Chapter 7

VLSI Fabrication Technology

Outline

- Foundries
- Foundry operations
 - Si waffers
 - Etching
 - Photolitography
 - Adding new materials
 - Doping
- NMOS technology
 - Example: making a NMOS inverter
- CMOS technology

Foundries

IC foundry

- Foundry = factory of integrated circuits
- What is special?
 - physico-chemical processes
 - extremely pure materials (atomic-level)
 - very precise and high temperatures
 - below micrometer-level position control
- ex: Fab2 Mietec: 33.000 EUR/m2 (1993)

Foundries

Clean room

- pollutants-"free" environment
 - dust
 - microbes
 - impurities, etc
- class 1: <1 particle of 0,1μm by foot³
- hospital = class 10000

Foundry operations

Chip = 3D structure at μ m/nm scale

Foundry operations

Chip = 3D structure at μ m/nm scale

…obtained via successive 2D processes

Starting point: silicon wafers

Preparing the substrate

- starting material : silica
- => MGS (metallurgical grade) silicon
 - impurities: about 10 ppm
- => EGS (electrical grade) silicon
 - Impurities << 0,002ppm</p>

Starting point: silicon wafers

Preparing the substrate

- growth of a Si monocristal
- sawing
- oxidation (protection)

Starting point: silicon wafers

diameter: 5 to 50cm / thickness: 500μm

Foundry operations

Si wafer undergoes a set of physico-chemical processes

- engraving a pattern
 - photolithograpy + etching
- modifying electrical properties of Si
 - doping

- add new material
 - oxidation
 - epitaxy (cristal growth)
 - thin film deposition (chemical vapor deposition)
 - metallization

Engraving a pattern

Etching

- Principle
 - remove material according to a given pattern
 - out-of-pattern zones protected by a film (resist)
- 1) chemical etching
 - chemical agent attacking Si
 - Drawback: isotropic attack
- 2) plasma etching
 - plasma = ionized gas (ions + free e⁻)
 - physical + chemical attack
 - Anisotropic => better pattern

Engraving a pattern

Photolitography

Principle

- laying down on the wafer a film of "resist" (resin) according to a given pattern, in order to perform a subsequent operation (etching, growth, etc)
- used several times during the chip fabrication

steps

- 1) laying down a uniform film of resin
- 2) exposure to UV through a mask => exposed regions of resin are chemically modified
- 3) wafer cleaning => remove modified regions
- 4) subsequent process (ex: etching)
- 5) wafer cleaning => unmodified resin removal

0) starting situation

1) laying down a uniform layer of resin

2) exposure through a mask

2) end of exposure:

3) development: cleaning the exposed zones

4) etching (ex: plasma)

4) end of etching

5) after cleaning of the remaining resin

pattern has been transfered onto the substrate

mask

- mask = original of the pattern to be transfered
- very costly (a few k€/mask)
- issue
 - diffraction limits the minimum size of the pattern
 - => smaller patterns require light of lower wavelength
- evolution
 - X-ray lithography
 - electron-beam lithography

oxydation

- Principle
 - growth of amorphous SiO₂ on Si wafer
 - chemically: very stable
 - electrically: excellent insulator
- Uses
 - passivation layer
 - field oxide (inert zone between active zones)
 - grid oxide (MOS transistors)
 - thin oxide (dielectric for capacitors)

oxidation: "bird's beak" profile

the oxide layer burries itself in the Si:

Oxydation: technical details

- oxidation: oven at 1100° C
- dry oxidation
 - agent : O_2
 - $-0,2\mu m SiO_2/h$
 - for grid oxide (very good quality) growth
- wet oxidation
 - agent : H₂O
 - $-3\mu m SiO_2/h$
 - other oxides (more porosity)

CVD: Chemical Vapor Deposition

• Principle:

- laying down a non-metallic material: polysilicon, oxides, silicon nitride
- chemical process to make an agent (initially in a gas) grow on the wafer

Polysilicon deposition

- polycristalline Si deposition
 - SiH₄ carrying gas
 - 650° C
- uses
 - MOS grids + connected "wires"
 - second conductive layer

PYROX et SILOX oxides deposition

- SiO₂, P₂O₅ (PyroGlass), etc deposition
 - -400° C to 900° C
- uses
 - insulating layers
 - PyroGlass = final passivation layer
 - (don't mix up with the oxidation = SiO_2 growth on the wafer)

Nitride deposition

- growth of Si₃N₄
 - 700° C to 900° C
- uses
 - obtain a thick oxide to insulate passive regions of the circuit from the substrate
 - passivation layer

Epitaxy

- Principle
 - growth of an additional layer of Si extending the initial cristal structure (growth of the substrate)
 - layer of 3 to 10μm becoming the usable thickness to implant circuit elements
- advantage
 - doping profile impossible to obtain by other ways
- technical process
 - Si brought by gas (higher T° than CVD)

Metallization

- principle
 - laying down metallic material (Al)
 - principle similar to CVD
- use
 - conductive connexions (lowest resistivity)
- issues
 - Al fusion $T^{\circ} = 650^{\circ}$ C (low!)
 - Al subject to electromigration

electromigration

- electromigration
 - destructive phenomenon (atoms pulled out) for high current densities inside wires (>1 mA/ μ m²)
 - may lead to degradation or total rupture of connexion
 - considering miniaturization, these densities may occur

interconnexions: alternatives to metals

- polysilicon
- silicides
 - ceramics (MoSi₂, TaSi₂, TiSi₂, WSi₂, etc)
 - advantage: higher fusion T°
 - drawback: higher resistivity
- technologies with multiple metal layers

principle

- inserting extra atoms of different nature to locally modify the conductivity of Si
- => N and P regions more or less doped
- doping atoms
 - atoms giving e⁻: Sb, P, As
 - atoms receiving e⁻: B, Al, Ga
 - 100% atoms are ionized @ ambiant T°
 - usual doping density: 10¹⁴ to 10²¹ at/cm³
 - a low dopant concentration is enough to fix the overall Si conductivity

... and mobility

mobilité (cm²/V.s)

... and mobility

- MOS channel is lightly doped material
 - because gain is proportionnal to mobility
 - and high mobility obtained for low doping
- N-channel type MOS are preferred
 - because mobility obtained with N doping is higher than mobility obtained with P doping
- MOS drain and source are heavily doped for high conductivity (low resistance)

... by diffusion

- Reminder: diffusion
 - generic phenomenon: reorganisation of a group of mobile "particules" due to a spatial gradient of concentration $\frac{dn}{dx}$
- 2 steps:
 - predeposition (C_{surf} = constant)
 - carrier gas (dopants) constantly renewed
 - purpose: introduce a defined amount of carriers in the material
 - drive-in
 - neutral atmosphere
 - purpose: equalisation of concentrations near the surface

Doping by diffusion

Under-diffusion

Doping

Doping via ionic implantation (>< diffusion)

- principle
 - Si is "bombed" by a beam of ions
- advantages (>< implantation via diffusion)
 - implantation depth controlled by beam energy
 - good precision on doping density
 - process at ambiant T°
 - good anisotropy
- drawback
 - need to repare the silicon from fractures caused by atomic collisions,
 by re-heating (annealing) the wafer

Reminder

You may implant...

- transistors: n-channel MOS
 - enhancement (Te)
 - depletion (Td)
- connexion wires/tracks
 - metal (M)
 - diffusion (D)
 - polysilicon (p)
- contact elements
 - metal/poly contact holes (C_p)
 - metal/diffusion contact holes (C_d)
- and nothing more!

You may NOT implant...

- resistors
- capacitors
- diodes

=> nMOS technology not well suited for analog electronics

Reminder: Two types of NMOS transistors

- enhancement transistor (Te)
 - channel doped the same type as the substrate
 - => spontaneously not conducting
- depletion transistor (Td)
 - channel doped the opposite type as the substrate
 - ⇒ spontaneously conducting
- To build an inverter:

At silicon level, the inverter becomes

To build such a structure, 6 masks are required...

- m#1: defines active zones >< field zones
- m#2: defines, in the active zones, where to invert the substrate type in order to later implant depletion transistors
- m#3: defines polysilicon layer pattern
- m#4: defines contact holes
- m#5: defines metal layer pattern
- m#6: defines contact pads (for connexions to the outside world)

...and 18 steps of processing

- steps 1 to 6
 - implanting active zones and field zones
- steps 7 to 12
 - implanting transistors
- steps 13 to 18
 - adding metal connexions

[E1] preparing the substrate

growing 3 uniform layers

[E2] defining active zones

- photolithography (using m#1)
- fluorhydric acid (HF) etching

[E3] doping the field zones

- p+ ionic implantation using boron (B)
 - inhibits possible inversion in field zones

[E4] cleaning/removing...

- ... nitride in field zones (using H₃PO₄)
- ... oxides (using HF)

[E5] LOCOS process

growing thick oxide (1μm) in field zones

[E6] cleaning again...

51

[E7] dry oxidation

• growing grid oxide (thin oxide)

[E8] raising threshold voltage (V_{T0})

- from 0V to 1V
 - boron ionic implantation

[E9] creating depletion zones

- photolithography (using m#2)
- phosphorus (P) ionic implantation
 - P diffuses in the substrate => depletion zones
 - intense doping to obtain high conductivity

Masque m#2

[E10] growing polysilicon

will become the MOS grids

[E11] poly etching

- photolithography (m#3)
- etches unprotected oxide and poly
- cleaning

Masque m#3

[E12] implanting diffusion layer

- "diffusion" = deepest conducting layer of the IC
 = drains, sources and associated conducting wires
- using P ionic implantation (n+)

The inverter begins to appear

Connexions still need to be made

Transistors are at the crossing of poly (p) and diffusion (D)

[E13] growing a silox layer

[E14] defining contact holes

- photolithography (m#4)
- etching oxide
 - field zones: down to poly
 - active zones: down to substrate

Masque m#4

[E15] metal

uniform growth of Al layer

[E16] defining metal connexions

- photolithography (m#5)
- etching Al

Masque m#5

[E17] passivation

uniform layer of pyroglass

64

[E18] pad implantation

- photolithography (m#6) + etching
- pad = $100\mu m \times 100\mu m$

Masque m#6

18 steps

before...

after...

The inverter is implanted and made of layers of materials

Reminder

Combination of NMOS and PMOS (e.g. logic inverter)

Implantable elements

- Presented technology
 - technology with p-Well and one layer of metal
- you may implant
 - n-channel and p-channel MOS transistors
 - p-type wells
 - connexions: metal, polysilicon, n-type diffusion and p-type diffusion
 - metal-diffusion and metal-polysilicon contacts
- well = locally inverted zone of the substrate

Mask #1: create the n-well

Mask #2: define the active regions (areas w/o SiO2)

Local oxydation (make thick-field oxide appear to isolate transistors)

Mask #3: Deposit polysilicon gate

Mask #4: n+ diffusion

Mask #5: p+ diffusion

Mask #6: create contact holes

Mask #7: deposit metallizations

CMOS inverter layout

VLSI fabrication technology

Conclusions

- Many physico-chemical processes required
 - Good control of processes, especially for very small transistor sizes
 - Requires high purity (clean rooms) => high cost
- Many masks may be required
 - Increased risk due to mask misalignment
 - High cost of individual masks!

