
Labo n◦ 1

Real-Time systems [ELEC-H-410]

Realization of an application under µC/OS-II

2013–2014

Purpose

The course ELEC-H-410 “Real-Time Systems” has 9 practical work sessions divided into:

– 3 labs about a real-time OS: µC/OS-II
– 1 lab focussing on the CAN network
– 5 labs to realize a project: “Building a distributed alarm”, using the concepts previously

acquired.

Useful documents are stored on the network share:

labo\ELEC-H-410\Useful Documents\

- dsPIC30F-33F Programmer’s Reference.pdf

- dsPIC33 Data Sheet.pdf

- Introduction to MPLAB.pdf

- Explorer 16 User Guide 51589a.pdf

- MPLAB C30 C Compiler User’s guide.pdf

- uCOSII_RefMan.pdf

- Enhanced Controller Area Network.pdf

- Introduction to language C for microcontrollers.pdf

1 First lab

During this first lab, you will learn how to write a task under µC/OS-II, to make it periodic and
to assign it a priority, in an intelligent way. The hardware will be composed of a microcontroller
board and a logic analyser.

If you are not confident with C programming, read Introduction to C for microcontrollers.

Principles of the logic analyser are explained in the chapter 9; an how to guide for the Asix Sigma2
logic analyser is in Appendix A.

1.1 Creation of a task under µC/OS-II

A task is a succession of instructions doing a specific operation. Contrary to a function, a task
cannot return a value. Moreover you do not have any direct influence on the order of execution of the
various tasks which you create. Indeed, it is the operating system which is given the responsibility
to schedule the tasks and thus to choose which task must be carried out at which time on the
processor. µC/OS-II is a premptive RTOS based on fixed priorities that you have assigned to the
tasks. The choice of those priorities is thus crucial so that the system behaves as you wish. This is
why the second part of this lab will be related to the judicious choice of the priorities.

First, you will learn how to create a single simple task in µC/OS-II and to initiate the execution of
the operating system.

Copy the project \ELEC-H-410\uCOS-II\Exercices\Example1 in the network share to your com-
puter and open the project with MPLAB.

1



[ELEC-H-410] Real-Time systems Labo n◦ 1: µC/OS-II
2013–2014

page 2

In the file main.c you will find the function main (see Listing 1) in which are executed :

– the initialization of µC/OS-II and all its internal variables : OSInit()
– the creation of the task AppTaskStart: OSTaskCreateExt()
– the starting of µC/OS-II: OSStart()

This structure cannot vary. The operating system must indeed be initialized before any creation
of task and at least one task must have been created before giving control to OS. If no task were
present in the system when the OSStart() function is called, µC/OS-II would launch a useless task
“Idle” and do nothing else would be executed by the CPU.

For more details on the parameters sent during the creation of the task, refer to the µC/OS-II user’s
manual (page 113).

Listing 1: Function main.c

#include <includes.h>

// [...] declarations ...

CPU_INT16S main (void)

{

CPU_INT08U err;

OSInit ();

// Initialize "uC/OS -II"

OSTaskCreateExt(

AppTaskStart , // creates AppStartTask

(void *)0,

(OS_STK *)&AppTaskStartStk [0],

APP_TASK_STARTPRIO ,

APP_TASK_START_PRIO ,

(OS_STK *)&AppTaskStartStk[APP_TASK_START_STK_SIZE -1],

APP_TASK_START_STK_SIZE ,

(void *)0,

OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSStart ();

// Start multitasking (i.e. give control to uC/OS -II)

}

return (-1);// Return an error - This line of code is unreachable

1.2 How to write a task

Adding tasks to the OS is very easy:

– The task must be written like a function which returns nothing (void).
– The task must contain an infinite loop of any kind: use one of the 2 structures for(;;){code...}

or while(1){code...}.
– A task must always call at least one of the services of µC/OS-II that will make the task

“waiting” like:
OSTimeDly(), OSTaskSuspend(), OSSemPend(), OSMailboxPend() or OSMutexPend().

– The task must be added to the OS before the call to OSStart(), see Listing 1 and µC/OS-
II documentation for precise syntax.

Since µC/OS-II is preemptive, the currently running task has got the highest priority among all
“ready” tasks, hence if no event occurs (like an ISR making a higher priority task ready or the
current task giving the control back to the scheduler) no other tasks will ever run.

Listing 2: task1.c Basic task example

void task1 (void *data){

... // init code , variable declaration

while (1){

... // job code

OSTimeDly (10); // ask the RTOS to put task1 in "waiting"

// state for at least 9 ticks

}// for

}



[ELEC-H-410] Real-Time systems Labo n◦ 1: µC/OS-II
2013–2014

page 3

1.3 Put a task to sleep for some time

Sometimes, it is necessary to let a task sleep for a while (maybe the job is complete, the task needs
some resource/data not available yet to complete its job. . . )

To let a task sleep in“waiting” state for some time, on might call the OSTimeDly(INT16U tick_nbr)

function; The parameter tick_nbr is an unsigned 16bit integer1 which determines the number
of ticks during which the task will sleep. The timer creating the periodic interrupts has been
configured for a frequency of 1kHz, hence 1 tick = 1 ms. More precisely the task will sleep at least
(tick_nmbr-1), if you want to be sure to sleep during 1 tick you should specifiy tick_nmbr=2. To
demonstrate that, draw a chronogram of tick interrupts and imagine where the call OSTimeDly()
could occur.

Exercise 1. Create one second task in the Example1 project which lights a LED of the uC board
at a frequency of 1Hz.

To change the state of the LED, toggle pin LATAbits.LATA3. Remember that you have to configure
the pin in the output direction by using the instruction TRISAbits.TRISA3 = 0.
(see dsPIC33 Data Sheet p157 or Explorer 16 User Guide 51589a.pdf p33/43)

Use the code for AppTask1 as a model, don’t forget stack and priority declarations.

1.4 Creation of periodic tasks

In Exercise 1, you have created a periodic task, i.e. a task executing forever at regular intervals. In
most industrial applications, those tasks are frequent and the periodicity should be realized with a
good precision (see example of PI controller in chapter 3 of the course).

Open the project Example_Periodicity.

You will find 4 tasks in this example:

– AppTaskStart whose only goal is to create the three other tasks
– AppTask1 which should have a period of 10ms;
– AppTask2 which should have a period of 50ms;
– AppTask3 which should have a period of 100ms.

Exercise 2. Scheduling verification. We will use the logic analyser to verify if your task is scheduled
correctly in the RTOS.

– Switch the logical analyser on and launch the display interface on the PC.
– Open the test file elec-h-410.stf in the ELEC-H-410 folder. You can customize it if you

want.
– Start your program Example_Periodicity on the microcontroller and launch a first data

acquisition with the logic analyser.
– Observe the evolution of the value of the bus RunningTaskId which shows the identifier of the

tasks running on the processor. Observe preemptions of certain tasks when a higher priority
task is active (see signals Task1Active, Task2Active et Task3Active whose value is 1 when
the tasks AppTask1, AppTask2 and AppTask3 are respectively active, i.e., between its first
instruction until its completion).

– Use the logic analyser to measure the real period of real activation of each task. Hint: press
space to set a marker and move the cursor, the time between the cursor and the marker will
be shown in a tooltip. Are they exactly in conformity with the desired periods? Identify 2
causes of these errors.

1.4.1 Use of OSTimeGet()

µC/OS-II provides the OSTimeGet() function which returns a 32 bit integer (INT32U) representing
the number of ticks since the launching of OS.

Exercise 3. Compute after how long this counter will overflow.

Exercise 4. Use OSTimeGet() in each task to compensate for the error over the period.

1ranging from 0 and 65535



[ELEC-H-410] Real-Time systems Labo n◦ 1: µC/OS-II
2013–2014

page 4

1.4.2 Use of a software timer

It is possible to use software timers in µC/OS-II. Those are used exactly in the same way as
hardware timers, except that they are entirely managed by the operating system and that they are
synchronized on the ticks of the system. The function OSTimerCreate() allows to create a software
timer (see µC/OS-II manual for details) and OSTmrStart() to start it. When a timer expires, it
calls a function whose pointer was given in the parameters.

Open the project Example_Timer. You will find the same 4 tasks as in the previous example except
that their period are generated by using three software timers.

Functions OSTaskSuspend() and OSTaskResume() allow to suspend and restart the execution of a
specific task.

Exercise 5. Check with the logic analyser that the periods are strictly respected.

This method for creating periodic task gives very precise results. However, it is rather heavy and
should therefore be used when this precision is absolutely required.

Exercise 6. Create a new timer which switches a LED on after 5s. There is no need to write a
complete task for this exercise.

1.4.3 Choice of the priorities

As explained earlier, the choice of the priorities of the task is the only tool at our disposal to help
the operating system to choose which task must be running at which time. To be convinced of the
importance of a judicious choice of these priorities, we will look at a simple example.

Exercise 7. Open the project Example_Priorites.

– The task AppTask1 should run every 1ms
– The task AppTask2 should run every 100ms

– Check the behaviour of the tasks with the logic analyser.
– Reverse the priorities of AppTask1 and AppTask2 and reverify what occurs.
– By comparing the periods of each task and the priorities assigned, which systematic rule of

assignment can you deduce?
– How is called this method to assign the priorities?
– What happens when tasks have relative deadlines different from their periods?
– Which scheduling algorithm would you use if you could assign priorities directly to jobs instead

of tasks?



[ELEC-H-410] Real-Time systems Labo n◦ 1: µC/OS-II
2013–2014

page 5

A The Asix Sigma2 logic analyser

The Asix Sigma2 logic analyser is like:

A.1 Electrical connections to the Explorer 16 board

Connect the analyser to the extension board with the numbered ribbon cable following this scheme:

1
4

5
8

9
12

gnd

A.2 Software on the computer

The software interface of the logic analyser looks like:

A.3 Basic measurements

The red line on the screen is a cursor showing the time and values of signals in the main window. To
place a marker (blue line), press space. If you move your cursor, the difference between the marker
and the cursor will show in a tooltip.

The first acquisition must be launched by software. Following acquisitions can be done using the
“go” button of the analyser.


	First lab
	Creation of a task under C/OS-II 
	How to write a task
	Put a task to sleep for some time
	Creation of periodic tasks
	Use of OSTimeGet()
	Use of a software timer
	Choice of the priorities


	The Asix Sigma2 logic analyser
	Electrical connections to the Explorer 16 board
	Software on the computer
	Basic measurements


