Chapter 2

PN junction and diodes

PN junction and diodes

Outline

- PN junction
 - What happens in a PN junction
 - Currents through the PN junction
 - Properties of the depletion region
- Diodes
 - Diode I/V characteristics
 - PN junction under reverse bias
 - PN junction in breakdown region
 - PN junction under forward bias
- Circuits with diodes
 - DC restorer
 - Voltage doubler
 - Voltage multiplier

What happens at the transition region ?

At the transition region, the majority holes are neutralized by an equal amount of majority electrons
Bound charges

=> this reveals the bound charges (ions) that are in the crystal

=> the bound charges create an E-field

Effect of the E-field

- The E-field « pushes » the holes in the p-region
- The E-field « pushes » the electrons in the n-region
- Holes/electrons need more energy to pass the depletion region
- An equilibrium appears, where the size of the depletion region no longer changes

Currents through the depletion region

- Diffusion current I_D:
 - majority holes/electrons in the p/n-region that have enough energy to overcome the E-field
- Diffusion current I_s:
 - minority electrons/holes in the p/n-region (created through thermal ionization)
 - \Rightarrow Swept through the depletion region by the E-field

No external current exists => I_D = I_S

Width and barrier voltage of the depletion region

ULB

Width and barrier voltage of the depletion region

• For silicon at room temperature:

 $V_0\approx 0.6-0.8\mathrm{V}$

- Typically, the depth of the depletion region ranges from 0.1 μm to 1 μm

PN junction and diodes

Outline

- PN junction
 - What happens in a PN junction
 - Currents through the PN junction
 - Properties of the depletion region
- Diodes
 - Diode I/V characteristics
 - PN junction under reverse bias
 - PN junction in breakdown region
 - PN junction under forward bias
- Circuits with diodes
 - DC restorer
 - Voltage doubler
 - Voltage multiplier

Diodes

I-V characteristics

- A diode is merely a PN-junction (with terminals connected at both ends)
- Reminder from ELEC-H301
 - 3 regions: forward bias, reverse bias and breakdown

Diodes

Several levels of simplification ...

ELEC-H402/CH2: PN junction and diodes

Diodes: PN junction under reverse bias

The depletion region widens

- Voltage source pulls electrons from n-region and holes from p-region around the depletion region
- Depletion region widens => barrier voltage V₀ increases
 ⇒ It becomes even harder for holes/electrons from the p/n region to get through the depletion region =>
 - \Rightarrow no current goes through the diode; diode is « blocking »

Diodes: PN junction under reverse bias

Reverse current is due to minority carriers

- Since the barrier voltage of the depletion region increases, the diffusion current I_D (due to majority holes/electrons in the p/n region) will decrease
- However, the diffusion current I_s (due to minority electrons/holes in the p/n region) will not change
- => a slight reverse current will appear, due to **minority carriers**

Diodes: PN junction in the breakdown region

Reverse voltage keeps increasing

The electric field in the depletion region keeps increasing 1st effect:

 ⇒ E-field is able to break covalent bonds in the depletion region (« Zenner effect »), with negligible increase in junction voltage
 ⇒ Reverse current will increase

Diodes: PN junction in the breakdown region

Reverse voltage keeps increasing

The electric field in the depletion region keeps increasing

2nd effect:

- ⇒ Minority carriers going through depletion region have so much kinetic energy that they are able to break covalent bonds
- ⇒ Each liberated electron has sufficient energy to cause another ionizing collision (« Avalanche effect »)
- \Rightarrow reverse current increases fast

Diodes: PN junction in the breakdown region PN breakdown is not a destructive process as such

• When decreasing the reverse voltage, diode will return to its original state

However... reverse current can cause high power dissipation

⇒ This power dissipation can degrade the PN junction irreversably, maybe even cause the Silicon to fuse

Depletion regions narrows

- Voltage source pushes holes in the p-region and electrons in the n-region closer to the depletion region
 - \Rightarrow Depletion region narrows
 - \Rightarrow Barrier voltage V_0 decreases
 - ⇒ Holes from p-region / electrons from n-region are injected accross the junction

Minority carrier concentration increases

- Holes from p-region are injected accross the junction
 ⇒ Increase minority carrier concentration in the n-region
 ⇒ Holes recombine with majority electron in n-region
 ⇒ Highest concentration of minority carriers close to junction
- Similar for electrons from the n-region

Excess minority carrier concentration causes current

• Highest concentration of minority carriers close to junction \Rightarrow from semiconductor physics: $p_n(x_n) = p_{n0}e^{V/V_T}$

 \Rightarrow concentration of carriers: $p_n(x) = p_{n0} + [p_n(x_n) - p_{n0}]e^{-(x-x_n)/L_p}$

Excess minority carrier concentration causes current

• Gradient in minority charge carriers causes diffusion current:

$$J_p = qD_p \frac{dp_n(x)}{dx}$$
$$= q \frac{D_p}{L_p} p_{n0} \left(e^{V/V_T} - 1 \right) e^{-(x-x_n)/L_p}$$

at
$$x = x_n$$
: $J_p = q \frac{D_p}{L_p} p_{n0} \left(e^{V/V_T} - 1 \right)$

• Similarly, for minority electrons in p-region: $J_n = q \frac{D_n}{L_n} n_{p0} \left(e^{V/V_T} - 1 \right)$ => Total current for cross-section *A* :

$$I = A \left(q \frac{D_p}{L_p} p_{n0} + q \frac{D_n}{L_n} n_{p0} \right) \left(e^{V/V_T} - 1 \right)$$

Excess minority carrier concentration causes current

- Total current for cross-section A : $I = I_S \left(e^{V/V_T} 1 \right)$
- \Rightarrow diode characteristic I-V equation in the forward bias region

Excess minority carrier lifetime

- When turning of the forward voltage, it takes some time for the excess minority carriers to recombine with majority carriers: $p_n(x) = p_{n0} + \left(\left[p_n(x_n) - p_{n0} \right] e^{-(x-x_n)/L_p} \right) e^{-t/\tau_p}$
- This excess minority carrier lifetime is linked to the diffusion length: $L = \sqrt{D \tau}$ $L = \sqrt{D \tau}$

$$L_p = \sqrt{D_p \tau_p} \qquad \qquad L_n = \sqrt{D_n \tau_n}$$

- L_p ranges from 1um to 100um
- $\tau_{\scriptscriptstyle p}$ ranges from 1 ns to 10000 ns
- \Rightarrow determines the speed of diode switching
- $\Rightarrow \tau_{_p}$ can be reduced by increasing crystal purity, or by doping with Au or Pt

PN junctions: conclusions

Summary

- Forward bias
 - Depletion area narrows and more majority carriers cross junction
 - Cause excess minority carriers
 - \Rightarrow create diffusion current
 - \Rightarrow Diffusion current exponential with forward voltage
- Reverse bias
 - Depletion area widens and less majority carriers cross junction
 - Minority carriers still cross junction
 - \Rightarrow I_s (due to minority carriers) becomes larger than I_D (due to majority carriers)
 - \Rightarrow Small reverse current

PN junctions: conclusions

Summary

- Breakdown region
 - Zenner effect: large E-field breaks covalent bonds
 - \Rightarrow Large reverse current
 - Large E-field: minority carriers have enough kinetic energy to break covalent bonds
 - \Rightarrow Freed electrons also break other covalent bonds (Avalanche effect)
 - \Rightarrow Large reverse current

PN junction and diodes

Outline

- PN junction
 - What happens in a PN junction
 - Currents through the PN junction
 - Properties of the depletion region
- Diodes
 - Diode I/V characteristics
 - PN junction under reverse bias
 - PN junction in breakdown region
 - PN junction under forward bias
- Circuits with diodes
 - DC restorer
 - Voltage doubler
 - Voltage multiplier

Circuits with diodes: DC restorer

adds a DC component to an AC signal

Circuits with diodes: DC restorer

When adding a load, capacitor discharges slightly

 \Rightarrow Choose RC constant wisely with respect to signal period!

Circuits with diodes: voltage doubler

Double AC voltage to DC voltage

• Output is DC voltage twice the amplitude of AC input

Circuits with diodes: voltage doubler

PSpice simulation

- Capacitor takes a few cycles to be fully charged
- Treshold voltage diode causes slight voltage reduction

Circuits with diodes: voltage multiplier

previous circuit can be generalized

- V_{cr} is the amplitude of the source
- Every diode has to be able to sustain a reverse voltage of 2V_{cr} without going into avalanche

