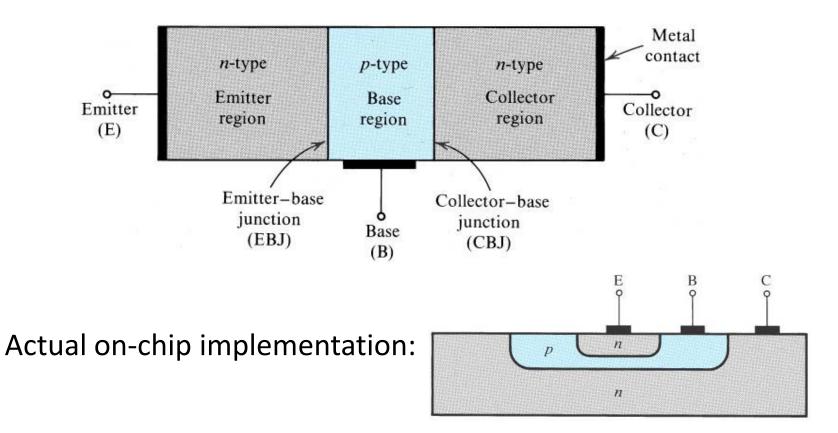

Chapter 6

Bipolar Junction Transistors (BJT)

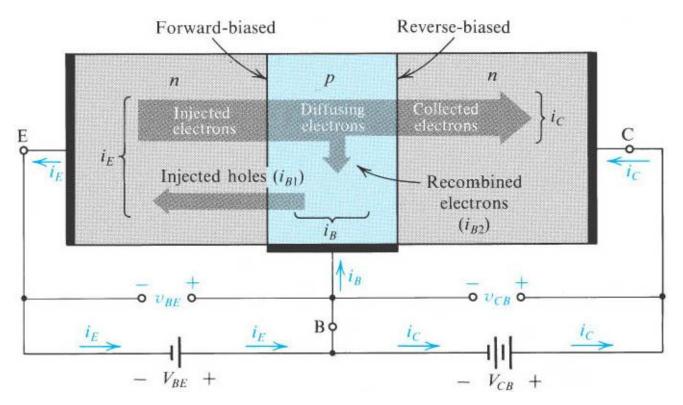
Outline


- Bipolar Junction transistors
 - Structure and modes of operation
 - Current-voltage characteristics
 - Biasing a BJT
 - Small-signal models
 - Single-stage amplifiers
- Conclusions

BJT structure

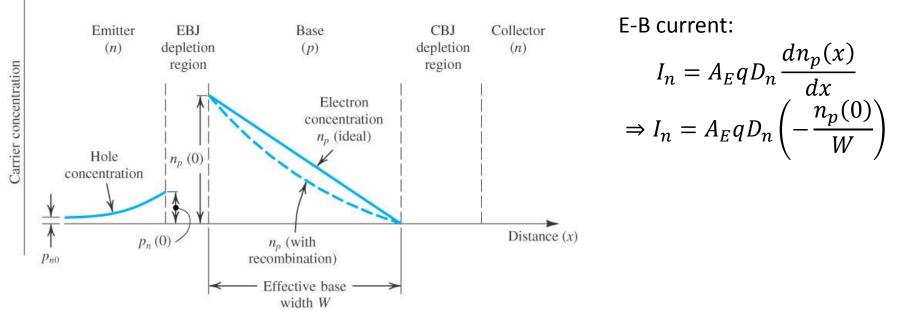
Remember P and N semiconductors ?

- BJT is a three-port structure
- Two types: NPN or PNP transistors



ullet

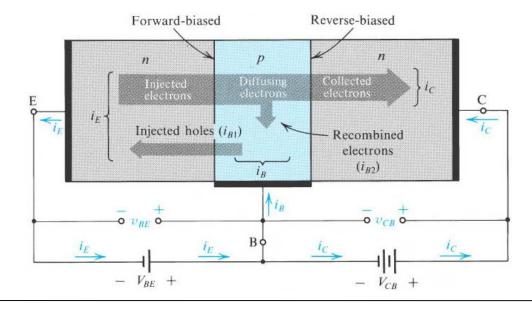
EB forward biased, BC reverse biased


- EB depletion region narrows
 - \Rightarrow Electrons are able to cross depletion region from E to B
 - \Rightarrow Holes are able to cross depletion region from B to E

Electron profile in the E-B regions

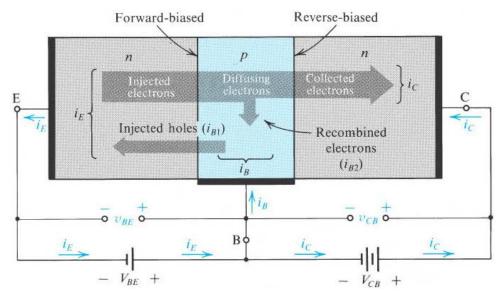
- Electron concentration highest at the edge of depletion region of base
 - Similar to PN junction (see chapter 2): $n_p(0) = n_{p0}e^{v_{BE}/V_T}$
 - Electron concentration profile creates E-B current

At collector side, electrons are swept through depletion region



At the collector ...

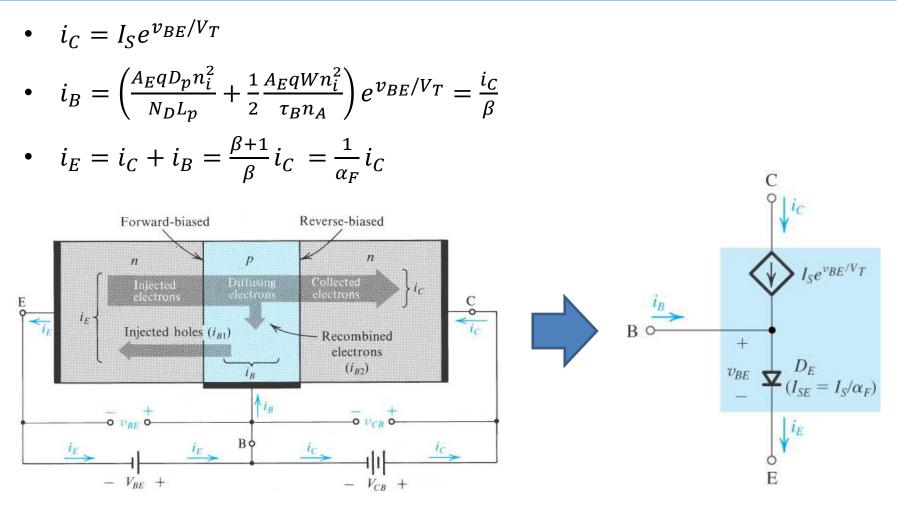
- Diffusing electrons are swept through the depletion region
- The collector current $i_C = I_n$
- Using previous results:


$$i_C = I_S e^{v_{BE}/V_T}$$

with $I_S = A_E q D_n n_{p0} / W$

The base current

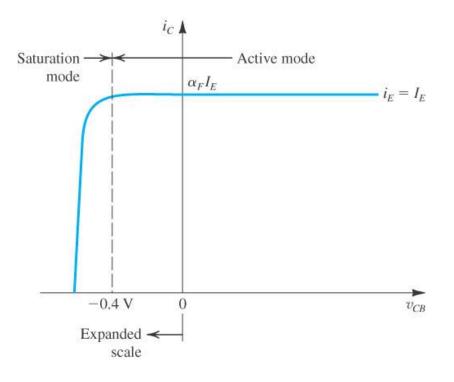
• Composed of holes injected from base to emitter


$$\Rightarrow$$
 Proportional to e^{v_{BE}/V_T} : $i_{B1} = \frac{A_E q D_p n_i^2}{N_D L_p} e^{v_{BE}/V_T}$

• Also composed of electrons that recombine with holes in P-region $\Rightarrow \text{Holes are resuplied by external circuit, also Proportional to } e^{v_{BE}/V_T}:$ $i_{B2} = \frac{1}{2} \frac{A_E q W n_i^2}{\tau_B n_A} e^{v_{BE}/V_T}$

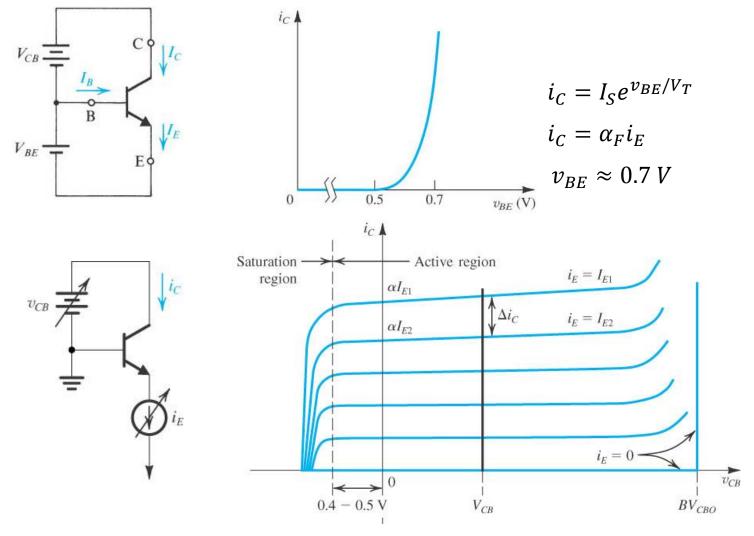
BJT: Active mode

Summary of all currents



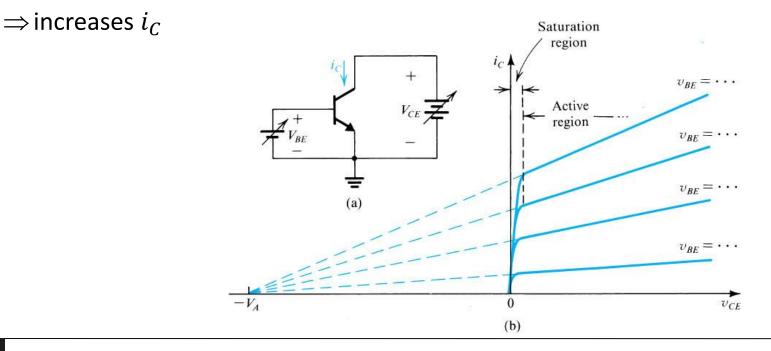
BJT: saturation mode

If v_{CB} is low, no current i_C


- Active mode if BC junction is reverse biased
- To have a BC junction forward biased, negative v_{CB} is required

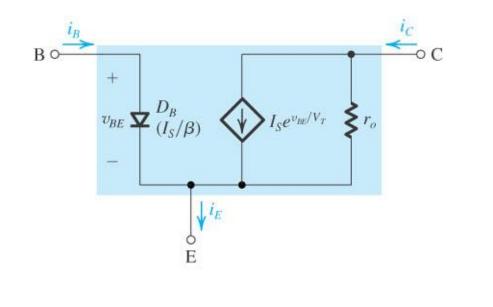
BJT: current-voltage characteristics

... for npn transistor



ELEC-H402/CH6: BJT

BJT: current-voltage characteristics Early effect


- For a given v_{BE} , increasing v_{CE} increases the reverse-bias voltage on collector-base junction
 - \Rightarrow increases width of depletion region
 - \Rightarrow Decreases the effective base width
 - \Rightarrow Increases $I_S = A_E q D_n n_{p0} / W$

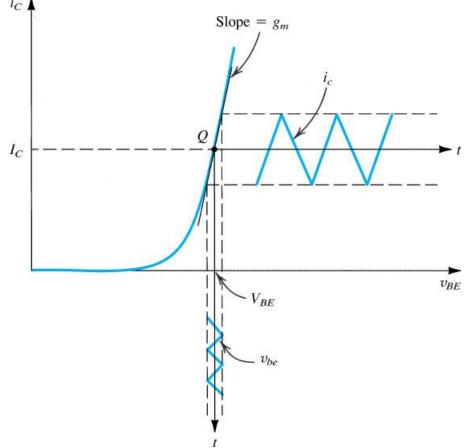
BJT: current-voltage characteristic

Large-signal equivalent circuit

$$i_{C} = I_{S} e^{\nu_{BE}/V_{T}}$$

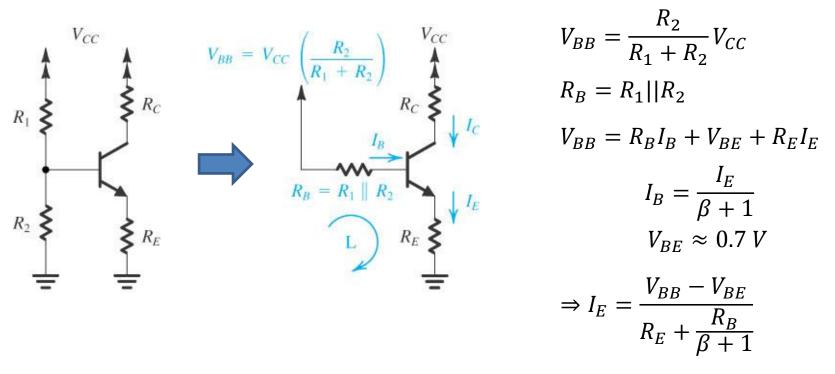
$$i_{B} = \frac{i_{C}}{\beta}$$

$$i_{E} = i_{C} + i_{B} = (\beta + 1)i_{B}$$


$$\nu_{BE} \approx 0.7 V$$

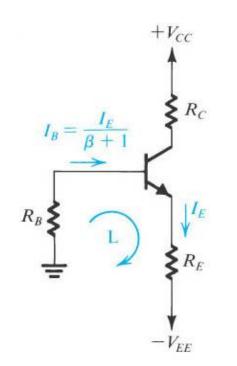
$$r_o = \frac{V_A}{I'_C}$$
$$I'_C = I_S e^{V_{BE}/V_T}$$

Why biasing?


- Fix V_{BE} so that small variations of v_{be} result in linear change in i_c
- Also ok to fix I_C or I_E

with discrete-circuit bias arrangement

- Single power supply
- Poor performances against BJT dispersion

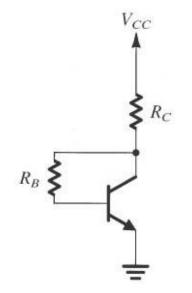


Try to make robust against transistor dispersion with $V_{BB} \gg V_{BE}$ and $R_E \gg \frac{R_B}{\beta+1}$

with two-power supply arrangement

• Also poor performances against BJT dispersion

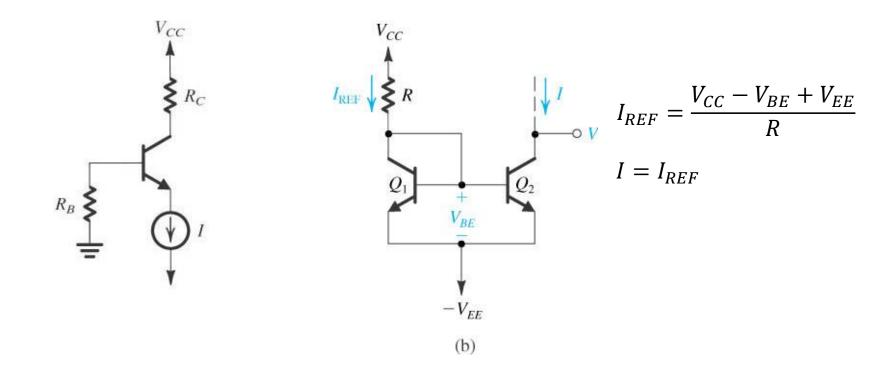
$$R_B I_B + V_{BE} + R_E I_E = V_{EE}$$


$$\Rightarrow I_E = \frac{V_{EE} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$$

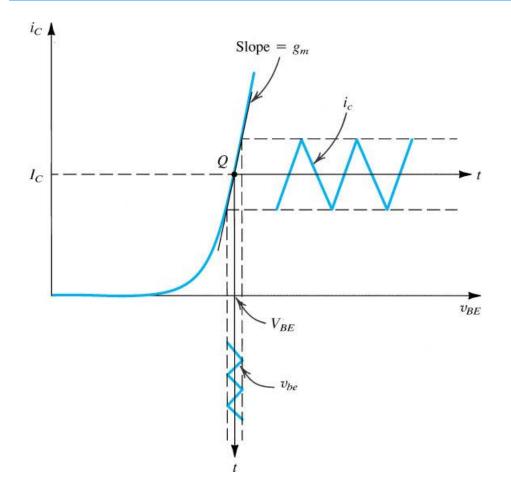
- Try to make robust against transistor dispersion with $V_{EE} \gg V_{BE}$ and $R_E \gg \frac{R_B}{\beta+1}$
- If base connected to ground, biasing almost totally independent from β

with collector-to-base feedback resistor

• Resistor R_B provides negative feedback, which helps stabilizing bias point


 $V_{CC} = R_C I_C + R_B I_B + V_{BE}$ $V_{CC} = R_C I_C + R_B \frac{I_E}{\beta + 1} + V_{BE}$ $\Rightarrow I_E = \frac{V_{CC} - V_{BE}}{R_C + \frac{R_B}{\beta + 1}}$

Try to make robust against transistor dispersion with $V_{CC} \gg V_{BE}$ and $R_C \gg \frac{R_B}{\beta+1}$


with a constant-current source

- Emitter current independent of transistor parameters $\Rightarrow I_E = I$
- Source current implemented with BJT current mirror

Small-signal operation: collector current

$$i_{C} = I_{C} e^{v_{be}/V_{T}}$$

$$\Rightarrow i_{C} \approx I_{C} \left(1 + \frac{v_{be}}{V_{T}}\right)$$

$$\Rightarrow i_{C} \approx I_{C} + \frac{I_{C}}{V_{T}} v_{be}$$

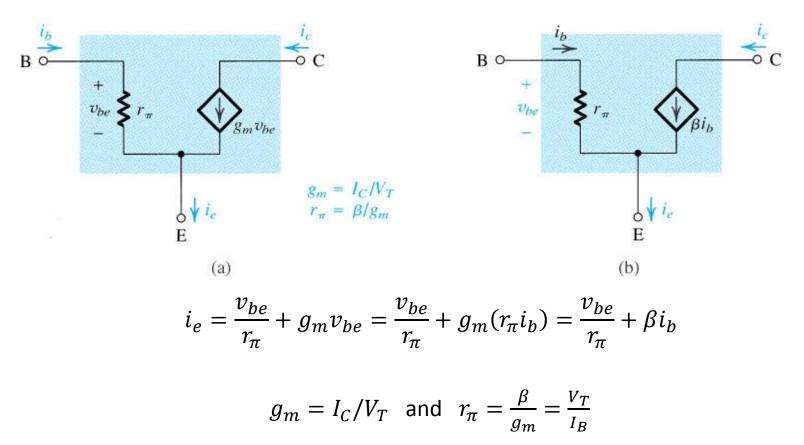
$$\Rightarrow i_{c} = \frac{I_{C}}{V_{T}} v_{be}$$

$$\Rightarrow i_{c} = g_{m} v_{be} \text{ with } g_{m} = I_{C} / V_{T}$$

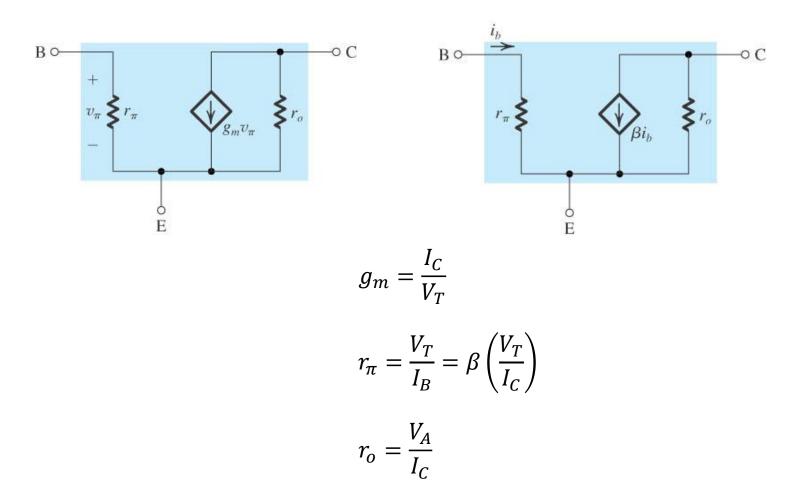
base current and input resistance

$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{C}}{\beta} + \frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{be}$$

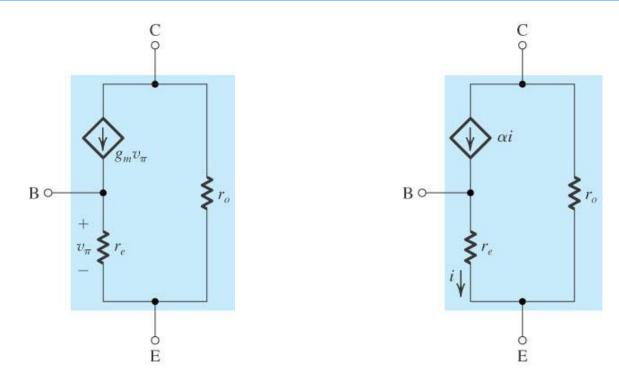
$$i_{B} = I_{B} + i_{b}$$


$$\Rightarrow i_{b} = \frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{be}$$

$$\Rightarrow i_{b} = \frac{1}{r_{\pi}} v_{be}$$
with $r_{\pi} = \frac{\beta V_{T}}{I_{C}} = \frac{\beta}{g_{m}} = \frac{V_{T}}{I_{B}}$

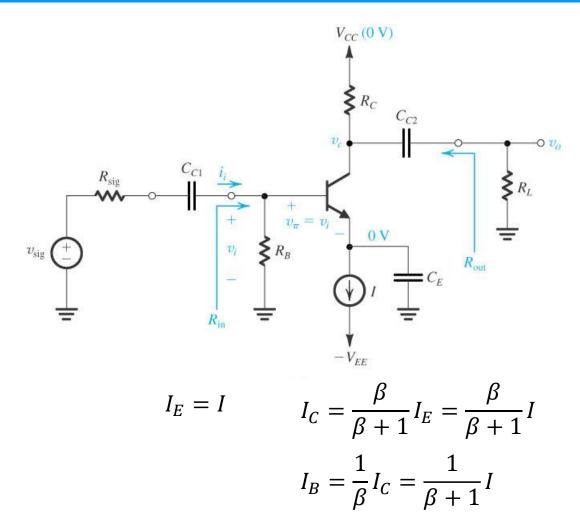

Hybrid π -model

- Voltage-controlled current source
- current-controlled current source



... with output resistance r_o

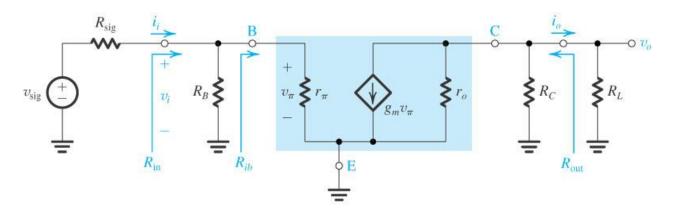
T-model also exists


$$g_m = \frac{I_C}{V_T} \qquad r_e = \frac{V_T}{I_E} = \alpha \left(\frac{V_T}{I_C}\right) \qquad r_o = \frac{V_A}{I_C}$$
$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{1 - \alpha}$$

ELEC-H402/CH6: BJT

Common-emitter amplifier

Polarized with current source



BJT with parameters β , V_T and V_A

Common-emitter amplifier

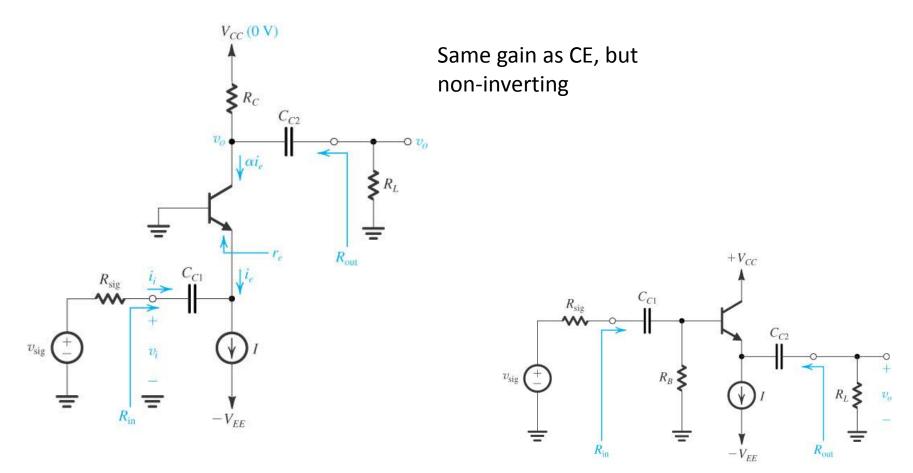
Small-signal equivalent

Gain, input resistance, output resistance ?

$$v_{\pi} = v_{i}$$

$$v_{o} = -g_{m}v_{\pi}(r_{o}||R_{c}||R_{L}) = -g_{m}v_{i}(r_{o}||R_{L}||R_{L})$$

$$\Rightarrow A_{v} = \frac{v_{o}}{v_{i}} = -g_{m}(r_{o}||R_{c}||R_{L})$$


$$R_{in} = R_{B}||r_{\pi}$$

$$R_{out} = R_{c}||r_{o}||R_{c}||R_{$$

CB and CC amplifier

Find A_v , R_{in} and R_{out} as exercice

Gain close to 1 => buffering stage

BJT advantages

- Small input capacitance => very high speed (good for RF !)
- Higher transconductance => higher gain
- BJT amplifiers more linear than MOSFET amplifier stages
- BJT have lower output impedances and can handle higher output currents
- More choices for discrete components

BJT drawbacks

- BJT are current-operated (rather than voltage operated)
 ⇒Higher consumption
- Lower input resistance than MOSFET
- BJTs are harder to scale to large quantities
- BJTs have more fabrication dispersion

⇒ More difficult to make good mirror currents, differential pairs, etc.

• Physical size about 10x as large as MOSFET

MOSFET advantages

- MOSFET are easy to scale
 - Double the current? Double the width!
- High input impedance (almost infinite at low frequencies)
- Output are controlled by input voltage (not current)
 ⇒Much lower power consumption
 ⇒Main advantage MOSFET won for chip manufacturing
- Easy to make indentical MOSFETs
 - Good for CMOS transistors, mirror currents, differential pairs, etc.
- Mostly for integrated circuits, not discrete circuits
- Size about 10x smaller than BJT

MOSFET drawbacks

- Input capacitance
 ⇒Not good for high frequencies
- Higher output resistance than BJT
 ⇒Not suited to drive low-impedance load
- Lower gain per stage

 \Rightarrow Amplifier stages need to be cascaded

 \Rightarrow Each stage adds noise

 \Rightarrow SNR degrades

