
CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

1

Chapter 5

Priority-driven scheduling

ELEC-H410
REAL-TIME SYSTEMS

2

Priority-driven scheduling

< foreground/background systems
<
<

CONTENTS

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

3

< purpose : schedule jobs associated to
asynchronous events and their deadlines D

< method
‚ clock-driven (synchronous) scheduling with Ts < min(Di)

(see previous chapter)
‚ asynchronous scheduling

! associate an IRQ to each event
! define the priority (by hard and/or software) for each IRQ

< remark
‚ periodic tasks can be handled by periodic IRQ even if

the global systen is asynchronous and dynamic

Foreground/background
asynchronous event-driven systems

4

Schedulers that are not based on a clock are thus asynchronous and also known as event-driven. The task
scheduling consists in:

- detecting these events, by interrupt requests in most cases
- defining a priority of each interrupt, either by the help of a special peripheral called PIC (Priority Interrupt

Controller) or by software, or by a combination of hardware and software

It is also possible to manage periodic tasks in an asynchronous system, via periodic interrupts produced
by a timer, while keeping an asynchronous philosophy based on the priorities.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

5

Foreground/background
worst-case Interrupt Total Time

IRQ1(P1)

background foreground

IRQ2(P2)
IRQ3(P3)

critical section

ISR4
IRQ4(P4)

ITT(P3) # ILT3 + ILT4 + IET3 + IET4

ITT(Pi) # ILTmin(Pi) + CSmax + E IET(P$Pi)

6

In the foreground/background system, the program executes a background infinite loop of tasks without any
priority (or having all the least priority 0). This is basically the same concept as the superloop that we have
seen at the beginning of the previous chapter. The background can also be empty; in this case the main()
program contains only initialization instructions, then an empty loop while(true) {}. On this figure, the
background consists in 4 jobs.

The foreground is a set of periodic and aperiodic events coming from external interrupt requests (I/O pins) or
from internal peripherals such as timers, analog-to-digital converters and serial communication devices.
Interrupts are here numbered in increasing order of priorities. Let us analyse this figure

- the interrupt request IRQ1 occurs; after the latency time, the execution of the service routine ISR1 starts;
ISR1 unmasks IRQ2, IRQ3 and IRQ4, whose priority is higher. The total execution time is ITT1; it is the
best case, because no higher priority events occurred.

- IRQ2, being a critical section, leaves the global interrupt mask set and executes normally. Let us notice that
a critical section does not imply the highest priority , because IRQ2 cannot preempt IRQ3 and IRQ4.

- a worse case happens to IRQ3, indeed
! IRQ3 occurs just after the beginning of ISR2, in critical section; the interrupt flag of IRQ3 is set, but

ISR3 is delayed; the execution time of ISR2 increases the latency time of IRQ3
! ISR2 terminates by Return from Interrupt, the processor restores the context and returns to the

background (rem:most processors are designed to guarantee the execution of the first instruction of the
 code which was interrupted, in particular to enable a modification of the interrupt masks).

! since ISR3 is pending, only 1 instruction of the background is executed, then ISR3 is called; one of its
first instructions unmasks ISR4. ISR3 executes, but is preempted by IRQ4 whose execution time
delays ISR3

In the worst-case, the total time of an interruption (normal latency time + execution time) can be
increased by
- the execution time of the longest critical section
- the execution time of all interrupts which have got a higher priority

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

7

< too long ISR => latency ü for other IRQ
‚ just do what is essential

! if low priority: enable higher priority IRQs
! execute most urgent actions
! prepare further background actions
set a boolean to indicate that the IRQ occurred
prepare data

‚ delayed actions are performed later in background
< shorter deadline

‚ set higher priority
‚ critical section (/!\ iif required)
‚ if deadline cannot be respected => subcontract to hardware

(other :C with adapted peripheral, FPGA,...)
< potential safety problem => redundancy

Foreground/background
put the minimum of code in an ISR !

8

After the conclusion of the previous slide, it is clear that we have to put the minimum of code in ISRs to
avoid slowing down other events.

Let us take the example of a task responsible for filling a tank; when the level is reached, a float closes a
switch which causes an interrupt request. The ISR will
- stop the pump which fills the tank
- set a flag (global variable) to warn a background task that the tank is full
- the background task will change the level and color of the tank on the display

The following rules should be applied
- the total response time to this event must be shorter than the deadline (i.e. the delay between the closing of

the micro-switch and the overflow of the tank); if it cannot be guaranteed, it is necessary to resort to a
hardware solution to cut off the supply of the tank; the interruption serves only as level indicator

- if the overflow is critical for safety, redundancy should be introduced

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

9

< difficulties of fore/background systems
‚ manage priorities/critical sections

! a lot of IRQ sources
! not enough priority levels in the system
! priorities partially imposed by the platform

‚ ensure operation in all the cases
‚ the problem has to be solved for each new application
‚ if an IRQ is mostly treated in background, the response

time to an event is the worst-case length of the loop
< easier solution: RTOS (RTK)
 Real Time Operating System (Kernel)

Foreground/background
conclusions

10

The main difficulty is thus the choice of the priorities of interrupt requests and of the critical sections. It is a
hard work for the programmer, in particular because
- the number of events can be larger than the number of interrupts request inputs (fortunately, modern micro-

controllers offer a lot of interrupt input pins)
- the number of priority levels of the processor is not always sufficient (e.g. 2 for 8051 and PIC18 families)

most of the priority management has to be done in software
- the priorities can partially be fixed by construction of the processor (see 8051 family)
- some interrupts are reserved by the platform itself for its own peripherals.

In the worst case, the tasks treated in background (including those started by an interruption) have a
processing time equal to that of the whole loop, and this time is not constant.

Finally the experience acquired during a design cannot necessarily be transposed to future cases. It is thus
necessary to remake a similar effort and to seek for worst cases with each new application.

To answer this problem, special Operating Systems (OS) have been designed to perform dynamic scheduling
and try to meet all the temporal constraints of real-time tasks. Such OSes are known as

RTOS Real Time Operating System or
RTK Real Time Kernel when they are reduced to scheduling and drivers of the peripherals (no file

management is required in systems without mass memory)

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

11

Priority-driven scheduling

<
<RTOS
‚ principles
‚
‚
‚
‚

<

CONTENTS

12

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

13

< each task
‚ is written as if it were alone to execute
‚ has got a priority level dictated by the application
‚ is given resources when it is created

! registers
! dynamic memory: stack, heap

< at run-time, the scheduler
‚ tries to respect priorities and deadlines
‚ runs 1 task at a time by giving it

! some registers
! the CPU

< how to return to the scheduler : 2 variants
‚ non-preemptive: the task gives the control back
‚ preemptive: the task gives the control back or the scheduler is

able to preempt the task

RTOS
principles

14

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

15

RTOS
state of tasks and transitions

waiting

suspendresume
RESUME

dormant ready

create/release

running

START

ISR

IRQ

RTIdelete

delete

OS_call
SCHEDULER ACTION
task state

PREEMPT1

1preemptive kernel only

16

We have already seen this diagram and the different definitions.

In non-preemtive scheduling a running task has to give the control back to the scheduler (which is also
known as cooperative multi-tasking)

Two cases appear on this figure
- the running task is finished and makes a call to the OS to be deleted to return to the "dormant" state; this is

only true for tasks that are rarely started and run only once (e.g. maintenance of the code, diagnosis)
- a recurrently running task suspends itself to a new state called the "waiting" state, because it wants to

wait for
- a certain amount of time (it is a means for a task to become periodical) or until a certain date
- data coming from another task (see further: mailboxes)
- a flag set by another task or an ISR to synchronize (see further: semaphores)
- a resource which is momentarily not available (communication port, buffer,... see further: semaphore)s

In this diagram, a preemptive scheduler adds the transition PREEMPT from "running" to "ready", which
happens when a higher priority task becomes "ready".
This is quite a fundamental difference: the preemptive scheduler tries to have always the highest priority
task running.

The management of the interrupts will be detailed later in this chapter.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

17

Priority-driven scheduling

<
<RTOS
‚
‚ inter task communication

! shared global variables
! semaphores
! mailboxes
!

‚
‚
‚

<

CONTENTS

18

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

19

< definition
‚ global variables are declared outside any function

< advantage
‚ visible anytime, anywhere => observability in debug
‚ efficient and fast

! inherently shared
! no time required to make a copy
! no need to pass parameters to a function using it

< /!\ danger
‚ anarchic sharing and corruption of data
‚ static mechanism => non-reentrant

RTOS: task communications
shared global variables: efficient, but dangerous

20

When variables are defined outside any function, they become global.

This seems an enormous advantage if you want to share their value between several functions, since they
are usable anywhere in the code . Because of this observability, the value of a global variable can easily be
monitored in a "watch window" during debug.

The potential danger is that they can be changed by several functions, which can lead to a concurrence and
to anarchic situations where the behaviour on the program depends on the competition between several
functions, or from the order of their execution.

The most typical example is a function F whose behaviour depends on the value of a global variable G. F
begins its execution then and is interrupted or preempted by another function which changes G. When F
resumes its execution later, G has been changed (i.e. the context of F is not restored properly) and F won't
behave in the same way, which could be harmful.

Using a global variable to share data is said to be a static mechanism, because G is assigned a fixed
address that won't change during the whole execution. Therefore F can be entered, but not interrupted and
re-entered; this is called non-reentrant code.

During debugging, if the value of the global variable becomes incorrect, the fact that it can be changed from
anywhere in the code complicates the identification of the error.

Therefore, global variables are prohibited in most "good programming practice". For some programmer
it is real paranoia, which is unjustified because there are safe ways to use global variables , which are very
efficient in embedded systems, which we shall see in the next slides.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

21

< pure read-only globals
‚ process state variables are globals

! changed by the process (To, P, switch,....)
! stored in input ports and analog-to-digital converters
! "read-only"

< almost read-only globals
‚ single "producer" function can write to the global, other

ones are read-only "consumers"
< non-reentrant => mutual exclusion required

‚ read: prohibit interrupts (critical section)
‚ write: use uninterruptible instructions (read-modify-write)
‚ RTOS=>semaphores

RTOS: task communications
shared global variables CAN be safe

22

- the safest globals are read-only . The most common example is the set of
(temperature, pressure, speed, position) of you process; they are inherently global and changed by the
process and not by your code. They are acquired by the input ports (analog or digital) of your system
which are global by definition: their name (and hence their address) is known by the compiler. Using them
in a function does not require to pass the value as a parameter, which spares time and memory space for a
copy of the variable or for its address). Just use the variable by its name, it's simple and it's completely
safe.

- if only one function (called the"producer") can change the variable, it becomes read-only for all other
functions (the "consumers"); in that case, the debugging is easier because there is only one place in the
code where the variable is assigned its value.

- anyway, the sharing mechanism is still non-reentrant. To avoid reentrance problems, one solution is to
avoid being interrupted or preempted is to access the global variable in a critical section (i.e. mask the
interrupts). In most microcontrollers, the instructions that set or reset bits of variables (called read-modify-
write) though they require 3 operations (read-modify-write) are single, uninterruptible instructions, which
simplifies the problem.

- if we use an RTOS, a protection for shared resources is provided: the semaphores

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

23

< a semaphore is
‚ a protocol for multitasking resource sharing or synchronisation
‚ an object (also called event)

! belonging to the kernel
! created by a call OSSemCreate() in the initialization code

< a semaphore contains
‚ a counter which is the "value" of the semaphore and initialized

when semaphore is created
0 means semaphore not available

‚ a list of tasks waiting for the availability of the semaphore
< 3 types

‚ counting: initialized to any integer value
‚ binary: takes only values 0 or 1

! key : initialized to 1
! flag : initialized to 0

RTOS: task communications
semaphores

24

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

25

< task calls OSSemPEND(SemName,timeout,&err)
< if semaphore value>0 the RTOS

‚ decrements the semaphore
‚ returns to the running task

< else the RTOS
‚ changes task state to "waiting"
‚ if timeout==0 task is ready to wait indefinitely
‚ else

! a software timer is initialized in the TCB of the task
! scheduler makes a context switch and starts highest priority task

< special case an ISR cannot wait for a semaphore
‚ no "waiting" state
‚ use OSSemAccept() just to get the value (ISR not suspended)
‚ test if it is 0 (or not) within the ISR

RTOS: task communications
how a task asks and gets a semaphore

26

For the running task, asking for a semaphore consists in calling a function of the RTOS with the name of
the semaphore as a parameter. We will use here the grammar of uCOSII, which you will use in the labs.

By calling the RTOS, the running task gives back the processor to the RTOS. The fact that the RTOS will
give back the processor to the task depends on the state of the semaphore.

- if the semaphore is available, the RTOS will decrement its counter and the task will resume its execution

- if the semaphore is not available, the task will go to the waiting state. How long the task will wait depends
on the second parameter, which is a time-out

" if the time-out is infinite, the task is ready to wait until the semaphore becomes available. At that
moment, the task becomes "ready" and finally "running" when its priority is the highest

" if the time-out is finite, then the RTOS will create a software timer in the data structure associated to
the task and called TCB (Task Control Block). The system is regularly interrupted by a hardware
timer, those interrupts are called the ticks of the RTOS. At each tick, the ISR belonging to the RTOS
decrements the timers in all TCBs. If the timer associated to the semaphore arrives at 0 before the
semaphore is available, then the RTOS places an error message at the address passed as third
parameter and puts the task "ready"

An important remark applies to Interrupt Service Routines. ISRs are functions that are called by an event (the
interrupt) and hence are no scheduled by the same mechanism. Consequently they cannot wait for a
semaphore, because they are not tasks that can be put in "waiting" state.
Therefore, a special call to the RTOS exists just to test the value of the semaphore and the OS always returns
the processor to the ISR.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

27

< task calls OSSemPOST(SemName)
< RTOS

‚ browses the list of tasks waiting for this semaphore
! if (list is empty)
increment the semaphore
returns to running task

! else
make "ready"

• the 1st task in the list (FIFO policy)
• the highest-priority task in the list (priority policy) [:C/OSII]

calls the scheduler
• if › higher priority task => task switch
• else return to running task

RTOS: task communications
how a task asks releases a semaphore

28

The release of a semaphore is a similar call to the RTOS.

We could think that the RTOS just increments the semaphore to make it available and gives the processor
back to the running task.

This is only true if no other task is currently pending for the semaphore.The RTOS can be verified it in the
data structure associated to the semaphore which contains the lists of all such tasks. If the list is not empty
and contains several tasks, there are to major ways to elect the winner
- the highest priority one; this is the simplest choice and also the one that corresponds to the philosophy of

the RTOS
- the order of the calls; in that case, the list is organised as a FIFO stack (First In First Out)

The scheduler will be called to run the highest priority task.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

29

RTOS: task communications
protection of a shared resource by a "key" semaphore

1Initialization
T1 "running"

0OSSemPend(Key)
OSTimeDly(3)
.....

T1 "waiting" T2 "running"
OSSemPend(Key)

T2 "waiting"
03T

T1 "running"
OSSemPost(Key) 1

0 T2 "ready"
T1 "ready" T2 "running"

(P2>P1)

OSSemPost(Key)
........

1
........

RTOS

30

Suppose that two tasks T1 and T1 have to share a unique resource, e.g. a printer. We don't want parts of text
coming from two sources to be interleaved on the paper, hence we need mutual exclusion (MUTEX).

In the initialization part of the program, after checking that the printer is ready, we place the instruction

Key=OSSemCreate(1)

"Key" is here a generic name to recall that this creates a "key semaphore" initialized to 1. In clean readable
code, you should call it "PrinterReady" or any other meaningful name.

- during its execution, T1 asks for the resource by a call. Since the key is available, the RTOS "gives the Key
to T1", simply by decrementing the Key to 0 and returning "no error" to T1. The resource now belongs
exclusively to T1

- let us suppose that T1 returns to "waiting" by suspending itself of because it has been preempted

- when T2 becomes "running", it makes the same call OSSemPEND(Key). Since the key has been given to
T1, T2 is preempted, goes to "waiting", and is placed in the waiting list of the semaphore Key

- later, when T1 is "running" and releases the semaphore by a call OSSemPost(Key),
- the semaphore Key is not incremented since T2 is pending in its waiting list
- T2 becomes "ready"
- the scheduler is called which

- sees that T2 has a higher priority than T1
- preempts T1
- changes the context and restarts T2

- T2 is resumed at the instruction just after the OSSemPEND(Key) which had suspended it
- T2 has got exclusive access to the resource protected by Key until it releases it
- T2 releases the semaphore by a call OSSemPost(Key), since no more tasks are waiting for the semaphore,

it is incremented and becomes available.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

31

RTOS: task communications
multiple resources: counting semaphore

2Initialization
T1 "running"

OSSemPend(Count) 1

T1 "waiting"
OSTimeDly(2)
.....

T2 "running"
OSSemPend(Count)0

T2 "waiting"
OSTimeDly(4)
.....

T3 "running"
OSSemPend(Count)

T3 "waiting"
0

T2 "running"
OSSemPost(Count)1
.....T3 "ready"

RTOS

4T

32

The same mechanism can by extended when the resource is not unique. Here we take the example of a
double buffer.
The only difference is that the semaphore is created as a counter initialized to the number of available
resources (here 2).

Each OSSemPend(Counter) decrements it, OSSemPost(Counter) increments it.

A task pending for a Counter=0 goes to "waiting" and will go to the "ready" when Counter >0.

The scheduler decides which task will be "running" each time a task become "ready".

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

33

RTOS: task communications
synchronization by a "flag" semaphore: rendez-vous

0Initialization
T1 "running"

OSSemPend(Flag) 0......

T1 "waiting"

T2 "running" (or ISR)
OSSemPOST(Flag)

0
1

T1 "ready"

T1 highest priority => "running"
..................

..................

34

Suppose that T1 has to be synchronized to T2:
- we need a sequential execution, e.g. a state machine; T1 must occur after T2
- part of T1 cannot be executed until T2 has produced some results

This is called "unilateral synchronisation" or "unilateral rendez-vous"

In the initialization part of the program, before starting the tasks, we place the instruction

Flag=OSSemCreate(0)

"Flag" is here a generic name to recall that this creates a "flag semaphore" initialized to 0. In clean readable
code, you should call it "T2_sync" or any other meaningful name.

- during its execution, T1 suspends itself until T2 occurs by a call OSSemPend(Flag); since the Flag is false,
the RTOS puts T1 in the "waiting" state, and places T1 in the waiting list of the semaphore Flag

- during its execution, T2 releases the semaphore by a call OSSemPost(Flag), the RTOS
- sees that T1 is waiting for Flag and marks T1 as "ready"; semaphore is not incremented, since a task is

waiting for it
- T2 is resumed at the instruction just after the OSSemPOST(Flag)

- when T1 has got the highest priority, it resumes execution just after the OSSemPend(Flag)

REM
- T2 can be an Interrupt service Routine and T1 a task waiting for this event (see further §: management of

interrupts, IISR and DISR)
- the reverse is not true: T1 cannot be an ISR, since an ISR cannot wait for a software event. An ISR it is only

triggered by a hardware event, the interrupt request. An ISR can only test a semaphore by a call
OSSemAccept(Flag).

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

35

RTOS: task communications
bilateral rendez-vous

Initialization A B
T1 "running"

A BOSSemPost(A)
...........

OSSemPend(B) A BT1 "waiting"
T2 "running"

OSSemPOST(B)BA
........

B
T1 "ready"

OSSemPEND(A)A B
........
................

T1 "running"
BOSSemPost(A)..............

A
..............

36

Both task can synchronise to the other one, which is known as " bilateral synchronization" or "bilateral
rendez-vous".
Its simply the extension of the previous mechanism, with the resort to a second flag.
Both flags A and B are initialized to 0

REM
- T1 and T2 have to be ordinary task; they cannot be ISRs
- beware of the order of the PEND and POST instructions, what happens if you exchange them ?

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

37

< a mailbox is
‚ a protocol for multitasking data exchange
‚ an object

! belonging to the kernel
! created by a call OSMboxCreate() in the initialization

< a mailbox contains
‚ a pointer-sized variable initialized to point to a message

! NULL pointer means empty mailbox
‚ a list of tasks waiting for a message in the mailbox

< very similar to the semaphore
‚ PEND, POST, Timeout
‚ can replace the semaphore but less efficient (code, latency)

< ISR can POST to a mailbox, but not PEND

RTOS: task communications
mailboxes: exchanging data between tasks

38

The mechanism of the semaphore can be transposed to mailboxes for to the exchange of messages between
tasks. Instead of a counter, the mailbox is based on a pointer to a message (or to null if no message is
available).
You will have the opportunity to use semaphores and mailboxes during the labs.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

39

Priority-driven scheduling

<
<RTOS
‚
‚ inter task communication

!

!

!

! dependancy hazards
‚
‚
‚

<

CONTENTS

40

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

41

RTOS: dependancy hazards
Priority Inversion: a high priority tasks doesn't run

P(T1) < P(T2) < P(T3)

R1

t1 t2t3

R1?

t4 t5 t6

R1

t7

P

T1

T2

T3

priority inversion

42

A high-priority task can be delayed by the execution of tasks of lower priority ; this is known as priority
inversion. This phenomenon occurs chiefly with non-preemptive schedulers (see managing interrupts) but it
can also happen with a preemptive scheduler when tasks are in competition for a shared resource.

On this figure, we see three tasks whose index indicates the priority, T3 is thus the highest priority task.

Let us suppose that T1 and T3 share the same resource (for example an I/O port), protected by a semaphore
R1 initalized to 1, which means that the resource is free.

- at t=0, T1 is ready, has got no concurrent task and starts immediately.
- at t=t1,T1 executes a call OSSemPend(R1); since the resource is free, T1 gets the semaphore (R1 is

decremented to 0 by the RTOS) and T1 gets exclusive access to the shared resource
- at t=t2,T3 becomes ready, T1 is preempted and T3 starts
- at t=t3,T3 requires the shared resource by a call OSSemPend(R1) and is suspended to the "waiting" state,

because the semaphore is not free. The scheduler then restarts T 1, which is the only "ready" task
- at t=t4,T2 becomes ready, T1 is preempted and T2 starts, which delays the execution of T 1
- at t=t6,T1 finally releases the semaphore by a call OSSemPost(R1); this gives control back to the scheduler,

which preempts T1 and restarts T3.
- at t=t7,T3 is finished, goes back to "waiting" and T 1 can be restarted.

Priority inversion occured during the interval (t 6 - t1): T3 should have been running, being the highest priority
task, while lower priority tasks T1 and T2 were excuted instead.

A solution, is to resort to priority inheritance, which we shall see now.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

43

RTOS: dependancy hazards
Priority Inheritance minimizes the inversion duration

t1

R1

t2

P(T1)=3

t3

R1?

priority inversion reduced to minimum
/!\T1 should "hurry-up"

P

T1

T2

T3

P(T1) < P(T2) < P(T3)

t4

T2 ready but not running

t5

P(T1)=1

R1

t7t6

P(Tblocking)= max{P(Tblocked)}
max inversion time calculable

44

To reduce the duration of priority inversion, we can resort to the priority inheritance. It consists in temporarily
allotting to a task causing the inversion (here T 1) the highest priority of the tasks that it blocks (i.e. the priority
of T3).

The goal is obviously that the blocking task releases as soon as possible the resource to which it has got
exclusive access.

On the figure, we see that as soon as T1 blocks T3, T1 gets the priority level 3, which prevents the readiness
of T2 to cause the preemption of T 1 at t=t4; task T3 will get the resource at t=t5, when T1 releases the
semaphore.

A task like T1 should always "hurry-up" when it owns a semaphore, calls like OSSuspend() or OSTimeDly()
are forbidden before the semaphore is released , otherwise T1 freezes all tasks below its current inherited
priority.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

45

< :C/OSII Semaphores: no priority inheritance
< :C/OSII MUTEX

‚ MUTEX ="key" semaphore + priority "raising"
‚ same kind of calls

! OSMutexPend(MutexName,timeout,&err)
! OSMutexPost(MutexName)

‚ creation is different
! PrinterReadyMutex=OSMutexCreate(Prio,&err)

< protocol
‚ a low-priority task T1 gains the MUTEX by OSMutexPend()
‚ a higher-priority task Tk calls OSMutexPend()
‚ the priority of T1 is raised to Prio until T1 releases the MUTEX
‚ if Prio>P(Tk) T1 keeps running

:C/OSII
MUTEX: a special semaphore

46

The RTOS used in the labs, uCOSII uses a simplified version of those mechanisms.

- semaphore have no priority inheritance

- another type of semaphore, the MUTEX implements a slightly different method to reduce priority inversion:
static priority raising. As a matter of fact, this simple and small RTOS kernel is not able to detect the
inversion and, a fortiori, to attribute automatically the priority of the blocked task to the blocking task. It is
the responsability of the programmer to indicate, during the creation of the MUTEX, to which priority level
any task getting the MUTEX will be raised.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

47

RTOS: dependancy hazards
Deadlock: no tasks is running any longer

t1

R1

t2 t3

R2

t4

R1?

t5

R2?

!
t

P

T1

T2

P(T1) < P(T2)

< solutions: all tasks
‚ acquire all resources before

executing
‚ acquire resources in same order
‚ release resources in reverse order

48

Another phenomenon can occur in preemptive systems where exclusive access is given to at least two shared
resources: the deadlock.

- at t=t1,T1 gets the exclusive access to R 1 by a call OSSemPend(R1)
- at t=t2,T2 becomes "ready" and is started
- at t=t3,T2 gets the exclusive access to R2 by a call OSSemPend(R2)
- at t=t4,T2 wants to use R1 by a call OSSemPend(R1) resource, and returns to "waiting" because R1 is

reserved; T1 is restarted
- at t=t5,T1 wants to use R2 by a call OSSemPend(R2) resource, and returns to "waiting" because R2 is

reserved

The deadlock occurred: neither T1, nor T2 can be restarted anymore. They are both "waiting" for an event
(the release of a semaphore) which will never occur.

The priority inheritance does not solve this problem.

Two simple solutions can be found by putting constraints on the way tasks acquire resources
- either all tasks have to reserve all the resources they need before proceeding
- or all tasks acquire resources in the same order and release them in the reverse order .

Exercise: draw those scenarios

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

49

RTOS: dependancy hazards
Deadlock: timeout

t
t1

P

T1

T2

t2 t4 t5

P(T1) < P(T2)

t3

R1?

R1

R2

R2?

timeout

!

OSSemPend(name, timeout, &err)

50

Deadlock can be broken thanks the two last parameters in the call OSSemPend()
- a timeout parameter
- an error handler passed by reference so that the RTOS can modify it

When it receives the call, the RTOS initializes a counter in the semaphore, which is decremented at each
clock tick. When the counter reaches 0, the scheduler puts an error code (predefined constant TIME_OUT) in
the variable "err" and changes the state of the task T 2 from "waiting for the semaphore" to "ready". When the
task T2 is restarted, it looks to the value of "err", is aware that the timeout is expired and can take actions
based on this information.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

51

< for each resource Rj
‚ P_ceiling = max{Ti asking for resource}

< Ti can have access to the resource only if
 P > P_ceiling of already taken Rj

< if Tk blocks Ti (higher priority), Tk inherits P(Ti)

RTOS: dependancy hazards
Priority Ceiling

t
t1

P

T1

T2

R1?

R1

R2

R2?

t2 t3 t4 t5

52

Deadlock can be solved by the Priority Ceiling Protocol.

The principles are:
- each resource is allotted a ceiling_priority equal to the maximum priority of the tasks which can access

to it
- a task can access to this resource if and only if the priority of this task is higher than the

ceiling_priority of all the resources currently taken
- if a task Tk blocks a higher priority task T i, Tk inherits the priority of T i

If we apply these principles to the previous example:
- the priority of T1 is 1
- the priority of T2 is 2
- the two shared resources R1 and R2 have got a ceiling_priority CP=priority of T 2=2
- at t=t1,T1 gets exclusive access to R 1 with a semaphore. From that moment, only resources whose CP=3

are still available
- at t=t2, T2 becomes "ready" and is started
- at t=t3, T2 tries to get the resource R 2, but this request is refused because its priority (=2) is less than the

ceiling priority (=3)
- no deadlock occurs

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

53

< global variable
‚ advantages

! lots of globals inherent to the system
! good way to send data to an ISR

‚ drawbacks
! critical section to guarantee exclusivity => latency
harmless if latency < scheduler latency

! globals changed in an ISR have to be polled by other tasks
< semaphore & mailboxes

‚ advantages
! easier and safer for the programmer (RTOS manages everything)
! ISR can test a semaphore or a mailbox
! ISR can send signals or messages to tasks which don't have to polling

‚ drawbacks
! heavier (calls to the OS)
! an over-kill to manipulate single variables

RTOS: task communications
global variable, semaphore, mailbox: which is the best?

54

All mechanisms can be used for communication.

Do not throw away the usage of global variables :

- they are inherent to your system (interrupt flags, state variables of the process.....). For example, if a
periodic task computes a temperature by making two successive read operations in an analog-to-digital
converter, compensate the offset, and convert to Celsius scale, why not "publish" the result in a global
variable so that every task gets access to it immediately?

- even if you have to protect the exclusive access to the variable by disabling/enabling interrupts (i.e. using
critical sections), it is not necessarily harmful for the system. Critical sections are part of the latency time,
but if you use an RTOS, the scheduler itself is generally a critical section, hence if you create critical
sections that are not longer than the scheduler, you do not increase the latency

- global variables are the most efficient mechanism to manipulate single boolean or integer variables
- are convenient to send data to an ISR
- receiving data from an ISR implies polling this data in every "consumer" task

On the other hand, semaphores and mailboxes

- are easier and safer because the programmer subcontracts responsibilities to the RTOS
- can be tested by ISRs to get signals or messages
- are the best way for an ISR to signal events or send data to tasks because you do not have to code

loops to poll for the changes in a global and manage timeouts, you just have to PEND for the event and let
the RTOS do the rest.

- are rather slow, so do not overuse them
- are too powerful to exchange single variables

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

55

Priority-driven scheduling

<
<RTOS
‚
‚
‚ time ticks
‚
‚

<

CONTENTS

56

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

57

< RTOS consumes a hardware timer
‚ generates high-priority periodic interrupts called ticks

< software timers
‚ int variable
‚ initialized on an event
‚ decremented by the Tick_ISR belonging to the RTOS
‚ lots of software timers

! OSTaskSuspend(delay) from tasks
! timeouts while waiting for events (semaphore, mailbox)
! time-out to preempt a task (see further "round-robin")

< "time"variable
‚ counter incremented at each tick
‚ generally 32 bits (i.e. 50 days at 1kHz)

RTOS: time management
an RTOS needs a timebase

58

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

59

Priority-driven scheduling

<
<RTOS
‚
‚
‚
‚ managing interrupt
‚

<

CONTENTS

60

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

61

RTOS: managing interrupts
non-premptive RTOS: IISR, DISR

dormant ready

release/create

running

START

attente
waiting

suspendRESUME

IRQ

RTI
ISR

delete

delete

DISRwaiting

IISR

OS_call
SCHEDULER ACTION
task state

62

The running task can be interrupted by the arrival of a non-masked interrupt request.

A non-preemptive RTOS does not manage interrupts. The Interrupt Service Routine (ISR) is executed and the
Return from Interrupt gives the control back to the interrupted running task.
We can consider in this case the interrupt request as a super-priority event and the ISR as a super-task
which escapes scheduling (but the scheduler is in most of the cases in critical section and hence
cannot be interrupted). The latency introduced by the RTOS should be documented. The latency of the ISR is
minimal. Priority hierarchy among the IRQs is managed by the hardware (Priority Interrupt Controller) and/or
by the software (a low-priority ISR has to unmask higher priority ones).
The ISR must thus be sufficiently short not to disturb scheduling significantly. We can find several
alternatives:

- the ISR entirely manages all the tasks relating to the event; it is thus likely to be long; this problem is still
worsened if, during its execution, the ISR unmasks other higher-priority interruptions, thereby authorizing
nested interrupts

- the ISR, very short, executes only urgent instructions, hence the name IISR (Immediate Interrupt Service
Routine) and leaves the remainder to an ordinary task called DISR (Deferred Interrupt Service Routine),
which is scheduled like any other task.

Let us go back to the example of a float which monitors the filling of a tank; when the level reaches 90%, a
switch activates the IRQ, the IISR resets the output bit driving the pump, and the DISR is charged to modify
the appearance of the tank on the synoptic panel of the installation.

The DISR is a task that, when running for the first time suspends immediately itself to the waiting state,
because it has to wait for the occurrence of the IISR. This is done via a semaphore (if the DISR only waits for
a trigger) or via a mail box (if the DISR waits for a message containing data). The IISR will either signal the
semaphore or fill the mailbox and call the RTOS, which shall put the DISR in the "ready "state, so that it can
be scheduled normally. It is in fact a unilateral rendez-vous .

Even if the DISR has got a high priority, a non-preemptive RTOS cannot start it until the interrupted running
task has suspended or deleted itself. The timing diagram of the interrupt is presented at the next slide.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

63

RTOS: managing interrupts
non-preemptive RTOS: interrupt timing

priority 0

IRQn

OS_call
DISRn => ready

priority n

T0

T0 returns
control context switch

DISRn
/!\critical section

T0

kernel interrupt

save T0 context

restore T0 context
RTI

64

Let us illustrate a non-preemptive kernel managing priority levels from 0 to n.
The kernel itself runs at the highest priority. The interrupt level is a kind of super-priority created by the CPU
hardware.

A task T0 is executing at the lowest priority. The interrupt request IRQn occurs
- the context of T0 (i.e. all registers it uses) is saved on its own stack
- after a latency time ILTn, the Immediate Interrupt Service Routine IISRn starts

- immediate actions are executed
- IISRn asks the OS to pass the Deferred Interrupt Service Routine DISRn from "waiting" to "ready" (e.g.

via a semaphore or a mailbox). DISRn has got the highest priority level n.
- IISRn executes its RTI

- the context of the interrupted task T0 is restored by the processor and T0 resumes its execution

T0 is running whereas DISRn should run because of its higher priority: this is a case of priority inversion
due to the fact that the scheduler cannot preempt T0 .

- T0 asks the OS to return to "waiting"; this gives the control back to the scheduler, which will
- examine the list of ready tasks, and see that DISRn has got the highest priority
- make a context switch, i.e. save all registers and data belonging to T0 to its own stack and restore all

registers and data of DISRn from DISRn stack
- finally start DISRn which becomes "running";

In conclusion, with a non-preemptive scheduler
- the latency time of the IISR is not modified by the RTOS compared to a foreground/background system

(there are some critical sections in RTOS, but it is the same for the background)
- the latency time of the DISR is in the worst case equal to the sum of

- the execution time of the longest task (ISRn can occur just after the beginning of this task)
- the execution time of the IISR
- the delay to switch the context

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

65

RTOS: managing interrupts
premptive RTOS: IISR, DISR, preemption

dormant ready

release/create

running

START

attente
waiting

suspendRESUME

delete

delete

DISRwaiting

IRQ
IISR

kernel

OS_call
SCHEDULER ACTION
task state

PREEMPT RTI

66

The fact that the kernel can preempt a task allows a better respect of the priorities . In particular, the
problem of priority inversion and long latency time of a DISR is reduced.

The IISR has to make special calls to the kernel . Moreover, the fact that DISR becomes ready invokes the
scheduler. If DISR has got a higher priority than the interrupted task, this one is preempted and DISR is
started.

Details of timing and calls are given in the next slide.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

67

RTOS: managing interrupts
preemptive RTOS: interrupt timing

priority 0

IRQn
save T0 context

IISRn
OSIntEnter()
OSemPost()
OSIntExit()

restore DISRn context
RTI

context switch

priority n

DISRn

restore T0 context

T0

kernel interrupt

T0

68

The IISR must include 3 special calls to the RTOS (we shall take :C/OSII as an example). The sequence in
the IISR is:

1. save T0 context on its stack, as usual

2. call OSIntEnter() to warn the scheduler that an interrupt is currently serviced

3. execute IISR instructions

4. signal a semaphore OSSemPost() or fill a mailbox OSMboxPost() for which the DISR is waiting. This
call gives the control to the scheduler, which will change the DISR state from "waiting" to "ready"

5. call OSIntExit() to signal the scheduler that the IISR is finished. The scheduler will scan the list of "ready"
task; if we suppose that the DISR has got the highest current priority, the scheduler will preempt the
interrupted task and change the context which means that the stack pointer now points to the stack of
the DISR; the scheduler returns from this call to the IISR

6. the IISR executes a return from interrupt (RTI) and, because of the context switch which happened at step5,
the DISR is started just as if it had been interrupted by the IISR.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

69

RTOS: managing interrupts
interrupts: high-end processors and RTOS

dormant ready

release

running

START

waiting

delete

delete

DISRwaiting

suspend

OS_call
SCHEDULER ACTION
task state

RTOSkernel

IRQ

IISR

RESUME

PREEMPT

70

In much of modern processors, an interruption is a major event that switches in hardware the processor in a
special mode/context called "kernel" or "supervisor"
- high priority/privilege
- protected memory space
- private set of registers (General Purpose Registers, Stack Pointer)
This mode is normally reserved to the OS.

Normal tasks run in the "user" context.

In that case, the IISR must :
- either belong to the RTOS
- or have the same privileges of execution than the RTOS (effective, but the protection of the RTOS is weak if

the IISR is badly written)
- or be called by the RTOS, which switches the processor back to "user" mode (safer, but slower, because of

the context switch)

The documentation of the RTOS has to specify how to write the code of an IISR and how to "install" it in the
system.

One of the most important difference between a "normal" and a "real-time" OS in the capacity to manage
interrupts in an efficient way
- low latency
- determinism
- respect of priorities

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

71

< IRQ context switch
‚ CPU hardware PUSHes PC (+some registers Ai) on the current stack
‚ ISR preamble PUSHes other registers Bi used by the ISR
‚
‚ ISR postamble POPs registers Bi (in the reverse order !)
‚ RTI => CPU hardware POPs registers Ai then PC

< Task context switch
‚ PUSH registers Ai+Bi on the stack of the current task and mark it as "ready"
‚ change Stack Pointer to point at the top_of_stack of next task
‚ POP registers Bi from stack of next task
‚ mark next task as "running"
‚ RTI as if an interrupt has occured to POP PC and registers A i

RTOS: context switch
similarities between IRQ and task-switching

simplicity, determinism, systematicity => most RTOS
save all GPR for IRQ and context switch => "slow"

72

Changing the context is a mechanism which is implemented in every processor as part of the management of
the interrupts. The current state of the processor (i.e. the context) must be saved so that the execution can
resume exactly in the same condition when the interrupt has been fully serviced.

The fundamental part of this context saving is done in hardware and uses the stack as temporary storage
space for the context:
- the PC is always PUSHed on the stack
- another set of registers A i can also be PUSHed automatically in hardware. A i depends

- on the processor itself
- on the kind of interrupt (e.g. "fast" IRQ saving few registers and "slow" IRQ saving a lot of registers)

It is the responsibility of the programmer (and/or of the compiler) to save, in the preamble of the ISR, all
registers Bi that have not been saved automatically and are susceptible to be modified in the ISR.
At the end of the ISR
- the registers Bi are POPped from the stack (if you write in assembler, you must do it exactly in the reverse

order of the PUSHes)
- the last instruction of the ISR is RTI (ReTurn from Interrupt); the execution of this instruction by the CPU will

then automatically restore the registers A i, and finally the PC

When the RTOS wants to make a task switch, a similar mechanism can be used except that
- all the PUSHes related to saving the context of the current "running" task have to be done in software on

the stack of this task, which is then preempted, i.e. marked as "ready"
- each task has got its own stack; the context switching consists in changing the content of the Stack Pointer,

so that it points to the top of the stack of the new task (this value of the stack pointer is contained in a
structure belonging to the OS called Task Control Block (TCB))

- then Bi registers are POPped from the stack of the future task, which is marked as "running"
- finally a fake RTI is executed to restore A i and the PC of this task, which starts it

All registers (or at least all registers considered by the compiler as General Purpose Registers) are generally
saved when the context is switched, to perform systematic operations. For modern processor it means saving
and restoring 32 registers, which is rather slow.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

73

Priority-driven scheduling

<
<RTOS
‚
‚
‚
‚ main scheduling algorithms

! RM, EDF, DM, LL
!

!

<

CONTENTS

74

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

75

< n tasks: worst execution ei and min period pi
< independant tasks

‚ do not have to wait for synchronisation
‚ do not have to wait for data
‚ no shared resources

< preemptive kernel
< Ukernel << Eei/pi : the kernel is a negligible CPU

load (<5% in most cases)
< single processor

RTOS
algorithms for periodic tasks : hypothesis

76

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

U e p n(2 1)i i
n= ≤ −∑

⎡ ⎤W e + e et W p ii i
W
p

j=1

i 1

j i i
i

j
= × < ∀

−

∑

77

< implicit deadine : Di = pi
< priorities : static, sorted on the frequency 1/pi

‚ pi ú => Pi ü
‚ intuitive: shortest p=>shortest D=>most urgent

< properties
‚ optimal in mono-processor

< schedulability
‚ SC [LIU73]

‚ NSC [JP86]

RTOS
RM (Rate Monotonic): principle

n
1
2
3
4
5
4

Umax
1.00
0.83
0.78
0.76
0.74
0.69

78

One of the most famous algorithms is Rate Monotonic.
- Rate represents in fact the frequency of execution of the task, i.e. the inverse of their period.
- Monotonic means that the priority of the tasks results from a monotonous classification on the frequency.
In other words, the task which has the smaller period will have the highest priority, and so on. Priorities
are thus static.

In the classical version, this algorithm is valid for implicit deadlines (relative deadline=period). Hence, it
becomes quite intuitive: shortest period=shortest deadline=most urgent task=highest priority.

It has been demonstrated that RM is optimal on a single processor with the following conditions of
schedulability:
A sufficient condition is based on a limit of the utilisation ratio of the processor, as a function of the number
of tasks to be executed. The formula gives a quite interesting result, illustrated by the table: even for a high
number of tasks, the problem is schedulable for a processor load which does not exceed approximately
70%.

A necessary and sufficient condition was demonstrated later and utilizes the concept of response time W.
The formula expresses that the response time W i between the start time and the end of the execution is
equal, for each task:
- to its own execution time e i
- PLUS a lapse of time due the preemption to execute higher priority tasks (see next slide)

For each task, it is necessary to find the smallest W i value which is solution of this equation, then to check that
it is indeed lower than the deadline, i.e., the period.

The notation j..k indicate that it is necessary to round to the next integer value.

RM is the base of several RTOS available on the market; it can be extended to less restrictive assumptions
(synchronization, asynchronous tasks)

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

U 0.75 < 3(2 1) = 0.781
5

3
6

5
100

3= + + = −

⎡ ⎤ ⎡ ⎤W 5 + W 18 p 183
W W

3 3
3 3= × + × ⇒ = ⇒ >5 61 3

⎡ ⎤ ⎡ ⎤CNS W 5 + W 183
W3 W3

3⇒ = × + × ⇒ =5 61 3

CS => U 0.75 < 3(2 1) = 0.78 1
5

3
6

5
100

3= + + = −

79

RTOS
RM (Rate Monotonic): example

0 5 10 15 20 25 30

preemption

critical instant W3=18

T3 e3=5 p3=100 P3=1

T1 e1=1 p1=5 P1=3
T2 e2=3 p2=6 P2=2

SC:
NSC:

OK

80

On this figure, we see an example of scheduling for 3 periodic tasks.
Task T1 has got the highest frequency and thus priority. It will be executed with a strict periodicity, which will
require preempting T2 or T3.
Task T3 has got the smallest priority and is thus systematically preempted by T 1 and T2.
All tasks have a phase equal to 0; t=0 thus constitutes for task T 3 a critical instant, because its execution will
be delayed to the maximum by the execution of T 1 and T2.

The sufficient condition of schedulability is respected

This condition is not very severe here. Indeed, applying this formula gives a lower limit of 62,5 for period p 3
below by. However, looking at the figure, we can obviously reduce p 3 down to 30, case where the pattern of
tasks of this figure will reproduce indefinitely.

The necessary and sufficient condition will enable us to calculate the most critical response time. Here is
the calculation for W3 which is the execution time of T 3 (=5) plus all the time "stolen" by the two other tasks

Exercise: compute the minimal period for T2 and in this case, which becomes the period minimum for T3 ?

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

⎡ ⎤e + e D ii
D
p

j=1

i 1

j i
i

j

−

∑ × ≤ ∀

81

< constrained deadline Di # pi
‚ same as RM if Di = pi

< priorities: static, sorted on 1/Di
‚ Di ú = Pi ü

< properties
‚ optimal

< schedulability

‚ CS [AB90]

RTOS
DM (Deadline Monotonic)

82

When constrained dealines are imposed, the priority is non longer sorted on the period, but naturally on the
deadline and the algorithm is called deadline monotonic.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

83

< dynamic priorities based on absolute deadline
‚ di ú => Pi ü

< properties
‚ optimal, more flexible than RM

< schedulability
‚ Di = pi

‚ Di # pi

RTOS
EDF (Earliest Deadline First)

 NSC : E ei / pi #1

 NC : E ei / pi #1 SC : E ei / Di #1

84

Another famous algorithm is the algorithm EDF (Earliest Deadline First)

Contrary to RM and DM, EDF is an algorithm based upon dynamic priorities. Each time the scheduler gets
the control, it computes which task has got the shortest absolute deadline and starts it. It is the most
intuitive algorithm, indeed.

It has been demonstrated that this algorithm is also optimal.

If we work with implicit deadlines (D i =pi) a necessary and sufficient condition of schedulability is simply the
feasibility of the algorithm, i.e. a total utilisation ratio of the CPU lower than 1, which shows that EDF is more
flexible than RM.

If the deadline is constrained, i.e. before the end of the period, U<1 becomes a necessary condition; a
sufficient condition is based on a modified U, where the period p i is replaced by the relative deadline D i.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

U 0.75 < 11
5

3
6

5
100= + + =

85

RTOS
EDF: example

0 5 10 15 20 25 30

preemption

p1=6 p1=4
T3 e3=5 D3=p3=100

T1 e1=1 D1=p1=5
T2 e2=3 D2=p2=6

SC: OK

86

This figure illustrates the operation of algorithm EDF, with the same set of tasks used previously for RM.
The arrows signal the instants of activation, the numbers give the instants of the deadlines:
- in t=0, the 3 tasks are activated: T 1 is started because it has got the shortest deadline
- in t=1, T1 is finished; T2 starts because its deadline is shorter than that of T 3
- in t=4, T2 is finished; T3 remains the only "ready" task and starts.
- in t=5, T1 is activated and has the shortest deadline, therefore T3 is preempted and T1 is started.

This mechanism continues in a way similar to the RM until t=18, when T 3 is finished. From this moment, RM
and EDF take different decisions
- in t=20, T1 is ready but does not start, because the deadline of T 2 is 24, whereas that of T 1 is 25
- in t=21, T2 is finished and T1 start; T1 has been delayed by 1 tick
- in t=24, T2 is ready and started
- in t=25, T1 is started and the deadlines of T 1 and T2 are the same; we suppose here that the scheduler

decides to preempt T2, which will keep the correct average period for T 1, while meeting the deadline of T 2.

We see little difference between RM and EDF, because Di=pi, a priority based on the rate or on the deadline
does not modify significantly the scheduling:
- RM results in a strictly periodic operation for T1 which gets always the highest (static) priority
- EDF distorts the period of T1 (p1=6, followed by p1=4) because of the dynamic allocation of priority

Algorithms RM and EDF would give more different results with constrained deadlines (Di < pi); let us reduce
for example D2=4, i.e. a deadline shorter than p 2 but also than p1. The behaviour of RM will not be modified
whereas EDF will give more often the priority to T 2.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

87

< dynamic priorities based on laxity
‚ Li ú => Pi ü

< properties
‚ optimal as EDF

< drawback
‚ creates more premptions
‚ computing priorities consumes more CPU

RTOS
LL (Least Laxity)

88

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

89

Priority-driven scheduling

<
<RTOS
‚
‚
‚
‚ main scheduling algorithms

!

! round robin
!

<

CONTENTS

90

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

91

< well-known in normal OSes
< for tasks of same priority

RTOS
time- slicing and round-robin

finished taskrunning taskqueue ready task

recycled task

92

If two or more tasks have the same priority, we can use the round-robin algorithm to give them an equitable
access to the CPU.

The "ready" tasks are placed in a queue, the scheduler picks the first one and starts it for a given lapse of
time.
- if the task exceeds the allocated duration, it is preempted and recycled at the end of the queue
- if the task is shorter, it gives the control back to the scheduler by an OSSuspend() call

The task which is at the head of the queue is started.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

93

Priority-driven scheduling

<
<RTOS
‚
‚
‚ main scheduling algorithms

!

!

! multiprocessor
‚

<

CONTENTS

94

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

95

RTOS
EDF is not optimal in multiprocessor

t

0 1 2 3 4 5 6 7 8 9

T2: e2=3 D2=6 L=3

T1: e1=3 D1=6 L=3

T3: e3=5 D3=7 L=2

:P1

:P2

:P1

:P2

!

EDF

LL

t

96

It is much more difficult to guarantee the optimality of a scheduling algorithm in a multi-processor
environment.

We will not enter into details in this course, let us simply show by this example that EDF is no longer optimal in
that case.

Let us suppose that three tasks T1, T2 and T3 are ready at the same time in t=0; the scheduler will give the
priority to the tasks T1 and T2 and start them simultaneously on the two processors.
There is then no other solution but to start T3 in t=3, on any processor; unfortunately the deadline of T3 is not
respected.

In this case, the Least Laxity can give better results.

In t=0, task T3 has got the highest priority because its laxity

L3 = D3 - e3 = 7-5 = 2

whereas the two other tasks have a laxity of

L1 = L2 = 6-3 = 3

LL will start T3 on a processor and T1 or T2 on the other one and all the deadlines are met.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

97

RTOS
LL is not optimal in multi-processor

t

0 1 2 3 4 5 6 7 8 9

T2: e2=5 D2=7 L2=2

T1: e1=5 D1=7 L1=2

T3: e3=4 D3=7 L3=3

:P1

:P2

:P1

:P2opt

LL

t

!

98

The previous example could make us believe that LL is optimal; this counterexample proves that it is not true.

In t=0, T1 and T2 have got the least laxity (L 1=L2=2; L3=3) and are started, which delays the start of T 3 in t=5,
which is too late.

A better algorithm exists, provided T3 can be distributed on the two processors.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

99

Priority-driven scheduling

<
<
<conclusions

CONTENTS

100

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

101

< advantages : a task is always finished before the next task
is executed
‚ few risks of corruption of shared data
‚ critical sections or semaphores only requires for shared I/O
‚ IRQs generally not masked => low latency for IISR
‚ functions can be compiled in non-reentrant mode (more compact

and efficient)
< drawbacks

‚ task latency is . worst-case execution of longest task (better
than foreground/background)

‚ non-deterministic, even for the highest priority task
‚ risk of hanging if a task does not give back control (infinite loop

without time-out)

RTOS
non-preemptive scheduler: conclusions

102

The advantages of a non-preemptive kernel are related to the fact that each task finishes (or suspends itself)
before the next one starts:
- there is no conflict of access to the data shared between several tasks
- critical sections or semaphores are not necessary , except for sharing some slow peripherals, like

printers or serial communication links
- the interrupts are not often masked and the latency time of IISR is thus short
- the tasks can resort to functions written in non-reentrant code, which is more effective

The principal disadvantages are:
- the latency time in the execution of the DISR can be long (chiefly determined by the longest task), which is

 anyway it is better than in a foreground/background system (duration of the whole background)
- the absence of determinism in the latency of a task with a given priority
- the risk of total locking if a task does not return the control to the scheduler; the trivial case is a task

waiting (by polling) an external event which never comes (e.g. the tank does not fill because the fuse of the
pump is blown), whereas the programmer did not foresee a time-out

Never let any task wait for an event without time-out.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

103

< advantages
‚ priorities: better respect (not perfect though)
‚ response time: optimum and deterministic (at least for

the task of highest priority)
< drawbacks

‚ a preempted task is susceptible to share resources with
the running task
! reentrant code required for any function which can be

called by 2 tasks
! semaphore/critical sections requires for shared resources

(buffer, I/O)
‚ kernel consumes more resources (CPU, registers, ROM

and RAM)

RTOS
preemptive scheduler: conclusions

104

The premptive sheduling gives a better respect of priorities.

Do not forget that most mathematical proofs of scheduling algorithms make the assuption that the kernel is
preemptive.

This better quality of service has a price to pay
- the kernel takes more resources (CPU time, memory)
- the tasks have to be compiled in reentrant mode, because the RTOS must work in a dynamic environment

and assume that all tasks save their data on a stack. Its is not impossible to write functions in non-reentrant
mode, but you must be sure that they will never be interrupted and called again.

- the risk of corruption of shared data means a rather extensive use of critical sections, semaphores and
mailboxes.

CH05_PrioritySched_d28.shwELEC-H410/ 05 : Priority-driven scheduling 29-01-14 21 :41:29

©

beams

105

< clock-driven systems
‚ sure and simple
‚ if asynchronous events, works fine if total loop time <

required response time
< RTOS

‚ tasks written individually
‚ management of priorities always crucial
‚ more difficult to guarantee determinism in all cases

< do not forget
‚ hardware tasks

! internal or external peripherals (e.g. PWM)
‚ multiprocessor + real-time network

Conclusions

106

Only the synchronous systems are entirely deterministic and they are made above all to manage periodic and
sporadic tasks which are perfectly known at design time.

Aperiodic tasks with a "soft" deadline can be taken into account of if the slack is sufficient and if the sampling
period (or micro-cycle) is shorter than the relative deadline.

Aperiodic tasks with a "hard", but bounded, deadlines can be managed at the price of a wasting of CPU
power, which is not necessarily awkward nor expensive.

Many safe/secure systems are clock-driven.

Using an RTOS is much easier for the programmer , because each task can be coded individually. Care
must be taken to define the priorities of the tasks. RTOS are characterized by low interrupt latency and low
context-switching latency (a few :s). Lots of researches have led to robust RTOS based on proven
scheduling algorithms but under some hypothesis . Nevertheless, no RTOS can offer an absolute guarantee
of scheduling any pattern of tasks, including aperiodic ones.

Lastly, considering the remarkable performance/price ratio of current microcontrollers, real-time problems can
be solved by decentralization over a set of small processors managing a few tasks. Those processors have to
communicate, hence the development of real-time networks.

Cabled logic, or better programmed logic (PLD, FPGA) remains an invaluable solution for fast critical systems
because they can bring massive parallelism and reaction times as low as a few tens of ns.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /LetterGothic12PitchBT-Roman
 /WP-BoxDrawing
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WPTypographicSymbols
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

