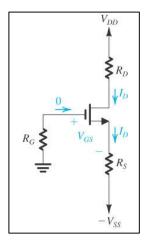

Chapter 4 : Single-stage MOS amplifiers - exercices

BIASING IN MOS AMPLIFIER CIRCUITS

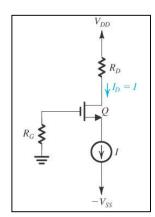
Exercise 1 (D4.55)

Consider the classical biasing circuit shown in the figure, using a 15-V supply. For the NMOS, $V_t = 1.2 V$, $\lambda = 0$, $\frac{k'_n W}{L} = 3200 \ \mu A/V^2$. Arrange that the drain current is $2 \ mA$, with one-third of the supply voltage across each of R_S and R_D . Use $22 \ M\Omega$ for the larger of R_{G1} and R_{G2} .


- a) What are the values of R_{G1} , R_{G2} , R_S and R_D ?
- b) How far is the drain voltage from the edge of saturation?

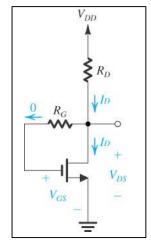
Exercise 2 (D4.56)

Using the circuit topology displayed in the figure, arrange to bias the NMOS transistor at $I_D = 2 \ mA$ with V_D midway between cutoff and the beginning of the triode operation. The available supplies are $\pm 15 \ V$. For the NMOS transistor, $V_t = 0.8 \ V$, $\lambda = 0$, $\frac{k'_n W}{L} = 2500 \ \mu A/V^2$. Use a gate-bias resistor of 10 $M\Omega$.


a) What are the values of R_S and R_D ?

Exercise 3 (D4.63)

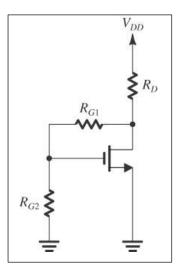
For the circuit shown in the figure, with I = 1 mA, $R_G = 0 \Omega$, $R_D = 5 k\Omega$ and $V_{DD} = 10 V$, the NMOS transistor has the following characteristics: $V_t = 1 V$, $\lambda = 0$, $\frac{k'_n W}{L} = 0.5 mA/V^2$.


a) What are the values of V_S , V_D and V_{DS} ?

Exercise 4 (D4.64)

In the circuit of the figure, let $R_G = 10 \ M\Omega$, $R_D = 10 \ k\Omega$ and $V_{DD} = 10 \ V$. The NMOS transistor has $V_t = 1 \ V$, $\lambda = 0$, $\frac{k'_n W}{L} = 0.5 \ mA/V^2$.

a) What are the values of V_D and V_G ?

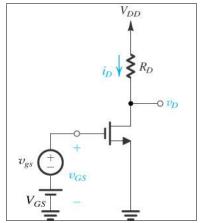

Exercise 5 (D4.65)

Using the feedback bias arrangement shown in the figure of exercise 4, with a 9 V supply and an NMOS device for which $V_t = 1 V$, $\lambda = 0$, $\frac{k'_n W}{L} = 0.4 mA/V^2$, find R_D to establish a drain current of 2 mA.

Exercice 6 (D4.66)

The figure shows a variation of the feedback-bias circuit of the previous exercises. Using a 6 V supply with an NMOS transistor for which $V_t = 1.2 V$, $\lambda = 0$, $\frac{k'_n W}{L} = 3.2 mA/V^2$, provide a design which biases the transistor at $I_D = 2 mA$, with V_{DS} large enough to allow saturation operation for a 2-V negative signal swing at the drain. Use $22 M\Omega$ as the largest resistor in the feedback-bias network.

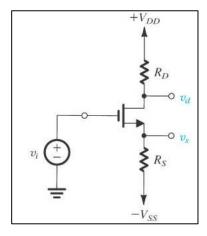
a) What are the values of R_{G1} , R_{G2} and R_D ?


SMALL-SIGNAL OPERATION AND MODELS & SINGLE-STAGE MOS AMPLIFIERS

Exercise 7 (D4.69)

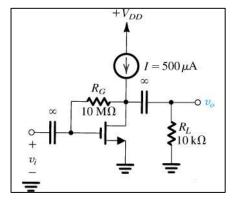
Consider te NMOS amplifier of the figure for $V_t = 2 V$, $\frac{k'_n W}{L} = 1 mA/V^2$, $V_{GS} = 4 V$, $V_{DD} = 10 V$ and

 $R_D = 3.6 \ k\Omega.$


- a) Find the DC quantities I_D and V_D
- b) Calculate the value of g_m at the bias point
- c) Calculate the value of the voltage gain
- d) If the NMOS has $\lambda = 0.01 V^{-1}$, find r_0 at the bias point and calculate the voltage gain.

Exercise 8 (D4.74)

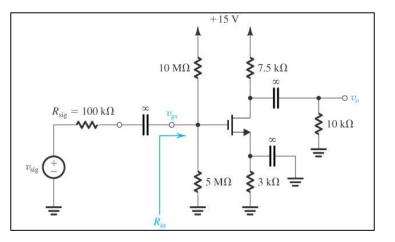
For the NMOS amplifier in the figure, replace the transistor with its Tequivalent circuit. Derive expressions for the voltage gains


- a) v_s/v_i
- b) v_d/v_i

Exercise 9 (D4.75)

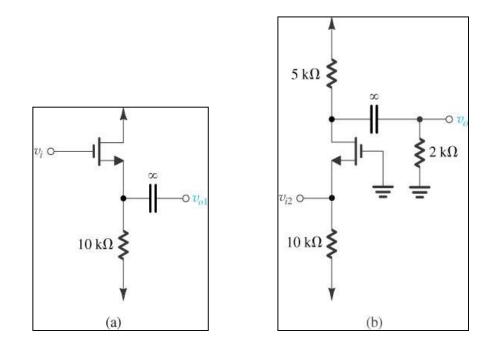
In the circuit of the figure, the NMOS transistor has $V_t = 0.9 V$ and $V_A = 50 V$ and operates with $V_D = 2 V$.

- a) What is the voltage gain v_o/v_i ?
- b) What do V_D and the gain become if I is increased to 1 mA?


Exercise 10 (D4.77)

The figure shows a discrete-circuit CS amplifier employing the classical biasing circuit we saw in the lecture. The input signal v_{sig} is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to the ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite).

- a) If the transistor has $V_t = 1 V$, and $\frac{k'_n W}{L} = 2 mA/V^2$, verify that the biasing circuit establishes $V_{GS} = 2 V$, $I_D = 1 mA$, and $V_D = +7.5 V$. That is, assume these values and verify that they are consistent with the values of the circuit components and the device parameters.
- b) Find g_m and r_0 if $V_A = 100 V$
- c) Draw a complete small-signal equivalent circuit for the amplifier assuming all capacitors behave as short-circuits at signal frequencies
 - V_{DD} R_{sig} C_{C1} R_{sig} R_{G} R_{G}
- d) Find R_{in} , v_{gs}/v_{sig} , v_o/v_{gs} , and v_o/v_{sig}


Exercise 11 (D4.82)

A CS amplifier using a NMOS transistor biased in the manner of the figure for which $g_m = 2 mA/V$ is found to have an overall voltage gain $A_v = -16$. What value of resistance R_S inserted at the source terminal of the NMOS leads to reduce the voltage gain by a factor of 4?

Exercise 12 (D4.88)

- a) The NMOS transistor in the source-follower circuit of figure (a) has $g_m = 5 mA/V$ and a large r_0 . Find the open-circuit voltage gain and the output resistance.
- b) The NMOS transistor in the common-gate amplifier of figure (b) has $g_m = 5 mA/V$ and a large r_0 . Find the input resistance and the voltage gain.
- c) If the output of the source-follower in (a) is connected to the input of the common-gate amplifier in (b), use the previous results to obtain the overall voltage gain v_o/v_i

