumed to
be proximate (within 32 Kwords of the caller). (This is the default.)

Note 1: The procedure abstractor behaves as the inverse of inlining functions. The pass is
designed to extract common code sequences from multiple sites throughout a
translation unit and place them into a common area of code. Although this option
generally does not improve the run-time performance of the generated code, it can
reduce the code size significantly. Programs compiled with -mpa can be harder to
debug; it is not recommended that this option is used while debugging using the
COFF object format.
The procedure abstractor is invoked as a separate phase of compilation, after the
production of an assembly file. This phase does not optimize across translation
units. When the procedure-optimizing phase is enabled, inline assembly code must
be limited to valid machine instructions. Invalid machine instructions or instruction
sequences, or assembler directives (sectioning directives, macros, include files,
etc.) must not be used, or the procedure abstraction phase will fail, inhibiting the
creation of an output file.
© 2005 Microchip Technology Inc. DS51284D-page 31

MPLAB® C30 User’s Guide
-msmall-data Compile using the small data model. All static and external variables
are assumed to be located in the lower 8 KB of data memory space.
(This is the default.)

-msmall-scalar Like -msmall-data, except that only static and external scalars are
assumed to be in the lower 8 KB of data memory space. (This is the
default.)

-mtext=name Specifying -mtext=name will cause text (program code) to be placed
in a section named name rather than the default .text section. No
white spaces should appear around the =.

-msmart-io
[=0|1|2]

This option attempts to statically analyze format strings passed to
printf, scanf and the ‘f’ and ‘v’ variations of these functions. Uses of
nonfloating point format arguments will be converted to use an
integer-only variation of the library functions.
-msmart-io=0 disables this option, while -msmart-io=2 causes the
compiler to be optimistic and convert function calls with variable or
unknown format arguments. -msmart-io=1 is the default and will
only convert the literal values it can prove.

TABLE 3-2: dsPIC® DSC DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option Definition

Note 1: The procedure abstractor behaves as the inverse of inlining functions. The pass is
designed to extract common code sequences from multiple sites throughout a
translation unit and place them into a common area of code. Although this option
generally does not improve the run-time performance of the generated code, it can
reduce the code size significantly. Programs compiled with -mpa can be harder to
debug; it is not recommended that this option is used while debugging using the
COFF object format.
The procedure abstractor is invoked as a separate phase of compilation, after the
production of an assembly file. This phase does not optimize across translation
units. When the procedure-optimizing phase is enabled, inline assembly code must
be limited to valid machine instructions. Invalid machine instructions or instruction
sequences, or assembler directives (sectioning directives, macros, include files,
etc.) must not be used, or the procedure abstraction phase will fail, inhibiting the
creation of an output file.
DS51284D-page 32 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.2 Options for Controlling the Kind of Output

TABLE 3-3: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file
extension is .o.

-E Stop after the preprocessing stage, i.e., before running the compiler
proper. The default output file is stdout.

-o file Place the output in file.

-S Stop after compilation proper, i.e., before invoking the assembler. The
default output file extension is .s.

-v Print the commands executed during each stage of compilation.

-x You can specify the input language explicitly with the -x option:
-x language
Specify explicitly the language for the following input files (rather than
letting the compiler choose a default based on the file name suffix).
This option applies to all following input files until the next -x option.
The following values are supported by MPLAB C30:

c c-header cpp-output
assembler assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default
behavior but is needed if another -x option has been used.
For example:

pic30-gcc -x assembler foo.asm bar.asm -x none
main.c mabonga.s

Without the -x none, the compiler will assume all the input files are for
the assembler.

--help Print a description of the command line options.
© 2005 Microchip Technology Inc. DS51284D-page 33

MPLAB® C30 User’s Guide
3.5.3 Options for Controlling the C Dialect

TABLE 3-4: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI standard C programs.

-aux-info filename Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently
ignored in any language other than C. Besides
declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declara-
tion was implicit, prototyped or unprototyped (I, N for new
or O for old, respectively, in the first character after the line
number and the colon), and whether it came from a
declaration or a definition (C or F, respectively, in the
following character). In the case of function definitions, a
K&R-style list of arguments followed by their declarations is
also provided, inside comments, after the declaration.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding
environment is one in which the standard library may not
exist, and program startup may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword,
so that code can use these words as identifiers. You can
use the keywords __asm__, __inline__ and
__typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don't recognize built-in functions that do not begin with
__builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit-field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit-field is signed, unless
-traditional is used, in which case bit-fields are always
unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.

-fwritable-strings Store strings in the writable data segment and don’t make
them unique.
DS51284D-page 34 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.4 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently
erroneous but that are risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W, for example,
-Wimplicit, to request warnings on implicit declarations. Each of these specific
warning options also has a negative form beginning -Wno- to turn off warnings, for
example, -Wno-implicit. This manual lists only one of the two forms, whichever is
not the default.

The following options control the amount and kinds of warnings produced by the
MPLAB C30 C Compiler.

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.

-pedantic Issue all the warnings demanded by strict ANSI C; reject all
programs that use forbidden extensions.

-pedantic-errors Like -pedantic, except that errors are produced rather than
warnings.

-w Inhibit all warning messages.

-Wall All of the -W options listed in this table combined. This
enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros.

-Wchar-subscripts Warn if an array subscript has type char.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a
/* comment, or whenever a Backslash-Newline appears in a
// comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit
the warning messages, use -Wno-div-by-zero. Floating
point division by zero is not warned about, as it can be a
legitimate way of obtaining infinities and NaNs.
(This is the default.)

-Werror-implicit-
 function-declaration

Give an error whenever a function is used before being
declared.

-Wformat Check calls to printf and scanf, etc., to make sure that
the arguments supplied have types appropriate to the format
string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being
declared.

-Wimplicit-int Warn when a declaration does not specify a type.

-Wmain Warn if the type of main is suspicious. main should be a
function with external linkage, returning int, taking either
zero, two, or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed.
In the following example, the initializer for a is not fully
bracketed, but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };
© 2005 Microchip Technology Inc. DS51284D-page 35

MPLAB® C30 User’s Guide
-Wmultichar
-Wno-multichar

Warn if a multi-character character constant is used.
Usually, such constants are typographical errors. Since they
have implementation-defined values, they should not be
used in portable code. The following example illustrates the
use of a multi-character character constant:
char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose
precedence people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wsequence-point Warn about code that may have undefined semantics
because of violations of sequence point rules in the C
standard.

The C standard defines the order in which expressions in a C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of
the program: those executed before the sequence point, and
those executed after it. These occur after the evaluation of a
full expression (one which is not part of a larger expression),
after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the
evaluation of its arguments and the expression denoting the
called function), and in certain other places. Other than as
expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather
than a total order, since, for example, if two functions are
called within one expression with no sequence point between
them, the order in which the functions are called is not
specified. However, the standards committee has ruled that
function calls do not overlap.

It is not specified, when, between sequence points
modifications to the values of objects take effect. Programs
whose behavior depends on this have undefined behavior;
the C standard specifies that “Between the previous and next
sequence point, an object shall have its stored value
modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine
the value to be stored.” If a program breaks these rules, the
results on any particular implementation are entirely
unpredictable.

Examples of code with undefined behavior are a = a++;,
a[n] = b[n++] and a[i++] = i;. Some more
complicated cases are not diagnosed by this option, and it
may give an occasional false positive result, but in general it
has been found fairly effective at detecting this sort of
problem in programs.

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)

Option Definition
DS51284D-page 36 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
-Wswitch Warn whenever a switch statement has an index of
enumeral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system
header files. Warnings from system headers are normally
suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler
output harder to read. Using this command line option tells
MPLAB C30 to emit warnings from system headers as if they
occurred in user code. However, note that using -Wall in
conjunction with this option will not warn about unknown
pragmas in system headers; for that, -Wunknown-pragmas
must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are
enabled).

-Wuninitialized Warn if an automatic variable is used without first being
initialized.
These warnings are possible only when optimization is
enabled, because they require data flow information that is
computed only when optimizing.
These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a
variable that is declared volatile, or whose address is
taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,
they do not occur for structures, unions or arrays, even when
they are in registers.
Note that there may be no warning about a variable that is
used only to compute a value that itself is never used,
because such computations may be deleted by data flow
analysis before the warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not
understood by MPLAB C30. If this command line option is
used, warnings will even be issued for unknown pragmas in
system header files. This is not the case if the warnings were
only enabled by the -Wall command line option.

-Wunused Warn whenever a variable is unused aside from its
declaration, whenever a function is declared static but never
defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not
used.
In order to get a warning about an unused function
parameter, both -W and -Wunused must be specified.
Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined
or a non-inline static function is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress
this warning use the unused attribute (see
Section 2.3.1 “Specifying Attributes of Variables”).

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)

Option Definition
© 2005 Microchip Technology Inc. DS51284D-page 37

MPLAB® C30 User’s Guide
The following -W options are not implied by -Wall. Some of them warn about construc-
tions that users generally do not consider questionable, but which occasionally you
might wish to check for. Others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the
warning.

-Wunused-parameter Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning use the unused
attribute (see Section 2.3.1 “Specifying Attributes of
Variables”).

-Wunused-variable Warn whenever a local variable or non-constant static
variable is unused aside from its declaration. To suppress this
warning use the unused attribute (see
Section 2.3.1 “Specifying Attributes of Variables”).

-Wunused-value Warn whenever a statement computes a result that is
explicitly not used. To suppress this warning cast the
expression to void.

TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL(CONT.)

Option Definition

-W Print extra warning messages for these events:
• A nonvolatile automatic variable might be changed by a

call to longjmp. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to setjmp. It cannot know where longjmp will be called;
in fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because longjmp
cannot in fact be called at the place that would cause a
problem.

• A function could exit both via return value; and
return;. Completing the function body without passing
any return statement is treated as return;.

• An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[i,j] will cause a
warning, but x[(void)i,j] will not.

• An unsigned value is compared against zero with < or <=.

• A comparison like x<=y<=z appears; this is equivalent to
(x<=y ? 1 : 0) <= z, which is a different interpretation
from that of ordinary mathematical notation.

• Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about
unused arguments.

• A comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned. (But don’t warn if
-Wno-sign-compare is also specified.)

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)

Option Definition
DS51284D-page 38 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
• An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for
x.h:

 struct s { int f, g; };
 struct t { struct s h; int i; };
 struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x.h would be implicitly
initialized to zero:

 struct s { int f, g, h; };
 struct s x = { 3, 4 };

-Waggregate-return Warn if any functions that return structures or unions are
defined or called.

-Wbad-function-cast Warn whenever a function call is cast to a non-matching type.
For example, warn if int foof() is cast to anything *.

-Wcast-align Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char * is cast to an int * .

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type
qualifier from the target type. For example, warn if a
const char * is cast to an ordinary char *.

-Wconversion Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.
Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.

-Winline Warn if a function can not be inlined, and either it was
declared as inline, or else the -finline-functions option
was given.

-Wlarger-than-len Warn whenever an object of larger than len bytes is defined.

-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the
warning messages, use -Wno-long-long. Flags
-Wlong-long and -Wno-long-long are taken into account
only when -pedantic flag is used.

-Wmissing-declarations Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

-Wmissing-
 format-attribute

If -Wformat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only possi-
ble candidates, not absolute ones. This option has no effect
unless -Wformat is enabled.

TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL(CONT.)

Option Definition
© 2005 Microchip Technology Inc. DS51284D-page 39

MPLAB® C30 User’s Guide
-Wmissing-noreturn Warn about functions that might be candidates for attribute
noreturn. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions.
Actually, do not ever return before adding the noreturn
attribute; otherwise subtle code generation bugs could be
introduced.

-Wmissing-prototypes Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header files.)

-Wnested-externs Warn if an extern declaration is encountered within a
function.

-Wno-deprecated-
 declarations

Do not warn about uses of functions, variables, and types
marked as deprecated by using the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Wpointer-arith Warn about anything that depends on the size of a function
type or of void. MPLAB C30 assigns these types a size of 1,
for convenience in calculations with void * pointers and
pointers to functions.

-Wredundant-decls Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wshadow Warn whenever a local variable shadows another local
variable.

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by -W; to get the other warnings of -W without this warning,
use -W -Wno-sign-compare.

-Wstrict-prototypes Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wtraditional Warn about certain constructs that behave differently in
traditional and ANSI C.
• Macro arguments occurring within string constants in the

macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

• A function declared external in one block and then used
after the end of the block.

• A switch statement has an operand of type long.
• A nonstatic function declaration follows a static one. This

construct is not accepted by some traditional C compilers.

-Wundef Warn if an undefined identifier is evaluated in an #if
directive.

-Wunreachable-code Warn if the compiler detects that code will never be executed.
It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently-unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL(CONT.)

Option Definition
DS51284D-page 40 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.5 Options for Debugging

-Wwrite-strings Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
will get a warning. These warnings will help you find at
compile time code that can try to write into a string constant,
but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a
nuisance; which is why -Wall does not request these
warnings.

TABLE 3-7: DEBUGGING OPTIONS

Option Definition

-g Produce debugging information.
MPLAB C30 supports the use of -g with -O, making it possible
to debug optimized code. The shortcuts taken by optimized code
may occasionally produce surprising results:
- Some declared variables may not exist at all;
- Flow of control may briefly move unexpectedly;
- Some statements may not be executed because they

compute constant results or their values were already at
hand;

- Some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This
makes it reasonable to use the optimizer for programs that might
have bugs.

-Q Makes the compiler print out each function name as it is
compiled, and print some statistics about each pass when it
finishes.

-save-temps Don’t delete intermediate files. Place them in the current direc-
tory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce the following
files:
‘foo.i’ (preprocessed file)
‘foo.p’ (pre procedure abstraction assembly language file)
‘foo.s’ (assembly language file)
‘foo.o’ (object file)

TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL(CONT.)

Option Definition
© 2005 Microchip Technology Inc. DS51284D-page 41

MPLAB® C30 User’s Guide
3.5.6 Options for Controlling Optimization

TABLE 3-8: GENERAL OPTIMIZATION OPTIONS

Option Definition

-O0 Do not optimize. (This is the default.)
Without -O, the compiler’s goal is to reduce the cost of compi-
lation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any
other statement in the function and get exactly the results you
would expect from the source code.
The compiler only allocates variables declared register in
registers.

-O
-O1

Optimize. Optimizing compilation takes somewhat longer, and
a lot more host memory for a large function.
With -O, the compiler tries to reduce code size and execution
time.
When -O is specified, the compiler turns on
-fthread-jumps and
 -fdefer-pop. The compiler turns on
-fomit-frame-pointer.

-O2 Optimize even more. MPLAB C30 performs nearly all
supported optimizations that do not involve a space-speed
trade-off. -O2 turns on all optional optimizations except for
loop unrolling (-funroll-loops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing). It also turns on force copy of
memory operands (-fforce-mem) and frame pointer elimina-
tion (-fomit-frame-pointer). As compared to -O, this
option increases both compilation time and the performance of
the generated code.

-O3 Optimize yet more. -O3 turns on all optimizations specified by
-O2 and also turns on the inline-functions option.

-Os Optimize for size. -Os enables all -O2 optimizations that do
not typically increase code size. It also performs further
optimizations designed to reduce code size.
DS51284D-page 42 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
The following options control specific optimizations. The -O2 option turns on all of
these optimizations except -funroll-loops, -funroll-all-loops and
-fstrict-aliasing.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to
be performed is desired.

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS

Option Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater
than n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next
32-byte boundary, but -falign-functions=24 would align
to the next 32-byte boundary only if this can be done by
skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are
equivalent and mean that functions will not be aligned.
The assembler only supports this flag when n is a power of
two; so n is rounded up. If n is not specified, use a
machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping
up to n bytes like -falign-functions. This option can
easily make code slower, because it must insert dummy
operations for when the branch target is reached in the usual
flow of the code.
If -falign-loops or -falign-jumps are applicable and
are greater than this value, then their values are used instead.
If n is not specified, use a machine-dependent default which is
very likely to be 1, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes
like -falign-functions. The hope is that the loop will be
executed many times, which will make up for any execution of
the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that will be
clobbered by function calls, by emitting extra instructions to
save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code
than would otherwise be produced.

-fcse-follow-jumps In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by any
other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump when
the condition tested is false.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple if statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around
the body of the if.

-fexpensive-
 optimizations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the
output file. The name of the function or the name of the data
item determines the section's name in the output file.
Only use these options when there are significant benefits
from doing so. When you specify these options, the assembler
and linker may create larger object and executable files and
will also be slower.
© 2005 Microchip Technology Inc. DS51284D-page 43

MPLAB® C30 User’s Guide
-fgcse Perform a global common subexpression elimination pass.
This pass also performs global constant and copy
propagation.

-fgcse-lm When -fgcse-lm is enabled, global common subexpression
elimination will attempt to move loads which are only killed by
stores into themselves. This allows a loop containing a
load/store sequence to be changed to a load outside the loop,
and a copy/store within the loop.

-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after
global common subexpression elimination. This pass will
attempt to move stores out of loops. When used in conjunction
with -fgcse-lm, loops containing a load/store sequence can
be changed to a load before the loop and a store after the
loop.

-fmove-all-movables Forces all invariant computations in loops to be moved outside
the loop.

-fno-defer-pop Always pop the arguments to each function call as soon as
that function returns. The compiler normally lets arguments
accumulate on the stack for several function calls and pops
them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.
-fno-peephole disables peephole optimization on machine
instructions, while -fno-peephole2 disables high level
peephole optimizations. To disable peephole entirely, use both
options.

-foptimize-
 register-move
-fregmove

Attempt to reassign register numbers in move instructions and
as operands of other simple instructions in order to maximize
the amount of register tying.
-fregmove and -foptimize-register-moves are the
same optimization.

-freduce-all-givs Forces all general-induction variables in loops to be
strength-reduced.
These options may generate better or worse code; results are
highly dependent on the structure of loops within the source
code.

-frename-registers Attempt to avoid false dependencies in scheduled code by
making use of registers left over after register allocation. This
optimization will most benefit processors with lots of registers.
It can, however, make debugging impossible, since variables
will no longer stay in a “home register”.

-frerun-cse-after-
 loop

Rerun common subexpression elimination after loop
optimizations has been performed.

-frerun-loop-opt Run the loop optimizer twice.

-fschedule-insns Attempt to reorder instructions to eliminate dsPIC DSC
Read-After-Write stalls (see the dsPIC30F Family Reference
Manual for more details). Typically improves performance with
no impact on code size.

-fschedule-insns2 Similar to -fschedule-insns, but requests an additional
pass of instruction scheduling after register allocation has
been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and
elimination of iteration variables.

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition
DS51284D-page 44 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules
applicable to the language being compiled. For C, this
activates optimizations based on the type of expressions. In
particular, an object of one type is assumed never to reside at
the same address as an object of a different type, unless the
types are almost the same. For example, an unsigned int
can alias an int, but not a void* or a double. A character
type may alias any other type.

Pay special attention to code like this:
union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}

The practice of reading from a different union member than
the one most recently written to (called “type-punning”) is
common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union
type. So, the code above will work as expected. However, this
code might not:
int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

-fthread-jumps Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to either
the destination of the second branch or a point immediately
following it, depending on whether the condition is known to
be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or runtime. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all
loops and usually makes programs run more slowly.
-funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition
© 2005 Microchip Technology Inc. DS51284D-page 45

MPLAB® C30 User’s Guide
Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 3-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS(CONT.)

Option Definition

-fforce-mem Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common subexpres-
sions, instruction combination should eliminate the
separate register-load. The -O2 option turns on this
option.

-finline-functions Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
static, then the function is normally not output as
assembler code in its own right.

-finline-limit=n By default, MPLAB C30 limits the size of functions that
can be inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline (i.e., marked
with the inline keyword). n is the size of functions that
can be inlined in number of pseudo instructions (not
counting parameter handling). The default value of n is
10000. Increasing this value can result in more inlined
code at the cost of compilation time and memory
consumption.
Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In no
way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

-fkeep-inline-functions Even if all calls to a given function are integrated, and the
function is declared static, output a separate runtime
callable version of the function. This switch does not
affect extern inline functions.

-fkeep-static-consts Emit variables declared static const when optimization
isn't turned on, even if the variables aren't referenced.
MPLAB C30 enables this option by default. If you want to
force the compiler to check if the variable was referenced,
regardless of whether or not optimization is turned on,
use the -fno-keep-static-consts option.

-fno-function-cse Do not put function addresses in registers; make each
instruction that calls a constant function contain the
function's address explicitly.
This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this option
is not used.
DS51284D-page 46 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.7 Options for Controlling the Preprocessor

-fno-inline Do not pay attention to the inline keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fomit-frame-pointer Do not keep the frame pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore frame pointers; it also makes an extra
register available in many functions.

-foptimize-sibling-calls Optimize sibling and tail recursive calls.

TABLE 3-11: PREPROCESSOR OPTIONS

Option Definition

-Aquestion (answer) Assert the answer answer for question question, in case it is
tested with a preprocessing conditional such as #if
#question(answer). -A- disables the standard assertions
that normally describe the target machine.
For example, the function prototype for main might be declared
as follows:
#if #environ(freestanding)
int main(void);
#else
int main(int argc, char *argv[]);
#endif
A -A command-line option could then be used to select
between the two prototypes. For example, to select the first of
the two, the following command-line option could be used:
-Aenviron(freestanding)

-A -predicate =answer Cancel an assertion with the predicate predicate and
answer answer.

-A predicate =answer Make an assertion with the predicate predicate and answer
answer. This form is preferred to the older form
-A predicate(answer), which is still supported, because it
does not use shell special characters.

-C Tell the preprocessor not to discard comments. Used with the
-E option.

-dD Tell the preprocessor to not remove macro definitions into the
output, in their proper sequence.

-Dmacro Define macro macro with the string 1 as its definition.

-Dmacro=defn Define macro macro as defn. All instances of -D on the
command line are processed before any -U options.

-dM Tell the preprocessor to output only a list of the macro
definitions that are in effect at the end of preprocessing. Used
with the -E option.

-dN Like -dD except that the macro arguments and contents are
omitted. Only #define name is included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be nec-
essary if diagnostics are being scanned by a program that does
not understand the column numbers, such as dejagnu.

-H Print the name of each header file used, in addition to other
normal activities.

TABLE 3-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS(CONT.)

Option Definition
© 2005 Microchip Technology Inc. DS51284D-page 47

MPLAB® C30 User’s Guide
-I- Any directories you specify with -I options before the -I-
options are searched only for the case of #include "file";
they are not searched for #include <file>.
If additional directories are specified with -I options after the
-I-, these directories are searched for all #include
directives. (Ordinarily all -I directories are used this way.)
In addition, the -I- option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for #include "file". There is no way to
override this effect of -I-. With -I. you can specify searching
the directory that was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by
default, but it is often satisfactory.
-I- does not inhibit the use of the standard system directories
for header files. Thus, -I- and -nostdinc are independent.

-Idir Add the directory dir to the head of the list of directories to be
searched for header files. This can be used to override a
system header file, substituting your own version, since these
directories are searched before the system header file
directories. If you use more than one -I option, the directories
are scanned in left-to-right order; the standard system
directories come after.

-idirafter dir Add the directory dir to the second include path. The
directories on the second include path are searched when a
header file is not found in any of the directories in the main
include path (the one that -I adds to).

-imacros file Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from the file is discarded, the only effect of -imacros file is
to make the macros defined in file available for use in the main
input.
Any -D and -U options on the command line are always
processed before -imacros file, regardless of the order in
which they are written. All the -include and -imacros
options are processed in the order in which they are written.

-include file Process file as input before processing the regular input file. In
effect, the contents of file are compiled first. Any -D and -U
options on the command line are always processed before
-include file, regardless of the order in which they are
written. All the -include and -imacros options are
processed in the order in which they are written.

-iprefix prefix Specify prefix as the prefix for subsequent
-iwithprefix options.

-isystem dir Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same special
treatment as is applied to the standard system directories.

-iwithprefix dir Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where prefix
was specified previously with -iprefix. If a prefix has not yet
been specified, the directory containing the installed passes of
the compiler is used as the default.

-iwithprefixbefore
dir

Add a directory to the main include path. The directory’s name
is made by concatenating prefix and dir, as in the case of
-iwithprefix.

TABLE 3-11: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition
DS51284D-page 48 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
-M Tell the preprocessor to output a rule suitable for “make”
describing the dependencies of each object file. For each
source file, the preprocessor outputs one make-rule whose tar-
get is the object file name for that source file and whose depen-
dencies are all the #include header files it uses. This rule
may be a single line or may be continued with \-newline if it is
long. The list of rules is printed on standard output instead of
the preprocessed C program.
-M implies -E (see Section 3.5.2 “Options for Controlling
the Kind of Output”).

-MD Like -M but the dependency information is written to a file and
compilation continues. The file containing the dependency
information is given the same name as the source file with a .d
extension.

-MF file When used with -M or -MM, specifies a file in which to write the
dependencies. If no -MF switch is given the preprocessor
sends the rules to the same place it would have sent
preprocessed output.
When used with the driver options -MD or -MMD, -MF overrides
the default dependency output file.

-MG Treat missing header files as generated files and assume they
live in the same directory as the source file. If -MG is specified,
then either -M or -MM must also be specified.
-MG is not supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files
included with #include “file”. System header files included
with #include <file> are omitted.

-MMD Like -MD except mention only user header files, not system
header files.

-MP This option instructs CPP to add a phony target for each depen-
dency other than the main file, causing each to depend on noth-
ing. These dummy rules work around errors “make” gives if you
remove header files without updating the make-file to match.
This is typical output:
test.o: test.c test.h
test.h:

-MQ Same as -MT, but it quotes any characters which are special to
Make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o:
foo.c
The default target is automatically quoted, as if it were given
with -MQ.

-MT target Change the target of the rule emitted by dependency
generation. By default, CPP takes the name of the main input
file, including any path, deletes any file suffix such as .c, and
appends the platform's usual object suffix. The result is the
target.
An -MT option will set the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a
single argument to -MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o:
foo.c

TABLE 3-11: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition
© 2005 Microchip Technology Inc. DS51284D-page 49

MPLAB® C30 User’s Guide
3.5.8 Options for Assembling

-nostdinc Do not search the standard system directories for header files.
Only the directories you have specified with -I options (and the
current directory, if appropriate) are searched. (See
Section 3.5.10 “Options for Directory Search”) for
information on -I.
By using both -nostdinc and -I-, the include-file search
path can be limited to only those directories explicitly specified.

-P Tell the preprocessor not to generate #line directives. Used
with the -E option (see Section 3.5.2 “Options for
Controlling the Kind of Output”).

-trigraphs Support ANSI C trigraphs. The -ansi option also has this
effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D
options, but before any -include and -imacros options.

-undef Do not predefine any nonstandard macros
(including architecture flags).

TABLE 3-12: ASSEMBLY OPTIONS

Option Definition

-Wa,option Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

TABLE 3-11: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition
DS51284D-page 50 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.9 Options for Linking

If any of the options -c, -S or -E are used, the linker is not run and object file names
should not be used as arguments.

TABLE 3-13: LINKING OPTIONS

Option Definition

-Ldir Add directory dir to the list of directories to be searched for libraries
specified by the command-line option -l.

-llibrary Search the library named library when linking.

The linker searches a standard list of directories for the library, which is
actually a file named liblibrary.a. The linker then uses this file as if
it had been specified precisely by name.
It makes a difference where in the command you write this option; the
linker processes libraries and object files in the order they are specified.
Thus, foo.o -lz bar.o searches library z after file foo.o but before
bar.o. If bar.o refers to functions in libz.a, those functions may not
be loaded.

The directories searched include several standard system directories
plus any that you specify with -L.

Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by scanning
through it for members which define symbols that have so far been
referenced but not defined. But if the file that is found is an ordinary
object file, it is linked in the usual fashion. The only difference between
using an -l option (e.g., -lmylib) and specifying a file name (e.g.,
libmylib.a) is that -l searches several directories, as specified.

By default the linker is directed to search:
<install-path>\lib
for libraries specified with the -l option. For a compiler installed into the
default location, this would be:
c:\pic30_tools\lib
This behavior can be overridden using the environment variables
defined in Section 3.6 “Environment Variables”.

-nodefaultlibs Do not use the standard system libraries when linking. Only the libraries
you specify will be passed to the linker. The compiler may generate calls
to memcmp, memset and memcpy. These entries are usually resolved by
entries in the standard compiler libraries. These entry points should be
supplied through some other mechanism when this option is specified.

-nostdlib Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the
linker. The compiler may generate calls to memcmp, memset and
memcpy. These entries are usually resolved by entries in standard
compiler libraries. These entry points should be supplied through some
other mechanism when this option is specified.

-s Remove all symbol table and relocation information from the
executable.

-u symbol Pretend symbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use -u multiple times with different
symbols to force loading of additional library modules.

-Wl,option Pass option as an option to the linker. If option contains commas, it
is split into multiple options at the commas.

-Xlinker option Pass option as an option to the linker. You can use this to supply
system-specific linker options that MPLAB C30 does not know how to
recognize.
© 2005 Microchip Technology Inc. DS51284D-page 51

MPLAB® C30 User’s Guide
3.5.10 Options for Directory Search

TABLE 3-14: DIRECTORY SEARCH OPTIONS

Option Definition

-Bprefix This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.
The compiler driver program runs one or more of the
sub-programs pic30-cpp, pic30-cc1, pic30-as and
pic30-ld. It tries prefix as a prefix for each program it tries to
run.
For each sub-program to be run, the compiler driver first tries the
-B prefix, if any. If the sub-program is not found, or if -B was not
specified, the driver uses the value held in the
PIC30_EXEC_PREFIX environment variable, if set. See
Section 3.6 “Environment Variables”, for more information.
Lastly, the driver will search the current PATH environment
variable for the subprogram.
-B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into -L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into -isystem options for the preprocessor. In this case,
the compiler appends include to the prefix. Another way to
specify a prefix much like the -B prefix is to use the environment
variable PIC30_EXEC_PREFIX.

-specs=file Process file after the compiler reads in the standard specs file, in
order to override the defaults that the pic30-gcc driver program
uses when determining what switches to pass to pic30-cc1,
pic30-as, pic30-ld, etc. More than one -specs=file can be
specified on the command line, and they are processed in order,
from left to right.
DS51284D-page 52 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.5.11 Options for Code Generation Conventions

Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 3-15: CODE GENERATION CONVENTION OPTIONS

Option Definition

-fargument-alias
-fargument-noalias
-fargument-
 noalias-global

Specify the possible relationships among parameters and between
parameters and global data.
-fargument-alias specifies that arguments (parameters) may
alias each other and may alias global storage.
-fargument-noalias specifies that arguments do not alias
each other, but may alias global storage.
-fargument-noalias-global specifies that arguments do not
alias each other and do not alias global storage.
Each language will automatically use whatever option is required
by the language standard. You should not need to use these
options yourself.

-fcall-saved-reg Treat the register named reg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way will save and
restore the register reg if they use it.
It is an error to used this flag with the frame pointer or stack
pointer. Use of this flag for other registers that have fixed pervasive
roles in the machine’s execution model will produce disastrous
results.
A different sort of disaster will result from the use of this flag for a
register in which function values may be returned.
This flag should be used consistently through all modules.

-fcall-used-reg Treat the register named reg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
will not save and restore the register reg.
It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine’s execution model will produce disastrous results.
This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).
reg must be the name of a register, e.g., -ffixed-w3.

-finstrument-
 functions

Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions will be called with the address of the current
function and its call site.

void __cyg_profile_func_enter
 (void *this_fn, void *call_site);
void __cyg_profile_func_exit
 (void *this_fn, void *call_site);

The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.

Function instrumentation requires the use of a frame pointer. Some
optimization levels disable the use of the frame pointer. Using
-fno-omit-frame-pointer will prevent this.
© 2005 Microchip Technology Inc. DS51284D-page 53

MPLAB® C30 User’s Guide
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls will indicate where, conceptu-
ally, the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use extern inline in
your C code, an addressable version of such functions must be
provided.

A function may be given the attribute
no_instrument_function, in which case this instrumentation
will not be done.

-fno-ident Ignore the #ident directive.

-fpack-struct Pack all structure members together without holes. Usually you
would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won’t agree with
system libraries.

The dsPIC DSC device requires that words be aligned on even
byte boundaries, so care must be taken when using the packed
attribute to avoid runtime addressing errors.

-fpcc-struct-
 return

Return short struct and union values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between MPLAB C30
compiled files and files compiled with other compilers.
Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-double By default, the compiler uses a double type equivalent to float.
This option makes double equivalent to long double. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the
declared range of possible values. Specifically, the enum type will
be equivalent to the smallest integer type which has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code
to make it more readable.
-fno-verbose-asm, the default, causes the extra information to
be omitted and is useful when comparing two assembler files.

-fvolatile Consider all memory references through pointers to be volatile.

-fvolatile-global Consider all memory references to external and global data items
to be volatile. The use of this switch has no effect on static data.

-fvolatile-static Consider all memory references to static data to be volatile.

TABLE 3-15: CODE GENERATION CONVENTION OPTIONS (CONTINUED)

Option Definition
DS51284D-page 54 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
3.6 ENVIRONMENT VARIABLES

The variables in this section are optional, but, if defined, they will be used by the
compiler. The compiler driver, or other subprogram, may choose to determine an
appropriate value for some of the following environment variables if they are unset. The
driver, or other subprogram, takes advantage of internal knowledge about the
installation of MPLAB C30. As long as the installation structure remains intact, with all
subdirectories and executables remaining in the same relative position, the driver or
subprogram will be able to determine a usable value.

TABLE 3-16: COMPILER-RELATED ENVIRONMENTAL VARIABLES

Option Definition

PIC30_C_INCLUDE_
PATH

This variable's value is a semicolon-separated list of directories, much
like PATH. When MPLAB C30 searches for header files, it tries the
directories listed in the variable, after the directories specified with -I
but before the standard header file directories.
If the environment variable is undefined, the preprocessor chooses an
appropriate value based on the standard installation. By default, the
following directories are searched for include files:
<install-path>\include and
<install-path>\support\h

PIC30_COMPILER_
PATH

The value of PIC30_COMPILER_PATH is a semicolon-separated list of
directories, much like PATH. MPLAB C30 tries the directories thus
specified when searching for subprograms, if it can’t find the
subprograms using PIC30_EXEC_PREFIX.

PIC30_EXEC_
PREFIX

If PIC30_EXEC_PREFIX is set, it specifies a prefix to use in the
names of subprograms executed by the compiler. No directory
delimiter is added when this prefix is combined with the name of a
subprogram, but you can specify a prefix that ends with a slash if you
wish. If MPLAB C30 cannot find the subprogram using the specified
prefix, it tries looking in your PATH environment variable.

If the PIC30_EXEC_PREFIX environment variable is unset or set to
an empty value, the compiler driver chooses an appropriate value
based on the standard installation. If the installation has not been
modified, this will result in the driver being able to locate the required
subprograms.

Other prefixes specified with the -B command line option take
precedence over the user- or driver-defined value of
PIC30_EXEC_PREFIX.

Under normal circumstances it is best to leave this value undefined
and let the driver locate subprograms itself.

PIC30_LIBRARY_
PATH

This variable's value is a semicolon-separated list of directories, much
like PATH. This variable specifies a list of directories to be passed to
the linker. The driver's default evaluation of this variable is:
<install-path>\lib; <install-path>\support\gld.

PIC30_OMF Specifies the OMF (Object Module Format) to be used by MPLAB 30.
By default, the tools create COFF object files. If the environment
variable PIC30_OMF has the value elf, the tools will create ELF
object files.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files.
MPLAB C30 uses temporary files to hold the output of one stage of
compilation that is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
© 2005 Microchip Technology Inc. DS51284D-page 55

MPLAB® C30 User’s Guide
3.7 PREDEFINED CONSTANTS

The following preprocessing symbols are defined by the MPLAB C30 compiler.

The ELF-specific version of the compiler defines the following preprocessing symbols.

The COFF-specific version of the compiler defines the following preprocessing
symbols.

3.8 COMPILING A SINGLE FILE ON THE COMMAND LINE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler is installed on your c: drive in a directory called
pic30-tools. Therefore the following will apply:

Symbol Defined with -ansi command-line option?

dsPIC30 No

__dsPIC30 Yes

__dsPIC30__ Yes

Symbol Defined with -ansi command-line option?

dsPIC30ELF No

__dsPIC30ELF Yes

__dsPIC30ELF__ Yes

Symbol Defined with -ansi command-line option?

dsPIC30COFF No

__dsPIC30COFF Yes

__dsPIC30COFF__ Yes

TABLE 3-17: COMPILER-RELATED DIRECTORIES

Directory Contents

c:\pic30_tools\
 include

Include directory for ANSI C header file. This directory is
where the compiler stores the standard C library system
header files. The PIC30_C_INCLUDE_PATH environment
variable can point to that directory. (From the DOS command
prompt, type set to check this.)

c:\pic30_tools\
 support\h

Include directory for dsPIC DSC device-specific header files.
This directory is where the compiler stores the dsPIC DSC
device-specific header files. The PIC30_C_INCLUDE_PATH
environment variable can point to that directory. (From the
DOS command prompt, type set to check this.)

c:\pic30_tools\lib Library directory: this directory is where the libraries and
precompiled object files reside.

c:\pic30_tools\
 support\gld

Linker script directory: this directory is where device-specific
linker script files may be found.

c:\pic30_tools\bin Executables directory: this directory is where the compiler
programs are located. Your PATH environment variable should
include this directory.
DS51284D-page 56 © 2005 Microchip Technology Inc.

Using MPLAB C30 C Compiler
The following is a simple C program that adds two numbers.

Create the following program with any text editor and save it as ex1.c.

#include <p30f2010.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int
main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

The first line of the program includes the header file p30f2010.h, which provides
definitions for all special function registers on that part. For more information on header
files, see Chapter 6. “Device Support Files”.

Compile the program by typing the following at a DOS prompt:

C:\> pic30-gcc -o ex1.o ex1.c

The command-line option -o ex1.o names the output COFF executable file (if the -o
option is not specified, then the output file is named a.exe). The COFF executable file
may be loaded into the MPLAB IDE.

If a hex file is required, for example to load into a device programmer, then use the fol-
lowing command:

C:\> pic30-bin2hex ex1.o

This creates an Intel hex file named ex1.hex.
© 2005 Microchip Technology Inc. DS51284D-page 57

MPLAB® C30 User’s Guide
3.9 COMPILING MULTIPLE FILES ON THE COMMAND LINE

Move the Add() function into a file called add.c to demonstrate the use of multiple
files in an application. That is:

File 1
/* ex1.c */
#include <p30f2010.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
File 2
/* add.c */
#include <p30f2010.h>
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files by typing the following at a DOS prompt:

C:\> pic30-gcc -o ex1.o ex1.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1.o is created.
DS51284D-page 58 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 4. MPLAB C30 C Compiler Runtime Environment
4.1 INTRODUCTION

This section discusses the MPLAB C30 C Compiler runtime environment.

4.2 HIGHLIGHTS

Items discussed in this chapter are:

• Address Spaces
• Code and Data Sections
• Startup and Initialization
• Memory Spaces
• Memory Models
• X and Y Data Spaces
• Locating Code and Data
• Software Stack
• The C Stack Usage
• The C Heap Usage
• Function Call Conventions
• Register Conventions
• Bit Reversed and Modulo Addressing
• PSV Usage

4.3 ADDRESS SPACES

The dsPIC® Digital Signal Controller (DSC) devices are a combination of traditional
PICmicro® Microcontroller (MCU) features (peripherals, Harvard architecture, RISC)
and new DSP capabilities. The dsPIC DSC devices have two distinct memory regions:

• Program Memory (Figure 4-1) contains executable code and optionally constant
data.

• Data Memory (Figure 4-2) contains external variables, static variables, the system
stack and file registers. Data memory consists of near data, which is memory in
the first 8 KB of the data memory space, and far data, which is in the upper 56 KB
of data memory space.

Although the program and data memory regions are distinctly separate, the compiler
can access constant data in program memory through the Program Space Visibility
(PSV) window.
© 2005 Microchip Technology Inc. DS51284D-page 59

MPLAB® C30 User’s Guide
FIGURE 4-1: PROGRAM SPACE MEMORY MAP

FIGURE 4-2: DATA SPACE MEMORY MAP

.dinit

.const

.text

.handle

008000

7FFFFF

0

N
E

A
R

G
E

N
E

R
A

L

Constants in Program Memory

General Program Storage

Far Code Handles

Reset and Exception Vectors

Initializers for Data Memory

.const

2000

FFFF

0

N
E

A
R

G
E

N
E

R
A

L

Heap (Optional)

Program Space Visibility

Stack (Grows Up)

Memory Mapped SFRs

General Data Memory

8000

.ybss, .ydata

.bss, .data

.nbss, .ndata

.xbss, .xdata

Data Window (PSV)

Y Data Memory

X Data Memory
DS51284D-page 60 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
4.4 CODE AND DATA SECTIONS

A section is a locatable block of code or data that will occupy contiguous locations in
the dsPIC DSC device memory. In any given object file, there are typically several sec-
tions. For example, a file may contain a section for program code and one for uninitial-
ized data, among others.

The MPLAB C30 compiler will place code and data into default sections unless
instructed otherwise through the use of section attributes (for information on the section
attribute, see Section 2.3 “Keyword Differences”). While all compiler-generated
executable code is allocated into a section named .text, data is allocated into
different sections based on the type of data, as shown in Table 4-1.

TABLE 4-1: COMPILER-GENERATED DATA SECTIONS

Each default section and a description of the type of information stored into that section
is listed below.

.text

Executable code is allocated into the .text section.

.data

Initialized variables with the far attribute are allocated into the .data section. When
the large data memory model is selected (i.e., when using the -mlarge-data
command-line option), this is the default location for initialized variables.

.ndata

Initialized variables with the near attribute are allocated into the .ndata section.
When the small data memory model is selected (i.e., when using the default
-msmall-data command-line option), this is the default location for initialized
variables.

.const

Constant values, such as string constants and const-qualified variables, are allocated
into the .const section when using the default -mconst-in-code command-line
option. This section is intended to be located in program memory and accessed using
the PSV window.

Variables may also be placed into the .const section by using the section attribute:

int i __attribute__((space(auto_psv)));

regardless of whether the -mconst-in-code option is present on the command line.

Initialized Uninitialized

Variables Constants in ROM Constants in RAM Variables

near .ndata .const .ndconst .nbss

far .data .const .dconst .bss
© 2005 Microchip Technology Inc. DS51284D-page 61

MPLAB® C30 User’s Guide
.dconst

Constant values, such as string constants and const-qualified variables, are allocated
into the .dconst section when using the -mlarge-data command-line option
without using the -mconst-in-code command-line option. Unless the linker option
--no-data-init is specified, the MPLAB C30 startup code will initialize this section
by copying data from the .dinit section. The .dinit section is created by the linker
and located in program memory.

.ndconst

Constant values, such as string constants and const-qualified variables, are allocated
into the .ndconst section when using the default -msmall-data command-line
option without using the -mconst-in-code command-line option. Unless the linker
option --no-data-init is specified, the MPLAB C30 startup code will initialize this
section by copying data from the .dinit section. The .dinit section is created by
the linker and located in program memory.

.bss

Uninitialized variables with the far attribute are allocated into the .bss section. When
the large data memory model is selected (i.e., when using the -mlarge-data
command-line option), this is the default location for uninitialized variables.

.nbss

Uninitialized variables with the near attribute are allocated into the .nbss section.
When the small data memory model is selected (i.e., when using the default
-msmall-data command-line option), this is the default location for unitialized
variables.

.pbss - Persistent Data

Applications that require data storage in RAM which are not affected by a device reset
can use section .pbss for this purpose. Section .pbss is allocated in near data
memory and is not modified by the default startup module in libpic30.a.

Uninitialized variables may be placed in the .pbss section using the section attribute:

int i __attribute__((persistent));

To take advantage of persistent data storage, the main() function should begin with a
test to determine what type of reset has ocurred. Various bits in the RCON reset control
register can be tested to determine the reset source. See Section 8 in the dsPIC30F
Family Reference Manual (DS70046) for more information.
DS51284D-page 62 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
4.5 STARTUP AND INITIALIZATION
Two C runtime startup modules are included in the libpic30.a archive/library. The
entry point for both startup modules is __reset. The linker scripts construct a GOTO
__reset instruction at location 0 in program memory, which transfers control upon
device reset.

The primary startup module (crt0.o) is linked by default and performs the following:

1. The stack pointer (W15) and stack pointer limit register (SPLIM) are initialized,
using values provided by the linker or a custom linker script. For more
information, see Section 4.9 “Software Stack”.

2. If a .const section is defined, it is mapped into the Program Space Visibility
(PSV) window by initializing the PSVPAG and CORCON registers. Note that a
.const section is defined when the “Constants in code space” option is selected
in MPLAB IDE, or the default -mconst-in-code option is specified on the
MPLAB C30 command line.

3. The data initialization template in section .dinit is read, causing all
uninitialized sections to be cleared, and all initialized sections to be initialized
with values read from program memory. The data initialization template is
created by the linker, and supports the standard sections listed in
Section 4.4 “Code and Data Sections”, as well as the user-defined sections.

4. The function main is called with no parameters.
5. If main returns, the processor will reset.

The alternate startup module (crt1.o) is linked when the -Wl, --no-data-init
option is specified. It performs the same operations, except for step (3), which is
omitted. The alternate startup module is smaller than the primary module, and can be
selected to conserve program memory if data initialization is not required.

Source code (in dsPIC DSC assembly language) for both modules is provided in the
c:\Program Files\Microchip\MPLAB C30\src directory. The startup modules
may be modified if necessary. For example, if an application requires main to be called
with parameters, a conditional assembly directive may be changed to provide this sup-
port.

Note: The persistent data section .pbss is never cleared or initialized.
© 2005 Microchip Technology Inc. DS51284D-page 63

MPLAB® C30 User’s Guide
4.6 MEMORY SPACES

Static and external variables are normally allocated in general purpose data memory.
Const-qualified variables will be allocated in general purpose data memory if the
constants-in-data memory model is selected, or in program memory if the
constants-in-code memory model is selected.

MPLAB C30 defines several special purpose memory spaces to match architectural
features of the dsPIC DSC. Static and external variables may be allocated in the special
purpose memory spaces through use of the space attribute, described in
Section 2.3.1 “Specifying Attributes of Variables”:

data

General data space. Variables in general data space can be accessed using ordinary
C statements. This is the default allocation.

xmemory

X data address space. Variables in X data space can be accessed using ordinary C
statements. X data address space has special relevance for DSP-oriented libraries
and/or assembly language instructions.

ymemory

Y data address space. Variables in Y data space can be accessed using ordinary C
statements. Y data address space has special relevance for DSP-oriented libraries
and/or assembly language instructions.

prog

General program space, which is normally reserved for executable code. Variables in
program space can not be accessed using ordinary C statements. They must be
explicitly accessed by the programmer, usually using table-access inline assembly
instructions, or using the Program Space Visibility Window.

const

A compiler-managed area in program space, designated for Program Space Visibility
(PSV) window access. Variables in const space can be read (but not written) using
ordinary C statements, and are subject to a maximum of 32K total space allocated.

psv

Program space, designated for Program Space Visibility (PSV) window access.
Variables in psv space are not managed by the compiler and can not be accessed using
ordinary C statements. They must be explicitly accessed by the programmer, usually
using table-access inline assembly instructions, or using the Program Space Visibility
Window. Variables in psv space can be accessed using a single setting of the PSVPAG
register.

eedata

Data EEPROM space, a region of 16-bit wide non-volatile memory located at high
addresses in program memory. Variables in eedata space can not be accessed using
ordinary C statements. They must be explicitly accessed by the programmer, usually
using table-access inline assembly instructions, or using the Program Space Visibility
Window.
DS51284D-page 64 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
4.7 MEMORY MODELS

The compiler supports several memory models. Command-line options are available
for selecting the optimum memory model for your application, based on the specific
dsPIC DSC device part that you are using and the type of memory usage.

TABLE 4-2: MEMORY MODEL COMMAND LINE OPTIONS

The command-line options apply globally to the modules being compiled. Individual
variables and functions can be declared as near or far to better control the code
generation. For information on setting individual variable or function attributes, see
Section 2.3.1 “Specifying Attributes of Variables” and Section 2.3.2 “Specifying
Attributes of Functions”.

4.7.1 Near and Far Data

If variables are allocated in the near data section, the compiler is often able to generate
better (more compact) code than if the variables are not allocated in the near data
section. If all variables for an application can fit within the 8 KB of near data, then the
compiler can be requested to place them there by using the default -msmall-data
command line option when compiling each module. If the amount of data consumed
by scalar types (no arrays or structures) totals less than 8 KB, the default
-msmall-scalar may be used. This requests that the compiler arrange to have just
the scalars for an application allocated in the near data section.

If neither of these global options is suitable, then the following alternatives are
available.

1. It is possible to compile some modules of an application using the
-mlarge-data or -mlarge-scalar command line options. In this case, only
the variables used by those modules will be allocated in the far data section. If
this alternative is used, then care must be taken when using externally defined
variables. If a variable that is used by modules compiled using one of these
options is defined externally, then the module in which it is defined must also be
compiled using the same option, or the variable declaration and definition must
be tagged with the far attribute.

Option Memory Definition Description

-msmall-data Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing data memory.

-msmall-scalar Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing scalars in data memory.

-mlarge-data Greater than 8 KB of data
memory.

Uses indirection for data references.

-msmall-code Up to 32 Kwords of program
memory. This is the default.

Function pointers will not go through a
jump table. Function calls use RCALL
instruction.

-mlarge-code Greater than 32 Kwords of
program memory.

Function pointers might go through a
jump table. Function calls use CALL
instruction.

-mconst-in-data Constants located in data
memory.

Values copied from program memory
by startup code.

-mconst-in-code Constants located in program
memory. This is the default.

Values are accessed via Program
Space Visibility (PSV) data window.
© 2005 Microchip Technology Inc. DS51284D-page 65

MPLAB® C30 User’s Guide
2. If the command line options -mlarge-data or -mlarge-scalar have been
used, then an individual variable may be excluded from the far data space by
tagging it with the near attribute.

3. Instead of using command-line options, which have module scope, individual
variables may be placed in the far data section by tagging them with the far
attribute.

The linker will produce an error message if all near variables for an application cannot
fit in the 8K near data space.

4.7.2 Near and Far Code

Functions that are near (within a radius of 32 Kwords of each other) may call each other
more efficiently that those which are not. If it is known that all functions in an application
are near, then the default -msmall-code command line option can be used when
compiling each module to direct the compiler to use a more efficient form of the function
call.

If this default option is not suitable, then the following alternatives are available:

1. It is possible to compile some modules of an application using the
-msmall-code command line option. In this case, only function calls in those
modules will use a more efficient form of the function call.

2. If the -msmall-code command-line option has been used, then the compiler
may be directed to use the long form of the function call for an individual function
by tagging it with the far attribute.

3. Instead of using command-line options, which have module scope, the compiler
may be directed to call individual functions using a more efficient form of the
function call by tagging their declaration and definition with the near attribute.

The -msmall-code command-line option differs from the -msmall-data
command-line option in that in the former case, the compiler does nothing special to
ensure that functions are allocated near one another, whereas in the latter case, the
compiler will allocate variables in a special section.

The linker will produce an error message if the function declared to be near cannot be
reached by one of its callers using a more efficient form of the function call.
DS51284D-page 66 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
4.8 LOCATING CODE AND DATA

As described in Section 4.4 “Code and Data Sections”, the compiler arranges for
code to be placed in the .text section, and data to be placed in one of several named
sections, depending on the memory model used and whether or not the data is
initialized. When modules are combined at link time, the linker determines the starting
addresses of the various sections based on their attributes.

Cases may arise when a specific function or variable must be located at a specific
address, or within some range of addresses. The easiest way to accomplish this is by
using the address attribute, described in Section 2.3 “Keyword Differences”. For
example, to locate function PrintString at address 0x8000 in program memory:

int __attribute__ ((address(0x8000))) PrintString (const char *s);

Likewise, to locate variable Mabonga at address 0x1000 in data memory:

int __attribute__ ((address(0x1000))) Mabonga = 1;

Another way to locate code or data is by placing the function or variable into a
user-defined section, and specifying the starting address of that section in a custom
linker script. This is done as follows:

1. Modify the code or data declaration in the C source to specify a user-defined
section.

2. Add the user-defined section to a custom linker script file to specify the starting
address of the section.

For example, to locate the function PrintString at address 0x8000 in program
memory, first declare the function as follows in the C source:

int __attribute__((__section__(".myTextSection")))
PrintString(const char *s);

The section attribute specifies that the function should be placed in a section named
.myTextSection, rather than the default .text section. It does not specify where
the user-defined section is to be located. That must be done in a custom linker script,
as follows. Using the device-specific linker script as a base, add the following section
definition:

.myTextSection 0x8000 :
 {
 *(.myTextSection);
 } >program

This specifies that the output file should contain a section named .myTextSection
starting at location 0x8000 and containing all input sections named.myTextSection.
Since, in this example, there is a single function PrintString in that section, then the
function will be located at address 0x8000 in program memory.

Similarly, to locate the variable Mabonga at address 0x1000 in data memory, first
declare the variable as follows in the C source:

int __attribute__((__section__(".myDataSection"))) Mabonga = 1;
© 2005 Microchip Technology Inc. DS51284D-page 67

MPLAB® C30 User’s Guide
The section attribute specifies that the function should be placed in a section named
.myDataSection, rather than the default .data section. It does not specify where
the user-defined section is to be located. Again, that must be done in a custom linker
script, as follows. Using the device-specific linker script as a base, add the following
section definition:

.myDataSection 0x1000 :
 {
 *(.myDataSection);
 } >data

This specifies that the output file should contain a section named.myDataSection
starting at location 0x1000 and containing all input sections named.myDataSection.
Since, in this example, there is a single variable Mabonga in that section, then the
variable will be located at address 0x1000 in data memory.

4.9 SOFTWARE STACK

The dsPIC DSC device dedicates register W15 for use as a software stack pointer. All
processor stack operations, including function calls, interrupts and exceptions, use the
software stack. The stack grows upward, towards higher memory addresses.

The dsPIC DSC device also supports stack overflow detection. If the stack pointer limit
register SPLIM is initialized, the device will test for overflow on all stack operations. If
an overflow should occur, the processor will initiate a stack error exception. By default,
this will result in a processor reset. Applications may also install a stack error exception
handler by defining an interrupt function named _StackError. See Chapter
7. “Interrupts” for details.

The C runtime startup module initializes the stack pointer (W15) and the stack pointer
limit register (SPLIM) during the startup and initialization sequence. The initial values
are normally provided by the linker, which allocates the largest stack possible from
unused data memory. The location of the stack is reported in the link map output file.
Applications can ensure that at least a minimum-sized stack is available with the
--stack linker command-line option. See the MPLAB® ASM30, MPLAB LINK30 and
Utilities User’s Guide (DS51317) for details.

Alternatively, the stack of specific size may be allocated with a user-defined section in
a custom linker script. In the following example, 0x100 bytes of data memory are
reserved for the stack. Two symbols are declared, __SP_init and __SPLIM_init,
for use by the C runtime startup module:

.stack :
 {
 __SP_init = .;
 . += 0x100
 __SPLIM_init = .;
 . += 8
 } >data

__SP_init defines the initial value for the stack pointer (W15) and __SPLIM_init
defines the initial value for the stack pointer limit register (SPLIM). The value of
__SPLIM_init should be at least 8 bytes less than the physical stack limit, to allow
for stack error exception processing. This value should be decreased further to account
for stack usage by the interrupt handler itself, if a stack error interrupt handler is
installed. The default interrupt handler does not require additional stack usage.
DS51284D-page 68 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
4.10 THE C STACK USAGE

The C compiler uses the software stack to:

• Allocate automatic variables
• Pass arguments to functions
• Save the processor status in interrupt functions
• Save function return address
• Store temporary results
• Save registers across function calls

The runtime stack grows upward from lower addresses to higher addresses. The
compiler uses two working registers to manage the stack:

• W15 – This is the stack pointer (SP). It points to the top of stack which is defined
to be the first unused location on the stack.

• W14 – This is the frame pointer (FP). It points to the current function’s frame.
Each function, if required, creates a new frame at the top of the stack from which
automatic and temporary variables are allocated. The compiler option
-fomit-frame-pointer can be used to restrict the use of the FP.

FIGURE 4-3: STACK AND FRAME POINTERS

The C runtime startup modules (crt0.o and crt1.o in libpic30.a) initialize the
stack pointer W15 to point to the bottom of the stack and initialize the stack pointer limit
register to point to the top of the stack. The stack grows up and if it should grow beyond
the value in the stack pointer limit register, then a stack error trap will be taken. The user
may initialize the stack pointer limit register to further restrict stack growth.

The following diagrams illustrate the steps involved in calling a function. Executing a
CALL or RCALL instruction pushes the return address onto the software stack. See
Figure 4-4.

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)Function Frame
© 2005 Microchip Technology Inc. DS51284D-page 69

MPLAB® C30 User’s Guide
FIGURE 4-4: CALL OR RCALL

The called function (callee) can now allocate space for its local context (Figure 4-5).

FIGURE 4-5: CALLEE SPACE ALLOCATION

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)

Return addr [23:16]

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller’s Frame

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)Local Variables

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller’s Frame

Return addr [23:16]

and Temporaries

Previous FP
DS51284D-page 70 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
Finally, any callee-saved registers that are used in the function are pushed
(Figure 4-6).

FIGURE 4-6: PUSH CALLEE-SAVED REGISTERS

4.11 THE C HEAP USAGE

The C runtime heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc. If you do not use any of these functions,
then you do not need to allocate a heap. By default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library input/output
function, then a heap must be created. A heap is created by specifying its size on the
linker command line, using the --heap linker command-line option. An example of
allocating a heap of 512 bytes using the command line is:

pic30-gcc foo.c -Wl,--heap=512

The linker allocates the heap immediately below the stack (Figure 4-2).

If you use a standard C library input/output function, then a heap must be allocated. If
stdout is the only file that you use, then the heap size can be zero, that is, use the
command-line option:

-Wl,--heap=0

If you open files, then the heap size must include 40 bytes for each file that is simulta-
neously open. If there is insufficient heap memory, then the open function will return an
error indicator. For each file that should be buffered, 514 bytes of heap space is
required. If there is insufficient heap memory for the buffer, then the file will be opened
in unbuffered mode.

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)

Callee-Saved

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller’s Frame

Return addr [23:16]

Registers

Previous FP

Local Variables
and Temporaries

[W14+n] accesses
local context

[W14-n] accesses

function parameters
stack-based
© 2005 Microchip Technology Inc. DS51284D-page 71

MPLAB® C30 User’s Guide
4.12 FUNCTION CALL CONVENTIONS

When calling a function:

• Registers W0-W7 are caller saved. The calling function must push these values
onto the stack for the register values to be preserved.

• Registers W8-W14 are callee saved. The function being called must save any of
these registers it will modify.

• Registers W0-W4 are used for function return values.

TABLE 4-3: REGISTERS REQUIRED

Parameters are placed in the first aligned contiguous register(s) that are available. The
calling function must preserve the parameters, if required. Structures do not have any
alignment restrictions; a structure parameter will occupy registers if there are enough
registers to hold the entire structure. Function results are stored in consecutive
registers, beginning with W0.

4.12.1 Function Parameters

The first eight working registers (W0-W7) are used for function parameters.Parameters
are allocated to registers in left-to-right order, and a parameter is assigned to the first
available register that is suitably aligned.

In the following example, all parameters are passed in registers, although not in the
order that they appear in the declaration. This format allows the MPLAB C30 compiler
to make the most efficient use of the available parameter registers.

EXAMPLE 4-1: FUNCTION CALL MODEL

void
params0(short p0, long p1, int p2, char p3, float p4, void *p5)
{
 /*
 ** W0 p0
 ** W1 p2
 ** W3:W2 p1
 ** W4 p3
 ** W5 p5
 ** W7:W6 p4
 */
 ...
}

Data Type Number of Registers Required

char 1

int 1

short 1

pointer 1

long 2 (contiguous – aligned to even numbered register)

float 2 (contiguous – aligned to even numbered register)

double* 2 (contiguous – aligned to even numbered register)

long double 4 (contiguous – aligned to quad numbered register)

structure 1 register per 2 bytes in structure

* double is equivalent to long double if -fno-short-double is used.
DS51284D-page 72 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
The next example demonstrates how structures are passed to functions. If the
complete structure can fit in the available registers, then the structure is passed via
registers; otherwise the structure argument will be placed onto the stack.

EXAMPLE 4-2: FUNCTION CALL MODEL, PASSING STRUCTURES

typedef struct bar {
 int i;
 double d;
} bar;

void
params1(int i, bar b) {
 /*
 ** W0 i
 ** W1 b.i
 ** W5:W2 b.d
 */

}

Parameters corresponding to the ellipses (...) of a variable-length argument list are not
allocated to registers. Any parameter not allocated to registers is pushed onto the
stack, in right-to-left order.

In the next example, the structure parameter cannot be placed in registers because it
is too large. However, this does not prevent the next parameter from using a register
spot.

EXAMPLE 4-3: FUNCTION CALL MODEL, STACK BASED ARGUMENTS

typedef struct bar {
 double d,e;
} bar;

void
params2(int i, bar b, int j) {
 /*
 ** W0 i
 ** stack b
 ** W1 j
 */
}

Accessing arguments that have been placed onto the stack depends upon whether or
not a frame pointer has been created. Generally the compiler will produce a frame
pointer (unless otherwise told not to do so), and stack-based parameters will be
accessed via the frame pointer register (W14). The above example, b will be accessed
from W14-22. The frame pointer offset of negative 22 has been calculated (refer to
Figure 4-6) by removing 2 bytes for the Previous FP, 4 bytes for the return address,
followed by 16 bytes for b.

When no frame pointer is used, the assembly programmer must know how much stack
space has been used since entry to the procedure. If no further stack space is used,
the calculation is similar to the above. b would be accessed via W15-20; 4 bytes for the
return address and 16 bytes to access the start of b.
© 2005 Microchip Technology Inc. DS51284D-page 73

MPLAB® C30 User’s Guide
4.12.2 Return Value

Function return values are returned in W0 for 8- or 16-bit scalars, W1:W0 for 32-bit
scalars, and W3:W2:W1:W0 for 64-bit scalars. Aggregates are returned indirectly
through W0, which is set up by the function caller to contain the address of the
aggregate value.

4.12.3 Preserving Registers Across Function Calls

The compiler arranges for registers W8-W15 to be preserved across ordinary function
calls. Registers W0-W7 are available as scratch registers. For interrupt functions, the
compiler arranges for all necessary registers to be preserved, namely W0-W15 and
RCOUNT.

4.13 REGISTER CONVENTIONS

Specific registers play specific roles in the C runtime environment. Register variables
use one or more working registers, as shown in Table 4-4.

TABLE 4-4: REGISTER CONVENTIONS

Variable Working Register

char, signed char, unsigned char W0-W13, and W14 if not used as a frame
pointer.

short, signed short, unsigned
short

W0-W13, and W14 if not used as a frame
pointer.

int, signed int,unsigned int W0-W13, and W14 if not used as a frame
pointer.

void * (or any pointer) W0-W13, and W14 if not used as a frame
pointer.

long, signed long, unsigned long A pair of contiguous registers, the first of which
is a register from the set {W0, W2, W4, W6, W8,
W10, W12}. The lower-numbered register
contains the least significant 16-bits of the value.

long long, signed long long,
unsigned long long

A quadruplet of contiguous registers, the first of
which is a register from the set {W0, W4, W8}.
The lower-numbered register contains the least
significant 16-bits of the value. Successively
higher-numbered registers contain successively
more significant bits.

float A pair of contiguous registers, the first of which
is a register from the set {W0, W2, W4, W6, W8,
W10, W12}. The lower-numbered register
contains the least significant 16-bits of the
significant.

double* A pair of contiguous registers, the first of which
is a register from the set {W0, W2, W4, W6, W8,
W10, W12}. The lower-numbered register
contains the least significant 16-bits of the
significant.

long double A quadruplet of contiguous registers, the first of
which is a register from the set {W0, W4, W8}.
The lower-numbered register contains the least
significant 16-bits of the significant.

* double is equivalent to long double if -fno-short-double is used.
DS51284D-page 74 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Runtime Environment
4.14 BIT REVERSED AND MODULO ADDRESSING

The compiler does not directly support the use of bit reversed and modulo addressing.
If either of these addressing modes is enabled for a register, then it is the programmer’s
responsibility to ensure that the compiler does not use that register as a pointer.
Particular care must be exercised if interrupts can occur while one of these addressing
modes is enabled.

It is possible to define arrays in C that will be suitably aligned in memory for modulo
addressing by assembly language functions. The aligned attribute may be used to
define arrays that are positioned for use as incrementing modulo buffers. The reverse
attribure may be used to define arrays that are positioned for use as decrementing
modulo buffers. For more information on these attributes, see Section 2.3 “Keyword
Differences”. For more information on modulo addressing, see chapter 3 of the
dsPIC30F Family Reference Manual (DS70046).

4.15 PROGRAM SPACE VISIBILITY (PSV) USAGE

By default, the compiler will automatically arrange for strings and const-qualified
initialized variables to be allocated in the .const section, which is mapped into the
PSV window. Then PSV management is left up to compiler management, which does
not move it, limiting the size of accessible program memory to the size of the PSV
window itself.

Alternatively, an application may take control of the PSV window for its own purposes.
The advantage of directly controlling the PSV usage in an application is that it affords
greater flexibility than having a single .const section permanently mapped into the
PSV window. The disadvantage is that the application must manage the PSV control
registers and bits. Specify the -mconst-in-data, option to direct the compiler not to
use the PSV window.

The space attribute can be used to define variables that are positioned for use in the
PSV window. To specify certain variables for allocation in the compiler-managed
section .const, use attribute space(auto_psv). To allocate variables for PSV
access in a section not managed by the compiler, use attribute space(psv). For more
information on these attributes, see Section 2.3 “Keyword Differences”.

For more on PSV usage, see the MPLAB® ASM30, MPLAB LINK30 and Utilities User’s
Guide. (DS51317).
© 2005 Microchip Technology Inc. DS51284D-page 75

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 76 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 5. Data Types
5.1 INTRODUCTION

This section discusses the MPLAB C30 data types.

5.2 HIGHLIGHTS

Items discussed in this chapter are:

• Data Representation
• Integer
• Floats
• Pointers

5.3 DATA REPRESENTATION

Multibyte quantities are stored in “little endian” format, which means:

• The least significant byte is stored at the lowest address
• The least significant bit is stored at the lowest-numbered bit position

As an example, the long value of 0x12345678 is stored at address 0x100 as follows:

As another example, the long value of 0x12345678 is stored in registers w4 and w5:

5.4 INTEGER

Table 5-1 shows integer data types are supported in MPLAB C30.

For information on implementation-defined behavior of integers, see
Section A.6 “Integers”.

0x100 0x78 0x56 0x101

0x102 0x34 0x12 0x103

w4 w5

0x5678 0x1234

TABLE 5-1: INTEGER DATA TYPES
Type Bits Min Max

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int 16 -32768 32767

unsigned int 16 0 65535

long, signed long 32 -231 231 - 1

unsigned long 32 0 232 - 1

long long**, signed long long** 64 -263 263 - 1

unsigned long long** 64 0 264 - 1

** ANSI-89 extension
© 2005 Microchip Technology Inc. DS51284D-page 77

MPLAB® C30 User’s Guide
5.5 FLOATING POINT

MPLAB C30 uses the IEEE-754 format. Table 5-2 shows floating point data types are
supported.

For information on implementation-defined behavior of floating point numbers, see
section Section A.7 “Floating Point”.

5.6 POINTERS

All MPLAB C30 pointers are 16-bits wide. This is sufficient for full data space access
(64 KB) and the small code model (32 Kwords of code.) In the large code model
(>32 Kwords of code), pointers may resolve to “handles”; that is, the pointer is the
address of a GOTO instruction which is located in the first 32 Kwords of program space.

TABLE 5-2: FLOATING POINT DATA TYPES

Type Bits E Min E Max N Min N Max

float 32 -126 127 2-126 2128

double* 32 -126 127 2-126 2128

long double 64 -1022 1023 2-1022 21024

E = Exponent
N = Normalized (approximate)
* double is equivalent to long double if -fno-short-double is used.
DS51284D-page 78 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 6. Device Support Files
6.1 INTRODUCTION

This section discusses device support files used in support of MPLAB C30 compilation.

6.2 HIGHLIGHTS

Items discussed in this chapter are:

• Processor Header Files
• Register Definition Files
• Using SFR’s
• Using Macros
• Accessing EEDATA from C Code

6.3 PROCESSOR HEADER FILES

The processor header files are distributed with the language tools. These header files
define the available special function registers (SFR’s) for each dsPIC DSC device. To
use a header file in C, use;

#include <p30fxxxx.h>

where xxxx corresponds to the device part number. The C header files are distributed
in the support\h directory.

Inclusion of the header file is necessary in order to use SFR names
(e.g., CORCONbits).

For example, the following module, compiled for the PIC30F2010 part, includes two
functions: one for enabling the PSV window, and another for disabling the PSV window.

#include <p30f2010.h>
void
EnablePSV(void)
{
 CORCONbits.PSV = 1;
}
void
DisablePSV(void)
{
 CORCONbits.PSV = 0;
}

© 2005 Microchip Technology Inc. DS51284D-page 79

MPLAB® C30 User’s Guide
The convention in the processor header files is that each SFR is named, using the
same name that appears in the data sheet for the part – for example, CORCON for the
Core Control register. If the register has individual bits that might be of interest, then
there will also be a structure defined for that SFR, and the name of the structure will be
the same as the SFR name, with “bits” appended. For example, CORCONbits for the
Core Control register. The individual bits (or bit-fields) are named in the structure using
the names in the data sheet – for example PSV for the PSV bit of the CORCON
register. Here is the complete definition of CORCON (subject to change):

/* CORCON: CPU Mode control Register */
extern volatile unsigned int CORCON __attribute__((__near__));
typedef struct tagCORCONBITS {

unsigned IF :1; /* Integer/Fractional mode */
unsigned RND :1; /* Rounding mode */
unsigned PSV :1; /* Program Space Visibility enable */
unsigned IPL3 :1;
unsigned ACCSAT :1; /* Acc saturation mode */
unsigned SATDW :1; /* Data space write saturation enable */
unsigned SATB :1; /* Acc B saturation enable */
unsigned SATA :1; /* Acc A saturation enable */
unsigned DL :3; /* DO loop nesting level status */
unsigned :4;

} CORCONBITS;
extern volatile CORCONBITS CORCONbits __attribute__((__near__));

6.4 REGISTER DEFINITION FILES

The processor header files described in Section 6.3 “Processor Header Files” name
all SFR’s for each part, but they do not define the addresses of the SFR’s. A separate
set of device-specific linker script files, one per part, is distributed in the support\gld
directory. These linker script files define the SFR addresses. To use one of these files,
specify the linker command-line option:

-T p30fxxxx.gld

where xxxx corresponds to the device part number.

For example, assuming that there exists a file named app2010.c, which contains an
application for the PIC30F2010 part, then it may be compiled and linked using the
following command line:

pic30-gcc -o app2010.o -T p30f2010.gld app2010.c

The -o command-line option names the output COFF executable file, and the -T
option gives the name for the PIC30F2010 part. If p30f2010.gld is not found in the
current directory, the linker searches in its known library paths. For the default
installation, the linker scripts are included in the PIC30_LIBRARAY_PATH. For
reference see Section 3.6 “Environment Variables”.

Note: The symbols CORCON and CORCONbits refer to the same register and
will resolve to the same address at link time.
DS51284D-page 80 © 2005 Microchip Technology Inc.

Device Support Files
6.5 USING SFRS

There are three steps to follow when using SFR’s in an application.

1. Include the processor header file for the appropriate device. This provides the
source code with the SFR’s that are available for that device. For instance, the
following statement includes the header files for the PIC30F6014 part:

#include <p30f6014.h>

2. Access SFR’s like any other C variables. The source code can write to and/or
read from the SFR’s.

For example, the following statement clears all the bits to zero in the special
function register for Timer1.

TMR1 = 0;

This next statement represents the 15th bit in the T1CON register which is the
‘timer on’ bit. It sets the bit named TON to 1 which starts the timer.

T1CONbits.TON = 1;

3. Link with the register definition file or linker script for the appropriate device. The
linker provides the addresses of the SFR’s. (Remember the bit structure will have
the same address as the SFR at link time.) Example 6.1 would use:

p30f6014.gld

See MPLAB® ASM30, MPLAB LINK30 and Utilities User's Guide (DS51317) for more
information on using linker scripts.

The following example is a sample real time clock. It uses several SFR’s. Descriptions
for these SFR’s are found in the p30f6014.h file. This file would be linked with the
device specific linker script which is p30f6014.gld.
© 2005 Microchip Technology Inc. DS51284D-page 81

MPLAB® C30 User’s Guide
EXAMPLE 6-1: SAMPLE REAL-TIME CLOCK

/*
** Sample Real Time Clock for dsPIC
**
** Uses Timer1, TCY clock timer mode
** and interrupt on period match
*/

#include <p30f6014.h>

/* Timer1 period for 1 ms with FOSC = 20 MHz */
#define TMR1_PERIOD 0x1388

struct clockType
 {
 unsigned int timer; /* countdown timer, milliseconds */
 unsigned int ticks; /* absolute time, milliseconds */
 unsigned int seconds; /* absolute time, seconds */
 } volatile RTclock;

void reset_clock(void)
 {
 RTclock.timer = 0; /* clear software registers */
 RTclock.ticks = 0;
 RTclock.seconds = 0;

 TMR1 = 0; /* clear timer1 register */
 PR1 = TMR1_PERIOD; /* set period1 register */
 T1CONbits.TCS = 0; /* set internal clock source */
 IPC0bits.T1IP = 4; /* set priority level */
 IFS0bits.T1IF = 0; /* clear interrupt flag */
 IEC0bits.T1IE = 1; /* enable interrupts */

 SRbits.IPL = 3; /* enable CPU priority levels 4-7*/
 T1CONbits.TON = 1; /* start the timer*/
 }
void __attribute__((__interrupt__)) _T1Interrupt(void)
 { static int sticks=0;

 if (RTclock.timer > 0) /* if countdown timer is active */
 RTclock.timer -= 1; /* decrement it */
 RTclock.ticks++; /* increment ticks counter */
 if (sticks++ > 1000)
 { /* if time to rollover */
 sticks = 0; /* clear seconds ticks */
 RTclock.seconds++; /* and increment seconds */
 }

 IFS0bits.T1IF = 0; /* clear interrupt flag */
 return;
 }
DS51284D-page 82 © 2005 Microchip Technology Inc.

Device Support Files
6.6 USING MACROS

Processor header files define, in addition to special function registers (SFR), useful
macros for the dsPIC30F family of Digital Signal Controllers (DSCs).

6.6.1 Configuration Bits Setup Macros

Macros are provided that can be used to set configuration bits. For example, to set the
FOSC bit using a macro, the following line of code can be inserted before the beginning
of your C source code:

 _FOSC(CSW_FSCM_ON & EC_PLL16);

This would enable the external clock with the PLL set to 16x and enable clock switching
and fail-safe clock monitoring.

Similarly, to set the FBORPOR bit:

 _FBORPOR(PBOR_ON & BORV_27 & PWRT_ON_64 & MCLR_DIS);

This would enable Brown-out Reset at 2.7 Volts and initialize the Power-up timer to 64
milliseconds and configure the use of the MCLR pin for I/O.

For a complete list of settings valid for each configuration bit, refer to the processor
header file.

6.6.2 In-Line Assembly Usage Macros

Some Macros used to define assembly code in C are listed below:

#define Nop() {__asm__ volatile ("nop");}
#define ClrWdt() {__asm__ volatile ("clrwdt");}
#define Sleep() {__asm__ volatile ("pwrsav #0");}
#define Idle() {__asm__ volatile ("pwrsav #1");}

6.6.3 Data Memory Allocation Macros

Macros that may be used to allocate space in data memory are discussed below. There
are two types: those that require an argument and those that do not.

The following macros require an argument N that specifies alignment. N must a power
of two, with a minimum value of 2.

#define _XBSS(N) __attribute__((space(xmemory), aligned(N)))
#define _XDATA(N) __attribute__((space(xmemory), aligned(N)))
#define _YBSS(N) __attribute__((space(ymemory), aligned(N)))
#define _YDATA(N) __attribute__((space(ymemory), aligned(N)))
#define _EEDATA(N) __attribute__((space(eedata), aligned(N)))

For example, to declare an uninitialized array in X memory that is aligned to a 32-byte
address:

int _XBSS(32) xbuf[16];

To declare an initialized array in data EEPROM without special alignment:

int _EEDATA(2) table1[] = {0, 1, 1, 2, 3, 5, 8, 13, 21};

The following macros do not require an argument. They can be used to locate a
variable in persistent data memory or in near data memory.

#define _PERSISTENT __attribute__((persistent))
#define _NEAR __attribute__((near))

For example, to declare two variables that retain their values across a device reset:

int _PERSISTENT var1,var2;
© 2005 Microchip Technology Inc. DS51284D-page 83

MPLAB® C30 User’s Guide
6.6.4 ISR Declaration Macros

The following macros can be used to declare interrupt service routines (ISRs):

#define _ISR __attribute__((interrupt))
#define _ISRFAST __attribute__((interrupt, shadow))

For example, to declare an ISR for the timer0 interrupt:

void _ISR _INT0Interrupt(void);

To declare an ISR for the SPI1 interrupt with fast context save:

void _ISRFAST _SPI1Interrupt(void);

6.7 ACCESSING EEDATA FROM C CODE

MPLAB C30 provides some convenience macro definitions to allow placement of data
into the devices EE data area. This can be done quite simply:

int _EEDATA(2) user_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

user_data will be placed in the EE data space reserving 10 words with the given initial
values.

The dsPIC DSC device provides two ways for programmers to access this area of
memory. The first is via the Program Space Visibility window (PSV). The second is by
using special machine instructions (TBLRDx).

6.7.1 Accessing EEDATA via the PSV

The compiler normally manages the PSV window to access constants stored in
program memory. If this is not the case, the PSV window can be used to access
EEDATA memory.

To use the PSV window:

• The PSVPAG register must be set to the appropriate address for the program
memory to be accessed. For EE data this will be 0xFF, but it is best to use the
__builtin_psvpage() function.

• The PSV window should also be enabled by setting the PSV bit in the CORCON
register. If this bit is not set, uses of the PSV window will always read 0x0000.

EXAMPLE 6-2: EEDATA ACCESS VIA PSV

#include <p30fxxxx.h>
int main(void) {
 PSVPAG = __builtin_psvpage(&user_data);
 CORCONbits.PSV = 1;

 /* ... */

 if (user_data[2]) ;/* do something */

 }

These steps need only be done once. Unless PSVPAG is changed, variables in EE
data space may be read by referring to them as normal C variables, as shown in the
example.

Note: ISRs will be installed into the interrupt vector tables automatically if the
reserved names listed in Table 7-1 are used.

Note: This access model is not compatible with the compiler-managed PSV
(-mconst-in-code) model. You should be careful to prevent conflict.
DS51284D-page 84 © 2005 Microchip Technology Inc.

Device Support Files
6.7.2 Accessing EEDATA using TBLRDx instructions

The TBLRDx instructions are not directly supported by the compiler, but they can be
used via inline assembly. Like PSV accesses, a 23-bit address is formed from an SFR
value and the address encoded as part of the instruction. To access the same memory
as given in the previous example, the following code may be used:

To use the TBLRDx instructions:

• The TBLPAG register must be set to the appropriate address for the program
memory to be accessed. For EE data, this will be 0x7F, but it is best to use the
__builtin_tblpage() function.

• The TBLRDx instruction can only be accessed from an __asm__ statement; refer
to the dsPIC30F Programmers Reference Manual (DS70030) for information on
this instruction.

EXAMPLE 6-3: EEDATA ACCESS VIA TABLE READ

#include <p30fxxxx.h>
#define eedata_read(src, dest) { \
 register int eedata_addr; \
 register int eedata_val; \
 \
 eedata_addr = __builtin_tbloffset(&src); \
 __asm__("tblrdl [%1], %0" : "=r"(eedata_val) : "r"(eedata_addr)); \
 dest = eedata_val; \
 }

int main(void) {
 int value;

 TBLPAG = __builtin_tblpage(&user_data);

 eedata_read(user_data[2], value);
 if (value) ; /* do something */

 }

6.7.3 Additional Sources of Information

Section 5 of the dsPIC30F Family Reference Manual (DS70054) has an excellent
discussion on using the FLASH program memory and EE data memory provided on the
dsPIC DSC devices. This section also has information on run-time programming of
both program memory and EE data memory.
© 2005 Microchip Technology Inc. DS51284D-page 85

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 86 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 7. Interrupts
7.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.

The dsPIC30F devices support multiple interrupts from both internal and external
sources. In addition, the devices allow high-priority interrupts to override any low
priority interrupts that may be in progress.

The MPLAB C30 compiler provides full support for interrupt processing in C or inline
assembly code. This chapter presents an overview of interrupt processing.

7.2 HIGHLIGHTS

Items discussed in this chapter are:

• Writing an Interrupt Service Routine – You can designate one or more C
functions as Interrupt Service Routines (ISR’s) to be invoked by the occurrence of
an interrupt. For best performance in general, place lengthy calculations or opera-
tions that require library calls in the main application. This strategy optimizes
performance and minimizes the possibility of losing information when interrupt
events occur rapidly.

• Writing the Interrupt Vector – The dsPIC30F devices use interrupt vectors to
transfer application control when an interrupt occurs. An interrupt vector is a
dedicated location in program memory that specifies the address of an ISR.
Applications must contain valid function addresses in these locations to use
interrupts.

• Interrupt Service Routine Context Saving – To handle returning from an
interrupt to code in the same conditional state as before the interrupt, context
information from specific registers must be saved.

• Latency – The time between when an interrupt is called and when the first ISR
instruction is executed is the latency of the interrupt.

• Nesting Interrupts – MPLAB C30 supports nested interrupts.
• Enabling/Disabling Interrupts – Enabling and disabling interrupt sources occurs

at two levels: globally and individually.
• Sharing Memory Between Interrupt Service Routines and Mainline Code –

How to mitigate potential hazards when this technique is used.
© 2005 Microchip Technology Inc. DS51284D-page 87

MPLAB® C30 User’s Guide
7.3 WRITING AN INTERRUPT SERVICE ROUTINE

Following the guidelines in this section, you can write all of your application code,
including your interrupt service routines, using only C language constructs.

7.3.1 Guidelines for Writing ISR’s

The guidelines for writing ISR’s are:

• declare ISR’s with no parameters and a void return type (mandatory)
• do not let ISR’s be called by main line code (mandatory)
• do not let ISR’s call other functions (recommended)

An MPLAB C30 ISR is like any other C function in that it can have local variables and
access global variables. However, an ISR needs to be declared with no parameters
and no return value. This is necessary because the ISR, in response to a hardware
interrupt or trap, is invoked asynchronously to the mainline C program (that is, it is not
called in the normal way, so parameters and return values don’t apply).

ISR’s should only be invoked through a hardware interrupt or trap and not from other
C functions. An ISR uses the return from interrupt (RETFIE) instruction to exit from the
function rather than the normal RETURN instruction. Using a RETFIE instruction out of
context can corrupt processor resources, such as the status register.

Finally, ISR’s should not call other functions. This is recommended because of latency
issues. See Section 7.6 “Latency” for more information.

7.3.2 Syntax for Writing ISR’s

To declare a C function as an interrupt handler, tag the function with the interrupt
attribute (see § 2.3 for a description of the __attribute__ keyword). The syntax of
the interrupt attribute is:

__attribute__((interrupt [(
 [save(symbol-list)]
 [, irq(irqid)]
 [, altirq(altirqid)]
 [, preprologue(asm)]
)]
))

The interrupt attribute name and the parameter names may be written with a pair
of underscore characters before and after the name. Thus, interrupt and
__interrupt__ are equivalent, as are save and __save__.

The optional save parameter names a list of one or more variables that are to be
saved and restored on entry to and exit from the ISR. The list of names is written inside
parentheses, with the names separated by commas.

You should arrange to save global variables that may be modified in an ISR if you do
not want the value to be exported. Global variables modified by an ISR should be
qualified volatile.

The optional irq parameter allows you to place an interrupt vector at a specific
interrupt, and the optional altirq parameter allows you to place an interrupt vector
at a specified alternate interrupt. Each parameter requires a parenthesized interrupt ID
number. (See Section 7.4 “Writing the Interrupt Vector” for a list of interrupt ID’s.)

The optional preprologue parameter allows you to insert assembly-language
statements into the generated code immediately before the compiler-generated
function prologue.
DS51284D-page 88 © 2005 Microchip Technology Inc.

Interrupts
7.3.3 Coding ISR’s

The following prototype declares function isr0 to be an interrupt handler:

void __attribute__((__interrupt__)) isr0(void);

As this prototype indicates, interrupt functions must not take parameters nor may they
return a value. The compiler arranges for all working registers to be preserved, as well
as the status register and the repeat count register, if necessary. Other variables may
be saved by naming them as parameters of the interrupt attribute. For example, to
have the compiler automatically save and restore the variables var1 and var2, use
the following prototype:

void __attribute__((__interrupt__(__save__(var1,var2)))) isr0(void);

To request the compiler to use the fast context save (using the push.s and pop.s
instructions), tag the function with the shadow attribute (see
Section 2.3.2 “Specifying Attributes of Functions”). For example:

void __attribute__((__interrupt__, __shadow__)) isr0(void);

7.3.4 Using Macros to Declare Simple ISRs

If an interrupt handler does not require any of the optional parameters of the interrupt
attribute, then a simplified syntax may be used. The following macros are defined in the
device-specific header files:

#define _ISR __attribute__((interrupt))
#define _ISRFAST __attribute__((interrupt, shadow))

For example, to declare an interrupt handler for the timer0 interrupt:

#include <p30fxxxx.h>
void _ISR _INT0Interrupt(void);

To declare an interrupt handler for the SPI1 interrupt with fast context save:

#include <p30fxxxx.h>
void _ISRFAST _SPI1Interrupt(void);
© 2005 Microchip Technology Inc. DS51284D-page 89

MPLAB® C30 User’s Guide
7.4 WRITING THE INTERRUPT VECTOR

The dsPIC DSC device has two interrupt vector tables – a primary and an alternate
table – each containing 62 exception vectors.

The 62 exception sources have associated with them a primary and alternate exception
vector, each occupying a program word, as shown in Table 7-1. The alternate vector
name is used when the ALTIVT bit is set in the INTCON2 register.

Note: A device reset is not handled through the interrupt vector table. Instead,
upon device reset, the program counter is cleared. This causes the proces-
sor to begin execution at address zero. By convention, the linker script con-
structs a GOTO instruction at that location which transfers control to the C
runtime startup module.

TABLE 7-1: INTERRUPT VECTORS

IRQ# Vector Function Primary Name Alternate Name

n/a Reserved _ReservedTrap0 _AltReservedTrap0

n/a Oscillator fail trap _OscillatorFail _AltOscillatorFail

n/a Address error trap _AddressError _AltAddressError

n/a Stack error trap _StackError _AltStackError

n/a Math error trap _MathError _AltMathError

n/a Reserved _ReservedTrap5 _AltReservedTrap5

n/a Reserved _ReservedTrap6 _AltReservedTrap6

n/a Reserved _ReservedTrap7 _AltReservedTrap7

0 INT0-External interrupt 0 _INT0Interrupt _AltINT0Interrupt

1 IC1-Input capture 1 _IC1Interrupt _AltIC1Interrupt

2 OC1-Output compare 1 _OC1Interrupt _AltOC1Interrupt

3 TMR1-Timer 1 _T1Interrupt _AltT1Interrupt

4 IC2-Input capture 2 _IC2Interrupt _AltIC2Interrupt

5 OC2-Output compare 2 _OC2Interrupt _AltOC2Interrupt

6 TMR2-Timer 2 _T2Interrupt _AltT2Interrupt

7 TMR3-Timer 3 _T3Interrupt _AltT3Interrupt

8 SPI1-Serial peripheral interface 1 _SPI1Interrupt _AltSPI1Interrupt

9 UART1RX-UART1 Receiver _U1RXInterrupt _AltU1RXInterrupt

10 UART1TX-UART1 Transmitter _U1TXInterrupt _AltU1TXInterrupt

11 ADC-ADC convert done _ADCInterrupt _AltADCInterrupt

12 NVM-NVM write complete _NVMInterrupt _AltNVMInterrupt

13 Slave I2C Interrupt _SI2CInterrupt _AltSI2CInterrupt

14 Master I2C Interrupt _MI2CInterrupt _AltMI2CInterrupt

15 CN-Input change interrupt _CNInterrupt _AltCNInterrupt

16 INT1-External interrupt 1 _INT1Interrupt _AltINT1Interrupt

17 IC7-Input capture 7 _IC7Interrupt _AltIC7Interrupt

18 IC8-Input capture 8 _IC8Interrupt _AltIC8Interrupt

19 OC3-Output compare 3 _OC3Interrupt _AltOC3Interrupt

20 OC4-Output compare 4 _OC4Interrupt _AltOC4Interrupt

21 TMR4-Timer 4 _T4Interrupt _AltT4Interrupt

22 TMR5-Timer 5 _T5Interrupt _AltT5Interrupt

23 INT2-External interrupt 2 _INT2Interrupt _AltINT2Interrupt
DS51284D-page 90 © 2005 Microchip Technology Inc.

Interrupts
To field an interrupt, a function’s address must be placed at the appropriate address in
one of the vector tables, and the function must preserve any system resources that it
uses. It must return to the foreground task using a RETFIE processor instruction.
Interrupt functions may be written in C. When a C function is designated as an interrupt
handler, the compiler arranges to preserve all the system resources which the compiler
uses, and to return from the function using the appropriate instruction. The compiler
can optionally arrange for the interrupt vector table to be populated with the interrupt
function’s address.

24 UART2RX-UART2 receiver _U2RXInterrupt _AltU2RXInterrupt

25 UART2TX-UART2 transmitter _U2TXInterrupt _AltU2TXInterrupt

26 SPI2-Serial peripheral interface 2 _SPI2Interrupt _AltSPI2Interrupt

27 CAN1-Combined IRQ _C1Interrupt _AltC1Interrupt

28 IC3-Input capture 3 _IC3Interrupt _AltIC3Interrupt

29 IC4-Input capture 4 _IC4Interrupt _AltIC4Interrupt

30 IC5-Input capture 5 _IC5Interrupt _AltIC5Interrupt

31 IC6-Input capture 6 _IC6Interrupt _AltIC6Interrupt

32 OC5-Output compare 5 _OC5Interrupt _AltOC5Interrupt

33 OC6-Output compare 6 _OC6Interrupt _AltOC6Interrupt

34 OC7-Output compare 7 _OC7Interrupt _AltOC7Interrupt

35 OC8-Output compare 8 _OC8Interrupt _AltOC8Interrupt

36 INT3-External interrupt 3 _INT3Interrupt _AltINT3Interrupt

37 INT4-External interrupt 4 _INT4Interrupt _AltINT4Interrupt

38 CAN2-Combined IRQ _C2Interrupt _AltC2Interrupt

39 PWM-PWM period match _PWMInterrupt _AltPWMInterrupt

40 QEI-Position counter compare _QEIInterrupt _AltQEIInterrupt

41 DCI-CODEC transfer done _DCIInterrupt _AltDCIInterrupt

42 PLVD-Low voltage detect _LVDInterrupt _AltLVDInterrupt

43 FLTA-MPWM fault A _FLTAInterrupt _AltFLTAInterrupt

44 FLTB-MPWM fault B _FLTBInterrupt _AltFLTBInterrupt

45 Reserved _Interrupt45 _AltInterrupt45

46 Reserved _Interrupt46 _AltInterrupt46

47 Reserved _Interrupt47 _AltInterrupt47

48 Reserved _Interrupt48 _AltInterrupt48

49 Reserved _Interrupt49 _AltInterrupt49

50 Reserved _Interrupt50 _AltInterrupt50

51 Reserved _Interrupt51 _AltInterrupt51

52 Reserved _Interrupt52 _AltInterrupt52

53 Reserved _Interrupt53 _AltInterrupt53

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

IRQ# Vector Function Primary Name Alternate Name
© 2005 Microchip Technology Inc. DS51284D-page 91

MPLAB® C30 User’s Guide
To arrange for the compiler to fill in the interrupt vector to point to the interrupt function,
name the function as denoted in the preceding table. For example, the stack error
vector will automatically be filled if the following function is defined:

void __attribute__((__interrupt__)) _StackError(void);

Note the use of the leading underscore. Similarly, the alternate stack error vector will
automatically be filled if the following function is defined:

void __attribute__((__interrupt__)) _AltStackError(void);

Again, note the use of the leading underscore.

For all interrupt vectors without specific handlers, a default interrupt handler will be
installed. The default interrupt handler is supplied by the linker and simply resets the
device. An application may also provide a default interrupt handler by declaring an
interrupt function with the name _DefaultInterrupt.

The last nine interrupt vectors in each table do not have predefined hardware functions.
The vectors for these interrupts may be filled by using the names indicated in the
preceding table, or, names more appropriate to the application may be used, while still
filling the appropriate vector entry by using the irq or altirq parameter of the
interrupt attribute. For example, to specify that a function should use primary interrupt
vector fifty-two, use the following:

void __attribute__((__interrupt__(__irq__(52)))) MyIRQ(void);

Similarly, to specify that a function should use alternate interrupt vector fifty-two, use
the following:

void __attribute__((__interrupt__(__altirq__(52)))) MyAltIRQ(void);

The irq/altirq number can be one of the interrupt request numbers 45 to 53. If the
irq parameter of the interrupt attribute is used, the compiler creates the external
symbol name __Interruptn, where n is the vector number. Therefore, the C
identifiers _Interrupt45 through _Interrupt53 are reserved by the compiler. In
the same way, if the altirq parameter of the interrupt attribute is used, the compiler
creates the external symbol name __AltInterruptn, where n is the vector number.
Therefore, the C identifiers _AltInterrupt45 through _AltInterrupt53 are
reserved by the compiler.

7.5 INTERRUPT SERVICE ROUTINE CONTEXT SAVING

Interrupts, by their very nature, can occur at unpredictable times. Therefore, the
interrupted code must be able to resume with the same machine state that was present
when the interrupt occurred.

To properly handle a return from interrupt, the setup (prologue) code for an ISR function
automatically saves the compiler-managed working and special function registers on
the stack for later restoration at the end of the ISR. You can use the optional save
parameter of the interrupt attribute to specify additional variables and special
function registers to be saved and restored.

In certain applications, it may be necessary to insert assembly statements into the
interrupt service routine immediately prior to the compiler-generated function prologue.
For example, it may be required that a semaphore be incremented immediately on
entry to an interrupt service routine. This can be done as follows:

void
__attribute__((__interrupt__(__preprologue__("inc _semaphore"))))
 isr0(void);
DS51284D-page 92 © 2005 Microchip Technology Inc.

Interrupts
7.6 LATENCY

There are two elements that affect the number of cycles between the time the interrupt
source occurs and the execution of the first instruction of your ISR code. These are:

• Processor Servicing of Interrupt – The amount of time it takes the processor to
recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value refer to the processor data sheet for the specific processor
and interrupt source being used.

• ISR Code – MPLAB C30 saves the registers that it uses in the ISR. This includes
the working registers and the RCOUNT special function register. Moreover, if the
ISR calls an ordinary function, then the compiler will save all the working registers
and RCOUNT, even if they are not all used explicitly in the ISR itself. This must be
done, because the compiler cannot know, in general, which resources are used by
the called function.

7.7 NESTING INTERRUPTS

The dsPIC30F devices support nested interrupts. Since processor resources are saved
on the stack in an ISR, nested ISR’s are coded in just the same way as non-nested
ones. Nested interrupts are enabled by clearing the NSTDIS (nested interrupt disable)
bit in the INTCON1 register. Note that this is the default condition as the dsPIC30F
device comes out of reset with nested interrupts enabled. Each interrupt source is
assigned a priority in the interrupt priority control registers (IPCn). If there is a pending
IRQ with a priority level equal to or greater than the current processor priority level in
the processor status register (CPUPRI field in the ST register), an interrupt will be
presented to the processor.

7.8 ENABLING/DISABLING INTERRUPTS

Each interrupt source can be individually enabled or disabled. One interrupt enable bit
for each IRQ is allocated in the interrupt enable control registers (IECn). Setting an
interrupt enable bit to one (1) enables the corresponding interrupt; clearing the interrupt
enable bit to zero (0) disables the corresponding interrupt. When the device comes out
of reset, all interrupt enable bits are cleared to zero. In addition, the processor has a
disable interrupt instruction (DISI) that can disable all interrupts for a specified number
of instruction cycles.

The DISI instruction can be used in a C program through in-line assembly. For
example, the in-line assembly statement:

__asm__ volatile ("disi #16");

will emit the specified DISI instruction at the point it appears in the source program. A
disadvantage of using DISI in this way is that the C programmer cannot always be sure
how the C compiler with translate C source to machine instructions, so it may be difficult
to determine the cycle count for the DISI instruction. It is possible to get around this
difficulty by bracketing the code that is to be protected from interrupts by DISI
instructions, the first of which sets the cycle count to the maximum value, and the
second of which sets the cycle count to zero. For example,

__asm__ volatile("disi #0x3FFF"); /* disable interrupts */
/* ... protected C code ... */
__asm__ volatile("disi #0x0000"); /* enable interrupts */

Note: Traps, such as the address error trap, cannot be disabled. Only IRQs can
be disabled.
© 2005 Microchip Technology Inc. DS51284D-page 93

MPLAB® C30 User’s Guide
An alternative approach is to write directly to the DISICNT register to enable interrupts.
The DISICNT register may be modified only after a DISI instruction has been issued
and if the contents of the DISICNT register are not zero.

__asm__ volatile("disi #0x3FFF"); /* disable interrupts */
/* ... protected C code ... */
DISICNT = 0x0000; /* enable interrupts */

7.9 SHARING MEMORY BETWEEN INTERRUPT SERVICE ROUTINES AND
MAINLINE CODE

Care must be taken when modifying the same variable within a main or low-priority
Interrupt Service Routine (ISR) and a high-priority ISR. Higher priority interrupts, when
enabled, can interrupt a multiple instruction sequence and yield unexpected results
when a low-priority function has created a multiple instruction Read-Modify-Write
sequence accessing the same variable. Therefore, embedded systems must imple-
ment an atomic operation to ensure that the intervening high-priority ISR will not write
to the same variable from which the low-priority ISR has just read, but has not yet com-
pleted its write.

An atomic operation is one that cannot be broken down into its constituent parts - it can-
not be interrupted. Depending upon the particular architecture involved, not all C
expressions translate into an atomic operation. On dsPIC DSC devices, these expres-
sions mainly fall into the following categories: 32-bit expressions, floating point arith-
metic, division, and operations on multi-bit bit-fields. Other factors will determine
whether or not an atomic operation will be generated, such as memory model settings,
optimization level, and resource availability.

Consider the general expression:

 foo = bar op baz;

The operator (op) may or may not be atomic, based on device architecture. In any
event, the compiler may not be able to generate the atomic operation in all instances -
this will very much depend upon several factors:

• the availability of an appropriate atomic machine instruction
• the resource availability - special registers or other constraints
• the optimization level, and other options that affect data/code placement

Without knowledge of the architecture, it is reasonable to assume that the general
expression requires two reads, one for each operand and one write to store the result.
Several difficulties may arise in the presence of interrupt sequences; they very much
depend on the particular application.
DS51284D-page 94 © 2005 Microchip Technology Inc.

Interrupts
7.9.1 Development Issues

Here are some examples:

EXAMPLE 7-1: BAR MUST MATCH BAZ

If it is required that bar and baz match, (i.e., are updated synchronously with each
other), there is a possible hazard if either bar or baz can be updated within a higher
priority interrupt expression. Here are some sample flow sequences:

1. safe read bar

read baz

perform operation

write back result to foo

2. unsafe read bar

interrupt modifies baz

read baz

perform operation

write back result to foo

3. safe read bar

read baz

interrupt modifies bar or baz

perform operation

write back result to foo

The first is safe because any interrupt falls outside the boundaries of the expression.
The second is unsafe because the application demands that bar and baz be updated
synchronously with each other. The third is probably safe - foo will possibly have an
old value, but the value will be consistent with the data that was available at the start
of the expression.

EXAMPLE 7-2: TYPE OF FOO, BAR AND BAZ

Another variation depends upon the type of foo, bar and baz. The operations "read
bar", "read baz", or "write back result to foo" may not be atomic, depending upon the
architecture of the target processor. For example, dsPIC DSC devices can read or write
an 8-bit, 16-bit, or 32-bit quantity in 1 (atomic) instruction. But, a 32-bit quantity may
require two instructions depending upon instruction selection (which in turn will depend
upon optimization and memory model settings). Assume that the types are long and
the compiler is unable to choose atomic operations for accessing the data. Then the
access becomes:

read lsw bar

read msw bar

read lsw baz

read msw baz

perform operation (on lsw and on msw)

perform operation

write back lsw result to foo

write back msw result to foo

Now there are more possibilities for an update of bar or baz to cause unexpected data.
© 2005 Microchip Technology Inc. DS51284D-page 95

MPLAB® C30 User’s Guide
EXAMPLE 7-3: BIT-FIELDS

A third cause for concern are bit-fields. C allows memory to be allocated at the bit level,
but does not define any bit operations. In the purest sense, any operation on a bit will
be treated as an operation on the underlying type of the bit-field and will usually require
some operations to extract the field from bar and baz or to insert the field into foo.
The important consideration to note is that (again depending upon instruction architec-
ture, optimization levels, and memory settings) an interrupted routine that writes to any
portion of the bit-field where foo resides may be corruptible. This is particularly appar-
ent in the case where one of the operands is also the destination.

The dsPIC DSC instruction set can operate on 1 bit atomically. The compiler may select
these instructions depending upon optimization level, memory settings, and resource
availability.

EXAMPLE 7-4: CACHED MEMORY VALUES IN REGISTERS

Finally, the compiler may choose to cache memory values in registers. These are often
referred to as register variables and are particularly prone to interrupt corruption, even
when an operation involving the variable is not being interrupted. Ensure that memory
resources shared between an ISR and an interruptible function are designated as vol-
atile. This will inform the compiler that the memory location may be updated
out-of-line from the serial code sequence. This will not protect against the effect of
non-atomic operations, but is never-the-less important.

7.9.2 Development Solutions

Here are some strategies to remove potential hazards:

• Design the software system such that the conflicting event cannot occur. Do not
share memory between ISRs and other functions. Make ISRs as simple as possi-
ble and move the real work to main code.

• Use care when sharing memory and, if possible, avoid sharing bit-fields which
contain multiple bits.

• Protect non-atomic updates of shared memory from interrupts as you would pro-
tect critical sections of code. The following macro can be used for this purpose:

 #define INTERRUPT_PROTECT(x) { \
 char saved_ipl; \
 \
 SET_AND_SAVE_CPU_IPL(saved_ipl,7); \
 x; \
 RESTORE_CPU_IPL(saved_ipl); } (void) 0;

This macro disables interrupts by increasing the current priority level to 7, per-
forming the desired statement, and then restoring the previous priority level.
DS51284D-page 96 © 2005 Microchip Technology Inc.

Interrupts
7.9.3 Application Example

The following example highlights some of the points discussed in this section:

void __attribute__((interrupt))
 HigherPriorityInterrupt(void) {
 /* User Code Here */
 LATGbits.LATG15 = 1; /* Set LATG bit 15 */
 IPC0bits.INT0IP = 2; /* Set Interrupt 0
 priority (multiple
 bits involved) to 2 */
 }

int main(void) {
 /* More User Code */
 LATGbits.LATG10 ^= 1; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements XOR operation,
 then writes result to LATG */

 LATG = 0x1238; /* No problem, this is a write
 only assignment operation */

 LATGbits.LATG5 = 1; /* No problem likely,
 this is an assignment of a
 single bit and will use a single
 instruction bit set operation */

 LATGbits.LATG2 = 0; /* No problem likely,
 single instruction bit clear
 operation probably used */

 LATG += 0x0001; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements add operation,
 then writes result to LATG */

 IPC0bits.T1IP = 5; /* HAZARD -
 Assigning a multiple bitfield
 can generate a multiple
 instruction sequence */

}

A statement can be protected from interrupt using the INTERRUPT_PROTECT macro
provided above. For this example:

INTERRUPT_PROTECT(LATGbits.LATG15 ^= 1); /* Not interruptible by
 level 1-7 interrupt
 requests and safe
 at any optimization
 level */
© 2005 Microchip Technology Inc. DS51284D-page 97

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 98 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Chapter 8. Mixing Assembly Language and C Modules
8.1 INTRODUCTION

This section describes how to use assembly language and C modules together. It gives
examples of using C variables and functions in assembly code and examples of using
assembly language variables and functions in C.

8.2 HIGHLIGHTS

Items discussed in this chapter are:

• Mixing Assembly Language and C Variables and Functions – Separate
assembly language modules may be assembled, then linked with compiled C
modules.

• Using Inline Assembly Language – Assembly language instructions may be
embedded directly into the C code. The inline assembler supports both simple
(non-parameterized) assembly language statement, as well as extended
(parameterized) statements, where C variables can be accessed as operands of
an assembler instruction.

8.3 MIXING ASSEMBLY LANGUAGE AND C VARIABLES AND FUNCTIONS

The following guidelines indicate how to interface separate assembly language
modules with C modules.

• Follow the register conventions described in Section 4.13 “Register
Conventions”. In particular, registers W0-W7 are used for parameter passing. An
assembly language function will receive parameters, and should pass arguments
to called functions, in these registers.

• Functions not called during interrupt handling must preserve registers W8-W15.
That is, the values in these registers must be saved before they are modified and
restored before returning to the calling function. Registers W0-W7 may be used
without restoring their values.

• Interrupt functions must preserve all registers. Unlike a normal function call, an
interrupt may occur at any point during the execution of a program. When return-
ing to the normal program, all registers must be as they were before the interrupt
occurred.

• Variables or functions declared within a separate assembly file that will be
referenced by any C source file should be declared as global using the assembler
directive.global. External symbols should be preceded by at least one
underscore. The C function main is named _main in assembly and conversely an
assembly symbol _do_something will be referenced in C as do_something.
Undeclared symbols used in assembly files will be treated as externally defined.

The following example shows how to use variables and functions in both assembly
language and C regardless of where they were originally defined.

The file ex1.c defines foo and cVariable to be used in the assembly language file.
The C file also shows how to call an assembly function, asmFunction, and how to
access the assembly defined variable, asmVariable.
© 2005 Microchip Technology Inc. DS51284D-page 99

MPLAB® C30 User’s Guide
EXAMPLE 8-1: MIXING C AND ASSEMBLY

/*
** file: ex1.c
*/
extern unsigned int asmVariable;
extern void asmFunction(void);
unsigned int cVariable;
void foo(void)
{
 asmFunction();
 asmVariable = 0x1234;
}

The file ex2.s defines asmFunction and asmVariable as required for use in a
linked application. The assembly file also shows how to call a C function, foo, and how
to access a C defined variable, cVariable.

;
; file: ex2.s
;
 .text
 .global _asmFunction
_asmFunction:
 mov #0,w0
 mov w0,_cVariable
 return

 .global _begin
_main:
 call _foo
 return

 .bss
 .global _asmVariable
 .align 2
_asmVariable: .space 2
 .end

In the C file, ex1.c, external references to symbols declared in an assembly file are
declared using the standard extern keyword; note that asmFunction, or
_asmFunction in the assembly source, is a void function and is declared
accordingly.

In the assembly file, ex1.s, the symbols _asmFunction, _main and _asmVariable
are made globally visible through the use of the .global assembler directive and can
be accessed by any other source file. The symbol _main is only referenced and not
declared; therefore, the assembler takes this to be an external reference.

The following MPLAB C30 example shows how to call an assembly function with two
parameters. The C function main in call1.c calls the asmFunction in call2.s
with two parameters.
DS51284D-page 100 © 2005 Microchip Technology Inc.

Mixing Assembly Language and C Modules
EXAMPLE 8-2: CALLING AN ASSEMBLY FUNCTION IN C

/*
** file: call1.c
*/
extern int asmFunction(int, int);
int x;
void
main(void)
{
 x = asmFunction(0x100, 0x200);
}

The assembly-language function sums its two parameters and returns the result.

;
; file: call2.s
;
 .global _asmFunction
_asmFunction:
 add w0,w1,w0
 return
 .end

Parameter passing in C is detailed in Section 4.12.2 “Return Value”. In the preceding
example, the two integer arguments are passed in the W0 and W1 registers. The
integer return result is transferred via register W0. More complicated parameter lists
may require different registers and care should be taken in the hand-written assembly
to follow the guidelines.

8.4 USING INLINE ASSEMBLY LANGUAGE

Within a C function, the asm statement may be used to insert a line of assembly
language code into the assembly language that the compiler generates. Inline
assembly has two forms: simple and extended.

In the simple form, the assembler instruction is written using the syntax:

asm ("instruction");

where instruction is a valid assembly-language construct. If you are writing inline
assembly in ANSI C programs, write __asm__ instead of asm.

In an extended assembler instruction using asm, the operands of the instruction are
specified using C expressions. The extended syntax is:

asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]
]);

You must specify an assembler instruction template, plus an operand constraint
string for each operand. The template specifies the instruction mnemonic, and
optionally placeholders for the operands. The constraint strings specify operand
constraints, for example, that an operand must be in a register (the usual case), or that
an operand must be an immediate value.

The following constraint letters are supported by MPLAB C30.

Note: Only a single string can be passed to the simple form of inline
assembly.
© 2005 Microchip Technology Inc. DS51284D-page 101

MPLAB® C30 User’s Guide
TABLE 8-1: CONSTRAINT LETTERS SUPPORTED BY MPLAB® C30

For example, here is how to use the swap instruction (which the compiler does not gen-
erally use):

asm ("swap %0" : "+r"(var));

Here var is the C expression for the operand, which is both an input and an output
operand. The operand is constrained to be of type r, which denotes a register operand.
The + in +r indicates that the operand is both an input and output operand.

Each operand is described by an operand-constraint string followed by the C expres-
sion in parentheses. A colon separates the assembler template from the first output
operand, and another separates the last output operand from the first input, if any.
Commas separate output operands and separate inputs.

If there are no output operands but there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go. The
compiler requires that the output operand expressions must be L-values. The input
operands need not be L-values. The compiler cannot check whether the operands
have data types that are reasonable for the instruction being executed. It does not
parse the assembler instruction template and does not know what it means, or whether
it is valid assembler input. The extended asm feature is most often used for machine
instructions that the compiler itself does not know exist. If the output expression cannot
be directly addressed (for example, it is a bit-field), the constraint must allow a register.
In that case, MPLAB C30 will use the register as the output of the asm, and then store
that register into the output. If output operands are write-only, MPLAB C30 will assume
that the values in these operands before the instruction are dead and need not be
generated.

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given
as strings separated by commas). Here is an example:

asm volatile ("mul.b %0"
: /* no outputs */
: "U" (nvar)
: "w2");

Letter Constraint

= Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data.

+ Means that this operand is both read and written by the instruction.

& Means that this operand is an earlyclobber operand, which is modified
before the instruction is finished using the input operands. Therefore, this
operand may not lie in a register that is used as an input operand or as part of
any memory address.

g Any register, memory or immediate integer operand is allowed, except for
registers that are not general registers.

i An immediate integer operand (one with constant value) is allowed. This
includes symbolic constants whose values will be known only at assembly time.

r A register operand is allowed provided that it is in a general register.

0, 1, … ,
9

An operand that matches the specified operand number is allowed. If a digit is
used together with letters within the same alternative, the digit should come last.

T A near or far data operand.

U A near data operand.
DS51284D-page 102 © 2005 Microchip Technology Inc.

Mixing Assembly Language and C Modules
In this case, the operand nvar is a character variable declared in near data space, as
specified by the “U” constraint. If the assembler instruction can alter the flags (condition
code) register, add “cc” to the list of clobbered registers. If the assembler instruction
modifies memory in an unpredictable fashion, add “memory” to the list of clobbered
registers. This will cause MPLAB C30 to not keep memory values cached in registers
across the assembler instruction.

You can put multiple assembler instructions together in a single asm template,
separated with newlines (written as \n). The input operands and the output operands’
addresses are ensured not to use any of the clobbered registers, so you can read and
write the clobbered registers as many times as you like. Here is an example of multiple
instructions in a template; it assumes that the subroutine _foo accepts arguments in
registers W0 and W1:

asm ("mov %0,w0\nmov %1,W1\ncall _foo"
: /* no outputs */
: "g" (a), "g" (b)
: "W0", "W1");

In this example, the constraint strings “g” indicate a general operand. Unless an output
operand has the & constraint modifier, MPLAB C30 may allocate it in the same register
as an unrelated input operand, on the assumption that the inputs are consumed before
the outputs are produced. This assumption may be false if the assembler code actually
consists of more than one instruction. In such a case, use & for each output operand
that may not overlap an input operand. For example, consider the following function:

int
exprbad(int a, int b)
{
 int c;

 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=r"(c) : "r"(a), "r"(b));

 return(c);
}

The intention is to compute the value (a + b) << a. However, as written, the value
computed may or may not be this value. The correct coding informs the compiler that
the operand c is modified before the asm instruction is finished using the input
operands, as follows:

int
exprgood(int a, int b)
{
 int c;

 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=&r"(c) : "r"(a), "r"(b));

 return(c);
}

© 2005 Microchip Technology Inc. DS51284D-page 103

MPLAB® C30 User’s Guide
When the assembler instruction has a read-write operand, or an operand in which only
some of the bits are to be changed, you must logically split its function into two separate
operands: one input operand and one write-only output operand. The connection
between them is expressed by constraints that say they need to be in the same location
when the instruction executes. You can use the same C expression for both operands
or different expressions. For example, here is the add instruction with bar as its
read-only source operand and foo as its read-write destination:

asm ("add %2,%1,%0"
: "=r" (foo)
: "0" (foo), "r" (bar));

The constraint “0” for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand and must refer to an output
operand. Only a digit in the constraint can ensure that one operand will be in the same
place as another. The mere fact that foo is the value of both operands is not enough
to ensure that they will be in the same place in the generated assembler code. The fol-
lowing would not work:

asm ("add %2,%1,%0"
: "=r" (foo)
: "r" (foo), "r" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different
registers. For example, the compiler might find a copy of the value of foo in one
register and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address).

If is also possible to specify input and output operands using symbolic names that can
be referenced within the assembler code template. These names are specified inside
square brackets preceding the constraint string, and can be referenced inside the
assembler code template using %[name] instead of a percentage sign followed by the
operand number. Using named operands, the above example could be coded as
follows:

asm ("add %[foo],%[bar],%[foo]"
: [foo] "=r" (foo)
: "0" (foo), [bar] "r" (bar));

You can prevent an asm instruction from being deleted, moved significantly, or
combined, by writing the keyword volatile after the asm. For example:

#define disi(n) \
asm volatile ("disi #%0" \
: /* no outputs */ \
: "i" (n))

In this case, the constraint letter “i” denotes an immediate operand, as required by the
disi instruction.
DS51284D-page 104 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Appendix A. Implementation-Defined Behavior
A.1 INTRODUCTION

This section discusses MPLAB C30 implementation-defined behavior. The ISO
standard for C requires that vendors document the specifics of “implementation
defined” features of the language.

Items discussed in this chapter are:

• Translation
• Environment
• Identifiers
• Characters
• Integers
• Floating Point
• Arrays and Pointers
• Registers
• Structures, Unions, Enumerations and Bit-fields
• Qualifiers
• Declarators
• Statements
• Preprocessing Directives
• Library Functions
• Signals
• Streams and Files
• tmpfile
• errno
• Memory
• abort
• exit
• getenv
• system
• strerror
© 2005 Microchip Technology Inc. DS51284D-page 105

MPLAB® C30 User’s Guide
A.2 TRANSLATION

Implementation-Defined Behavior for Translation is covered in section G.3.1 of the
ANSI C Standard.

Is each non-empty sequence of white-space characters, other than new-line, retained
or is it replaced by one space character? (ISO 5.1.1.2)

It is replaced by one space character.

How is a diagnostic message identified? (ISO 5.1.1.3)

Diagnostic messages are identified by prefixing them with the source file name and line
number corresponding to the message, separated by colon characters (‘:’).

Are there different classes of message? (ISO 5.1.1.3)

Yes.

If yes, what are they? (ISO 5.1.1.3)

Errors, which inhibit production of an output file, and warnings, which do not inhibit
production of an output file.

What is the translator return status code for each class of message?

The return status code for errors is 1; for warnings it is 0.

Can a level of diagnostic be controlled? (ISO 5.1.1.3)

Yes.

If yes, what form does the control take? (ISO 5.1.1.3)

Compiler command line options may be used to request or inhibit the generation of
warning messages.

A.3 ENVIRONMENT

Implementation-Defined Behavior for Environment is covered in section G.3.2 of the
ANSI C Standard.

What library facilities are available to a freestanding program? (ISO 5.1.2.1)

All of the facilities of the standard C library are available, provided that a small set of
functions is customized for the environment, as described in the “Runtime Libraries"
section.

Describe program termination in a freestanding environment. (ISO 5.1.2.1)

If the function main returns or the function exit is called, a HALT instruction is executed
in an infinite loop. This behavior is customizable.

Describe the arguments (parameters) passed to the function main? (ISO 5.1.2.2.1)

No parameters are passed to main.

Which of the following is a valid interactive device: (ISO 5.1.2.3)

Asynchronous terminalNo

Paired display and keyboardNo

Inter program connectionNo

Other, please describe?None
DS51284D-page 106 © 2005 Microchip Technology Inc.

Implementation-Defined Behavior
A.4 IDENTIFIERS

Implementation-Defined Behavior for Identifiers is covered in section G.3.3 of the ANSI
C Standard.

How many characters beyond thirty-one (31) are significant in an identifier without
external linkage? (ISO 6.1.2)

All characters are significant.

How many characters beyond six (6) are significant in an identifier with external
linkage? (ISO 6.1.2)

All characters are significant.

Is case significant in an identifier with external linkage? (ISO 6.1.2)

Yes.

A.5 CHARACTERS

Implementation-Defined Behavior for Characters is covered in section G.3.4 of the
ANSI C Standard.

Detail any source and execution characters which are not explicitly specified by the
Standard? (ISO 5.2.1)

None.

List escape sequence value produced for listed sequences. (ISO 5.2.2)

How many bits are in a character in the execution character set? (ISO 5.2.4.2)

8.

What is the mapping of members of the source character sets (in character and string
literals) to members of the execution character set? (ISO 6.1.3.4)

The identity function.

What is the equivalent type of a plain char? (ISO 6.2.1.1)

Either (user defined). The default is signed char. A compiler command-line option
may be used to make the default unsigned char.

TABLE A-1: ESCAPE SEQUENCE CHARACTERS AND VALUES

Sequence Value

\a 7

\b 8

\f 12

\n 10

\r 13

\t 9

\v 11
© 2005 Microchip Technology Inc. DS51284D-page 107

MPLAB® C30 User’s Guide
A.6 INTEGERS

Implementation-Defined Behavior for Integers is covered in section G.3.5 of the ANSI
C Standard.

The following table describes the amount of storage and range of various types of
integers: (ISO 6.1.2.5)

What is the result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot
be represented? (ISO 6.2.1.2)

There is a loss of significance. No error is signaled.

What are the results of bitwise operations on signed integers? (ISO 6.3)

Shift operators retain the sign. Other operators act as for unsigned integers.

What is the sign of the remainder on integer division? (ISO 6.3.5)

+

What is the result of a right shift of a negative-valued signed integral type? (ISO 6.3.7)

The sign is retained.

A.7 FLOATING POINT

Implementation-Defined Behavior for Floating Point is covered in section G.3.6 of the
ANSI C Standard.

Is the scaled value of a floating constant that is in the range of the representable value
for its type, the nearest representable value, or the larger representable value immedi-
ately adjacent to the nearest representable value, or the smallest representable value
immediately adjacent to the nearest representable value? (ISO 6.1.3.1)

The nearest representable value.

TABLE A-2: INTEGER TYPES

Designation Size (bits) Range

char 8 -128 … 127

signed char 8 -128 … 127

unsigned char 8 0 … 255

short 16 -32768 … 32767

signed short 16 -32768 … 32767

unsigned short 16 0 … 65535

int 16 -32768 … 32767

signed int 16 -32768 … 32767

unsigned int 16 0 … 65535

long 32 -2147483648 … 2147438647

signed long 32 -2147483648 … 2147438647

unsigned long 32 0 … 4294867295
DS51284D-page 108 © 2005 Microchip Technology Inc.

Implementation-Defined Behavior
The following table describes the amount of storage and range of various types of
floating point numbers: (ISO 6.1.2.5)

What is the direction of truncation, when an integral number is converted to a
floating-point number, that cannot exactly represent the original value? (ISO 6.2.1.3)

Down.

What is the direction of truncation, or rounding, when a floating-point number is
converted to a narrower floating-point number? (ISO 6.2.1.4)

Down.

A.8 ARRAYS AND POINTERS

Implementation-Defined Behavior for Arrays and Pointers is covered in section G.3.7
of the ANSI C Standard.

What is the type of the integer required to hold the maximum size of an array that is,
the type of the size of operator, size_t? (ISO 6.3.3.4, ISO 7.1.1)

unsigned int.

What is the size of integer required for a pointer to be converted to an integral type?
(ISO 6.3.4)

16 bits.

What is the result of casting a pointer to an integer, or vice versa? (ISO 6.3.4)

The mapping is the identity function.

What is the type of the integer required to hold the difference between two pointers to
members of the same array, ptrdiff_t? (ISO 6.3.6, ISO 7.1.1)

unsigned int.

A.9 REGISTERS

Implementation-Defined Behavior for Registers is covered in section G.3.8 of the ANSI
C Standard.

To what extent does the storage class specifier register actually effect the storage
of objects in registers? (ISO 6.5.1)

If optimization is disabled, an attempt will be made to honor the register storage
class; otherwise, it is ignored.

TABLE A-3: FLOATING-POINT TYPES

Designation Size (bits) Range

float 32 1.175494e-38 … 3.40282346e+38

double* 32 1.175494e-38 … 3.40282346e+38

long double 64 2.22507385e-308 … 1.79769313e+308

* double is equivalent to long double if -fno-short-double is used.
© 2005 Microchip Technology Inc. DS51284D-page 109

MPLAB® C30 User’s Guide
A.10 STRUCTURES, UNIONS, ENUMERATIONS AND BIT-FIELDS

Implementation-Defined Behavior for Structures, Unions, Enumerations and Bit-fields
is covered in sections A.6.3.9 and G.3.9 of the ANSI C Standard.

What are the results if a member of a union object is accessed using a member of a
different type? (ISO 6.3.2.3)

No conversions are applied.

Describe the padding and alignment of members of structures? (ISO 6.5.2.1)

Chars are byte aligned. All other objects are word aligned.

What is the equivalent type for a plain int bit-field? (ISO 6.5.2.1)

User defined. By default, signed int bit-field. May be made an unsigned int
bit-field using a command line option.

What is the order of allocation of bit-fields within an int? (ISO 6.5.2.1)

Bits are allocated from least-significant to most-significant.

Can a bit-field straddle a storage-unit boundary? (ISO 6.5.2.1)

Yes.

Which integer type has been chosen to represent the values of an enumeration type?
(ISO 6.5.2.2)

int.

A.11 QUALIFIERS

Implementation-Defined Behavior for Qualifiers is covered in section G.3.10 of the
ANSI C Standard.

Describe what action constitutes an access to an object that has volatile-qualified type?
(ISO 6.5.3)

If an object is named in an expression, it has been accessed.

A.12 DECLARATORS

Implementation-Defined Behavior for Declarators is covered in section G.3.11 of the
ANSI C Standard.

What is the maximum number of declarators that may modify an arithmetic, structure,
or union type? (ISO 6.5.4)

No limit.

A.13 STATEMENTS

Implementation-Defined Behavior for Statements is covered in section G.3.12 of the
ANSI C Standard.

What is the maximum number of case values in a switch statement? (ISO 6.6.4.2)

No limit.
DS51284D-page 110 © 2005 Microchip Technology Inc.

Implementation-Defined Behavior
A.14 PREPROCESSING DIRECTIVES

Implementation-Defined Behavior for Preprocessing Directives is covered in section
G.3.13 of the ANSI C Standard.

Does the value of a single-character character constant in a constant expression, that
controls conditional inclusion, match the value of the same character constant in the
execution character set? (ISO 6.8.1)

Yes.

Can such a character constant have a negative value? (ISO 6.8.1)

Yes.

What method is used for locating includable source files? (ISO 6.8.2)

The preprocessor searches the current directory, followed by directories named using
command-line options.

How are headers identified, or the places specified? (ISO 6.8.2)

The headers are identified on the #include directive, enclosed between < and >
delimiters, or between “ and ” delimiters. The places are specified using command-line
options.

Are quoted names supported for includable source files? (ISO 6.8.2)

Yes.

What is the mapping between delimited character sequences and external source file
names? (ISO 6.8.2)

The identity function.

Describe the behavior of each recognized #pragma directive. (ISO 6.8.6)

What are the definitions for __ DATE __ and __ TIME __ respectively, when the date
and time of translation are not available? (ISO 6.8.8)

Not applicable. The compiler is not supported in environments where these functions
are not available.

TABLE A-4: #PRAMA BEHAVIOR

Pragma Behavior

#pragma code section-name Names the code section.

#pragma code Resets the name of the code section to its default
(viz., .text).

#pragma idata section-name Names the initialized data section.

#pragma idata Resets the name of the initialized data section to its
default value (viz., .data).

#pragma udata section-name Names the uninitialized data section.

#pragma udata Resets the name of the uninitialized data section to
its default value (viz., .bss).

#pragma interrupt
 function-name

Designates function-name as an interrupt function.
© 2005 Microchip Technology Inc. DS51284D-page 111

MPLAB® C30 User’s Guide
A.15 LIBRARY FUNCTIONS

Implementation-Defined Behavior for Library Functions is covered in section G.3.14 of
the ANSI C Standard.

What is the null pointer constant to which the macro NULL expands? (ISO 7.1.5)

0.

How is the diagnostic printed by the assert function recognized, and what is the
termination behavior of this function? (ISO 7.2)

The assert function prints the file name, line number and test expression, separated by
the colon character (‘:’). It then calls the abort function.

What characters are tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions? (ISO 7.3.1)

What values are returned by the mathematics functions after a domain errors?
(ISO 7.5.1)

NaN.

Do the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors? (ISO 7.5.1)

Yes.

Do you get a domain error or is zero returned when the fmod function has a second
argument of zero? (ISO 7.5.6.4)

Domain error.

TABLE A-5: CHARACTERS TESTED BY IS FUNCTIONS

Function Characters tested

isalnum One of the letters or digits: isalpha or isdigit.

isalpha One of the letters: islower or isupper.

iscntrl One of the five standard motion control characters, backspace and alert:
\f, \n, \r, \t, \v, \b, \a.

islower One of the letters ‘a’ through ‘z’.

isprint A graphic character or the space character: isalnum or ispunct or
space.

isupper One of the letters ‘A’ through ‘Z’.

ispunct One of the characters: ! " # % & ' () ; < = > ? [\] * + , - . / : ^
DS51284D-page 112 © 2005 Microchip Technology Inc.

Implementation-Defined Behavior
A.16 SIGNALS

What is the set of signals for the signal function? (ISO 7.7.1.1)

Describe the parameters and the usage of each signal recognized by the signal
function. (ISO 7.7.1.1)

Application defined.

Describe the default handling and the handling at program startup for each signal
recognized by the signal function? (ISO 7.7.1.1)

None.

If the equivalent of signal (sig,SIG_DFL); is not executed prior to the call of a signal
handler, what blocking of the signal is performed? (ISO 7.7.1.1)

None.

Is the default handling reset if a SIGILL signal is received by a handler specified to the
signal function? (ISO 7.7.1.1)

No.

A.17 STREAMS AND FILES

Does the last line of a text stream require a terminating new-line character? (ISO 7.9.2)

No.

Do space characters, that are written out to a text stream immediately before a new-line
character, appear when the stream is read back in? (ISO 7.9.2)

Yes.

How many null characters may be appended to data written to a binary stream?
(ISO 7.9.2)

None.

Is the file position indicator of an append mode stream initially positioned at the start or
end of the file? (ISO 7.9.3)

Start.

Does a write on a text stream cause the associated file to be truncated beyond that
point? (ISO 7.9.3)

Application defined.

Describe the characteristics of file buffering. (ISO 7.9.3)

Fully buffered.

Can zero-length file actually exist? (ISO 7.9.3)

Yes.

TABLE A-6: SIGNAL FUNCTION

Name Description

SIGABRT Abnormal termination.

SIGINT Receipt of an interactive attention signal.

SIGILL Detection of an invalid function image.

SIGFPE An erroneous arithmetic operation.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.
© 2005 Microchip Technology Inc. DS51284D-page 113

MPLAB® C30 User’s Guide
What are the rules for composing a valid file name? (ISO 7.9.3)

Application defined.

Can the same file be open multiple times? (ISO 7.9.3)

Application defined.

What is the effect of the remove function on an open file? (ISO 7.9.4.1)

Application defined.

What is the effect if a file with the new name exists prior to a call to the rename function?
(ISO 7.9.4.2)

Application defined.

What is the form of the output for %p conversion in the fprintf function? (ISO 7.9.6.1)

A hexadecimal representation.

What form does the input for %p conversion in the fscanf function take? (ISO 7.9.6.2)

A hexadecimal representation.

A.18 TMPFILE

Is an open temporary file removed if the program terminates abnormally? (ISO 7.9.4.3)

Yes.

A.19 ERRNO

What value is the macro errno set to by the fgetpos or ftell function on failure?
(ISO 7.9.9.1, (ISO 7.9.9.4)

Application defined.

What is the format of the messages generated by the perror function? (ISO 7.9.10.4)

The argument to perror, followed by a colon, followed by a text description of the
value of errno.

A.20 MEMORY

What is the behavior of the calloc, malloc or realloc function if the size requested
is zero? (ISO 7.10.3)

A block of zero length is allocated.

A.21 ABORT

What happens to open and temporary files when the abort function is called?
(ISO 7.10.4.1)

Nothing.

A.22 EXIT

What is the status returned by the exit function if the value of the argument is other than
zero, EXIT_SUCCESS, or EXIT_FAILURE? (ISO 7.10.4.3)

The value of the argument.
DS51284D-page 114 © 2005 Microchip Technology Inc.

Implementation-Defined Behavior
A.23 GETENV

What limitations are there on environment names? (ISO 7.10.4.4)

Application defined.

Describe the method used to alter the environment list obtained by a call to the getenv
function. (ISO 7.10.4.4)

Application defined.

A.24 SYSTEM

Describe the format of the string that is passed to the system function. (ISO 7.10.4.5)

Application defined.

What mode of execution is performed by the system function? (ISO 7.10.4.5)

Application defined.

A.25 STRERROR

Describe the format of the error message output by the strerror function.
(ISO 7.11.6.2)

A plain character string.

List the contents of the error message strings returned by a call to the strerror
function. (ISO 7.11.6.2)

TABLE A-7: ERROR MESSAGE STRINGS

Errno Message

0 no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EFOPEN file open error

nnn error #nnn
© 2005 Microchip Technology Inc. DS51284D-page 115

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 116 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Appendix B. MPLAB C30 C Compiler Diagnostics
B.1 INTRODUCTION

This appendix lists the most common diagnostic messages generated by the MPLAB
C30 compiler.

The MPLAB C30 compiler can produce two kinds of diagnostic messages: errors and
warnings. Each kind has a different purpose:

• Errors reports problems that make it impossible to compile your program. MPLAB
C30 reports errors with the source file name and line number where the problem
is apparent.

• Warnings reports other unusual conditions in your code that may indicate a
problem, although compilation can (and does) proceed. Warning messages also
report the source file name and line number, but include the text ‘warning:’ to
distinguish them from error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of
non-standard features of MPLAB C30 C. Many warnings are issued only if you ask for
them, with one of the -W options (for instance,-Wall requests a variety of useful
warnings).

In rare instances, the compiler may issue an internal error message report. This
signifies that the compiler itself has detected a fault that should be reported to
Microchip support. Details on contacting support are contained elsewhere in this
manual.

B.2 ERRORS

Symbols

\x used with no following HEX digits

The escape sequence \x should be followed by hex digits.

‘&’ constraint used with no register class

The asm statement is invalid.

‘%’ constraint used with last operand

The asm statement is invalid.

#elif after #else

In a preprocessor conditional, the #else clause must appear after any #elif clauses.

#elif without #if

In a preprocessor conditional, the #if must be used before using the #elif.

#else after #else

In a preprocessor conditional, the #else clause must appear only once.

#else without #if

In a preprocessor conditional, the #if must be used before using the #else.
© 2005 Microchip Technology Inc. DS51284D-page 117

MPLAB® C30 User’s Guide
#endif without #if

In a preprocessor conditional, the #if must be used before using the #endif.

#error ‘message’

This error appears in response to a #error directive.

#if with no expression

A expression that evaluates to a constant arithmetic value was expected.

#include expects “FILENAME” or <FILENAME>

The file name for the #include is missing or incomplete. It must be enclosed by quotes
or angle brackets.

‘#’ is not followed by a macro parameter

The stringsize operator, ‘#’ must be followed by a macro argument name.

‘#keyword’ expects “FILENAME” or <FILENAME>

The specified #keyword expects a quoted or bracketed filename as an argument.

‘#’ is not followed by a macro parameter

The ‘#’ operator should be followed by a macro argument name.

‘##’ cannot appear at either end of a macro expansion

The concatenation operator, ‘##’ may not appear at the start or the end of a macro
expansion.

A

a parameter list with an ellipsis can’t match an empty parameter name list
declaration

The declaration and definition of a function must be consistent.

“symbol” after #line is not a positive integer

 #line is expecting a source line number which must be positive.

aggregate value used where a complex was expected

Do not use aggregate values where complex values are expected.

aggregate value used where a float was expected

Do not use aggregate values where floating-point values are expected.

aggregate value used where an integer was expected

Do not use aggregate values where integer values are expected.

alias arg not a string

The argument to the alias attribute must be a string that names the target for which the
current identifier is an alias.

alignment may not be specified for ‘identifier’

The aligned attribute may only be used with a variable.

‘__alignof’ applied to a bit-field

The ‘__alignof’ operator may not be applied to a bit-field.

alternate interrupt vector is not a constant

The interrupt vector number must be an integer constant.

alternate interrupt vector number n is not valid

A valid interrupt vector number is required.
DS51284D-page 118 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
ambiguous abbreviation argument

The specified command-line abbreviation is ambiguous.

an argument type that has a default promotion can’t match an empty parameter
name list declaration.

The declaration and definition of a function must be consistent.

args to be formatted is not ...

The first-to-check index argument of the format attribute specifies a parameter that is
not declared ‘…’.

argument ‘identifier’ doesn’t match prototype

Function argument types should match the function’s prototype.

argument of ‘asm’ is not a constant string

The argument of ‘asm’ must be a constant string.

argument to ‘-B’ is missing

The directory name is missing.

argument to ‘-l’ is missing

The library name is missing.

argument to ‘-specs’ is missing

The name of the specs file is missing.

argument to ‘-specs=’ is missing

The name of the specs file is missing.

argument to ‘-x’ is missing

The language name is missing.

argument to ‘-Xlinker’ is missing

The argument to be passed to the linker is missing.

arithmetic on pointer to an incomplete type

Arithmetic on a pointer to an incomplete type is not allowed.

array index in non-array initializer

Do not use array indices in non-array initializers.

array size missing in ‘identifier’

An array size is missing.

array subscript is not an integer

Array subscripts must be integers.

‘asm’ operand constraint incompatible with operand size

The asm statement is invalid.

‘asm’ operand requires impossible reload

The asm statement is invalid.

asm template is not a string constant

Asm templates must be string constants.

assertion without predicate

#assert or #unassert must be followed by a predicate, which must be a single identifier.

‘attribute’ attribute applies only to functions

The attribute ‘attribute’ may only be applied to functions.
© 2005 Microchip Technology Inc. DS51284D-page 119

MPLAB® C30 User’s Guide
B

bit-field ‘identifier’ has invalid type

Bit-fields must be of enumerated or integral type.

bit-field ‘identifier’ width not an integer constant

Bit-field widths must be integer constants.

both long and short specified for ‘identifier’

A variable cannot be of type long and of type short.

both signed and unsigned specified for ‘identifier’

A variable cannot be both signed and unsigned.

braced-group within expression allowed only inside a function

It is illegal to have a braced-group within expression outside a function.

break statement not within loop or switch

Break statements must only be used within a loop or switch.

__builtin_longjmp second argument must be 1

__builtin_longjmp requires its second argument to be 1.

C

called object is not a function

Only functions may be called in C.

cannot convert to a pointer type

The expression cannot be converted to a pointer type.

cannot put object with volatile field into register

It is not legal to put an object with a volatile field into a register.

cannot reload integer constant operand in ‘asm’

The asm statement is invalid.

cannot specify both near and far attributes

The attributes near and far are mutually exclusive, only one may be used for a function
or variable.

cannot take address of bit-field ‘identifier’

It is not legal to attempt to take address of a bit-field.

can’t open ‘file’ for writing

The system cannot open the specified ‘file’. Possible causes are not enough disk space
to open the file, the directory does not exist, or there is no write permission in the
destination directory.

can’t set ‘attribute’ attribute after definition

The ‘attribute’ attribute must be used when the symbol is defined.

case label does not reduce to an integer constant

Case labels must be compile-time integer constants.

case label not within a switch statement

Case labels must be within a switch statement.

cast specifies array type

It is not permissible for a cast to specify an array type.
DS51284D-page 120 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
cast specifies function type

It is not permissible for a cast to specify a function type.

cast to union type from type not present in union

When casting to a union type, do so from type present in the union.

char-array initialized from wide string

Char-arrays should not be initialized from wide strings. Use ordinary strings.

file: compiler compiler not installed on this system

Only the C compiler is distributed; other high-level languages are not supported.

complex invalid for ‘identifier’

The complex qualifier may only be applied to integral and floating types.

conflicting types for ‘identifier’

Multiple, inconsistent declarations exist for identifier.

continue statement not within loop

Continue statements must only be used within a loop.

conversion to non-scalar type requested

Type conversion must be to a scalar (not aggregate) type.

D

data type of ‘name’ isn’t suitable for a register

The data type does not fit into the requested register.

declaration for parameter ‘identifier’ but no such parameter

Only parameters in the parameter list may be declared.

declaration of ‘identifier’ as array of functions

It is not legal to have an array of functions.

declaration of ‘identifier’ as array of voids

It is not legal to have an array of voids.

‘identifier’ declared as function returning a function

Functions may not return functions.

‘identifier’ declared as function returning an array

Functions may not return arrays.

decrement of pointer to unknown structure

Do not decrement a pointer to an unknown structure.

‘default’ label not within a switch statement

Default case labels must be within a switch statement.

‘symbol’ defined both normally and as an alias

A ‘symbol’ can not be used as an alias for another symbol if it has already been defined.

‘defined’ cannot be used as a macro name

The macro name cannot be called ‘defined’.

dereferencing pointer to incomplete type

A dereferenced pointer must be a pointer to an incomplete type.

division by zero in #if

Division by zero is not computable.
© 2005 Microchip Technology Inc. DS51284D-page 121

MPLAB® C30 User’s Guide
duplicate case value

Case values must be unique.

duplicate label ‘identifier’

Labels must be unique within their scope.

duplicate macro parameter ‘symbol’

‘symbol’ has been used more than once in the parameter list.

duplicate member ‘identifier’

Structures may not have duplicate members.

duplicate (or overlapping) case value

Case ranges must not have a duplicate or overlapping value. The error message ‘this
is the first entry overlapping that value’ will provide the location of the first occurrence
of the duplicate or overlapping value. Case ranges are an extension of the ANSI
standard for MPLAB C30.

E

elements of array ‘identifier’ have incomplete type

Array elements should have complete types.

empty character constant

Empty character constants are not legal.

empty file name in ‘#keyword’

The filename specified as an argument of the specified #keyword is empty.

empty index range in initializer

Do not use empty index ranges in initializers

empty scalar initializer

Scalar initializers must not be empty.

enumerator value for ‘identifier’ not integer constant

Enumerator values must be integer constants.

error closing ‘file’

The system cannot close the specified ‘file’. Possible causes are not enough disk
space to write to the file or the file is too big.

error writing to ‘file’

The system cannot write to the specified ‘file’. Possible causes are not enough disk
space to write to the file or the file is too big.

excess elements in char array initializer

There are more elements in the list than the initializer value states.

excess elements in struct initializer

Do not use excess elements in structure initializers.

expression statement has incomplete type

The type of the expression is incomplete.

extra brace group at end of initializer

Do not place extra brace groups at the end of initializers.

extraneous argument to ‘option’ option

There are too many arguments to the specified command-line option.
DS51284D-page 122 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
F

‘identifier’ fails to be a typedef or built in type

A data type must be a typedef or built-in type.

field ‘identifier’ declared as a function

Fields may not be declared as functions.

field ‘identifier’ has incomplete type

Fields must have complete types.

first argument to __builtin_choose_expr not a constant

The first argument must be a constant expression that can be determined at compile
time.

flexible array member in otherwise empty struct

A flexible array member must be the last element of a structure with more than one
named member.

flexible array member in union

A flexible array member cannot be used in a union.

flexible array member not at end of struct

A flexible array member must be the last element of a structure.

‘for’ loop initial declaration used outside C99 mode

A ‘for’ loop initial declaration is not valid outside C99 mode.

format string arg follows the args to be formatted

The arguments to the format attribute are inconsistent. The format string argument
index must be less than the index of the first argument to check.

format string arg not a string type

The format string index argument of the format attribute specifies a parameter which is
not a string type.

format string has invalid operand number

The operand number argument of the format attribute must be a compile-time constant.

function definition declared ‘register’

Function definitions may not be declared ‘register’.

function definition declared ‘typedef’

Function definitions may not be declared ‘typedef’.

function does not return string type

The format_arg attribute may only be used with a function which return value is a string
type.

function ‘identifier’ is initialized like a variable

It is not legal to initialize a function like a variable.

function return type cannot be function

The return type of a function cannot be a function.
© 2005 Microchip Technology Inc. DS51284D-page 123

MPLAB® C30 User’s Guide
G

global register variable follows a function definition

Global register variables should precede function definitions.

global register variable has initial value

Do not specify an initial value for a global register variable.

global register variable ‘identifier’ used in nested function

Do not use a global register variable in a nested function.

H

‘identifier’ has an incomplete type

It is not legal to have an incomplete type for the specified ‘identifier’.

‘identifier’ has both ‘extern’ and initializer

A variable declared ‘extern’ cannot be initialized.

hexadecimal floating constants require an exponent

Hexadecimal floating constants must have exponents.

I

implicit declaration of function ‘identifier’

The function identifier is used without a preceding prototype declaration or function
definition.

impossible register constraint in ‘asm’

The asm statement is invalid.

incompatible type for argument n of ‘identifier’

When calling functions in C, ensure that actual argument types match the formal
parameter types.

incompatible type for argument n of indirect function call

When calling functions in C, ensure that actual argument types match the formal
parameter types.

incompatible types in operation

The types used in operation must be compatible.

incomplete ‘name’ option

The option to the command-line parameter name is incomplete.

inconsistent operand constraints in an ‘asm’

The asm statement is invalid.

increment of pointer to unknown structure

Do not increment a pointer to an unknown structure.

initializer element is not computable at load time

Initializer elements must be computable at load time.

initializer element is not constant

Initializer elements must be constant.

initializer fails to determine size of ‘identifier’

An array initializer fails to determine its size.
DS51284D-page 124 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
initializer for static variable is not constant

Static variable initializers must be constant.

initializer for static variable uses complicated arithmetic

Static variable initializers should not use complicated arithmetic.

input operand constraint contains ‘constraint’

The specified constraint is not valid for an input operand.

int-array initialized from non-wide string

Int-arrays should not be initialized from non-wide strings.

interrupt functions must not take parameters

An interrupt function cannot receive parameters. void must be used to state explicitly
that the argument list is empty.

interrupt functions must return void

An interrupt function must have a return type of void. No other return type is allowed.

interrupt modifier ‘name’ unknown

The compiler was expecting ‘irq’, ‘altirq’ or ‘save’ as an interrupt attribute modifier.

interrupt modifier syntax error

There is a syntax error with the interrupt attribute modifier.

interrupt pragma must have file scope

#pragma interrupt must be at file scope.

interrupt save modifier syntax error

There is a syntax error with the ‘save’ modifier of the interrupt attribute.

interrupt vector is not a constant

The interrupt vector number must be an integer constant.

interrupt vector number n is not valid

A valid interrupt vector number is required.

invalid #ident directive

#ident should be followed by a quoted string literal.

invalid arg to ‘__builtin_frame_address’

The argument should be the level of the caller of the function (where 0 yields the frame
address of the current function, 1 yields the frame address of the caller of the current
function, and so on) and is an integer literal.

invalid arg to ‘__builtin_return_address’

The level argument must be an integer literal.

invalid argument for ‘name’

The compiler was expecting ‘data’ or ‘prog’ as the space attribute parameter.

invalid character ‘character’ in #if

This message appears when an unprintable character, such as a control character,
appears after #if.

invalid initial value for member ‘name’

Bit-field ‘name’ can only be initialized by an integer.

invalid initializer

Do not use invalid initializers.
© 2005 Microchip Technology Inc. DS51284D-page 125

MPLAB® C30 User’s Guide
Invalid location qualifier: ‘symbol’

Expecting ‘sfr’ or ‘gpr’, which are ignored on dsPIC DSC devices, as location qualifiers.

invalid operands to binary ‘operator’

The operands to the specified binary operator are invalid.

Invalid option ‘option’

The specified command-line option is invalid.

Invalid option ‘symbol’ to interrupt pragma

Expecting shadow and/or save as options to interrupt pragma.

Invalid option to interrupt pragma

Garbage at the end of the pragma.

Invalid or missing function name from interrupt pragma

The interrupt pragma requires the name of the function being called.

Invalid or missing section name

The section name must start with a letter or underscore (‘_’) and be followed by a
sequence of letters, underscores and/or numbers. The names ‘access’, ‘shared ’ and
‘overlay ’ have special meaning.

invalid preprocessing directive #‘directive’

Not a valid preprocessing directive. Check the spelling.

invalid preprologue argument

The pre prologue option is expecting an assembly statement or statements for its
argument enclosed in double quotes.

invalid register name for ‘name’

File scope variable ‘name’ declared as a register variable with an illegal register name.

invalid register name ‘name’ for register variable

The specified name is not the name of a register.

invalid save variable in interrupt pragma

Expecting a symbol or symbols to save.

invalid storage class for function ‘identifier’

Functions may not have the ‘register’ storage class.

invalid suffix ‘suffix’ on integer constant

Integer constants may be suffixed by the letters ‘u’, ‘U’, ‘l’ and ‘L’ only.

invalid suffix on floating constant

A floating constant suffix may be ‘f’, ‘F’, ‘l’ or ‘L’ only. If there are two ‘L’s, they must be
adjacent and the same case.

invalid type argument of ‘operator’

The type of the argument to operator is invalid.

invalid type modifier within pointer declarator

Only const or volatile may be used as type modifiers within a pointer declarator.

invalid use of array with unspecified bounds

Arrays with unspecified bounds must be used in valid ways.

invalid use of incomplete typedef ‘typedef’

The specified typedef is being used in an invalid way; this is not allowed.
DS51284D-page 126 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
invalid use of undefined type ‘type identifier’

The specified type is being used in an invalid way; this is not allowed.

invalid use of void expression

Void expressions must not be used.

“name” is not a valid filename

#line requires a valid filename.

‘filename’ is too large

The specified file is too large to process the file. Its probably larger than 4 GB, and the
preprocessor refuses to deal with such large files. It is required that files be less than
4 GB in size.

ISO C forbids data definition with no type or storage class

A type specifier or storage class specifier is required for a data definition in ISO C.

ISO C requires a named argument before ‘...’

ISO C requires a named argument before ‘...’.

L

label label referenced outside of any function

Labels may only be referenced inside functions.

label ‘label’ used but not defined

The specified label is used but is not defined.

language ‘name’ not recognized

Permissible languages include: c assembler none.

filename: linker input file unused because linking not done

The specified filename was specified on the command line, and it was taken to be a
linker input file (since it was not recognized as anything else). However, the link step
was not run. Therefore, this file was ignored.

long long long is too long for GCC

MPLAB C30 supports integers no longer than long long.

long or short specified with char for ‘identifier’

The long and short qualifiers cannot be used with the char type.

long or short specified with floating type for ‘identifier’

The long and short qualifiers cannot be used with the float type.

long, short, signed or unsigned invalid for ‘identifier’

The long, short and signed qualifiers may only be used with integral types.

M

macro names must be identifiers

Macro names must start with a letter or underscore followed by more letters, numbers
or underscores.

macro parameters must be comma-separated

Commas are required between parameters in a list of parameters.

macro ‘name’ passed n arguments, but takes just n

Too many arguments were passed to macro ‘name’.
© 2005 Microchip Technology Inc. DS51284D-page 127

MPLAB® C30 User’s Guide
macro ‘name’ requires n arguments, but only n given

Not enough arguments were passed to macro ‘name’.

matching constraint not valid in output operand

The asm statement is invalid.

‘symbol’ may not appear in macro parameter list

 ‘symbol’ is not allowed as a parameter.

Missing ‘=’ for ‘save’ in interrupt pragma

The save parameter requires an equal sign before the variable(s) are listed. For
example, #pragma interrupt isr0 save=var1,var2

missing ‘(’ after predicate

#assert or #unassert expects parentheses around the answer. For example:
ns#assert PREDICATE (ANSWER)

missing ‘(’ in expression

Parentheses are not matching, expecting an opening parenthesis.

missing ‘)’ after “defined”

Expecting a closing parenthesis.

missing ‘)’ in expression

Parentheses are not matching, expecting a closing parenthesis.

missing ‘)’ in macro parameter list

The macro is expecting parameters to be within parentheses and separated by
commas.

missing ‘)’ to complete answer

#assert or #unassert expects parentheses around the answer.

missing argument to ‘option’ option

The specified command-line option requires an argument.

missing binary operator before token ‘token’

Expecting an operator before the ‘token’.

missing terminating ‘character’ character

Missing terminating character such as a single quote ’, double quote ” or right angle
bracket >.

missing terminating > character

Expecting terminating > in #include directive.

more than n operands in ‘asm’

The asm statement is invalid.

multiple default labels in one switch

Only a single default label may be specified for each switch.

multiple parameters named ‘identifier’

Parameter names must be unique.

multiple storage classes in declaration of ‘identifier’

Each declaration should have a single storage class.
DS51284D-page 128 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
N

negative width in bit-field ‘identifier’

Bit-field widths may not be negative.

nested function ‘name’ declared ‘extern’

A nested function cannot be declared ‘extern’.

nested redefinition of ‘identifier’

Nested redefinitions are illegal.

no data type for mode ‘mode’

The argument mode specified for the mode attribute is a recognized GCC machine
mode, but it is not one that is implemented in MPLAB C30.

no include path in which to find ‘name’

Cannot find include file ‘name’.

no macro name given in #‘directive’ directive

A macro name must follow the #define, #undef, #ifdef or #ifndef directives.

nonconstant array index in initializer

Only constant array indices may be used in initializers.

non-prototype definition here

If a function prototype follows a definition without a prototype, and the number of
arguments is inconsistent between the two, this message identifies the line number of
the non-prototype definition.

number of arguments doesn’t match prototype

The number of function arguments must match the function’s prototype.

O

operand constraint contains incorrectly positioned ‘+’ or ‘=’.

The asm statement is invalid.

operand constraints for ‘asm’ differ in number of alternatives

The asm statement is invalid.

operator “defined” requires an identifier

“defined” is expecting an identifier.

operator ‘symbol’ has no right operand

Preprocessor operator ‘symbol’ requires an operand on the right side.

output number n not directly addressable

The asm statement is invalid.

output operand constraint lacks ‘=’

The asm statement is invalid.

output operand is constant in ‘asm’

The asm statement is invalid.

overflow in enumeration values

Enumeration values must be in the range of ‘int’.
© 2005 Microchip Technology Inc. DS51284D-page 129

MPLAB® C30 User’s Guide
P

parameter ‘identifier’ declared void

Parameters may not be declared void.

parameter ‘identifier’ has incomplete type

Parameters must have complete types.

parameter ‘identifier’ has just a forward declaration

Parameters must have complete types; forward declarations are insufficient.

parameter ‘identifier’ is initialized

It is lot legal to initialize parameters.

parameter name missing

The macro was expecting a parameter name. Check for two commas without a name
between.

parameter name missing from parameter list

Parameter names must be included in the parameter list.

parameter name omitted

Parameter names may not be omitted.

param types given both in param list and separately

Parameter types should be given either in the parameter list or separately, but not both.

parse error

The source line cannot be parsed; it contains errors.

pointer value used where a complex value was expected

Do not use pointer values where complex values are expected.

pointer value used where a floating point value was expected

Do not use pointer values where floating-point values are expected.

pointers are not permitted as case values

A case value must be an integer-valued constant or constant expression.

predicate must be an identifier

#assert or #unassert require a single identifier as the predicate.

predicate’s answer is empty

The #assert or #unassert has a predicate and parentheses but no answer inside the
parentheses, which is required.

previous declaration of ‘identifier’

This message identifies the location of a previous declaration of identifier that conflicts
with the current declaration.

identifier previously declared here

This message identifies the location of a previous declaration of identifier that conflicts
with the current declaration.

identifier previously defined here

This message identifies the location of a previous definition of identifier that conflicts
with the current definition.

prototype declaration

Identifies the line number where a function prototype is declared. Used in conjunction
with other error messages.
DS51284D-page 130 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
R

redeclaration of ‘identifier’

The identifier is multiply declared.

redeclaration of ‘enum identifier’

Enums may not be redeclared.

‘identifier’ redeclared as different kind of symbol

Multiple, inconsistent declarations exist for identifier.

redefinition of ‘identifier’

The identifier is multiply defined.

redefinition of ‘struct identifier’

Structs may not be redefined.

redefinition of ‘union identifier’

Unions may not be redefined.

register name given for non-register variable ‘name’

Attempt to map a register to a variable which is not marked as register.

register name not specified for ‘name’

File scope variable ‘name’ declared as a register variable without providing a register.

register specified for ‘name’ isn’t suitable for data type

Alignment or other restrictions prevent using requested register.

request for member ‘identifier’ in something not a structure or union

Only structure or unions have members. It is not legal to reference a member of
anything else, since nothing else has members.

requested alignment is not a constant

The argument to the aligned attribute must be a compile-time constant.

requested alignment is not a power of 2

The argument to the aligned attribute must be a power of two.

requested alignment is too large

The alignment size requested is larger than the linker allows. The size must be 4096
or less and a power of 2.

return type is an incomplete type

Return types must be complete.

S

save variable ‘name’ index not constant

The subscript of the array ‘name’ is not a constant integer.

save variable ‘name’ is not word aligned

The object being saved must be word aligned

save variable ‘name’ size is not even

The object being saved must be evenly sized.

save variable ‘name’ size is not known

The object being saved must have a known size.
© 2005 Microchip Technology Inc. DS51284D-page 131

MPLAB® C30 User’s Guide
section attribute cannot be specified for local variables

Local variables are always allocated in registers or on the stack. It is therefore not legal
to attempt to place local variables in a named section.

section attribute not allowed for identifier

The section attribute may only be used with a function or variable.

section of identifier conflicts with previous declaration

If multiple declarations of the same identifier specify the section attribute, then the
value of the attribute must be consistent.

sfr address ‘address’ is not valid

The address must be less than 0x2000 to be valid.

sfr address is not a constant

The sfr address must be a constant.

‘size of’ applied to a bit-field

‘sizeof’ must not be applied to a bit-field.

size of array ‘identifier’ has non-integer type

Array size specifiers must be of integer type.

size of array ‘identifier’ is negative

Array sizes may not be negative.

size of array ‘identifier’ is too large

The specified array is too large.

size of variable ‘variable’ is too large

The maximum size of the variable can be 32768 bytes.

storage class specified for parameter ‘identifier’

A storage class may not be specified for a parameter.

storage size of ‘identifier’ isn’t constant

Storage size must be compile-time constants.

storage size of ‘identifier’ isn’t known

The size of identifier is incompletely specified.

stray ‘character’ in program

Do not place stray ‘character’ characters in the source program.

strftime formats cannot format arguments

While using the attribute format when the archetype parameter is strftime, the third
parameter to the attribute, which specifies the first parameter to match against the
format string, should be 0. strftime style functions do not have input values to match
against a format string.

structure has no member named ‘identifier’

A structure member named ‘identifier’ is referenced; but the referenced structure
contains no such member. This is not allowed.

subscripted value is neither array nor pointer

Only arrays or pointers may be subscripted.

switch quantity not an integer

Switch quantities must be integers
DS51284D-page 132 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
symbol ‘symbol’ not defined

The symbol ‘symbol’ needs to be declared before it may be used in the pragma.

syntax error

A syntax error exists on the specified line.

syntax error ‘:’ without preceding ‘?’

A ‘:’ must be preceded by ‘?’ in the ‘?:’ operator.

T

the only valid combination is ‘long double’

The long qualifier is the only qualifier that may be used with the double type.

this built-in requires a frame pointer

__builtin_return_address requires a frame pointer. Do not use the
-fomit-frame-pointer option.

this is a previous declaration

If a label is duplicated, this message identifies the line number of a preceding
declaration.

too few arguments to function

When calling a function in C, do not specify fewer arguments than the function requires.
Nor should you specify too many.

too few arguments to function ‘identifier’

When calling a function in C, do not specify fewer arguments than the function requires.
Nor should you specify too many.

too many alternatives in ‘asm’

The asm statement is invalid.

too many arguments to function

When calling a function in C, do not specify more arguments than the function requires.
Nor should you specify too few.

too many arguments to function ‘identifier’

When calling a function in C, do not specify more arguments than the function requires.
Nor should you specify too few.

too many decimal points in number

Expecting only one decimal point.

top-level declaration of ‘identifier’ specifies ‘auto’

Auto variables can only be declared inside functions.

two or more data types in declaration of ‘identifier’

Each identifier may have only a single data type.

two types specified in one empty declaration

No more that one type should be specified.

type of formal parameter n is incomplete

Specify a complete type for the indicated parameter.

type mismatch in conditional expression

Types in conditional expressions must not be mismatched.

typedef ‘identifier’ is initialized

It is not legal to initialize typedef’s. Use __typeof__ instead.
© 2005 Microchip Technology Inc. DS51284D-page 133

MPLAB® C30 User’s Guide
U

‘identifier’ undeclared (first use in this function)

The specified identifier must be declared.

‘identifier’ undeclared here (not in a function)

The specified identifier must be declared.

union has no member named ‘identifier’

A union member named ‘identifier’ is referenced, but the referenced union contains no
such member. This is not allowed.

unknown field ‘identifier’ specified in initializer

Do not use unknown fields in initializers.

unknown machine mode ‘mode’

The argument mode specified for the mode attribute is not a recognized machine
mode.

unknown register name ‘name’ in ‘asm’

The asm statement is invalid.

unrecognized format specifier

The argument to the format attribute is invalid.

unrecognized option ‘-option’

The specified command-line option is not recognized.

unrecognized option ‘option’

‘option’ is not a known option.

‘identifier’ used prior to declaration

The identifier is used prior to its declaration.

unterminated #‘name’

#endif is expected to terminate a #if, #ifdef or #ifndef conditional.

unterminated argument list invoking macro ‘name’

Evaluation of a function macro has encountered the end of file before completing the
macro expansion.

unterminated comment

The end of file was reached while scanning for a comment terminator.

V

‘va_start’ used in function with fixed args

‘va_start’ should be used only in functions with variable argument lists.

variable ‘identifier’ has initializer but incomplete type

It is not legal to initialize variables with incomplete types.

variable or field ‘identifier’ declared void

Neither variables nor fields may be declared void.

variable-sized object may not be initialized

It is not legal to initialize a variable-sized object.

virtual memory exhausted

Not enough memory left to write error message.
DS51284D-page 134 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
void expression between ‘(’ and ‘)’

Expecting a constant expression but found a void expression between the
parentheses.

‘void’ in parameter list must be the entire list

If ‘void’ appears as a parameter in a parameter list, then there must be no other
parameters.

void value not ignored as it ought to be

The value of a void function should not be used in an expression.

W

warning: -pipe ignored because -save-temps specified

The -pipe option cannot be used with the -save-temps option.

warning: -pipe ignored because -time specified

The -pipe option cannot be used with the -time option.

warning: ‘-x spec’ after last input file has no effect

The ‘-x’ command line option affects only those files named after its on the command
line; if there are no such files, then this option has no effect.

weak declaration of ‘name’ must be public

Weak symbols must be externally visible.

weak declaration of ‘name’ must precede definition

‘name’ was defined and then declared weak.

wrong number of arguments specified for attribute attribute

There are too few or too many arguments given for the attribute named ‘attribute’.

wrong type argument to bit-complement

Do not use the wrong type of argument to this operator.

wrong type argument to decrement

Do not use the wrong type of argument to this operator.

wrong type argument to increment

Do not use the wrong type of argument to this operator.

wrong type argument to unary exclamation mark

Do not use the wrong type of argument to this operator.

wrong type argument to unary minus

Do not use the wrong type of argument to this operator.

wrong type argument to unary plus

Do not use the wrong type of argument to this operator.

Z

zero width for bit-field ‘identifier’

Bit-fields may not have zero width.
© 2005 Microchip Technology Inc. DS51284D-page 135

MPLAB® C30 User’s Guide
B.3 WARNINGS

Symbols

‘/*’ within comment

A comment mark was found within a comment.

‘$’ character(s) in identifier or number

Dollar signs in identifier names are an extension to the standard.

#‘directive’ is a GCC extension

#warning, #include_next, #ident, #import, #assert and #unassert directives are GCC
extensions and are not of ISO C89.

#import is obsolete, use an #ifndef wrapper in the header file

The #import directive is obsolete. #import was used to include a file if it hadn’t already
been included. Use the #ifndef directive instead.

#include_next in primary source file

#include_next starts searching the list of header file directories after the directory in
which the current file was found. In this case, there were no previous header files so it
is starting in the primary source file.

#pragma pack (pop) encountered without matching #pragma pack (push, <n>)

The pack(pop) pragma must be paired with a pack(push) pragma, which must precede
it in the source file.

#pragma pack (pop, identifier) encountered without matching #pragma pack
(push, identifier, <n>)

The pack(pop) pragma must be paired with a pack(push) pragma, which must precede
it in the source file.

#warning: message

The directive #warning causes the preprocessor to issue a warning and continue
preprocessing. The tokens following #warning are used as the warning message.

A

absolute address specification ignored

Ignoring the absolute address specification for the code section in the #pragma
statement because it is not supported in MPLAB C30. Addresses must be specified in
the linker script and code sections can be defined with the keyword __attribute__.

address of register variable ‘name’ requested

The register specifier prevents taking the address of a variable.

alignment must be a small power of two, not n

The alignment parameter of the pack pragma must be a small power of two.

anonymous enum declared inside parameter list

An anonymous enum is declared inside a function parameter list. It is usually better
programming practice to declare enums outside parameter lists, since they can never
become complete types when defined inside parameter lists.

anonymous struct declared inside parameter list

An anonymous struct is declared inside a function parameter list. It is usually better
programming practice to declare structs outside parameter lists, since they can never
become complete types when defined inside parameter lists.
DS51284D-page 136 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
anonymous union declared inside parameter list

An anonymous union is declared inside a function parameter list. It is usually better
programming practice to declare unions outside parameter lists, since they can never
become complete types when defined inside parameter lists.

anonymous variadic macros were introduced in C99

Macros which accept a variable number of arguments is a C99 feature.

argument ‘identifier’ might be clobbered by ‘longjmp’ or ‘vfork’

An argument might be changed by a call to longjmp. These warnings are possible only
in optimizing compilation.

array ‘identifier’ assumed to have one element

The length of the specified array was not explicitly stated. In the absence of information
to the contrary, the compiler assumes that it has one element.

array subscript has type ‘char’

An array subscript has type ‘char’.

array type has incomplete element type

Array types should not have incomplete element types.

asm operand n probably doesn’t match constraints

The specified extended asm operand probably doesn’t match its constraints.

assignment of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by assignment.

assignment of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by assignment.

‘identifier’ attribute directive ignored

The named attribute is not a known or supported attribute, and is therefore ignored.

‘identifier’ attribute does not apply to types

The named attribute may not be used with types. It is ignored.

‘identifier’ attribute ignored

The named attribute is not meaningful in the given context, and is therefore ignored.

‘attribute’ attribute only applies to function types

The specified attribute can only be applied to the return types of functions and not to
other declarations.

B

backslash and newline separated by space

While processing for escape sequences, a backslash and newline were found
separated by a space.

backslash-newline at end of file

While processing for escape sequences, a backslash and newline were found at the
end of the file.

bit-field ‘identifier’ type invalid in ISO C

The type used on the specified identifier is not valid in ISO C.

braces around scalar initializer

A redundant set of braces around an initializer is supplied.
© 2005 Microchip Technology Inc. DS51284D-page 137

MPLAB® C30 User’s Guide
built-in function ‘identifier’ declared as non-function

The specified function has the same name as a built-in function, yet is declared as
something other than a function.

C

C++ style comments are not allowed in ISO C89

Use C style comments ‘/*’ and ‘*/’ instead of C++ style comments ‘//’.

call-clobbered register used for global register variable

Choose a register that is normally saved and restored by function calls (W8-W13), so
that library routines will not clobber it.

cannot inline function ‘main’

The function ‘main’ is declared with the inline attribute. This is not supported, since
main must be called from the C start-up code, which is compiled separately.

can’t inline call to ‘identifier’ called from here

The compiler was unable to inline the call to the specified function.

case value ‘n’ not in enumerated type

The controlling expression of a switch statement is an enumeration type, yet a case
expression has the value n, which does not correspond to any of the enumeration
values.

case value ‘value’ not in enumerated type ‘name’

‘value’ is an extra switch case that is not an element of the enumerated type ‘name’.

cast does not match function type

The return type of a function is cast to a type that does not match the function’s type.

cast from pointer to integer of different size

A pointer is cast to an integer that is not 16-bits wide.

cast increases required alignment of target type

When compiling with the -Wcast-align command-line option, the compiler verifies that
casts do not increase the required alignment of the target type. For example, this
warning message will be given if a pointer to char is cast as a pointer to int, since the
aligned for char (byte alignment) is less than the alignment requirement for int (word
alignment).

character constant too long

Character constants must not be too long.

comma at end of enumerator list

Unnecessary comma at the end of the enumerator list.

comma operator in operand of #if

Not expecting a comma operator in the #if directive.

comparing floating point with == or != is unsafe

Floating-point values can be approximations to infinitely precise real numbers. Instead
of testing for equality, use relational operators to see whether the two values have
ranges that overlap.

comparison between pointer and integer

A pointer type is being compared to an integer type.
DS51284D-page 138 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
comparison between signed and unsigned

One of the operands of a comparison is signed, while the other is unsigned. The signed
operand will be treated as an unsigned value, which may not be correct.

comparison is always n

A comparison involves only constant expressions, so the compiler can evaluate the
runtime result of the comparison. The result is always n.

comparison is always n due to width of bit-field

A comparison involving a bit-field always evaluates to n because of the width of the
bit-field.

comparison is always false due to limited range of data type

A comparison will always evaluate to false at runtime, due to the range of the data
types.

comparison is always true due to limited range of data type

A comparison will always evaluate to true at runtime, due to the range of the data types.

comparison of promoted ~unsigned with constant

One of the operands of a comparison is a promoted ~unsigned, while the other is a
constant.

comparison of promoted ~unsigned with unsigned

One of the operands of a comparison is a promoted ~unsigned, while the other is
unsigned.

comparison of unsigned expression >= 0 is always true

A comparison expression compares an unsigned value with zero. Since unsigned
values cannot be less than zero, the comparison will always evaluate to true at runtime.

comparison of unsigned expression < 0 is always false

A comparison expression compares an unsigned value with zero. Since unsigned
values cannot be less than zero, the comparison will always evaluate to false at
runtime.

comparisons like X<=Y<=Z do not have their mathematical meaning

A C expression does not necessarily mean the same thing as the corresponding
mathematical expression. In particular, the C expression X<=Y<=Z is not equivalent to
the mathematical expression X ≤ Y ≤ Z.

conflicting types for built-in function ‘identifier’

The specified function has the same name as a built-in function but is declared with
conflicting types.

const declaration for ‘identifier’ follows non-const

The specified identifier was declared const after it was previously declared as
non-const.

control reaches end of non-void function

All exit paths from non-void function should return an appropriate value. The compiler
detected a case where a non-void function terminates, without an explicit return value.
Therefore, the return value might be unpredictable.

conversion lacks type at end of format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
a format field in the format string lacked a type specifier.
© 2005 Microchip Technology Inc. DS51284D-page 139

MPLAB® C30 User’s Guide
concatenation of string literals with __FUNCTION__ is deprecated

__FUNCTION__ will be handled the same way as __func__ (which is defined by the
ISO standard C99). __func__ is a variable, not a string literal, so it does not catenate
with other string literals.

conflicting types for ‘identifier’

The specified identifier has multiple, inconsistent declarations.

D

data definition has no type or storage class

A data definition was detected that lacked a type and storage class.

data qualifier ‘qualifier’ ignored

Data qualifiers, which include ‘access’, ‘shared’ and ‘overlay’, are not used in MPLAB
C30, but are there for compatibility with MPLAB C17 and C18.

declaration of ‘identifier’ has ‘extern’ and is initialized

Externs should not be initialized.

declaration of ‘identifier’ shadows a parameter

The specified identifier declaration shadows a parameter, making the parameter
inaccessible.

declaration of ‘identifier’ shadows a symbol from the parameter list

The specified identifier declaration shadows a symbol from the parameter list, making
the symbol inaccessible.

declaration of ‘identifier’ shadows global declaration

The specified identifier declaration shadows a global declaration, making the global
inaccessible.

‘identifier’ declared inline after being called

The specified function was declared inline after it was called.

‘identifier’ declared inline after its definition

The specified function was declared inline after it was defined.

‘identifier’ declared ‘static’ but never defined

The specified function was declared static, but was never defined.

decrement of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by decrementing.

decrement of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by decrementing.

‘identifier’ defined but not used

The specified function was defined, but was never used.

deprecated use of label at end of compound statement

A label should not be at the end of a statement. It should be followed by a statement.

dereferencing ‘void *’ pointer

It is not correct to dereference a ‘void *’ pointer. Cast it to a pointer of the appropriate
type before dereferencing the pointer.

division by zero

Compile-time division by zero has been detected.
DS51284D-page 140 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
duplicate ‘const’

The ‘const’ qualifier should be applied to a declaration only once.

duplicate ‘restrict’

The ‘restrict’ qualifier should be applied to a declaration only once.

duplicate ‘volatile’

The ‘volatile’ qualifier should be applied to a declaration only once.

E

embedded ‘\0’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string contains an embedded ‘\0’ (zero), which can cause early termination
of format string processing.

empty body in an else-statement

An else statement is empty.

empty body in an if-statement

An if statement is empty.

empty declaration

The declaration contains no names to declare.

empty range specified

The range of values in a case range is empty, that is, the value of the low expression
is greater than the value of the high expression. Recall that the syntax for case ranges
is case low ... high:.

‘enum identifier’ declared inside parameter list

The specified enum is declared inside a function parameter list. It is usually better
programming practice to declare enums outside parameter lists, since they can never
become complete types when defined inside parameter lists.

enum defined inside parms

An enum is defined inside a function parameter list.

enumeration value ‘identifier’ not handled in switch

The controlling expression of a switch statement is an enumeration type, yet not all
enumeration values have case expressions.

enumeration values exceed range of largest integer

Enumeration values are represented as integers. The compiler detected that an
enumeration range cannot be represented in any of the MPLAB C30 integer formats,
including the largest such format.

excess elements in array initializer

There are more elements in the initializer list than the array was declared with.

excess elements in scalar initializer");

There should be only one initializer for a scalar variable.

excess elements in struct initializer

There are more elements in the initializer list than the structure was declared with.

excess elements in union initializer

There are more elements in the initializer list than the union was declared with.
© 2005 Microchip Technology Inc. DS51284D-page 141

MPLAB® C30 User’s Guide
extra semicolon in struct or union specified

The structure type or union type contains an extra semicolon.

extra tokens at end of #‘directive’ directive

The compiler detected extra text on the source line containing the #‘directive’ directive.

F

-ffunction-sections may affect debugging on some targets

You may have problems with debugging if you specify both the -g option and the
-ffunction-sections option.

first argument of ‘identifier’ should be ‘int’

Expecting declaration of first argument of specified identifier to be of type int.

floating constant exceeds range of ‘double’

A floating-point constant is too large or too small (in magnitude) to be represented as
a ‘double’.

floating constant exceeds range of ‘float’

A floating-point constant is too large or too small (in magnitude) to be represented as
a ‘float’.

floating constant exceeds range of ‘long double’

A floating-point constant is too large or too small (in magnitude) to be represented as
a ‘long double’.

floating point overflow in expression

When folding a floating-point constant expression, the compiler found that the
expression overflowed, that is, it could not be represented as float.

‘type1’ format, ‘type2’ arg (arg ‘num’)

The format is of type ‘type1’, but the argument being passed is of type ‘type2’.
The argument in question is the ‘num’ argument.

format argument is not a pointer (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was not a pointer, san the format specifier indicated
it should be.

format argument is not a pointer to a pointer (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was not a pointer san the format specifier indicated
it should be.

fprefetch-loop-arrays not supported for this target

The option to generate instructions to prefetch memory is not supported for this target.

function call has aggregate value

The return value of a function is an aggregate.

function declaration isn’t a prototype

When compiling with the -Wstrict-prototypes command-line option, the compiler
ensures that function prototypes are specified for all functions. In this case, a function
definition was encountered without a preceding function prototype.

function declared ‘noreturn’ has a ‘return’ statement

A function was declared with the noreturn attribute-indicating that the function does not
return-yet the function contains a return statement. This is inconsistent.
DS51284D-page 142 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
function might be possible candidate for attribute ‘noreturn’

The compiler detected that the function does not return. If the function had been
declared with the ‘noreturn’ attribute, then the compiler might have been able to
generate better code.

function returns address of local variable

Functions should not return the addresses of local variables, since, when the function
returns, the local variables are de-allocated.

function returns an aggregate

The return value of a function is an aggregate.

function ‘name’ redeclared as inline
previous declaration of function ‘name’ with attribute noinline

Function ‘name’ was declared a second time with the keyword ‘inline’, which now
allows the function to be considered for inlining.

function ‘name’ redeclared with attribute noinline
previous declaration of function ‘name’ was inline

Function ‘name’ was declared a second time with the noinline attribute, which now
causes it to be ineligible for inlining.

function ‘identifier’ was previously declared within a block

The specified function has a previous explicit declaration within a block, yet it has an
implicit declaration on the current line.

G

GCC does not yet properly implement ‘[*]’ array declarators

Variable length arrays are not currently supported by the compiler.

H

hex escape sequence out of range

The hex sequence must be less than 100 in hex (256 in decimal).

I

ignoring asm-specifier for non-static local variable ‘identifier’

The asm-specifier is ignored when it is used with an ordinary, non-register local
variable.

ignoring invalid multibyte character

When parsing a multibyte character, the compiler determined that it was invalid. The
invalid character is ignored.

ignoring option ‘option’ due to invalid debug level specification

A debug option was used with a debug level that is not a valid debug level.

ignoring #pragma identifier

The specified pragma is not supported by the MPLAB C30 compiler, and is ignored.

imaginary constants are a GCC extention

ISO C does not allow imaginary numeric constants.

implicit declaration of function ‘identifier’

The specified function has no previous explicit declaration (definition or function
prototype), so the compiler makes assumptions about its return type and parameters.
© 2005 Microchip Technology Inc. DS51284D-page 143

MPLAB® C30 User’s Guide
increment of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by incrementing.

increment of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by incrementing.

initialization of a flexible array member

A flexible array member is intended to be dynamically allocated not statically.

‘identifier’ initialized and declared ‘extern’

Externs should not be initialized.

initializer element is not constant

Initializer elements should be constant.

inline function ‘name’ given attribute noinline

The function ‘name’ has been declared as inline, but the noinline attribute prevents the
function from being considered for inlining.

inlining failed in call to ‘identifier’ called from here

The compiler was unable to inline the call to the specified function.

integer constant is so large that it is unsigned

An integer constant value appears in the source code without an explicit unsigned
modifier, yet the number cannot be represented as a signed int; therefore, the compiler
automatically treats it as an unsigned int.

integer constant is too large for ‘type’ type

An integer constant should not exceed 2^32 - 1 for an unsigned long int, 2^63 - 1 for a
long long int or 2^64 - 1 for an unsigned long long int.

integer overflow in expression

When folding an integer constant expression, the compiler found that the expression
overflowed; that is, it could not be represented as an int.

invalid application of ‘sizeof’ to a function type

It is not recommended to apply the sizeof operator to a function type.

invalid application of ‘sizeof’ to a void type

The sizeof operator should not be applied to a void type.

invalid digit ‘digit’ in octal constant

All digits must be within the radix being used. For instance, only the digits 0 thru 7 may
be used for the octal radix.

invalid second arg to __builtin_prefetch; using zero

Second argument must be 0 or 1.

invalid storage class for function ‘name’

‘auto’ storage class should not be used on a function defined at the top level. ‘static’
storage class should not be used if the function is not defined at the top level.

invalid third arg to __builtin_prefetch; using zero

Third argument must be 0, 1, 2, or 3.

‘identifier’ is an unrecognized format function type

The specified identifier, used with the format attribute, is not one of the recognized
format function types printf, scanf, or strftime.
DS51284D-page 144 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
‘identifier’ is narrower than values of its type

A bit-field member of a structure has for its type an enumeration, but the width of the
field is insufficient to represent all enumeration values.

‘storage class’ is not at beginning of declaration

The specified storage class is not at the beginning of the declaration. Storage classes
are required to come first in declarations.

ISO C does not allow extra ‘;’ outside of a function

An extra ‘;’ was found outside a function. This is not allowed by ISO C.

ISO C does not support ‘++’ and ‘--’ on complex types

The increment operator and the decrement operator are not supported on complex
types in ISO C.

ISO C does not support ‘~’ for complex conjugation

The bitwise negation operator cannot be use for complex conjugation in ISO C.

ISO C does not support complex integer types

Complex integer types, such as __complex__ short int, are not supported in ISO C.

ISO C does not support plain ‘complex’ meaning ‘double complex’

Using __complex__ without another modifier is equivalent to ‘complex double’ which
is not supported in ISO C.

ISO C does not support the ‘char’ ‘kind of format’ format

ISO C does not support the specification character ‘char’ for the specified ‘kind of
format’.

ISO C doesn’t support unnamed structs/unions

All structures and/or unions must be named in ISO C.

ISO C forbids an empty source file

The file contains no functions or data. This is not allowed in ISO C.

ISO C forbids empty initializer braces

ISO C expects initializer values inside the braces.

ISO C forbids nested functions

A function has been defined inside another function.

ISO C forbids omitting the middle term of a ?: expression

The conditional expression requires the middle term or expression between the ‘?’ and
the ‘:’.

ISO C forbids qualified void function return type

A qualifier may not be used with a void function return type.

ISO C forbids range expressions in switch statements

Specifying a range of consecutive values in a single case label is not allowed in ISO C.

ISO C forbids subscripting ‘register’ array

Subscripting a ‘register’ array is not allowed in ISO C.

ISO C forbids taking the address of a label

Taking the address of a label is not allowed in ISO C.

ISO C forbids zero-size array ‘name’

The array size of ‘name’ must be larger than zero.
© 2005 Microchip Technology Inc. DS51284D-page 145

MPLAB® C30 User’s Guide
ISO C restricts enumerator values to range of ‘int’

The range of enumerator values must not exceed the range of the int type.

ISO C89 forbids compound literals

Compound literals are not valid in ISO C89.

ISO C89 forbids mixed declarations and code

Declarations should be done first before any code is written. It should not be mixed in
with the code.

ISO C90 does not support ‘[*]’ array declarators

Variable length arrays are not supported in ISO C90.

ISO C90 does not support complex types

Complex types, such as __complex__ float x, are not supported in ISO C90.

ISO C90 does not support flexible array members

A flexible array member is a new feature in C99. ISO C90 does not support it.

ISO C90 does not support ‘long long’

The long long type is not supported in ISO C90.

ISO C90 does not support ‘static’ or type qualifiers in parameter array
declarators

When using an array as a parameter to a function, ISO C90 does not allow the array
declarator to use ‘static’ or type qualifiers.

ISO C90 does not support the ‘char’ ‘function’ format

ISO C does not support the specification character ‘char’ for the specified function
format.

ISO C90 does not support the ‘modifier’ ‘function’ length modifier

The specified modifier is not supported as a length modifier for the given function.

ISO C90 forbids variable-size array ‘name’

In ISO C90, the number of elements in the array must be specified by an integer
constant expression.

L

label ‘identifier’ defined but not used

The specified label was defined, but not referenced.

large integer implicitly truncated to unsigned type

An integer constant value appears in the source code without an explicit unsigned
modifier, yet the number cannot be represented as a signed int; therefore, the compiler
automatically treats it as an unsigned int.

left-hand operand of comma expression has no effect

One of the operands of a comparison is a promoted ~unsigned, while the other is
unsigned.

left shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.

left shift count is negative

Shift counts should be positive. A negative left shift count does not mean shift right;
it is meaningless.
DS51284D-page 146 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
library function ‘identifier’ declared as non-function

The specified function has the same name as a library function, yet is declared as
something other than a function.

line number out of range

The limit for the line number for a #line directive in C89 is 32767 and in C99 is
2147483647.

‘identifier’ locally external but globally static

The specified identifier is locally external but globally static. This is suspect.

location qualifier ‘qualifier’ ignored

Location qualifiers, which include ‘grp’ and ‘sfr’, are not used in MPLAB C30, but are
there for compatibility with MPLAB C17 and C18.

‘long’ switch expression not converted to ‘int’ in ISO C

ISO C does not convert ‘long’ switch expressions to ‘int’.

M

‘main’ is usually a function

The identifier main is usually used for the name of the main entry point of an
application. The compiler detected that it was being used in some other way, for
example, as the name of a variable.

‘operation’ makes integer from pointer without a cast

A pointer has been implicitly converted to an integer.

‘operation’ makes pointer from integer without a cast

An integer has been implicitly converted to a pointer.

malformed ‘#pragma pack-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma pack(pop[,id])-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma pack(push[,id],<n>)-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma weak-ignored’

The syntax of the weak pragma is incorrect.

‘identifier’ might be used uninitialized in this function

The compiler detected a control path though a function which might use the specified
identifier before it has been initialized.

missing braces around initializer

A required set of braces around an initializer is missing.

missing initializer

An initializer is missing.

modification by ‘asm’ of read-only variable ‘identifier’

A const variable is the left-hand-side of an assignment in an ‘asm’ statement.

multi-character character constant

A character constant contains more than one character.
© 2005 Microchip Technology Inc. DS51284D-page 147

MPLAB® C30 User’s Guide
N

negative integer implicitly converted to unsigned type

A negative integer constant value appears in the source code, but the number cannot
be represented as a signed int; therefore, the compiler automatically treats it as an
unsigned int.

nested extern declaration of ‘identifier’

There are nested extern definitions of the specified identifier.

no newline at end of file

The last line of the source file is not terminated with a newline character.

no previous declaration for ‘identifier’

When compiling with the -Wmissing-declarations command-line option, the
compiler ensures that functions are declared before they are defined. In this case, a
function definition was encountered without a preceding function declaration.

no previous prototype for ‘identifier’

When compiling with the -Wmissing-prototypes command-line option, the
compiler ensures that function prototypes are specified for all functions. In this case, a
function definition was encountered without a preceding function prototype.

no semicolon at end of struct or union

A semicolon is missing at the end of the structure or union declaration.

non-ISO-standard escape sequence, ‘seq’

‘seq’ is ‘\e’ or ‘\E’ and is an extension to the ISO standard. The sequence can be used
in a string or character constant and stands for the ASCII character <ESC>.

non-static declaration for ‘identifier’ follows static

The specified identifier was declared non-static after it was previously declared as
static.

‘noreturn’ function does return

A function declared with the noreturn attribute returns. This is inconsistent.

‘noreturn’ function returns non-void value

A function declared with the noreturn attribute returns a non-void value. This is
inconsistent.

null format string

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string was missing.

O

octal escape sequence out of range

The octal sequence must be less than 400 in octal (256 in decimal).

output constraint ‘constraint’ for operand n is not at the beginning

Output constraints in extended asm should be at the beginning.

overflow in constant expression

The constant expression has exceeded the range of representable values for its type.

overflow in implicit constant conversion

An implicit constant conversion resulted in a number that cannot be represented as a
signed int; therefore, the compiler automatically treats it as an unsigned int.
DS51284D-page 148 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
P

parameter has incomplete type

A function parameter has an incomplete type.

parameter names (without types) in function declaration

The function declaration lists the names of the parameters but not their types.

parameter points to incomplete type

A function parameter points to an incomplete type.

parameter ‘identifier’ points to incomplete type

The specified function parameter points to an incomplete type.

passing arg ‘number’ of ‘name’ as complex rather than floating due to prototype

The prototype declares argument ‘number’ as a complex, but a float value is used so
the compiler converts to a complex to agree with the prototype.

passing arg ‘number’ of ‘name’ as complex rather than integer due to prototype

The prototype declares argument ‘number’ as a complex, but an integer value is used
so the compiler converts to a complex to agree with the prototype.

passing arg ‘number’ of ‘name’ as floating rather than complex due to prototype

The prototype declares argument ‘number’ as a float, but a complex value is used so
the compiler converts to a float to agree with the prototype.

passing arg ‘number’ of ‘name’ as ‘float’ rather than ‘double’ due to prototype

The prototype declares argument ‘number’ as a float, but a double value is used so the
compiler converts to a float to agree with the prototype.

passing arg ‘number’ of ‘name’ as floating rather than integer due to prototype

The prototype declares argument ‘number’ as a float, but an integer value is used so
the compiler converts to a float to agree with the prototype.

passing arg ‘number’ of ‘name’ as integer rather than complex due to prototype

The prototype declares argument ‘number’ as an integer, but a complex value is used
so the compiler converts to an integer to agree with the prototype.

passing arg ‘number’ of ‘name’ as integer rather than floating due to prototype

The prototype declares argument ‘number’ as an integer, but a float value is used so
the compiler converts to an integer to agree with the prototype.

pointer of type ‘void *’ used in arithmetic

A pointer of type ‘void’ has no size and should not be used in arithmetic.

pointer to a function used in arithmetic

A pointer to a function should not be used in arithmetic.

previous declaration of ‘identifier’

This warning message appears in conjunction with another warning message. The
previous message identifies the location of the suspect code. This message identifies
the first declaration or definition of the identifier.

previous implicit declaration of ‘identifier’

This warning message appears in conjunction with the warning message “type
mismatch with previous implicit declaration”. It locates the implicit declaration of the
identifier that conflicts with the explicit declaration.
© 2005 Microchip Technology Inc. DS51284D-page 149

MPLAB® C30 User’s Guide
R

“name” re-asserted

The answer for "name" has been duplicated.

“name” redefined

“name” was previously defined and is being redefined now.

redefinition of ‘identifier’

The specified identifier has multiple, incompatible definitions.

redundant redeclaration of ‘identifier’ in same scope

The specified identifier was re-declared in the same scope. This is redundant.

register used for two global register variables

Two global register variables have been defined to use the same register.

repeated ‘flag’ flag in format

When checking the argument list of a call to strftime, the compiler found that there was
a flag in the format string that is repeated.

When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the flags { ,+,#,0,-} was repeated in the format string.

return-type defaults to ‘int’

In the absence of an explicit function return-type declaration, the compiler assumes
that the function returns an int.

return type of ‘name’ is not ‘int’

The compiler is expecting the return type of ‘name’ to be ‘int’.

‘return’ with a value, in function returning void

The function was declared as void but returned a value.

‘return’ with no value, in function returning non-void

A function declared to return a non-void value contains a return statement with no
value. This is inconsistent.

right shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.

right shift count is negative

Shift counts should be positive. A negative right shift count does not mean shift left; it
is meaningless.

S

second argument of ‘identifier’ should be ‘char **’

Expecting second argument of specified identifier to be of type ‘char **’.

second parameter of ‘va_start’ not last named argument

The second parameter of ‘va_start’ must be the last named argument.

shadowing built-in function ‘identifier’

The specified function has the same name as a built-in function, and consequently
shadows the built-in function.

shadowing library function ‘identifier’

The specified function has the same name as a library function, and consequently
shadows the library function.
DS51284D-page 150 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.

shift count is negative

Shift counts should be positive. A negative left shift count does not mean shift right, nor
does a negative right shift count mean shift left; they are meaningless.

size of ‘name’ is larger than n bytes

Using -Wlarger-than-len will produce the above warning when the size of ‘name’
is larger than the len bytes defined.

size of ‘identifier’ is n bytes

The size of the specified identifier (which is n bytes) is larger than the size specified
with the -Wlarger-than-len command-line option.

size of return value of ‘name’ is larger than n bytes

Using -Wlarger-than-len will produce the above warning when the size of the
return value of ‘name’ is larger than the len bytes defined.

size of return value of ‘identifier’ is n bytes

The size of the return value of the specified function is n bytes, which is larger than the
size specified with the -Wlarger-than-len command-line option.

spurious trailing ‘%’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
there was a spurious trailing ‘%’ character in the format string.

statement with no effect

A statement has no effect.

static declaration for ‘identifier’ follows non-static

The specified identifier was declared static after it was previously declared as
non-static.

string length ‘n’ is greater than the length ‘n’ ISO Cn compilers are required to
support

The maximum string length for ISO C89 is 509. The maximum string length for ISO C99
is 4095.

‘struct identifier’ declared inside parameter list

The specified struct is declared inside a function parameter list. It is usually better
programming practice to declare structs outside parameter lists, since they can never
become complete types when defined inside parameter lists.

struct has no members

The structure is empty, it has no members.

structure defined inside parms

A union is defined inside a function parameter list.

style of line directive is a GCC extension

Use the format ‘#line linenum’ for traditional C.

subscript has type ‘char’

An array subscript has type ‘char’.

suggest explicit braces to avoid ambiguous ‘else’

A nested if statement has an ambiguous else clause. It is recommended that braces be
used to remove the ambiguity.
© 2005 Microchip Technology Inc. DS51284D-page 151

MPLAB® C30 User’s Guide
suggest hiding #directive from traditional C with an indented #

The specified directive is not traditional C and may be ‘hidden’ by indenting the #.
A directive is ignored unless its # is in column 1.

suggest not using #elif in traditional C

#elif should not be used in traditional K&R C.

suggest parentheses around assignment used as truth value

When assignments are used as truth values, they should be surrounded by
parentheses, to make the intention clear to readers of the source program.

suggest parentheses around + or - inside shift
suggest parentheses around && within ||
suggest parentheses around arithmetic in operand of |
suggest parentheses around comparison in operand of |
suggest parentheses around arithmetic in operand of ^
suggest parentheses around comparison in operand of ^
suggest parentheses around + or - in operand of &
suggest parentheses around comparison in operand of &

While operator precedence is well defined in C, sometimes a reader of an expression
might be required to expend a few additional microseconds in comprehending the
evaluation order of operands in an expression if the reader has to rely solely upon the
precedence rules, without the aid of explicit parentheses. A case in point is the use of
the ‘+’ or ‘-’ operator inside a shift. Many readers will be spared unnecessary effort if
parentheses are use to clearly express the intent of the programmer, even though the
intent is unambiguous to the programmer and to the compiler.

T

‘identifier’ takes only zero or two arguments

Expecting zero or two arguments only.

the meaning of ‘\a’ is different in traditional C

When the -wtraditional option is used, the escape sequence ‘\a’ is not recognized
as a meta-sequence: its value is just ‘a’. In non-traditional compilation, ‘\a’ represents
the ASCII BEL character.

the meaning of ‘\x’ is different in traditional C

When the -wtraditional option is used, the escape sequence ‘\x’ is not recognized
as a meta-sequence: its value is just ‘x’. In non-traditional compilation, ‘\x’ introduces a
hexadecimal escape sequence.

third argument of ‘identifier’ should probably be ‘char **’

Expecting third argument of specified identifier to be of type ‘char **’.

this function may return with or without a value

All exit paths from non-void function should return an appropriate value. The compiler
detected a case where a non-void function terminates, sometimes with and sometimes
without an explicit return value. Therefore, the return value might be unpredictable.

this target machine does not have delayed branches

The -fdelayed-branch option is not supported.

too few arguments for format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the number of actual arguments was fewer than that required by the format string.
DS51284D-page 152 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
too many arguments for format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the number of actual arguments was more than that required by the format string.

traditional C ignores #‘directive’ with the # indented

Traditionally, a directive is ignored unless its # is in column 1.

traditional C rejects initialization of unions

Unions cannot be initialized in traditional C.

traditional C rejects the ‘ul’ suffix

Suffix ‘u’ is not valid in traditional C.

traditional C rejects the unary plus operator

The unary plus operator is not valid in traditional C.

trigraph ??char converted to char

Trigraphs, which are a three-character sequence, can be used to represent symbols
that may be missing from the keyboard. Trigraph sequences convert as follows:

trigraph ??char ignored

Trigraph sequence is being ignored. char can be (,), <, >, =, /, ', !, or -

type defaults to ‘int’ in declaration of ‘identifier’

In the absence of an explicit type declaration for the specified identifier, the compiler
assumes that its type is int.

type mismatch with previous external decl
previous external decl of ‘identifier’

The type of the specified identifier does not match the previous declaration.

type mismatch with previous implicit declaration

An explicit declaration conflicts with a previous implicit declaration.

type of ‘identifier’ defaults to ‘int’

In the absence of an explicit type declaration, the compiler assumes that identifier’s
type is int.

type qualifiers ignored on function return type

The type qualifier being used with the function return type is ignored.

U

undefining ‘defined’

‘defined’ cannot be used as a macro name and should not be undefined.

undefining ‘name’

The #undef directive was used on a previously defined macro name ‘name’.

union cannot be made transparent

The transparent_union attribute was applied to a union, but the specified variable
does not satisfy the requirements of that attribute.

‘union identifier’ declared inside parameter list

The specified union is declared inside a function parameter list. It is usually better
programming practice to declare unions outside parameter lists, since they can never
become complete types when defined inside parameter lists.

??(= [??) =] ??< = { ??> = } ??= = # ??/ = \ ??’ = ^ ??! = | ??- = ~
© 2005 Microchip Technology Inc. DS51284D-page 153

MPLAB® C30 User’s Guide
union defined inside parms

A union is defined inside a function parameter list.

union has no members

The union is empty, it has no members.

unknown conversion type character ‘character’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the conversion characters in the format string was invalid (unrecognized).

unknown conversion type character 0xnumber in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the conversion characters in the format string was invalid (unrecognized).

unknown escape sequence ‘sequence’

‘sequence’ is not a valid escape code. An escape code must start with a ‘\’ and use one
of the following characters: n, t, b, r, f, b, \, ', ", a, or ?, or it must be a numeric sequence
in octal or hex. In octal, the numeric sequence must be less than 400 octal. In hex, the
numeric sequence must start with an ‘x’ and be less than 100 hex.

unnamed struct/union that defines no instances

struct/union is empty and has no name.

unreachable code at beginning of identifier

There is unreachable code at beginning of the specified function.

unrecognized gcc debugging option: char

The ‘char’ is not a valid letter for the -dletters debugging option.

unused parameter ‘identifier’

The specified function parameter is not used in the function.

unused variable ‘name’

The specified variable was declared but not used.

use of ‘*’ and ‘flag’ together in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
both the flags ‘*’ and ‘flag’ appear in the format string.

use of C99 long long integer constants

Integer constants are not allowed to be declared long long in ISO C89.

use of ‘length’ length modifier with ‘type’ type character

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified length was incorrectly used with the specified type.

‘name’ used but never defined

The specified function was used but never defined.

‘name’ used with ‘spec’ ‘function’ format

‘name’ is not valid with the conversion specification ‘spec’ in the format of the specified
function.

useless keyword or type name in empty declaration

An empty declaration contains a useless keyword or type name.
DS51284D-page 154 © 2005 Microchip Technology Inc.

MPLAB C30 C Compiler Diagnostics
V

__VA_ARGS__ can only appear in the expansion of a C99 variadic macro

The predefined macro __VA_ARGS should be used in the substitution part of a macro
definition using ellipses.

value computed is not used

A value computed is not used.

variable ‘name’ declared ‘inline’

The keyword ‘inline’ should be used with functions only.

variable ‘%s’ might be clobbered by ‘longjmp’ or ‘vfork’

A non-volatile automatic variable might be changed by a call to longjmp. These
warnings are possible only in optimizing compilation.

volatile register variables don’t work as you might wish

Passing a variable as an argument could transfer the variable to a different register
(w0-w7) than the one specified (if not w0-w7) for argument transmission. Or the
compiler may issue an instruction that is not suitable for the specified register and may
need to temporarily move the value to another place. These are only issues if the
specified register is modified asynchronously (i.e., though an ISR).

W

-Wformat-extra-args ignored without -Wformat

-Wformat must be specified to use -Wformat-extra-args.

-Wformat-nonliteral ignored without -Wformat

-Wformat must be specified to use -Wformat-nonliteral.

-Wformat-security ignored without -Wformat

-Wformat must be specified to use -Wformat-security.

-Wformat-y2k ignored without -Wformat

-Wformat must be specified to use.

-Wid-clash-LEN is no longer supported

The option -Wid-clash-LEN is no longer supported.

-Wmissing-format-attribute ignored without -Wformat

-Wformat must be specified to use -Wmissing-format-attribute.

-Wuninitialized is not supported without -O

Optimization must be on to use the -Wuninitialized option.

‘identifier’ was declared ‘extern’ and later ‘static’

The specified identifier was previously declared ‘extern’ and is now being declared as
static.

‘identifier’ was declared implicitly ‘extern’ and later ‘static’

The specified identifier was previously declared implicitly ‘extern’ and is now being
declared as static.

‘identifier’ was previously implicitly declared to return ‘int’

There is a mismatch against the previous implicit declaration.
© 2005 Microchip Technology Inc. DS51284D-page 155

MPLAB® C30 User’s Guide
‘identifier’ was used with no declaration before its definition

When compiling with the -Wmissing-declarations command-line option, the
compiler ensures that functions are declared before they are defined. In this case, a
function definition was encountered without a preceding function declaration.

‘identifier’ was used with no prototype before its definition

When compiling with the -Wmissing-prototypes command-line option, the
compiler ensures that function prototypes are specified for all functions. In this case, a
function call was encountered without a preceding function prototype for the called
function.

writing into constant object (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was a const object that the format specifier indicated
should be written into.

Z

zero-length identifier format string

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string was empty (“”).
DS51284D-page 156 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Appendix C. MPLAB C18 vs. MPLAB C30 C Compiler
C.1 INTRODUCTION

The purpose of this chapter is to highlight the differences between the MPLAB C18 and
MPLAB C30 C compilers. For more details on the MPLAB C18 compiler, please refer
to the MPLAB® C18 C Compiler User’s Guide (DS51288).

This chapter discusses the following areas of difference between the two compilers:

• Data Formats
• Pointers
• Storage Classes and Function Arguments
• Storage Qualifiers
• Predefined Macro Names
• Integer Promotions
• Numeric Constants
• String Constants
• Anonymous Structures
• Access Memory
• In-line Assembly
• Pragmas
• Memory Models
• Calling Conventions
• Startup Code
• Compiler-Managed Resources
• Optimizations
• Object Module Format
• Implementation-Defined Behavior
• Bit-fields
© 2005 Microchip Technology Inc. DS51284D-page 157

MPLAB® C30 User’s Guide
C.2 DATA FORMATS

TABLE C-1: NUMBER OF BITS USED IN DATA FORMATS

TABLE C-2: MPLAB® C18 FLOATING-POINT VS. MPLAB C30 IEEE-754
FORMAT

C.3 POINTERS

TABLE C-3: NUMBER OF BITS USED FOR POINTERS

C.4 STORAGE CLASSES

MPLAB C18 allows the non-ANSI storage class specifiers overlay for variables and
auto or static for function arguments.

MPLAB C30 does not allow these specifiers.

C.5 STACK USAGE

TABLE C-4: TYPE OF STACK USED

Data Format MPLAB® C18(1) MPLAB® C30(2)

char 8 8

int 16 16

short long 24 -

long 32 32

long long - 64

float 32 32

double 32 32 or 64(3)

Note 1: MPLAB C18 uses its own data format, which is similar to IEEE-754 format, but with
the top nine bits rotated (see Table C-2).

2: MPLAB C30 uses IEEE-754 format.
3: See Section 5.5 “Floating Point”.

Standard Byte 3 Byte 2 Byte 1 Byte 0

MPLAB C30 seeeeeee1 e0ddd dddd16 dddd dddd8 dddd dddd0

MPLAB C18 eeeeeeee0 sddd dddd16 dddd dddd8 dddd dddd0

Legend: s = sign bit, d = mantissa, e = exponent

Memory Type MPLAB® C18 MPLAB® C30

Program Memory - Near 16 16

Program Memory - Far 24 16

Data Memory 16 16

Items on Stack MPLAB® C18 MPLAB® C30

Return Addresses hardware software

Local Variables software software
DS51284D-page 158 © 2005 Microchip Technology Inc.

MPLAB C18 vs. MPLAB C30 C Compiler
C.6 STORAGE QUALIFIERS

MPLAB C18 uses the non-ANSI far, near, rom and ram type qualifiers.

MPLAB C30 uses the non-ANSI far, near and space attributes.

EXAMPLE C-1: DEFINING A NEAR VARIABLE

EXAMPLE C-2: DEFINING A FAR VARIABLE

EXAMPLE C-3: CREATING A VARIABLE IN PROGRAM MEMORY

C.7 PREDEFINED MACRO NAMES

MPLAB C18 defines __18CXX, __18F242, ... (all other processors with __ prefix) and
__SMALL__ or __LARGE__, depending on the selected memory model.

MPLAB C30 defines __dsPIC30.

C.8 INTEGER PROMOTIONS

MPLAB C18 performs integer promotions at the size of the largest operand even if both
operands are smaller than an int. MPLAB C18 provides the -Oi+ option to conform
to the standard.

MPLAB C30 performs integer promotions at int precision or greater as mandated by
ISO.

C.9 STRING CONSTANTS

MPLAB C18 keeps string constants in program memory in its .stringtable section.
MPLAB C18 supports several variants of the string functions. For instance, the strcpy
function has four variants allowing the copying of a string to and from both data and
program memory.

MPLAB C30 accesses string constants from data memory or from program memory
through the PSV window, allowing constants to be accessed like any other data.

C18: near int gVariable;

C30: __attribute__((near)) int gVariable;

C18: far int gVariable;

C30: __attribute__((far)) int gVariable;

C18: rom int gArray[6] = {0,1,2,3,4,5};

C30: __attribute__((section(".romdata"), space(prog)))
 int gArray[6] = {0,1,2,3,4,5};
© 2005 Microchip Technology Inc. DS51284D-page 159

MPLAB® C30 User’s Guide
C.10 ANONYMOUS STRUCTURES

MPLAB C18 supports non-ANSI anonymous structures inside of unions.

MPLAB C30 does not.

C.11 ACCESS MEMORY

dsPIC30F devices do not have access memory.

C.12 INLINE ASSEMBLY

MPLAB C18 uses non-ANSI _asm and _endasm to identify a block of inline assembly.

MPLAB C30 uses non-ANSI asm, which looks more like a function call. The MPLAB
C30 use of the asm statement is detailed in Section 8.4 “Using Inline Assembly
Language”.

C.13 PRAGMAS

MPLAB C18 uses pragmas for sections (code, romdata, udata, idata), interrupts
(high-priority and low-priority) and variable locations (bank, section).

MPLAB C30 uses non-ANSI attributes instead of pragmas.

TABLE C-5: MPLAB® C18 PRAGMAS VS. MPLAB C30 ATTRIBUTES

EXAMPLE C-4: SPECIFY AN UNINITIALIZED VARIABLE IN A USER SECTION
IN DATA MEMORY

EXAMPLE C-5: LOCATE THE VARIABLE MABONGA AT ADDRESS 0X100 IN
DATA MEMORY

Pragma (MPLAB® C18) Attribute (MPLAB® C30)

#pragma udata [name] __attribute__ ((section ("name")))

#pragma idata [name] __attribute__ ((section ("name")))

#pragma romdata [name] __attribute__ ((space (prog)))

#pragma code [name] __attribute__ ((section ("name"))),
__attribute__ ((space (prog)))

#pragma interruptlow __attribute__ ((interrupt))

#pragma interrupt __attribute__ ((interrupt, shadow))

#pragma varlocate bank NA*

#pragma varlocate name NA*

*dsPIC DSC devices do not have banks.

C18: #pragma udata mybss

int gi;

C30: int __attribute__((__section__(".mybss"))) gi;

C18: #pragma idata myDataSection=0x100;

int Mabonga = 1;

C30: int __attribute__((address(0x100))) Mabonga = 1;
DS51284D-page 160 © 2005 Microchip Technology Inc.

MPLAB C18 vs. MPLAB C30 C Compiler
EXAMPLE C-6: SPECIFY A VARIABLE TO BE PLACED IN PROGRAM
MEMORY

EXAMPLE C-7: LOCATE THE FUNCTION PRINTSTRING AT ADDRESS
0X8000 IN PROGRAM MEMORY

EXAMPLE C-8: COMPILER AUTOMATICALLY SAVE AND RESTORES THE
VARIABLES VAR1 AND VAR2

C.14 MEMORY MODELS

MPLAB C18 uses non-ANSI small and large memory models. Small uses the 16-bit
pointers and restricts program memory to be less than 64 KB (32 KB words).

MPLAB C30 uses non-ANSI small code and large code models. Small code restricts
program memory to be less than 96 KB (32 KB words). In large code, pointers may go
through a jump table.

C.15 CALLING CONVENTIONS

There are many differences in MPLAB C18 and MPLAB C30 calling conventions.
Please refer to Section 4.12 “Function Call Conventions” for a discussion of
MPLAB C30 calling conventions.

C18: #pragma romdata const_table

const rom char my_const_array[10] =
 {0,1,2,3,4,5,6,7,8,9};

C30: const __attribute__((space(const)))

char my_const_array[10] = {0,1,2,3,4,5,6,7,8,9};

Note: The MPLAB C30 compiler does not directly support accessing variables in
program space. Variables so allocated must be explicitly accessed by the
programmer, usually using table-access inline assembly instructions, or
using the Program Space Visibility window. See Section 4.15 “Program
Space Visibility (PSV) Usage” for more on the PSV window.

C18: #pragma code myTextSection=0x8000;

int PrintString(const char *s){...};

C30: int __attribute__((address(0x8000))) PrintString
 (const char *s) {...};

C18: #pragma interrupt isr0 save=var1, var2

void isr0(void)

{

/* perform interrupt function here */

}

C30: void __attribute__((__interrupt__(__save__(var1,var2))))

isr0(void)

{

/* perform interrupt function here */

}

© 2005 Microchip Technology Inc. DS51284D-page 161

MPLAB® C30 User’s Guide
C.16 STARTUP CODE

MPLAB C18 provides three startup routines – one that performs no user data
initialization, one that initializes only variables that have initializers, and one that
initializes all variables (variables without initializers are set to zero as required by the
ANSI standard).

MPLAB C30 provides two startup routines – one that performs no user data
initialization and one that initializes all variables (variables without initializers are set to
zero as required by the ANSI standard) except for variables in the persistent data
section.

C.17 COMPILER-MANAGED RESOURCES

MPLAB C18 has the following managed resources: PC, WREG, STATUS, PROD,
section .tmpdata, section MATH_DATA, FSR0, FSR1, FSR2, TBLPTR, TABLAT.

MPLAB C30 has the following managed resources: W0-W15, RCOUNT, SR.

C.18 OPTIMIZATIONS

The following optimizations are part of each compiler.

C.19 OBJECT MODULE FORMAT

MPLAB C18 and MPLAB C30 use different COFF File Formats that are not
interchangeable.

C.20 IMPLEMENTATION-DEFINED BEHAVIOR

For the right-shift of a negative-signed integral value:

• MPLAB C18 does not retain the sign bit
• MPLAB C30 retains the sign bit

MPLAB® C18 MPLAB® C30

Branches(-Ob+)
Code Straightening(-Os+)
Tail Merging(-Ot+)
Unreachable Code Removal(-Ou+)
Copy Propagation(-Op+)
Redundant Store Removal(-Or+)
Dead Code Removal(-Od+)

Optimization settings (-On where n is 1, 2, 3 or s)(1)

Duplicate String Merging (-Om+) -fwritable-strings

Banking (-On+) N/A – Banking not used

WREG Content Tracking(-Ow+) All registers are automatically tracked

Procedural Abstraction(-Opa+) Procedural Abstraction(-mpa)

Note 1: In MPLAB C30, these optimization settings will satisfy most needs. Additional flags
may be used for “fine-tuning". See Section 3.5.6 “Options for Controlling
Optimization” for more information.
DS51284D-page 162 © 2005 Microchip Technology Inc.

MPLAB C18 vs. MPLAB C30 C Compiler
C.21 BIT-FIELDS

Bit-fields in MPLAB C18 cannot cross byte storage boundaries and, therefore, cannot
be greater than 8 bits in size.

MPLAB C30 supports bit-fields with any bit size, up to the size of the underlying type.
Any integral type can be made into a bit-field. The allocation cannot cross a bit bound-
ary natural to the underlying type.

For example:

 struct foo {
 long long i:40;
 int j:16;
 char k:8;
 } x;

 struct bar {
 long long I:40;
 char J:8;
 int K:16;
 } y;

struct foo will have a size of 10 bytes using MPLAB C30. i will be allocated at bit
offset 0 (through 39). There will be 8 bits of padding before j, allocated at bit offset 48.
If j were allocated at the next available bit offset, 40, it would cross a storage boundary
for a 16 bit integer. k will be allocated after j, at bit offset 64. The structure will contain
8 bits of padding at the end to maintain the required alignment in the case of an array.
The alignment is 2 bytes because the largest alignment in the structure is 2 bytes.

struct bar will have a size of 8 bytes using MPLAB C30. I will be allocated at bit
offset 0 (through 39). There is no need to pad before J because it will not cross a
storage boundary for a char. J is allocated at bit offset 40. K can be allocated starting
at bit offset 48, completing the structure without wasting any space.
© 2005 Microchip Technology Inc. DS51284D-page 163

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 164 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Appendix D. ASCII Character Set
TABLE D-1: ASCII CHARACTER SET

Most Significant Character
L

ea
st

 S
ig

n
if

ic
an

t
C

h
ar

ac
te

r

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
© 2005 Microchip Technology Inc. DS51284D-page 165

MPLAB® C30 User’s Guide
NOTES:
DS51284D-page 166 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Appendix E. GNU Free Documentation License
GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially or
non commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
“you”. You accept the license if you copy, modify, or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding them.
© 2005 Microchip Technology Inc. DS51284D-page 167

MPLAB® C30 User’s Guide
The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
non-commercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.
DS51284D-page 168 © 2005 Microchip Technology Inc.

GNU Free Documentation License
You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

a) Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

b) List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

c) State on the Title page the name of the publisher of the Modified Version, as the
publisher.

d) Preserve all the copyright notices of the Document.
e) Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
© 2005 Microchip Technology Inc. DS51284D-page 169

MPLAB® C30 User’s Guide
f) Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

g) Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

h) Include an unaltered copy of this License.
i) Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

j) Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

k) For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

l) Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

m) Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

n) Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.
DS51284D-page 170 © 2005 Microchip Technology Inc.

GNU Free Documentation License
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
© 2005 Microchip Technology Inc. DS51284D-page 171

MPLAB® C30 User’s Guide
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.
DS51284D-page 172 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE
Glossary
Absolute Section

A section with a fixed (absolute) address that cannot be changed by the linker.

Access Memory (PIC18 Only)

Special registers on PIC18XXXXX devices that allow access regardless of the setting
of the bank select register (BSR).

Address

Value that identifies a location in memory.

Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, …, 9).

ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

Application

A set of software and hardware that may be controlled by a PICmicro microcontroller.

Archive

A collection of relocatable object modules. It is created by assembling multiple source
files to object files, and then using the archiver to combine the object files into one
library file. A library can be linked with object modules and other libraries to create
executable code.

Archiver

A tool that creates and manipulates libraries.

ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembler

A language tool that translates assembly language source code into machine code.

Assembly Language

A programming language that describes binary machine code in a symbolic form.

Asynchronous Stimulus

Data generated to simulate external inputs to a simulator device.

Breakpoint, Hardware

An event whose execution will cause a halt.
© 2005 Microchip Technology Inc. DS51284D-page 173

MPLAB® C30 User’s Guide
Breakpoint, Software

An address where execution of the firmware will halt. Usually achieved by a special
break instruction.

Build

Compile and link all the source files for an application.

C

A general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators.

Calibration Memory

A special function register or registers used to hold values for calibration of a PICmicro
microcontroller on-board RC oscillator or other device peripherals.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Compiler

A program that translates a source file written in a high-level language into machine
code.

Configuration Bits

Special-purpose bits programmed to set PICmicro microcontroller modes of operation.
A configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.

Cross Reference File

A file that references a table of symbols and a list of files that references the symbol.
If the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of general
purpose registers (GPRs) and special function registers (SFRs). Some devices also
have EEPROM data memory.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Directives

Statements in source code that provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.
DS51284D-page 174 © 2005 Microchip Technology Inc.

Glossary
EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

Emulation

The process of executing software loaded into emulation memory as if it were firmware
residing on a microcontroller device.

Emulation Memory

Program memory contained within the emulator.

Emulator

Hardware that performs emulation.

Emulator System

The MPLAB ICE 2000 and 4000 emulator systems include the pod, processor module,
device adapter, cables, and MPLAB IDE software.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W), and time stamp. Events are used to describe triggers,
breakpoints and interrupts.

Export

Send data out of the MPLAB IDE in a standardized format.

Extended Microcontroller Mode

In extended microcontroller mode, on-chip program memory as well as external
memory is available. Execution automatically switches to external if the program
memory address is greater than the internal memory space of the PIC17CXXX or
PIC18CXXX device.

External Label

A label that has external linkage.

External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM

Off-chip Read/Write memory.
© 2005 Microchip Technology Inc. DS51284D-page 175

MPLAB® C30 User’s Guide
File Registers

On-chip data memory, including general purpose registers (GPRs) and special function
registers (SFRs).

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle
instruction. Since the PICmicro microcontroller architecture is pipelined, it prefetches
the next instruction in the physical address space while it is executing the current
instruction. However, if the current instruction changes the program counter, this
prefetched instruction is explicitly ignored, causing a forced NOP cycle.

GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

Hex Code

Executable instructions stored in a hexadecimal format code. Hex code is contained in
a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code) suitable for
programming a device.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

ICD

In-Circuit Debugger. MPLAB ICD and MPLAB ICD 2 are Microchip’s in-circuit
debuggers for PIC16F87X and PIC18FXXX devices, respectively. These ICDs work
with MPLAB IDE.

ICE

In-Circuit Emulator. MPLAB ICE 2000 and 4000 are Microchip’s in-circuit emulators
that work with MPLAB IDE.

IDE

Integrated Development Environment. MPLAB IDE is Microchip’s integrated
development environment.

Import

Bring data into the MPLAB IDE from an outside source, such as from a hex file.

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.
DS51284D-page 176 © 2005 Microchip Technology Inc.

Glossary
International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed.

Interrupt Handler

A routine that processes special code when an interrupt occurs.

Interrupt Request

An event which causes the processor to temporarily suspend normal instruction
execution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine

User-generated code that is entered when an interrupt occurs. The location of the code
in program memory will usually depend on the type of interrupt that has occurred.

IRQ

See Interrupt Request.

ISO

See International Organization for Standardization.

ISR

See Interrupt Service Routine.

Librarian

See Archiver.

Library

See Archive.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.

Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for each C
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.
© 2005 Microchip Technology Inc. DS51284D-page 177

MPLAB® C30 User’s Guide
Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macroinstruction. An instruction that represents a sequence of instructions in
abbreviated form.

Macro Directives

Directives that control the execution and data allocation within macro body definitions.

Make Project

A command that rebuilds an application, re-compiling only those source files that have
changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also uC.

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of the PIC17CXXX and
PIC18CXXX families of microcontrollers. In microcontroller mode, only internal
execution is allowed. Thus, only the on-chip program memory is available in
microcontroller mode.

Microprocessor Mode

One of the possible program memory configurations of the PIC17CXXX and
PIC18CXXX families of microcontrollers. In microprocessor mode, the on-chip program
memory is not used. The entire program memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
Opcodes.

MPASM Assembler

Microchip Technology’s relocatable macro assembler for PICmicro microcontroller
devices, KEELOQ® devices and Microchip memory devices.

MPLAB ASM30

Microchip’s relocatable macro assembler for dsPIC30F digital signal controller devices.
DS51284D-page 178 © 2005 Microchip Technology Inc.

Glossary
MPLAB C1X

Refers to both the MPLAB C17 and MPLAB C18 C compilers from Microchip. MPLAB
C17 is the C compiler for PIC17CXXX devices and MPLAB C18 is the C compiler for
PIC18CXXX and PIC18FXXXX devices.

MPLAB C30

Microchip’s C compiler for dsPIC30F digital signal controller devices.

MPLAB ICD 2

Microchip’s in-circuit debugger for PIC16F87X, PIC18FXXX and dsPIC30FXXXX
devices. The ICD works with MPLAB IDE. The main component of each ICD is the
module. A complete system consists of a module, header, demo board, cables and
MPLAB IDE Software.

MPLAB ICE 2000

Microchip’s in-circuit emulator for PICmicro MCU’s that works with MPLAB IDE.

MPLAB ICE 4000

Microchip’s in-circuit emulator for dsPIC DSC’s that works with MPLAB IDE.

MPLAB IDE

Microchip’s Integrated Development Environment.

MPLAB LIB30

MPLAB LIB30 archiver/librarian is an object librarian for use with COFF object modules
created using either MPLAB ASM30 or MPLAB C30 C compiler.

MPLAB LINK30

MPLAB LINK30 is an object linker for the Microchip MPLAB ASM30 assembler and the
Microchip MPLAB C30 C compiler.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PICmicro MCU devices.

MPLAB SIM30

Microchip’s simulator that works with MPLAB IDE in support of dsPIC DSC devices.

MPLIB Object Librarian

MPLIB librarian is an object librarian for use with COFF object modules created using
either MPASM assembler (mpasm or mpasmwin v2.0) or MPLAB C1X C compilers.

MPLINK Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the
Microchip MPLAB C17 or C18 C compilers. MPLINK linker also may be used with the
Microchip MPLIB librarian. MPLINK linker is designed to be used with MPLAB IDE,
though it does not have to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from MPLAB
IDE main pull down menus.

Nesting Depth

The maximum level to which macros can include other macros.

Node

MPLAB IDE project component.

Non Real-Time

Refers to the processor at a breakpoint or executing single step instructions or MPLAB
IDE being run in simulator mode.
© 2005 Microchip Technology Inc. DS51284D-page 179

MPLAB® C30 User’s Guide
Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the
program counter.

Object Code

The machine code generated by an assembler or compiler.

Object File

A file containing machine code and possibly debug information. It may be immediately
executable or it may be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.

Object File Directives

Directives that are used only when creating an object file.

Off-Chip Memory

Off-chip memory refers to the memory selection option for the PIC17CXXX or
PIC18CXXX device where memory may reside on the target board, or where all
program memory may be supplied by the Emulator. The Memory tab accessed from
Options > Development Mode provides the Off-Chip Memory selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are
erasable.

Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM or compatible personal computer running a supported Windows® operating
system.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICSTART Plus

A developmental device programmer from Microchip. Programs 8-, 14-, 28-, and 40-pin
PICmicro microcontrollers. Must be used with MPLAB IDE Software.

Pod, Emulator

The external emulator box that contains emulation memory, trace memory, event and
cycle timers, and trace/breakpoint logic.
DS51284D-page 180 © 2005 Microchip Technology Inc.

Glossary
Power-on-Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

PRO MATE® II

A device programmer from Microchip. Programs all PICmicro microcontrollers and
most memory and Keeloq devices. Can be used with MPLAB IDE or stand-alone.

Program Counter

The location that contains the address of the instruction that is currently executing.

Program Memory

The memory area in a device where instructions are stored. Also, the memory in the
emulator or simulator containing the downloaded target application firmware.

Project

A set of source files and instructions to build the object and executable code for an
application.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro MCU devices have a PWM
peripheral.

Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

Radix

The number base, hex or decimal, used in specifying an address.

RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

Raw Data

The binary representation of code or data associated with a section.

Real-Time

When released from the halt state in the emulator or MPLAB ICD mode, the processor
runs in real-time mode and behaves exactly as the normal chip would behave. In
real-time mode, the real-time trace buffer of MPLAB ICE is enabled and constantly
captures all selected cycles, and all break logic is enabled. In the emulator or MPLAB
ICD, the processor executes in real-time until a valid breakpoint causes a halt, or until
the user halts the emulator. In the simulator, real-time simply means execution of the
microcontroller instructions as fast as they can be simulated by the host CPU.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.

ROM

Read Only Memory (Program Memory). Memory that cannot be modified.

Run

The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.
© 2005 Microchip Technology Inc. DS51284D-page 181

MPLAB® C30 User’s Guide
SFR

See Special Function Registers.

Shell

The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows version.

Simulator

A software program that models the operation of devices.

Single Step

This command steps through code, one instruction at a time. After each instruction,
MPLAB IDE updates register windows, watch variables, and status displays so you can
analyze and debug instruction execution. You can also single step C compiler source
code, but instead of executing single instructions, MPLAB IDE will execute all assembly
level instructions generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on the
processor bus at different times. For example, the executed Opcodes appears on the
bus as a fetch during the execution of the previous instruction, the source data address
and value and the destination data address appear when the Opcodes is actually
executed, and the destination data value appears when the next instruction is
executed. The trace buffer captures the information that is on the bus at one instance.
Therefore, one trace buffer entry will contain execution information for three
instructions. The number of captured cycles from one piece of information to another
for a single instruction execution is referred to as the skew.

Skid

When a hardware breakpoint is used to halt the processor, one or more additional
instructions may be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in some formal programming language which can be translated into machine
code or executed by an interpreter.

Source File

An ASCII text file containing source code.

Special Function Registers

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.

Stack, Hardware

Locations in PICmicro microcontroller where the return address is stored when a
function call is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.

Static RAM or SRAM

Static Random Access Memory. Program memory you can Read/Write on the target
board that does not need refreshing frequently.
DS51284D-page 182 © 2005 Microchip Technology Inc.

Glossary
Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such
current information as cursor position, development mode and device, and active tool
bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When stepping
over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.
If for some reason the subroutine gets into an endless loop or does not return properly,
the next breakpoint will never be reached. The Step Over command is the same as
Single Step except for its handling of CALL instructions.

Stimulus

Input to the simulator, (i.e., data generated to exercise the response of simulation to
external signals). Often the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.

System Window Control

The system window control is located in the upper left corner of windows and some
dialogs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”

Target

Refers to user hardware.

Target Application

Software residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE functions.

Trace

An emulator or simulator function that logs program execution. The emulator logs
program execution into its trace buffer which is uploaded to MPLAB IDE’s trace
window.
© 2005 Microchip Technology Inc. DS51284D-page 183

MPLAB® C30 User’s Guide
Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.

Warning

An alert that is provided to warn you of a situation that would cause physical damage
to a device, software file, or equipment.

Watch Variable

A variable that you may monitor during a debugging session in a watch window.

Watch Window

Watch windows contain a list of watch variables that are updated at each breakpoint.

Watchdog Timer

A timer on a PICmicro microcontroller that resets the processor after a selectable
length of time. The WDT is enabled or disabled and set up using configuration bits.

WDT

See Watchdog Timer.
DS51284D-page 184 © 2005 Microchip Technology Inc.

MPLAB® C30
USER’S GUIDE

Index
Symbols
#define ... 47
#ident ... 54
#if ... 40
#include... 48, 49, 79, 81
#line.. 50
#pragma..37, 111, 160
.bss..15, 62, 111
.const...61, 63, 75
.data ..15, 61, 111
.dconst.. 62
.dinit...62, 63
.nbss... 62
.ndata ... 61
.ndconst.. 62
.pbss..62, 63
.text ... 22, 32, 61, 67, 111
.tmpdata ... 162

A
-A.. 47
abort ..21, 114
Access Memory.. 160
address Attribute ...12, 19
Address Spaces... 59
alias Attribute ... 19
aligned Attribute ... 13
Alignment .. 13, 15, 72, 110
Anonymous Structures... 160
-ansi ..23, 34, 50
ANSI C Standard.. 9
ANSI C, Differences with MPLAB C30..................... 11
ANSI C, Strict ... 35
ANSI Standard Library Support.................................. 9
ANSI-89 extension ... 77
Archiver .. 8
Arrays and Pointers.. 109
ASCII Character Set... 165
asm ...13, 101, 160
Assembler .. 8
Assembly Options .. 50

-Wa ... 50
Assembly, Inline ..101, 160
Assembly, Mixing with C .. 99
Atomic Operation ... 94
attribute ...12, 19, 160
Attribute, Function .. 19

address ... 19
alias... 19
const ... 20

deprecated .. 20
far .. 20
format .. 20
format_arg... 21
interrupt..22, 89, 92
near... 21
no_instrument_function............................... 21, 54
noload ... 21
noreturn... 21, 40
section... 22, 67
shadow.. 22, 89
unused .. 22
weak.. 22

Attribute, Variable... 12
address ... 12
aligned .. 13
deprecated .. 13
far ...13, 61, 62, 66
mode ... 14
near..14, 61, 62, 66
noload ... 14
packed .. 15
persistent .. 15
reverse .. 15
section... 15
sfr .. 16
space .. 16
transparent_union ... 17
unordered.. 17
unused .. 17
weak.. 17

auto_psv Space ... 31
Automatic Variable ..37, 38, 69
-aux-info ... 34

B
-B.. 52, 55
Binary Radix... 28
Bit-Fields ...34, 110, 163
Bit Reversed and Modulo Addressing...................... 75
Bit-fields ... 96

C
-C ... 47
-c .. 33, 51
C Dialect Control Options... 34

-ansi .. 34
-aux-info .. 34
-ffreestanding .. 34
-fno-asm.. 34
-fno-builtin ... 34
© 2005 Microchip Technology Inc. DS51284D-page 185

MPLAB® C30 User’s Guide
-fno-signed-bit-fields ... 34
-fno-unsigned-bit-fields 34
-fsigned-bit-fields... 34
-fsigned-char ... 34
-funsigned-bit-fields... 34
-funsigned-char ... 34
-fwritable-strings.. 34, 162
-traditional ... 23

C Heap Usage.. 71
C Stack Usage ... 69
C, Mixing with Assembly .. 99
Calling Conventions ... 161
Case Ranges ... 28
Cast ...37, 38, 39
char ... 14, 34, 35, 72, 74, 77
Characters.. 107
Code and Data Sections .. 61
Code Generation Conventions Options.................... 53

-fargument-alias .. 53
-fargument-noalias .. 53
-fargument-noalias-global 53
-fcall-saved.. 53
-fcall-used ... 53
-ffixed .. 53
-finstrument-functions 53
-fno-ident ... 54
-fno-short-double... 54
-fno-verbose-asm.. 54
-fpack-struct .. 54
-fpcc-struct-return.. 54
-fshort-enums.. 54
-fverbose-asm ... 54
-fvolatile... 54
-fvolatile-global .. 54
-fvolatile-static ... 54

Code Size, Reduce .. 31, 42
Coding ISR’s .. 89
COFF .. 7, 8, 57, 80, 162
Command-Line Compiler ... 29
Command-Line Options ... 30
Command-Line Simulator....................................7, 8, 9
Comments .. 35, 47
Common Subexpression Elimination20, 43, 44, 45
Common Subexpressions .. 46
Compiler ... 8

Command-Line ... 29
Driver ... 8, 9, 29, 52, 56
Overview ... 7

Compiler-Managed Resources............................... 162
Compiling a Single File... 56
Compiling Multiple Files ... 58
Complex

Data Types.. 25
Floating Types .. 25
Integer Types .. 25
Numbers ... 25

complex.. 25
Conditional Expression... 28
Conditionals with Omitted Operands........................ 28
Configuration Bits Setup .. 83

const Attribute .. 20
Constants

Binary .. 28
Predefined... 56
String... 159

CORCON ... 63, 79, 80
Customer Notification Service 6
Customer Support .. 6

D
-D.. 47, 48, 50
Data Formats.. 158
Data Memory Allocation ... 83
Data Memory Space................................31, 32, 60, 71
Data Memory Space, Near................................. 14, 16
Data Representation .. 77
Data Type... 14, 77

Complex .. 25
Floating Point .. 78
Integer ... 77
Pointers ... 78

-dD.. 47
Debugging Information ... 41
Debugging Options... 41

-g ... 41
-Q .. 41
-save-temps .. 41

Declarators ... 110
Defining Global Register Variables 24
deprecated Attribute 13, 20, 40
Development Tools .. 7
Device Support Files .. 79
Device-Specific Header Files 56
Diagnostics... 117
Differences Between

MPLAB C18 and MPLAB C30......................... 157
MPLAB C30 and ANSI C 11

Directories .. 48, 50, 56
Directory Search Options ... 52

-B... 52, 55
-specs=.. 52

-dM ... 47
-dN.. 47
Documentation

Conventions .. 3
Layout ... 2

double..54, 72, 74, 78, 158
Double-Word Integers .. 26
dsPIC DSC-Specific Options.................................... 31

-mconst-in-code .. 31
-mconst-in-data ... 31
-merrata... 31
-mlarge-code ... 31
-mlarge-data.. 31
-mno-pa... 31
-momf= .. 31
-mpa .. 31
-mpa=.. 31
-msmall-code... 31
-msmall-data ... 32
-msmall-scalar... 32
DS51284D-page 186 © 2005 Microchip Technology Inc.

Index
-msmart-io... 32
-mtext=.. 32

DWARF.. 31

E
-E .. 33, 47, 49, 50, 51
EEDATA..83, 84
EEPROM, data .. 83
ELF ...7, 31
Enabling/Disabling Interrupts 93
endian .. 77
Enumerations... 110
Environment ... 106
Environment Variables... 55

PIC30_C_INCLUDE_PATH.............................. 55
PIC30_COMPILER_PATH 55
PIC30_EXEC_PREFIX 55
PIC30_LIBRARY_ PATH.................................. 55
PIC30_OMF.. 55
TMPDIR .. 55

errno... 114
Error Control Options

-pedantic-errors .. 35
-Werror.. 39
-Werror-implicit-function-declaration 35

Errors ... 117
Escape Sequences .. 107
Exception Vectors ...60, 90
Executables ... 56
exit ... 114
Extensions ... 49
extern .. 23, 40, 46, 54
External Symbols ... 99

F
-falign-functions.. 43
-falign-labels... 43
-falign-loops ... 43
far Attribute13, 20, 61, 62, 66, 102, 159
Far Data Space.. 66
-fargument-alias ... 53
-fargument-noalias ... 53
-fargument-noalias-global .. 53
-fcaller-saves.. 43
-fcall-saved... 53
-fcall-used .. 53
-fcse-follow-jumps .. 43
-fcse-skip-blocks .. 43
-fdata-sections ... 43
-fdefer-pop. See -fno-defer
Feature Set .. 9
-fexpensive-optimizations... 43
-ffixed ..24, 53
-fforce-mem...42, 46
-ffreestanding ... 34
-ffunction-sections.. 43
-fgcse ... 44
-fgcse-lm .. 44
-fgcse-sm ... 44
File Extensions... 30
File Naming Convention... 30

Files.. 113
-finline-functions23, 39, 42, 46
-finline-limit ... 46
-finstrument-functions... 21, 53
-fkeep-inline-functions .. 23, 46
-fkeep-static-consts .. 46
Flags, Positive and Negative.............................. 46, 53
float ... 14, 54, 72, 74, 78
Floating .. 78
Floating Point ... 78, 108
Floating Types, Complex ... 25
-fmove-all-movables... 44
-fno ... 46, 53
-fno-asm ... 34
-fno-builtin .. 34
-fno-defer-pop .. 44
-fno-function-cse .. 46
-fno-ident .. 54
-fno-inline ... 47
-fno-keep-static-consts... 46
-fno-peephole ... 44
-fno-peephole2 ... 44
-fno-short-double.. 54
-fno-show-column... 47
-fno-signed-bit-fields... 34
-fno-unsigned-bit-fields... 34
-fno-verbose-asm ... 54
-fomit-frame-pointer.. 42, 47
-foptimize-register-move .. 44
-foptimize-sibling-calls.. 47
format Attribute... 20
format_arg Attribute ... 21
-fpack-struct ... 54
-fpcc-struct-return... 54
Frame Pointer (W14).....................................47, 53, 69
-freduce-all-givs.. 44
-fregmove ... 44
-frename-registers.. 44
-frerun-cse-after-loop ... 44, 45
-frerun-loop-opt .. 44
-fschedule-insns ... 44
-fschedule-insns2 ... 44
-fshort-enums ... 54
-fsigned-bit-fields.. 34
-fsigned-char .. 34
FSRn .. 162
-fstrength-reduce.. 44, 45
-fstrict-aliasing ...42, 43, 45
-fsyntax-only... 35
-fthread-jumps .. 42, 45
Function

Attributes... 19
Call Conventions... 72
Calls, Preserving Registers............................... 74
Parameters ... 72
Pointers... 65

-funroll-all-loops.. 43, 45
-funroll-loops ...42, 43, 45
-funsigned-bit-fields.. 34
-funsigned-char .. 34
© 2005 Microchip Technology Inc. DS51284D-page 187

MPLAB® C30 User’s Guide
-fverbose-asm .. 54
-fvolatile .. 54
-fvolatile-global ... 54
-fvolatile-static .. 54
-fwritable-strings... 34, 162

G
-g .. 41
general registers .. 102
getenv .. 115
Global Register Variables... 24
Guidelines for Writing ISR’s 88

H
-H ... 47
Header Files 30, 47, 48, 49, 50, 55

Processor ...56, 79, 81
Heap... 60
--heap... 71
Heap, C Usage... 71
--help .. 33
Hex File .. 57
High-Priority Interrupts 87, 94

I
-I ..48, 50, 55
-I- .. 48, 50
Identifiers.. 107
-idirafter .. 48
IEEE 754 .. 158
-imacros ... 48, 50
imag ... 25
Implementation-Defined Behavior 105, 162
-include... 48, 50
Include Files ... 52
Inhibit Warnings ... 35
Initialized Variables .. 61
Inline.. 39, 42, 46, 101, 160
inline..22, 47, 54
In-Line Assembly Usage .. 83
Inline Functions .. 22
int ..14, 72, 74, 77
Integer .. 77, 102

Behavior .. 108
Double-Word... 26
Promotions.. 159
Types, Complex .. 25

Internet Address... 5
Interrupt

Enabling/Disabling .. 93
Functions .. 99
Handling.. 99
High Priority .. 87, 94
Latency ... 93
Low Priority ... 87, 94
Nesting.. 93
Priority ... 93
Protection From .. 96
Request... 90
Service Routine Context Saving 92
Vectors .. 90

Vectors, List of .. 90
Vectors, Writing... 90

interrupt Attribute...................................22, 89, 92, 160
-iprefix... 48
IRQ ... 90
ISR

Coding... 89
Declaration .. 84
Guidelines for Writing.. 88
Syntax for Writing.. 88
Writing ... 88

-isystem .. 48, 52
-iwithprefix .. 48
-iwithprefixbefore .. 48

K
Keyword Differences .. 11

L
-L .. 51, 52
-l ... 51
Labels as Values .. 27
Large Code Model.. 31, 78
Large Data Model... 31, 61, 62
Latency... 93
Librarian ... 8
Library .. 51, 56

ANSI Standard .. 9
Functions... 112

Linker.. 8, 51
Linker Script ..56, 68, 80, 81
Linking Options... 51

-L ... 51, 52
-l .. 51
-nodefaultlibs... 51
-nostdlib... 51
-s ... 51
-u ... 51
-Wl... 51
-Xlinker .. 51

little endian ... 77
LL, Suffix .. 26
Local Register Variables 24, 25
Locating Code and Data... 67
long..14, 72, 74, 77
long double..14, 54, 72, 74, 78
long long..14, 39, 74, 77, 158
long long int .. 26
Loop Optimization .. 20
Loop Optimizer ... 44
Loop Unrolling .. 45
Low-Priority Interrupts .. 87, 94

M
-M ... 49
Mabonga .. 67, 160
macro ..23, 47, 48, 50
Macro Names, Predefined...................................... 159
Macros.. 83

Configuration Bits Setup 83
In-Line Assembly Usage 83
DS51284D-page 188 © 2005 Microchip Technology Inc.

Index
ISR Declaration... 84
MacrosData Memory Allocation 83
MATH_DATA ... 162
-mconst-in-code 31, 61, 62, 63, 65
-mconst-in-data ...31, 65
-MD .. 49
Memory .. 114
Memory Models ..9, 65, 161

-mconst-in-code .. 65
-mconst-in-data... 65
-mlarge-code... 65
-mlarge-data ... 65
-msmall-code .. 65
-msmall-data ... 65
-msmall-scalar .. 65

Memory Spaces ... 64
Memory, Access .. 160
-merrata ... 31
-MF... 49
-MG .. 49
Microchip Internet Web Site 5
Mixing Assembly Language and C Variables and

Functions.. 99
-mlarge-code...31, 65
-mlarge-data.. 31, 61, 62, 65
-MM.. 49
-MMD ... 49
-mno-pa.. 31
mode Attribute.. 14
-momf=... 31
-MP .. 49
-mpa... 31
-mpa=... 31
MPLAB C18, Differences with MPLAB C30........... 157
MPLAB C30 ..7, 9

Command Line ... 29
Differences with ANSI C 11
Differences with MPLAB C18 157

-MQ .. 49
-msmall-code ..31, 65, 66
-msmall-data 32, 61, 62, 65, 66
-msmall-scalar...32, 65
-msmart-io .. 32
-MT... 49
-mtext= ... 32

N
Near and Far Code .. 66
Near and Far Data ... 65
near Attribute14, 21, 61, 62, 66, 102, 159
Near Data Section.. 65
Near Data Space ... 103
Nesting Interrupts... 93
no_instrument_function Attribute21, 54
-nodefaultlibs.. 51
noload Attribute...14, 21
noreturn Attribute ..21, 40
-nostdinc ...48, 50
-nostdlib ... 51

O
-O ... 41, 42
-o .. 33, 57
-O0 ... 42
-O1 ... 42
-O2 ... 42, 46
-O3 ... 42
Object File7, 8, 43, 49, 51, 56, 61
Object Module Format.. 162
Omitted Operands.. 28
Optimization ... 9, 162
Optimization Control Options 42

-falign-functions... 43
-falign-labels.. 43
-falign-loops .. 43
-fcaller-saves... 43
-fcse-follow-jumps ... 43
-fcse-skip-blocks ... 43
-fdata-sections .. 43
-fexpensive-optimizations 43
-fforce-mem... 46
-ffunction-sections... 43
-fgcse .. 44
-fgcse-lm ... 44
-fgcse-sm .. 44
-finline-functions.. 46
-finline-limit .. 46
-fkeep-inline-functions....................................... 46
-fkeep-static-consts... 46
-fmove-all-movables.. 44
-fno-defer-pop ... 44
-fno-function-cse ... 46
-fno-inline .. 47
-fno-peephole.. 44
-fno-peephole2.. 44
-fomit-frame-pointer .. 47
-foptimize-register-move 44
-foptimize-sibling-calls....................................... 47
-freduce-all-givs .. 44
-fregmove.. 44
-frename-registers... 44
-frerun-cse-after-loop .. 44
-frerun-loop-opt ... 44
-fschedule-insns.. 44
-fschedule-insns2.. 44
-fstrength-reduce... 44
-fstrict-aliasing... 45
-fthread-jumps... 45
-funroll-all-loops .. 45
-funroll-loops ... 45
-O .. 42
-O0 .. 42
-O1 .. 42
-O2 .. 42
-O3 .. 42
-Os .. 42

Optimization, Loop ... 20, 44
Optimization, Peephole .. 44
Options

Assembling ... 50
© 2005 Microchip Technology Inc. DS51284D-page 189

MPLAB® C30 User’s Guide
C Dialect Control ... 34
Code Generation Conventions.......................... 53
Debugging... 41
Directory Search ... 52
dsPIC DSC-Specific .. 31
Linking... 51
Optimization Control ... 42
Output Control... 33
Preprocessor Control .. 47
Warnings and Errors Control............................. 35

-Os ... 42
Output Control Options .. 33

-c ... 33
-E .. 33
--help... 33
-o... 33
-S .. 33
-v ... 33
-x ... 33

P
-P.. 50
packed Attribute ... 15, 54
Parameters, Function... 72
PATH.. 56
PC .. 162
-pedantic .. 35, 39
-pedantic-errors .. 35
Peephole Optimization ... 44
persistent Attribute ... 15
persistent data...63, 83, 162
PIC30_C_INCLUDE_PATH 55, 56
PIC30_COMPILER_PATH....................................... 55
PIC30_EXEC_PREFIX....................................... 52, 55
PIC30_LIBRARY_ PATH ... 55
PIC30_OMF ... 55
pic30-gcc.. 29
pointer .. 72, 74
Pointers ...40, 78, 158

Frame.. 47, 53
Function .. 65
Stack ... 53

Pragmas... 160
Predefined Constants... 56
Predefined Macro Names....................................... 159
prefix .. 48, 52
Preprocessing Directives.. 111
Preprocessor .. 52
Preprocessor Control Options.................................. 47

-A .. 47
-C .. 47
-D .. 47
-dD .. 47
-dM.. 47
-dN .. 47
-fno-show-column ... 47
-H .. 47
-I .. 48
-I-... 48
-idirafter ... 48
-imacros .. 48

-include.. 48
-iprefix ... 48
-isystem... 48
-iwithprefix ... 48
-iwithprefixbefore... 48
-M .. 49
-MD ... 49
-MF.. 49
-MG ... 49
-MM ... 49
-MMD .. 49
-MQ ... 49
-MT.. 49
-nostdinc.. 50
-P... 50
-trigraphs ... 50
-U .. 50
-undef .. 50

Preserving Registers Across Function Calls 74
Procedural Abstraction 31, 162
Processor Header Files................................ 56, 79, 81
PROD ... 162
Program Memory Pointers 65
Program Memory Space .. 60
Program Space Visibility Window. See PSV Window
PSV Usage... 75, 84
PSV Window 60, 61, 65, 75, 79, 84

Q
-Q ... 41
Qualifiers .. 110

R
RAW Dependency.. 44
RCOUNT .. 162
Reading, Recommended.. 4
real ... 25
Reduce Code Size ... 31, 42
Register

Behavior .. 109
Conventions .. 74
Definition Files... 80

register ... 24, 25
Reset .. 90, 93
Reset Vectors... 60
Return Type.. 36
Return Value .. 74
reverse Attribute ... 15
Runtime Environment... 59

S
-S.. 33, 51
-s .. 51
-save-temps.. 41
Scalars ... 65
Scheduling.. 44
section .. 43, 61, 162
section Attribute...............................15, 22, 61, 67, 160
Sections, Code and Data ... 61
SFR ... 9, 57, 60, 79, 80, 81
sfr Attribute ... 16
DS51284D-page 190 © 2005 Microchip Technology Inc.

Index
shadow Attribute ...22, 89, 160
short ..72, 74, 77
short long ... 158
Signals ... 113
signed char .. 77
signed int.. 77
signed long... 77
signed long long... 77
signed short ... 77
Simulator, Command-Line7, 8, 9
Small Code Model...9, 31, 78
Small Data Model...................................... 9, 32, 61, 62
Software Stack..22, 68, 69
space Attribute ..16, 159, 160
Special Function Registers57, 79, 92
Specifying Registers for Local Variables.................. 25
-specs= .. 52
SPLIM .. 68
SR .. 162
Stack ...60, 92, 93

C Usage.. 69
Pointer (W15)................................... 53, 63, 68, 69
Pointer Limit Register (SPLIM)63, 68
Software...68, 69
Usage ... 158

Standard I/O Functions .. 9
Startup

and Initialization .. 63
Code ... 162
Module, Alternate.. 63
Module, Primary.. 63
Modules .. 69

Statement Differences ... 27
Statements ... 110
static... 54
STATUS... 162
Storage Classes... 158
Storage Qualifiers .. 159
Streams.. 113
strerror ... 115
String Constants .. 159
Strings.. 34
structure ... 72
Structures... 110
Structures, Anonymous.. 160
Suffix LL ... 26
Suffix ULL .. 26
switch ... 37
symbol.. 51
Syntax Check... 35
Syntax for Writing ISR’s ... 88
system.. 115
System Header Files...37, 49

T
-T.. 80
TABLAT ... 162
TBLPTR ... 162
TBLRD ... 85
TMPDIR ... 55
tmpfile .. 114

-traditional .. 23, 34
Traditional C... 40
Translation ... 106
transparent_union Attribute...................................... 17
Trigraphs .. 37, 50
-trigraphs .. 50
Type Conversion .. 39
typeof ... 26

U
-U ..47, 48, 50
-u .. 51
ULL, Suffix.. 26
-undef ... 50
Underscore... 88, 99
Uninitialized Variables.. 62
Unions .. 110
unordered Attribute .. 17
Unroll Loop... 45
unsigned char... 77
unsigned int .. 77
unsigned long... 77
unsigned long long ... 77
unsigned long long int .. 26
unsigned short.. 77
unused Attribute ..17, 22, 37
Unused Function Parameter 37
Unused Variable... 37
User-Defined Data Section 67
User-Defined Text Section 67
Using Inline Assembly Language........................... 101
Using Macros ... 83
Using SFRs .. 81

V
-v .. 33
Variable Attributes.. 12
Variables in Specified Registers 24
Vectors, Reset and Exception.................................. 60
void... 74
volatile .. 54

W
-W.. 35, 37, 38, 40, 117
-w ... 35
W Registers.. 72, 99
W14.. 69, 162
W15.. 69, 162
-Wa... 50
-Waggregate-return.. 39
-Wall ..35, 37, 38, 41
Warnings .. 136
Warnings and Errors Control Options 35

-fsyntax-only.. 35
-pedantic ... 35
-pedantic-errors... 35
-W ... 38
-w .. 35
-Waggregate-return... 39
-Wall.. 35
-Wbad-function-cast.. 39
© 2005 Microchip Technology Inc. DS51284D-page 191

MPLAB® C30 User’s Guide
-Wcast-align .. 39
-Wcast-qual ... 39
-Wchar-subscripts ... 35
-Wcomment... 35
-Wconversion .. 39
-Wdiv-by-zero.. 35
-Werror .. 39
-Werror-implicit-function-declaration 35
-Wformat ... 35
-Wimplicit .. 35
-Wimplicit-function-declaration.......................... 35
-Wimplicit-int.. 35
-Winline ... 39
-Wlarger-than- ... 39
-Wlong-long... 39
-Wmain.. 35
-Wmissing-braces ... 35
-Wmissing-declarations..................................... 39
-Wmissing-format-attribute................................ 39
-Wmissing-noreturn... 40
-Wmissing-prototypes 40
-Wmultichar ... 36
-Wnested-externs.. 40
-Wno-long-long ... 39
-Wno-multichar.. 36
-Wno-sign-compare... 40
-Wpadded ... 40
-Wparentheses.. 36
-Wpointer-arith .. 40
-Wredundant-decls.. 40
-Wreturn-type .. 36
-Wsequence-point ... 36
-Wshadow ... 40
-Wsign-compare.. 40
-Wstrict-prototypes.. 40
-Wswitch ... 37
-Wsystem-headers .. 37
-Wtraditional .. 40
-Wtrigraphs ... 37
-Wundef .. 40
-Wuninitialized... 37
-Wunknown-pragmas.. 37
-Wunreachable-code... 40
-Wunused.. 37
-Wunused-function.. 37
-Wunused-label ... 37
-Wunused-parameter .. 38
-Wunused-value.. 38
-Wunused-variable .. 38
-Wwrite-strings .. 41

Warnings, Inhibit .. 35
-Wbad-function-cast ... 39
-Wcast-align ... 39
-Wcast-qual .. 39
-Wchar-subscripts .. 35
-Wcomment .. 35
-Wconversion ... 39
-Wdiv-by-zero... 35
weak Attribute .. 17, 22
-Werror ... 39

-Werror-implicit-function-declaration 35
-Wformat... 20, 35, 39
-Wimplicit .. 35
-Wimplicit-function-declaration 35
-Wimplicit-int ... 35
-Winline .. 23, 39
-Wl .. 51
-Wlarger-than- .. 39
-Wlong-long .. 39
-Wmain ... 35
-Wmissing-braces... 35
-Wmissing-declarations .. 39
-Wmissing-format-attribute 39
-Wmissing-noreturn .. 40
-Wmissing-prototypes... 40
-Wmultichar .. 36
-Wnested-externs ... 40
-Wno-.. 35
-Wno-deprecated-declarations 40
-Wno-div-by-zero.. 35
-Wno-long-long... 39
-Wno-multichar ... 36
-Wno-sign-compare.. 38, 40
-Wpadded... 40
-Wparentheses ... 36
-Wpointer-arith.. 40
-Wredundant-decls ... 40
WREG .. 162
-Wreturn-type ... 36
Writing an Interrupt Service Routine 88
Writing the Interrupt Vector 90
-Wsequence-point .. 36
-Wshadow .. 40
-Wsign-compare ... 40
-Wstrict-prototypes ... 40
-Wswitch... 37
-Wsystem-headers ... 37
-Wtraditional ... 40
-Wtrigraphs... 37
-Wundef.. 40
-Wuninitialized .. 37
-Wunknown-pragmas ... 37
-Wunreachable-code .. 40
-Wunused ... 37, 38
-Wunused-function ... 37
-Wunused-label .. 37
-Wunused-parameter ... 38
-Wunused-value ... 38
-Wunused-variable ... 38
-Wwrite-strings ... 41
WWW Address ... 5

X
-x .. 33
-Xlinker ... 51
DS51284D-page 192 © 2005 Microchip Technology Inc.

DS51284D-page 193 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel:011-604-646-8870
Fax:011-604-646-5086

Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

04/20/05

	Preface
	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Highlights
	1.3 MPLAB C30 Description
	1.4 MPLAB C30 and Other Development Tools
	1.5 MPLAB C30 Feature Set

	Chapter 2. Differences Between MPLAB C30 and ANSI C
	2.1 Introduction
	2.2 Highlights
	2.3 Keyword Differences
	2.4 Statement Differences
	2.5 Expression Differences

	Chapter 3. Using MPLAB C30 C Compiler
	3.1 Introduction
	3.2 Highlights
	3.3 Overview
	3.4 File Naming Conventions
	3.5 Options
	3.6 Environment Variables
	3.7 Predefined Constants
	3.8 Compiling a Single File on the Command Line
	3.9 Compiling Multiple Files on the Command Line

	Chapter 4. MPLAB C30 C Compiler Runtime Environment
	4.1 Introduction
	4.2 Highlights
	4.3 Address Spaces
	4.4 Code and Data Sections
	4.5 Startup and Initialization
	4.6 Memory Spaces
	4.7 Memory Models
	4.8 Locating Code and Data
	4.9 Software Stack
	4.10 The C Stack Usage
	4.11 The C Heap Usage
	4.12 Function Call Conventions
	4.13 Register �Conventions
	4.14 Bit Reversed and Modulo Addressing
	4.15 Program Space Visibility (PSV) Usage

	Chapter 5. Data Types
	5.1 Introduction
	5.2 Highlights
	5.3 Data Representation
	5.4 Integer
	5.5 Floating Point
	5.6 Pointers

	Chapter 6. Device Support Files
	6.1 Introduction
	6.2 Highlights
	6.3 Processor Header Files
	6.4 Register Definition Files
	6.5 Using SFRs
	6.6 Using Macros
	6.7 Accessing EEDATA from C Code

	Chapter 7. Interrupts
	7.1 Introduction
	7.2 Highlights
	7.3 Writing an Interrupt Service Routine
	7.4 Writing the Interrupt Vector
	7.5 Interrupt Service Routine Context Saving
	7.6 Latency
	7.7 Nesting Interrupts
	7.8 Enabling/Disabling Interrupts
	7.9 Sharing Memory Between Interrupt Service Routines and Mainline Code

	Chapter 8. Mixing Assembly Language and C Modules
	8.1 Introduction
	8.2 Highlights
	8.3 Mixing Assembly Language and C Variables and Functions
	8.4 Using Inline Assembly �Language

	Appendix A. Implementation-Defined Behavior
	A.1 Introduction
	A.2 Translation
	A.3 Environment
	A.4 Identifiers
	A.5 Characters
	A.6 Integers
	A.7 Floating Point
	A.8 Arrays and Pointers
	A.9 Registers
	A.10 Structures, Unions, Enumerations and Bit-fields
	A.11 Qualifiers
	A.12 Declarators
	A.13 Statements
	A.14 Preprocessing Directives
	A.15 Library Functions
	A.16 Signals
	A.17 Streams and Files
	A.18 tmpfile
	A.19 errno
	A.20 Memory
	A.21 abort
	A.22 exit
	A.23 getenv
	A.24 system
	A.25 strerror

	Appendix B. MPLAB C30 C Compiler Diagnostics
	B.1 Introduction
	B.2 Errors
	B.3 Warnings

	Appendix C. MPLAB C18 vs. MPLAB C30 C Compiler
	C.1 Introduction
	C.2 Data Formats
	C.3 Pointers
	C.4 Storage Classes
	C.5 Stack Usage
	C.6 Storage Qualifiers
	C.7 Predefined Macro Names
	C.8 Integer Promotions
	C.9 String Constants
	C.10 Anonymous Structures
	C.11 Access Memory
	C.12 Inline Assembly
	C.13 Pragmas
	C.14 Memory Models
	C.15 Calling Conventions
	C.16 Startup Code
	C.17 Compiler-Managed Resources
	C.18 Optimizations
	C.19 Object Module Format
	C.20 Implementation-Defined Behavior
	C.21 Bit-fields

	Appendix D. ASCII Character Set
	Appendix E. GNU Free Documentation License
	Glossary
	Index
	Worldwide Sales and Service

