Chapter 1

Semiconductor basics

Basic semiconductor concepts

Outline

- Semiconductor basics
 - Semiconductors, silicon and hole-electron pair
 - Intrinsic silicon properties
- Doped semiconductors
 - n-type and p-type doped semiconductors
 - Doped semiconductor properties

Semiconductor basics

What are semiconductors ?

Material with properties halfway between a conductor and an insulator

	Metals	Semiconductor	Insulator
Conductivity $[\Omega^{-1}m^{-1}]$	5E+7	1 to 1E+3	1 E-12
Examples	Au, Ag, Cu, Al	Si, Ge, GaAs, SiC, GaN	Glass, ceramic, PVC

- Silicon is by far the most used semiconductor
 - We will use Si throughout this course

Intrinsic silicon

Intrinsic silicon crystal

- Crystal has regular lattice structure
- 4 valence electrons / Si atom
- Each atom shares each of its e- with neighbouring atom, creating a covalent bond

Intrinsic silicon

at 300K, thermal ionizations breaks covelent bonds

- Electrons are freed => electron leaves its parent atom
 - Electron will move through the crystal, creating an electric current
- Electron leaves a positive charge, called a hole,
 - a hole can be filled by a neighbouring electron
 - neighbouring electron will in turn create a hole
 - the hole will propagate trhough the crystal, creating an electric current

Intrinsic silicon

Bipolar = based on two types of charges

- Thermal ionization creates electron-hole pairs
- Semiconductors have two type of mobile charges carriers
 - Negative: electrons moving throughout the crystal
 - Positive: holes moving throughout the crystal
 - => Thermal ionization creates hole-electron pairs

Silicon is neutral

Concentration of electrons is equal to concentration of holes
 => number of free electrons = number of holes

$$n = p = n_i(T)$$

- Thermal ionization rate is strong function of temperature
 - semiconductor physics shows as that at temperature T

$$pn = n_i^2(T) = BT^3 e^{-E_g/kT}$$
Material-dependent parameter
=5.4x 10 E31 for Si
Bandgan energy = 1 12 eV for Si

holes and electrons move ...

- Two main processes through which electron and holes move: *diffusion* and *drift*
 - Diffusion: random motion of electrons/holes through due to thermal agitation
 - Drift: occurs when electric field is applied accross silicon

Diffusion currents

- Imagine a bar of silicon with non-uniform concentration of holes => generation of an E-field /+ + + + + + +
- Holes will diffuse from left to right => diffusion current

$$J_p = -qD_p \frac{dp}{dx}$$

- Similarly, for electrons: $J_n = -qD_n \frac{dn}{dx}$
- Diffusion constants are nonidentical ! Electrons move about 3x faster than holes: $D_p = 12 \text{ cm}^2/\text{s}$ $D_n = 34 \text{ cm}^2/\text{s}$
- If Si uniform => random motion does not result in net current

Drift currents

• E-field applied accross piece of silicon

- holes/electrons will drift in/against direction of E with speed $v_{drift} = \mu_{p/n}E$
- Current due to holes and electrons

$$J_{p-drift} = qp\mu_p E$$
 $J_{n-drift} = qn\mu_n E$

- Total drift current: $J_{drift} = q(p\mu_p + n\mu_n)E$
- Note that, for intrinsic silicon, mobility of electrons is about 2.5 times higher than the mobility of holes

$$\mu_p = 480 \text{ cm}^2/\text{Vs}$$
$$\mu_n = 1350 \text{ cm}^2/\text{Vs}$$

Basic semiconductor concepts

Outline

- Semiconductor basics
 - Semiconductors, silicon and hole-electron pair
 - Intrinsic silicon properties
- Doped semiconductors
 - n-type and p-type doped semiconductors
 - Doped semiconductor properties

What are doped semiconductors ?

- Intrinsic silicon has equal number of positive and negative carriers
- Doped semiconductors are materials in which one kind of carrier predominate
 - n-type: negatively charged electrons are the majority of charge carriers
 - **p-type**: positively charged holes are the majority of charge carriers
- Doping a Si crystal is achieved by introducing a small number of impurity atoms

n-type semiconductor

- Pentavalent atoms are introduced in the Si crystal (P, As, Sb)
 - Five valence electrons => four electrons form covalent bondes, fifth elecron becomes a free electron
 - Each pentavalent atom donates a free electron => *donor*

n-type semiconductor

- No holes are created in the doping process !
 - Electrons become the majority of charge carriers
 - If number of pentavalent atoms $N_d >>$ number of free electrons in Si $n \approx N_d$
 - Thermal equilibrium relationship is still valid:

$$pn = n_i^2(T)$$
$$\Leftrightarrow p \approx \frac{n_i^2(T)}{N_d}$$

- Two types of carriers
 - Majority of electrons, independent of temperature
 - **Minority** of holes, function of temperature

Similarly, for p-type semiconductors...

- Trivalent impurity introduced in Si cristal (Al, B, Ga)
 - Each trivalent atom accepts an additional electron => acceptor
 - This creates a new hole
 - => majority carriers are the holes

=> minority carriers are the electrons

Both n-type and p-type semiconductors ...

... are electrically *neutral* !!!

The majority of free carriers (electrons or holes) are neutralized by bound charges (ions) associated with the impurity atoms

=> Extra electron is compensated electrically by the +5 charge of the donor atom

... are limited by temperature

- Above a certain temperature (200°C)
 - n_i becomes larger than N_a or N_d $pn = n_i^2(T) = BT^3 e^{-E_g/kT}$
 - Si becomes intrinsic again, no more n- or p-type doping properties
 - All properties obtained by doping are lost
- At very low temperature, p or n are too low for the semiconductor to be used
- Usual range for components
 - Standard: 0 to 70°C
 - Industrial: -40°C to 85°C
 - Military, spatial: -55°C to 125°C
- Out-of-range temperature might require extra heating or cooling of the circuits and equipment

Conclusions

Summary table

	Intrinsic Si		N-type		Р-туре	
	Туре	Conc.	Туре	Conc.	Туре	Conc.
dopant			Donor	N _d	Acceptor	N _a
+ mob.charges	Holes	p=n _i	Holes (min.)	$p=n_i^2/N_d$	Holes (maj.)	p=N _a
- mob. charges	Electrons	n=n _i	Electr. (maj.)	n=N _d	Electr. (min)	$n=n_i^2/N_a$
Fixed charges			lons +	N _d	lons-	N _a

N-type: majority carriers are electrons, but still some minority holes due to thermal ionization. Positive ions appear in the crystal.

P-type: majority carriers are holes, but still some minority electrons due to thermal ionization. Negative ions appear in the crystal.

