Chapter 3

Metal-Oxyde Semiconductor Field Effect Transistors (MOSFET)

FET: outline

Outline

- Enhanced-type MOSFET transistors
 - NMOS: introduction to the I-V characteristics
 - NMOS: Device structure and physical operation
 - NMOS: I-V characteristics (detailled)
 - PMOS and CMOS technology
 - Complements on NMOS technology
- Depletion-type MOSFET
 - Depletion-type NMOS: device structure
 - Depletion-type NMOS: I-V characteristics

MOSFET I-V characteristics

... a bit idealized

- MOSFET is a three-port component *
- Input impedance infinite *
- Current source controlled through input voltage v_{GS} *

MOSFET I-V characteristics

... a bit idealized

- Transconductance characteristic
- Magnitude of current source controlled through input voltage

Metal-Oxyde-Semiconductor Field Effect Transistor

- Example of a NPN MOSFET (NMOS transistor)
 - gate electrode is electrically insulated from the body
 - NMOS has 4 terminals (but B often connected to S)
 - n-region heavily doped (n⁺)

No voltage at gate

- Equivalent to 2 back-to-back diodes
- No current can flow from drain to source, even for high v_{DS}

Increasing voltage at gate

- positive gate voltage repels holes in p-region
 - \Rightarrow creates a depletion region populated by bound negative charges
 - \Rightarrow if $v_{GS} < V_{TH}$, positive charge at gate is compensated for by uncovered bound negative charges

Increasing voltage at gate above V_{TH}

- \Rightarrow if $v_{GS} \ge V_{TH}$, gate starts attracting electrons from n-regions (as well as minority electrons from p-region)
- \Rightarrow n-type channel is created, connecting source and drain
- \Rightarrow the higher \mathcal{V}_{GS} , the larger the induced channel

applying a small v_{DS}

- Electrons start flowing from source to drain ⇒ current from drain to source
- Increasing v_{GS} widens the channel \Rightarrow more currents flows when increasing v_{DS}

Higher values of v_{DS}

- Gate-substrate voltage is not uniform
 ⇒ Gate-substreate voltage is lower/higher close to drain/source
 - \Rightarrow Channel takes tapered form
- Tapered channel => increased resistance

Higher values of v_{DS}

• Eventually, when $v_{DS} \ge v_{GS} - V_T$, channel is pinched off

 \Rightarrow Increase in v_{DS} no longer increases current

 \Rightarrow called the saturation region

Derivation of i_D-v_{DS}

Derivation of i_D-v_{DS} (cont'd)

$$\frac{dq}{dx} = -C_{ox}W(v_{GS} - V_T - v(x))$$
$$\frac{dx}{dt} = \mu_n \frac{dv(x)}{dx}$$
$$i = \frac{dq}{dt} = \frac{dq}{dx}\frac{dx}{dt}$$

$$i_D = -i = C_{ox} W \mu_n \left(v_{GS} - V_T - v(x) \right) \frac{dv(x)}{dx}$$
$$i_D dx = C_{ox} W \mu_n \left(v_{GS} - V_T - v(x) \right) dv(x)$$

$$= \int_{0}^{L} i_{D} dx = \int_{0}^{v_{DS}} C_{ox} W \mu_{n} \left(v_{GS} - V_{T} - v(x) \right) dv(x)$$
$$= k_{n}' \frac{W}{L} \left[\left(v_{GS} - V_{T} \right) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

with $k'_n = \mu_n C_{ox}$

Derivation of i_D-v_{DS}: saturation region

i_D-v_{DS} : summary

In saturation region...

- large-scale equivalent circuit
 - NMOS operates as a perfect current source
 - Input on gate: very high (infinite) input impedance
 - Valid for $v_{DS} \ge v_{GS} V_T$

Saturation region: effect of channel pinching

- Increasing v_{DS} reduces the channel length
 - Voltage accross actual channel remains $v_{GS} V_T = v_{DSsat}$
 - Electrons are accelerated through depletion region by additional voltage drop

Saturation region: effect of channel pinching

• Quantitative analysis:

$$i_{D} = \frac{1}{2} k'_{n} \frac{W}{L - \Delta L} (v_{GS} - V_{T})^{2}$$

$$= \frac{1}{2} k'_{n} \frac{W}{L} \frac{1}{1 - (\Delta L/L)} (v_{GS} - V_{T})^{2}$$

$$= \frac{1}{2} k'_{n} \frac{W}{L} \left(1 + \frac{\Delta L}{L}\right) (v_{GS} - V_{T})^{2}$$
Let us assume: $\frac{\Delta L}{L} = \frac{\lambda'}{L} v_{DS} = \lambda v_{DS}$

$$\Rightarrow i_D = \frac{1}{2} k'_n \frac{W}{L} \left(v_{GS} - V_T \right)^2 \left(1 + \lambda v_{DS} \right)$$

Saturation region: effect of channel pinching

In saturation region...

- large-scale equivalent circuit
 - Current source has output impedance r_o

- Valid for
$$v_{DS} \ge v_{GS} - V_T$$

PMOS transistors

... n-type substrate => p-type channel

Treshold voltage V_T is negative

- \Rightarrow v_{GS} needs to be « more » negative to create a channel: $v_{SG} \ge V_T \Rightarrow v_{GS} \le -V_T$
- \Rightarrow Saturation when $v_{DS} \ll more \gg negative than gate voltage: <math>v_{DS} \le v_{GS} V_T$
- \Rightarrow Current i_D (flowing **from source to drain**) in triode region:

$$\dot{k}_D = k'_n \frac{W}{L} \left[\left(v_{GS} - V_T \right) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

 \Rightarrow Current i_D in saturation region:

$$i_D = \frac{1}{2} k'_p \frac{W}{L} \left(v_{GS} - V_T \right)^2 \left(1 + \lambda v_{DS} \right)$$

Note that $k'_p = \mu_p C_{ox}$ and $\mu_p = 0.25 \mu_n$ to $0.5 \mu_n$

Complementary MOS transistors

- Both NMOS and PMOS and same substrate
 - \Rightarrow Many powerful circuit-design possibilities
 - \Rightarrow Most widely used IC technology
 - \Rightarrow Many BJT applications now possible with CMOS

Example: CMOS digital logic inverter

• Digital logic inverter can be implemented with CMOS pair

Example: CMOS digital logic inverter (cont'd)

Example: CMOS digital logic inverter (cont'd)

Effect of the substrate

v_{sb} not alwas zero

Substrate common to many MOS transistors
 ⇒ usually connected to most negative power supply in NMOS circuit
 V_{SB} may not be zero for all transistors!

Effect of the substrate

V_t changes with V_{SB}

- Depletion region widens
 - \Rightarrow More negative ions in depletion region
 - \Rightarrow Less electrons required to compensate positive charges at gate
 - \Rightarrow n-type channel narrows
- \Rightarrow macroscopic effect: V_t increases

$$V_{t} = V_{t0} + \gamma \left[\sqrt{2\phi_{f} + V_{SB}} - \sqrt{2\phi_{f}} \right] \quad \text{with } \gamma = \frac{\sqrt{2qN_{A}\varepsilon_{S}}}{C_{ox}}$$

NMOS input impedance

Gate acts as capacitor with substrate

- Input resistance r_G very high (~10¹⁵ Ω)
- $C_{GS} \sim a$ few fF to some nF depending on size of NMOS \Rightarrow purpose of i_G is to load C_{GS} \Rightarrow static i_G is zero

Depletion-type MOSFET

channel is physically implanted in MOSFET

- For a NMOS, the channel is of type n
 - \Rightarrow A n-type silicon region is implanted between the n⁺ source and the n⁺ drain at the top of the p-type substrate
 - \Rightarrow If voltage v_{DS} is applied between drain and source, a current i_D flows, even for v_{GS} = 0
 - \Rightarrow There is no need to induce a channel
- Channel depth and conductivity is controlled through v_{GS}
 - \Rightarrow Positive v_{GS} : more electrons into channel => channel enhanced
 - \Rightarrow Negative v_{GS}: electrons repelled from channel => channel becomes shallower => conductivity decreases

Depletion-type MOSFET

I-V characteristics

MOSFET characteristics

Enhancement-type vs depletion-type

 Enhancement-type and depletion-type MOSFET can be realized onto the same IC chip

 \Rightarrow Circuits with improved characteristics

