PART I DEVICES AND BASIC CIRCUITS

1 Introduction to Electronics

1.1 Signals

1.2 Frequency Spectrum of Signals

1.3 Analog and Digital Signals

1.4 Amplifiers

1.4.1 Signal Amplification

1.4.2 Amplifier Circuit Symbol

1.4.3 Voltage Gain

1.4.4 Power Gain and Current Gain

1.4.5 Expressing Gain in Decibels

1.4.6 The Amplifier Power Supplies

1.4.7 Amplifier Saturation

1.4.8 Nonlinear Transfer Characteristics and Biasing

1.4.9 Symbol Convention

1.5 Circuit Models for Amplifiers

1.5.1 Voltage Amplifiers

1.5.2 Cascaded Amplifiers

1.5.3 Other Amplifier Types

1.5.4 Relationships Between the Four Amplifier Models

1.6 Frequency Response of Amplifiers

1.6.1 Measuring the Amplifier Frequency Response

1.6.2 Amplifier Bandwidth

1.6.3 Evaluating the Frequency Response of Amplifiers

1.6.4 Single-Time-Constant Networks

1.6.5 Classification of Amplifiers Based on Frequency Response

1.7 Digital Logic Inverters

1.7.1 Function of the Inverter

1.7.2 The Voltage Transfer Characteristics (VTC)

1.7.3 Noise Margins

1.7.4 The Ideal Inverter

1.7.5 Inverter Implementation

1.7.6 Power Dissipation

1.7.7 Propagation Delay

1.8 Circuit Simulation Using SPICE

Summary

Problems

2 Operational Amplifiers

2.1 The Ideal Op Amp

2.1.1 The Op-Amp Terminals

2.1.2 Function and Characteristics of the Ideal Op Amp

2.1.3 Differential and Common-Mode Signals

2.2 The Inverting Configuration

2.2.1 The Inverting Op Amp

2.2.2 Effect of Finite Open-Loop Gain

2.2.3 Input and Output Resistance

2.2.4 An Important Application: The Weighted Summer

2.3 The Noninverting Configuration

2.3.1 The Noninverting Op Amp

2.3.2 Characteristics of the Noninverting Configuration

2.3.3 Effect of Finite Open-Loop Gain

2.3.4 The Voltage Follower

2.4 Difference Amplifiers

2.4.1 A Single Op-Amp Difference Amplifier

2.4.2 A Superior Circuit: The Instrumentation Amplifier

2.5 Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance

2.5.1 Frequency Dependence of the Open-Loop Gain

2.5.2 Frequency Response of Closed-Loop Amplifiers

2.6 Large-Signal Operation of Op Amps

2.6.1 Output Voltage Saturation

2.6.2 Output Current Limits

2.6.3 Slew Rate

2.6.4 Full-Power Bandwidth

2.7 DC Improvements

2.7.1 Offset Voltage

2.7.2 Input Bias and Offset Currents

2.8 Integrators and Differentiators

2.8.1 The Inverting Integrator

2.8.2 The Noninverting Integrator

2.8.3 The Op-Amp Differentiator

2.9 The SPICE Op-Amp Model and Simulation Examples

2.9.1 Linear Macromodel

2.9.2 Nonlinear Macromodel

Summary

Problems

3 Diodes

3.1 The Ideal Diode

3.1.1 Current-Voltage Characteristics

3.1.2 A Simple Application: The Rectifier

3.1.3 Another Application: Diode Logic Gates
4 MOS Field-Effect Transistors (MOSFETs) 235

4.1 Device Structure and Physical Operation 236
 4.1.1 Device Structures 238
 4.1.2 Operation with No Gate Voltage 238
 4.1.3 Creating a Channel for Current Flow 238
 4.1.4 Applying a Small v_{GS} 239
 4.1.5 Operation as v_{DS} Is Increased 241
 4.1.6 Derivation of the i_D-v_{DS} Relationship 243
 4.1.7 The p-Channel MOSFET 247
 4.1.8 Complementary MOS or CMOS 247
 4.1.9 Operating the MOS Transistor in the Subthreshold Region 248

4.2 Current-Voltage Characteristics 248
 4.2.1 Circuit Symbol 248
 4.2.2 The i_D-v_{DS} Characteristics 249
 4.2.3 Finite Output Resistance in Saturation 253
 4.2.4 Characteristics of the p-Channel MOSFET 256
 4.2.5 The Role of the Substrate—The Body Effect 258
 4.2.6 Temperature Effects 259
 4.2.7 Breakdown and Input Protection 259
 4.2.8 Summary 260

4.3 MOSFET Circuits at DC 262
 4.3.1 The MOSFET as an Amplifier and as a Switch 270
 4.3.2 Large-Signal Operation—The Transfer Characteristic 271
 4.3.3 Graphical Derivation of the Transfer Characteristic 273
 4.3.4 Operation as a Switch 274
 4.3.5 Operation as a Linear Amplifier 274
 4.3.6 Analytical Expressions for the Transfer Characteristics 275
 4.3.7 A Final Remark on Biasing 280

4.4 Biasing in MOS Amplifier Circuits 280
 4.4.1 Biasing by Fixing v_{GS} 280
 4.4.2 Biasing by Fixing v_{DS} and Connecting a Resistance in the Source 281
 4.4.3 Biasing Using a Drain-to-Gate Feedback Resistor 284
 4.4.4 Biasing Using a Constant-Current Source 285
 4.4.5 Analytical Expressions for the Transfer Characteristic 287

4.5 Small-Signal Operation and Models 287
 4.5.1 The DC Bias Point 287
 4.5.2 The Signal Current in the Drain Terminal 258
 4.5.3 The Voltage Gain 259
 4.5.4 Separating the DC Analysis and the Signal Analysis 290
 4.5.5 Small-Signal Equivalent-Circuit Models 290
 4.5.6 The Transconductance g_m 292
 4.5.7 The T Equivalent-Circuit Model 295
 4.5.8 Modeling the Body Effect 296

4.6 Summary 297

4.7 Single-Stage MOS Amplifiers 299
 4.7.1 The Basic Structure 299
 4.7.2 Characterizing Amplifiers 301
 4.7.3 The Common-Source (CS) Amplifier 306
 4.7.4 The Common Source Amplifier with a Source Resistor 309
5 Bipolar Junction Transistors (BJTs) 377

Introduction 377

5.1 Device Structure and Physical Operation 378
 5.1.1 Simplified Structure and Modes of Operation 378
 5.1.2 Operation of the npn Transistor in the Active Mode 380
 5.1.3 Structure of Actual Transistors 386
 5.1.4 The Ebers-Moll (EM) Model 387
 5.1.5 Operation in the Saturation Mode 390
 5.1.6 The pnp Transistor 391

5.2 Current-Voltage Characteristics 392
 5.2.1 Circuit Symbols and Conventions 392
 5.2.2 Graphical Representation of Transistor Characteristics 397
 5.2.3 Dependence of ic on the Collector Voltage—The Early Effect 399
 5.2.4 The Common-Collector Characteristics 401
 5.2.5 Transistor Breakdown 406
 5.2.6 Summary 407

5.3 The BJT as an Amplifier and as a Switch 407
 5.3.1 Large-Signal Operation—The Transfer Characteristic 410
 5.3.2 Amplifier Gain 412
 5.3.3 Graphical Analysis 415
 5.3.4 Operation as a Switch 419

5.4 BJT Circuits at DC 421

5.5 Biasing in BJT Amplifier Circuits 436
 5.5.1 The Classical Discrete-Circuit Bias Arrangement 436
 5.5.2 A Two-Power-Supply Version of the Classical Bias Arrangement 440
 5.5.3 Biasing Using a Collector-to-Base Feedback Resistor 441
 5.5.4 Biasing Using a Constant-Current Source 442

5.6 Small-Signal Operation and Models 443
 5.6.1 The Collector Current and the Transconductance 443
 5.6.2 The Base Current and the Input Resistance at the Base 445
 5.6.3 The Emitter Current and the Input Resistance at the Emitter 446
 5.6.4 Voltage Gain 447
 5.6.5 Separating the Signal and the DC Quantities 448
 5.6.6 The Hybrid-π Model 448
 5.6.7 The T Model 449
 5.6.8 Application of the Small-Signal Equivalent Circuits 450
 5.6.9 Performing Small-Signal Analysis Directly on the Circuit Diagram 457
 5.6.10 Augmenting the Small-Signal Models to Account for the Early Effect 457
 5.6.11 Summary 458

5.7 Single-Stage BJT Amplifiers 460
 5.7.1 The Basic Structure 460
 5.7.2 Characterizing BJT Amplifiers 461
 5.7.3 The Common-Collector (CC) Amplifier 467
 5.7.4 The Common-Collector Amplifier with an Emitter Resistor 470
 5.7.5 The Common-Base (CB) Amplifier 475
 5.7.6 The Common-Collector (CC) Amplifier or Emitter Follower 478
 5.7.7 Summary and Comparisons 483

5.8 The BJT Internal Capacitances and High-Frequency Model 485
 5.8.1 The Base-Charging or Diffusion Capacitance Cb 486
 5.8.2 The Base-Emitter Junction Capacitance Cbe 487
 5.8.3 The Collector-Base Junction Capacitance Cc 487
 5.8.4 The High-Frequency Hybrid-π Model 487
 5.8.5 The Cutter Frequency 487
 5.8.6 Summary 490

5.9 Frequency Response of the Common-Collector Amplifier 491
 5.9.1 The Three Frequency Bands 491
 5.9.2 The High-Frequency Response 492
 5.9.3 The Low-Frequency Response 497
 5.9.4 A Final Remark 503

5.10 The Basic BJT Digital Logic Inverter 503
 5.10.1 The Voltage Transfer Characteristic 504
 5.10.2 Saturated Versus Nonsaturated BJT Digital Circuits 505

5.11 The SPICE BJT Model and Simulation Examples 507
 5.11.1 The SPICE Ebers-Moll Model of the BJT 507
 5.11.2 The SPICE Emulator-Point Model of the BJT 509
 5.11.3 The SPICE BJT Model Parameters 510
 5.11.4 The BJT Model Parameters in SPICE 510
6 Single-Stage Integrated-Circuit Amplifiers 545

6.1 IC Design Philosophy 546
6.2 Comparison of the MOSFET and the BJT 547
 6.2.1 Typical Values of MOSFET Parameters 547
 6.2.2 Typical Values of IC BJT Parameters 548
6.2.3 Comparison of Important Characteristics 549
6.2.4 Combining MOS and Bipolar Transistors—BiCMOS Circuits 561
 6.2.5 Validity of the Square-Law MOSFET Model 562
6.3 IC Biasing—Current Sources, Current Mirrors, and Current-Steering Circuits 562
 6.3.1 The Basic MOSFET Current Source 562
 6.3.2 MOS Current-Steering Circuits 565
 6.3.3 BJT Circuits 567
6.4 High-Frequency Response—General Considerations 571
 6.4.1 The High-Frequency Gain Function 572
 6.4.2 Determining the 3-dB Frequency f_3 573
 6.4.3 Using Open-Circuit Time Constants for the Approximate Determination of f_3 575
 6.4.4 Miller's Theorem 578
6.5 The Common-Source and Common-Emitter Amplifiers with Active Loads 582
 6.5.1 The Common-Source Circuit 582
 6.5.2 CMOS Implementation of the Common-Source Amplifier 583
 6.5.3 The Common-Emitter Circuit 588
6.6 High-Frequency Response of the CS and CE Amplifiers 588
 6.6.1 Analysis Using Miller's Theorem 589
 6.6.2 Analysis Using Open-Circuit Time Constants 590
 6.6.3 Exact Analysis 591
 6.6.4 Applying the Formulas for the CS Amplifier 595
 6.6.5 The Situation When R_{in} Is Low 597
6.7 The Common-Gate and Common-Base Amplifiers with Active Loads 600
 6.7.1 The Common-Gate Amplifier 600
 6.7.2 The Common-Base Amplifier 610
 6.7.3 A Concluding Remark 613
6.8 The Cascode Amplifier 613
 6.8.1 The MOS Cascode 614
 6.8.2 Frequency Response of the MOS Cascode 618
 6.8.3 The BJT Cascode 623
 6.8.4 A Cascode MOS Amplifier 625
 6.8.5 Double Cascoding 626
 6.8.6 The Folded Cascode 627
 6.8.7 CMOS Cascodes 628
6.9 The CS and CE Amplifiers with Source (Emitter) Degeneration 629
 6.9.1 The CS Amplifier with a Source Resistance 629
 6.9.2 The CE Amplifier with an Emitter Resistance 633
6.10 The Source and Emitter Followers 635
 6.10.1 The Source Follower 635
 6.10.2 Frequency Response of the Source Follower 637
6.11 Some Useful Transistor Pairings 641
 6.11.1 The CD—CS, CC—CE and CD—CE Configurations 641
 6.11.2 The Darlington Configuration 645
 6.11.3 The CC—CB and CD—CG Configurations 646
6.12 Current-Mirror Circuits with Improved Performance 649
 6.12.1 A MOS Current Mirror 649
 6.12.2 A Bipolar Mirror with Base-Current Compensation 650
 6.12.3 The Wilson Current Mirror 651
 6.12.4 The Wilson MOS Mirror 652
 6.12.5 The Waller Current Source 653
6.13 SPICE Simulation Examples 656
 Summary 665
 Problems 666

7 Differential and Multistage Amplifiers 687

7.1 The MOS Differential Pair 688
 7.1.1 Operation with a Common-Mode Input Voltage 689
 7.1.2 Operation with a Differential Input Voltage 691
 7.1.3 Large-Signal Operation 693
7.2 Small-Signal Operation of the MOS Differential Pair 696
 7.2.1 Differential Gain 697
 7.2.2 Common-Mode Gain and Common-Mode Rejection Ratio (CMRR) 700
7.3 The BIT Differential Pair 704
 7.3.1 Basic Operation 704
 7.3.2 Large-Signal Operation 707
 7.3.3 Small-Signal Operation 709
7.4 Other Nonideal Characteristics of the Differential Amplifier 720
 7.4.1 Input Offset Voltage of the MOS Differential Pair 720
 7.4.2 Input Offset Voltage of the Bipolar Differential Pair 722
 7.4.3 Input Bias and Offset Currents of the Bipolar Pair 725
 7.4.4 Input Common-Mode Range 736
 7.4.5 A Concluding Remark 736
7.5 The Differential Amplifier with Active Load 727
 7.5.1 Differential-to-Single-Ended Conversion 727
 7.5.2 The Active-Loaded MOS Differential Pair 728
 7.5.3 Differential Gain of the Active-Loaded MOS Pair 729
 7.5.4 Common-Mode Gain and CMRR 732
 7.5.5 The Bipolar Differential Pair with Active Load 733
8 Feedback 791

Introduction 791

8.1 The General Feedback Structure 792

8.2 Some Properties of Negative Feedback 796

8.2.1 Gain Desensitivity 796
8.2.2 Bandwidth Extension 796
8.2.3 Noise Reduction 796
8.2.4 Reduction in Nonlinear Distortion 797

8.3 The Four Basic Feedback Topologies 798

8.3.1 Voltage Amplifiers 799
8.3.2 Current Amplifiers 799
8.3.3 Transconductance Amplifiers 801
8.3.4 Transresistance Amplifiers 802

8.4 The Series-Shunt Feedback Amplifier 802

8.4.1 The Ideal Situation 802
8.4.2 The Practical Situation 804
8.4.3 Summary 807

8.5 The Series-Series Feedback Amplifier 811

8.5.1 The Ideal Case 811
8.5.2 The Practical Case 812
8.5.3 Summary 814

8.6 The Shunt-Shunt and Shunt-Series Feedback Amplifiers 818

8.6.1 The Shunt-Shunt Configuration 819
8.6.2 An Important Note 823
8.6.3 The Shunt-Series Configuration 823
8.6.4 Summary of Results 831

8.7 Determining the Loop Gain 835

8.7.1 An Alternative Approach for Finding A 835
8.7.2 Equivalence of Circuits from a Feedback-Loop Point of View 835

8.8 The Stability Problem 834

8.8.1 Transfer Function of the Feedback Amplifier 834
8.8.2 The Nyquist Plot 835

8.9 Effect of Feedback on the Amplifier Poles 836

8.9.1 Stability and Pole Location 837
8.9.2 Poles of the Feedback Amplifier 838
8.9.3 Amplifier with Single-Pole Response 838
8.9.4 Amplifier with Two-Pole Response 839
8.9.5 Amplifiers with Three or More Poles 843

8.10 Stability Study Using Bode Plots 845

8.10.1 Gain and Phase Margins 845
8.10.2 Effect of Phase Margin on Closed-Loop Response 846
8.10.3 An Alternative Approach for Investigating Stability 847

8.11 Frequency Compensation 849

8.11.1 Theory 850
8.11.2 Implementation 851
8.11.3 Miller Compensation and Pole Splitting 852

8.12 SPICE Simulation Example 855

Summary 859

Problems 860

9 Operational-Amplifier and Data-Converter Circuits 871

Introduction 871

9.1 The Two-Stage CMOS Op Amp 872

9.1.1 The Circuit 872
9.1.2 Input Common-Mode Range and Output Swing 873
9.1.3 Voltage Gain 874
9.1.4 Frequency Response 876
9.1.5 slew Rate 879

9.2 The Folded-Cascode CMOS Op Amp 883

9.2.1 The Circuit 883
9.2.2 Input Common-Mode Range and Output Swing 885
9.2.3 Voltage Gain 886
9.2.4 Frequency Response 888
9.2.5 Slew Rate 888
9.2.6 Increasing the Input Common-Mode Range: Rail-to-Rail Input Operation 890
9.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror 892

9.3 The 741 Op-Amp Circuit 893

9.3.1 Bias Circuit 893
9.3.2 Short-Circuit Protection Circuitry 895
9.3.3 The Input Stage 895
9.3.4 The Output Stage 896
9.3.5 Device Parameters 898

9.4 DC Analysis of the 741 899

9.4.1 Reference Bias Current 899
9.4.2 Input-Stage Bias 899
9.4.3 Input Bias and Offset Currents 902
9.4.4 Input Offset Voltage 902
9.4.5 Input Common-Mode Range 902
9.4.6 Second-Stage Bias 902
9.4.7 Output-Stage Bias 903

9.5 Small-Signal Analysis of the 741 905

9.5.1 The Input Stage 905
9.5.2 The Second Stage 910
9.5.3 The Output Stage 912
9.6 Gain, Frequency Response, and Slew Rate of the 741 917
9.6.1 Small-Signal Gain 917
9.6.2 Frequency Response 917
9.6.3 A Simplified Model 918
9.6.4 Slew Rate 919
9.6.5 Relationship Between g_m and SR 920
9.7 Data Converters—An Introduction 922
9.7.1 Digital Processing of Signals 922
9.7.2 Sampling of Analog Signals 922
9.7.3 Signal Quantization 924
9.7.4 The A/D and D/A Converters as Functional Blocks 924
9.8 D/A Converter Circuits 925
9.8.1 Basic Circuit Using Binary-Weighted Resistors 925
9.8.2 R-2R Ladders 926
9.8.3 A Practical Circuit Implementation 927
9.8.4 Current Switches 928
9.9 A/D Converter Circuits 929
9.9.1 The Feedback-Type Converter 929
9.9.2 The Dual-Slope A/D Converter 930
9.9.3 The Parallel or Flash Converter 932
9.9.4 The Charge-Redistribution Converter 932
9.10 SPICE Simulation Example 934

Summary 940
Problems 941

10 Digital CMOS Logic Circuits 949

Introduction 949
10.1 Digital Circuit Design: An Overview 950
10.1.1 Digital IC Technologies and Logic-Circuit Families 950
10.1.2 Logic-Circuit Characterization 952
10.1.3 Styles for Digital System Design 954
10.1.4 Design Abstraction and Compositional Techniques 955
10.2 Design and Performance Analysis of the CMOS Inverter 955
10.2.1 Circuit Structure 955
10.2.2 Static Operation 956
10.2.3 Dynamic Operation 958
10.2.4 Dynamic Power Dissipation 956
10.3 CMOS Logic-Gate Circuits 963
10.3.1 Basic Structure 963
10.3.2 The Two-Input NOR Gate 966
10.3.3 The Two-Input NAND Gate 966
10.3.4 A Complex Gate 967
10.3.5 Obtaining the PUN from the PDN and Vice Versa 968
10.3.6 The Excluding-OR Function 969
10.3.7 Summary of the Synthesis Method 970
10.3.8 Transistor Sizing 970
10.3.9 Effects of Fan-In and Fan-Out on Propagation Delay 973
10.4 Pseudo-NMOS Logic Circuits 974
10.4.1 The Pseudo-NMOS Inverter 974
10.4.2 Static Characteristics 975

10.5 Dynamic Logic Circuits 991
10.5.1 Basic Principle 992
10.5.2 Nonideal Effects 993
10.5.3 Domino CMOS Logic 996
10.5.4 Concluding Remarks 998
10.6 Static CMOS Logic Circuits 999
10.6.1 Basic Principles 999
10.6.2 Concluding Remarks 999

PART III SELECTED TOPICS 1010

11 Memory and Advanced Digital Circuits 1013

Introduction 1013
11.1 Latches and Flip-flops 1014
11.1.1 The Latch 1014
11.1.2 The SR Flip-Flop 1015
11.1.3 CMOS Implementation of SR Flip-Flops 1016
11.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop 1019
11.1.5 D Flip-Flop Circuits 1019
11.2 Multivibrator Circuits 1021
11.2.1 A CMOS Monostable Circuit 1022
11.2.2 An Astable Circuit 1026
11.2.3 The Ring Oscillator 1027
11.3 Semiconductor Memories: Types and Architectures 1028
11.3.1 Memory-Chip Organization 1028
11.3.2 Memory-Chip Timing 1030
11.4 Random-Access Memory (RAM) Cells 1031
11.4.1 Static Memory Cell 1031
11.4.2 Dynamic Memory Cell 1036
11.5 Sense Amplifiers and Address Decoders 1038
11.5.1 The Sense Amplifier 1038
11.5.2 The Row-Address Decoder 1043
11.5.3 The Column-Address Decoder 1045
11.6 Read-Only Memory (ROM) 1046
11.6.1 A MOS ROM 1047
11.6.2 Mask-Programmable ROMs 1049
11.6.3 Programmable ROMs (EPROMs and E²PROMs) 1049
11.7 Emitter-Coupled Logic (ECL) 1052
11.7.1 The Basic Principle 1052
11.7.2 ECL Families 1053
11.7.3 The Basic Gate Circuit 1053
11.7.4 Voltage Transfer Characteristics 1057
11.7.5 Fan-Out 1061
11.7.6 Speed of Operation and Signal Transmission 1062
11.7.7 Power Dissipation 1063
11.7.8 Thermal Effects 1063
11.7.9 The Wired-OR Capability 1066
11.7.10 Some Final Remarks 1066
11.8 BiCMOS Digital Circuits 1067
11.8.1 The BiCMOS Inverter 1067
11.8.2 Dynamic Operation 1069
11.8.3 BiCMOS Logic Gates 1070
11.9 SPICE Simulation Example 1071

Summary 1076
Problems 1077

12 Filters and Tuned Amplifiers 1083

Introduction 1083
12.1 Filter Transmission, Types, and Specifications 1084
12.1.1 Filter Transmission 1084
12.1.2 Filter Types 1085
12.1.3 Filter Specification 1085
12.2 The Filter Transfer Function 1088
12.3 Butterworth and Chebyshev Filters 1091
12.3.1 The Butterworth Filter 1091
12.3.2 The Chebyshev Filter 1095
12.4 First-Order and Second-Order Filter Functions 1098
12.4.1 First-Order Filters 1098
12.4.2 Second-Order Filter Functions 1101
12.5 The Second-Order LCR Resonator 1106
12.5.1 The Resonator Natural Modes 1106
12.5.2 Realization of Transmission Zeros 1107
12.5.3 Realization of the Low-Pass Function 1108
12.5.4 Realization of the High-Pass Function 1108
12.5.5 Realization of the Bandpass Function 1108
12.5.6 Realization of the Notch Functions 1110
12.5.7 Realization of the All-Pass Function 1111
12.6 Second-Order Active Filters Based on Inductor Replacement 1112
12.6.1 The Antiresonant Inductance-Simulation Circuit 1112
12.6.2 The Op Amp-RC Resonator 1114
12.6.3 Realization of the Various Filter Types 1114
12.6.4 The All-Pass Circuit 1118
12.7 Second-Order Active Filters Based on the Two-Integrator-Loop Topology 1120
12.7.1 Derivation of the Two-Integrator-Loop Biquad 1120
12.7.2 Circuit Implementation 1122
12.7.3 An Alternative Two-Integrator-Loop Biquad Circuit 1123
12.7.4 Final Remarks 1125
12.8 Single-Amplifier Biquadratic Active Filters 1125
12.8.1 Synthesis of the Feedback Loop 1126
12.8.2 Injecting the Input Signal 1138
12.8.3 Generation of Equivalent Feedback Loops 1139
12.9 Sensitivity 1133
12.10 Switched-Capacitor Filters 1136
12.10.1 The Basic Principle 1136
12.10.2 Practical Circuits 1137
12.10.3 A Final Remark 1141
12.11 Tuned Amplifiers 1141
12.11.1 The Basic Principle 1141
12.11.2 Inductor Losses 1143
12.11.3 Use of Transformers 1144
12.11.4 Amplifiers with Multiple Tuned Circuits 1146
12.11.5 The Colpitts and the CC-CB Cascade 1146
12.11.6 Synchronous Tuning 1147
12.11.7 Saturating-Tuning 1148
12.12 SPICE Simulation Examples 1152
Summary 1158
Problems 1159

13 Signal Generators And Waveform-Shaping Circuits 1165

Introduction 1165
13.1 Basic Principles of Sinusoidal Oscillators 1166
13.1.1 The Oscillator Feedback Loop 1166
13.1.2 The Oscillation Criterion 1167
13.1.3 Nonlinear Amplitude Control 1168
13.1.4 A Popular Limiter Circuit for Amplitude Control 1169
13.2 Op Amp-RC Oscillator Circuits 1171
13.2.1 The Wien-Bridge Oscillator 1171
13.2.2 The Phase-Shift Oscillator 1174
13.2.3 The Quadrature Oscillator 1176
13.2.4 The Active-Filter-Tuned Oscillator 1177
13.2.5 A Final Remark 1179
13.3 LC and Crystal Oscillators 1179
13.3.1 LC-Tuned Oscillators 1179
13.3.2 Crystal Oscillators 1182
13.4 Bistable Multivibrators 1185
13.4.1 The Feedback Loop 1185
13.4.2 Transfer Characteristics of the Bistable Circuit 1186
13.4.3 Triggering the Bistable Circuit 1187
13.4.4 The Bistable Circuit as a Memory Element 1188
13.4.5 A Bistable Circuit with Noninverting Transfer Characteristics 1188
13.4.6 Application of the Bistable Circuit as a Comparator 1189
13.4.7 Making the Output Levels More Precise 1191
13.5 Generation of Square and Triangular Waveforms Using Astable Multivibrators \[199\]
13.5.1 Operation of the Astable Multivibrator \[199\]
13.5.2 Generation of Triangular Waveforms \[194\]
13.6 Generation of a Standardized Pulse—The Monostable Multivibrator \[196\]
13.7 Integrated-Circuit Timers \[198\]
13.7.1 The 555 Circuit \[199\]
13.7.2 Implementing a Monostable Multivibrator Using the 555 IC \[199\]
13.7.3 An Astable Multivibrator Using the 555 IC \[201\]
13.8 Nonlinear Waveform-Shaping Circuits \[203\]
13.8.1 The Breakpoint Method \[203\]
13.8.2 The Nonlinear-Amplification Method \[205\]
13.9 Precision Rectifier Circuits \[206\]
13.9.1 Precision Half-Wave Rectifier—The “Superdiode” \[207\]
13.9.2 An Alternative Circuit \[208\]
13.9.3 An Application: Measuring AC Voltages \[209\]
13.9.4 Precision Full-Wave Rectifier \[210\]
13.9.5 A Precision Bridge Rectifier for Instrumentation Applications \[212\]
13.9.6 Precision Peak Rectifiers \[213\]
13.9.7 A Buffed Precision Peak Detector \[213\]
13.9.8 A Precision Clamping Circuit \[214\]
13.10 SPICE Simulation Examples \[214\]
Summary \[219\]
Problems \[220\]

14 Output Stages and Power Amplifiers \[229\]

Introduction \[229\]
14.1 Classification of Output Stages \[230\]
14.2 Class A Output Stage \[231\]
14.2.1 Transfer Characteristic \[231\]
14.2.2 Signal Waveforms \[233\]
14.2.3 Power Dissipation \[233\]
14.2.4 Power-Conversion Efficiency \[235\]
14.3 Class B Output Stage \[235\]
14.3.1 Circuit Operation \[236\]
14.3.2 Transfer Characteristic \[236\]
14.3.3 Power-Conversion Efficiency \[236\]
14.3.4 Power Dissipation \[238\]
14.3.5 Reducing Crossover Distortion \[240\]
14.3.6 Single-Supply Operation \[240\]
14.4 Class AB Output Stage \[241\]
14.4.1 Circuit Operation \[242\]
14.4.2 Output Resistance \[243\]
14.5 Biasing the Class AB Circuit \[244\]
14.5.1 Biasing Using Dioders \[244\]
14.5.2 Biasing Using the \(V_{BE}\) Multiplier \[246\]
14.6 Power BJTs \[249\]
14.6.1 Junction Temperature \[249\]
14.6.2 Thermal Resistance \[249\]
14.6.3 Power Dissipation Versus Temperature \[250\]
14.6.4 Transistor Case and Heat Sink \[251\]
14.6.5 The BJT Safe Operating Area \[254\]
14.6.6 Parameter Values of Power Transistors \[255\]
14.7 Variations on the Class AB Configuration \[256\]
14.7.1 Use of Input Emitter Followers \[256\]
14.7.2 Use of Compound Devices \[257\]
14.7.3 Short-Circuit Protection \[259\]
14.7.4 Thermal Shutdown \[260\]
14.8 IC Power Amplifiers \[261\]
14.8.1 A Fixed-Gain IC Power Amplifier \[261\]
14.8.2 Power Op Amps \[265\]
14.8.3 The Bridge Amplifier \[265\]
14.9 MOS Power Transistors \[266\]
14.9.1 Structure of the Power MOSFET \[266\]
14.9.2 Characteristics of Power MOSFETs \[268\]
14.9.3 Temperature Effects \[269\]
14.9.4 Comparison with BJTs \[269\]
14.9.5 A Class AB Output Stage Utilizing MOSFETS \[270\]

APPENDICES

A VLSI Fabrication Technology \[A-1\]
B Two-Port Network Parameters \[B-1\]
C Some Useful Network Theorems \[C-1\]
D Single-Time-Constant Circuits \[D-1\]
E s-Domain Analysis: Poles, Zeros, and Bode Plots \[E-1\]
F Bibliography \[F-1\]
G Standard Resistance Values and Unit Prefixes \[G-1\]
H Answers to Selected Problems \[H-1\]

INDEX \[IN-1\]
Microelectronic Circuits, fifth edition, is intended as a text for the core courses in electronic circuits taught to majors in electrical and computer engineering. It should also prove useful to engineers and other professionals wishing to update their knowledge through self-study.

As was the case with the first four editions, the objective of this book is to develop in the reader the ability to analyze and design electronic circuits, both analog and digital, discrete and integrated. While the application of integrated circuits is covered, emphasis is placed on transistor circuit design. This is done because of our belief that even if the majority of those studying the book were not to pursue a career in IC design, knowledge of what is inside the IC package would enable intelligent and innovative application of such chips. Furthermore, with the advances in VLSI technology and design methodology, IC design itself is becoming accessible to an increasing number of engineers.

PREREQUISITES

The prerequisite for studying the material in this book is a first course in circuit analysis. As a review, some linear circuits material is included here in appendixes: specifically, two-port network parameters in Appendix B; some useful network theorems in Appendix C; single-time-constant circuits in Appendix D; and s-domain analysis in Appendix E. No prior knowledge of physical electronics is assumed. All required device physics is included, and Appendix A provides a brief description of IC fabrication.

NEW TO THIS EDITION

Although the philosophy and pedagogical approach of the first four editions have been retained, several changes have been made to both organization and coverage.

1. The book has been reorganized into three parts. Part I: Devices and Basic Circuits, composed of the first five chapters, provides a coherent and reasonably comprehensive single-semester introductory course in electronics. Similarly, Part II: Analog and Digital Integrated Circuits (Chapters 6-10) presents a body of material suitable for a second one-semester course. Finally, four carefully chosen subjects are included in Part III: Selected Topics. These can be used as enhancements or substitutions for some of the material in earlier chapters, as resources for projects or thesis work, and/or as part of a third course.

2. Each chapter is organized so that the essential “must-cover” topics are placed first, and the more specialized material appears last. This allows considerable flexibility in teaching and learning from the book.

3. Chapter 4, MOSFETs, and Chapter 5, BJTs, have been completely rewritten, updated, and made completely independent of each other. The MOSFET chapter is placed first to reflect the fact that it is currently the most significant electronics device by a wide margin. However, if desired, the BJT can be covered first. Also, the identical structure of the two chapters makes teaching and learning about the second device easier and faster.
PREFACE

4. To make the first course comprehensive, both Chapters 4 and 5 include material on amplifier and digital-logic circuits. In addition, the frequency response of the basic common-source (common-emitter) amplifier is included. This is important for students who might not take a second course in electronics.

5. A new chapter on integrated-circuit (IC) amplifiers (Chapter 6) is added. It begins with a comprehensive comparison between the MOSFET and the BJT. Typical parameter values of devices produced by modern submicron fabrication processes are given and utilized in the examples, exercises, and end-of-chapter problems. The study of each amplifier configuration includes its frequency response. This should make the study of amplifier frequency response more interesting and somewhat easier.

6. The material on differential and multistage amplifiers in Chapter 7 has been rewritten to present the MOSFET differential pair first. Here also, the examples, exercises, and problems have been expanded and updated to utilize parameter values representative of modern submicron technologies.

7. Throughout the book, greater emphasis is placed on MOSFET circuits.

8. To make room for new material, some of the topics that have become less current, such as JFETs and TTL, or have remained highly specialized, such as GaAs devices and circuits, have been removed from the book. However, they are made available on the CD accompanying the book and on the book’s website.

9. As a study aid and for easy reference, many summary tables have been added.

10. The review exercises, examples, and end-of-chapter problems have been updated and their numbers and variety increased.

11. The SPICE sections have been rewritten and the SPICE examples now utilize schematic entry. To enable further experimentation, the files for all SPICE examples are provided on the CD and website.

THE CD-ROM AND THE WEBSITE

A CD-ROM accompanies this book. It contains much useful supplementary information and material intended to enrich the student’s learning experience. These include: (1) A Student’s Edition of Orcad PSpice 9.2. (2) The input files for all the SPICE examples in this book. (3) A link to the book’s website accessing PowerPoint slides of every figure in this book that students can print and carry to class to facilitate taking notes. (4) Bonus text material of specialized topics not covered in the current edition of the textbook. These include: JFETs, GaAs devices and circuits, and TTL circuits.

A website for the book has been set up (www.sedsrsmith.org). Its content will change frequently to reflect new developments in the field. It features SPICE models and files for all PSpice examples, links to industrial and academic websites of interest, and a message center to communicate with the authors. There is also a link to the Higher Education Group of Oxford University Press so professors can receive complete text support.

EMPHASIS ON DESIGN

It has been our philosophy that circuit design is best taught by pointing out the various trade-offs available in selecting a circuit configuration and in selecting component values for a given configuration. The emphasis on design has been increased in this edition by including more design examples, exercise problems, and end-of-chapter problems. Those exercises and end-of-chapter problems that are considered “design-oriented” are indicated with a D. Also, the most valuable design aid, SPICE, is utilized throughout the book, as already outlined.

EXERCISES, END-OF-CHAPTER PROBLEMS, AND ADDITIONAL SOLVED PROBLEMS

Over 450 exercises are integrated throughout the text. The answer to each exercise is given below the exercise so students can check their understanding of the material as they read. Solving these exercises should enable the reader to gauge his or her grasp of the preceding material. In addition, more than 1370 end-of-chapter problems, about a third of which are new to this edition, are provided. The problems are keyed to the individual sections and their degree of difficulty is indicated by a rating system: difficult problems are marked with an asterisk (*); more difficult problems with two asterisks (**); and very difficult (and/or time consuming) problems with three asterisks (***)

AN OUTLINE FOR THE READER

The book starts with an introduction to the basic concepts of electronics in Chapter 1. Signals, their frequency spectra, and their analog and digital forms are presented. Amplifiers are introduced as circuit building blocks and their various types and models are studied. The basic element of digital electronics, the digital logic inverter, is defined in terms of its voltage-transfer characteristic, and its various implementations using voltage and current switches are discussed. Chapter 2 deals with operational amplifiers, their terminal characteristics, simple applications, and limitations. We have chosen to discuss the op amp as a circuit building block at this early stage simply because it is easy to deal with and because the student can experiment with op-amp circuits that perform nontrivial tasks with relative ease and with a sense of accomplishment. We have found this approach to be highly motivating to the student. We should point out, however, that part or all of this chapter can be skipped and studied at a later stage (for instance in conjunction with Chapter 7, Chapter 8, and/or Chapter 9) with no loss of continuity.

Chapter 3 is devoted to the study of the most fundamental electronic device, the pn junction diode. The diode terminal characteristics and its hierarchy of models and basic circuit...
Chapter 9 integrates the material on analog IC design presented in the preceding three chapters and applies it to the analysis and design of two major analog IC functional blocks: op amps and data converters. Both CMOS and bipolar op amps are studied. The data-converter sections provide a bridge to the study of digital CMOS logic circuits in Chapter 10.

Chapter 10 builds on the introduction to CMOS logic circuits in Section 4.10 and includes a carefully selected set of topics on static and dynamic CMOS logic circuits that round out the study of analog and digital ICs in Part II.

The study of digital circuits is continued in the first of the four selected-topics chapters that comprise Part III. Specifically, Chapter 11 deals with memory and related circuits, such as latches, flip-flops, and registerable and stable multivibrators. As well, two somewhat specialized but significant digital circuit technologies are studied: emitter-coupled logic (ECL) and BiCMOS. The two digital chapters (10 and 11) together with the earlier material on digital circuits should prepare the reader well for a subsequent course on digital IC design or VLSI IC design.

The next two chapters of Part III, Chapters 12 and 13, are application or system oriented. Chapter 12 is devoted to the study of analog-filter design and tuned amplifiers. Chapter 13 presents a study of sinusoidal oscillators, waveform generators, and other nonlinear signal-processing circuits.

The last chapter of the book, Chapter 14, deals with various types of amplifier output stages. Thermal design is studied, and examples of IC power amplifiers are presented.

The eight appendices contain much useful background and supplementary material. We wish to draw the reader’s attention in particular to Appendix A, which provides a concise introduction to the important topic of IC fabrication technology including IC layout.

Course Organization

The book contains sufficient material for a sequence of two single-semester courses (each of 40 to 50 lecture hours). The organization of the book provides considerable flexibility in course design. In the following, we suggest various possibilities for the two courses.

The First Course

The most obvious package for the first course consists of Chapters 1 through 5. However, if time is limited, one or all of the following sections can be postponed to the second course: 1.6, 1.7, 2.6, 2.7, 2.8, 3.6, 3.8, 4.8, 4.9, 4.10, 4.11, 5.8, 5.9, and 5.10. It is also quite possible to omit Chapter 2 altogether from this course. Also, it is possible to concentrate on the MOSFET (Chapter 4) and cover the BJT (Chapter 5) only partially and/or more quickly. Covering Chapter 5 thoroughly and Chapter 4 only partially and/or more quickly is also possible—but not recommended! An entirely analog first course is also possible by omitting Sections 1.7, 4.10, and 5.10. A digitally oriented first course is also possible. It would consist of the following sections: 1.1, 1.2, 1.3, 1.4, 1.7, 1.8, 3.1, 3.2, 3.3, 3.4, 3.7, 4.1, 4.2, 4.3, 4.4, 4.10, 4.12, 5.1, 5.2, 5.3, 5.4, 5.10, 5.11, all of Chapter 10, and selected topics from Chapter 11. Also, if time permits, some material from Chapter 2 on op amps would be beneficial.

The Second Course

An excellent place to begin the second course is Chapter 6 where Section 6.2 can serve as a review of the MOSFET and BJT characteristics. Ideally, the second course would cover...
ANCILLARIES

A complete set of ancillary materials is available with this text to support your course.

For the Instructor

The Instructor's Manual with Transparency Masters provides complete worked solutions to all the exercises in each chapter and all the end-of-chapter problems in the text. It also contains 200 transparency masters that duplicate the figures in the text most often used in class.

A set of Transparency Acetates of the 200 most important figures in the book.

A PowerPoint CD with slides of every figure in the book and each corresponding caption.

For the Student and the Instructor

The CD-ROM included with every new copy of the textbook contains SPICE input files, a CD-ROM contains laboratory experiments and instructions for the major topics studied in the text. Laboratory Explorations for Microelectronic Circuits, 5th edition, by Kenneth C. Smith (KC), contains laboratory experiments and instructions for the major topics studied in the text. KC's Problems and Solutions for Microelectronic Circuits, 5th edition, by Kenneth C. Smith (KC), contains hundreds of additional study problems with complete solutions, for students who want more practice.

SPICE, 2nd edition, by Gordon Roberts of McGill University and Adel Sedra, provides a detailed treatment of SPICE and its application in the analysis and design of circuits of the type studied in this book.

ACKNOWLEDGMENTS

Many of the changes in this fifth edition were made in response to feedback received from some of the instructors who adopted the fourth edition. We are grateful to all those who took the time to write to us. In addition, the following reviewers provided detailed commentary on the fourth edition and suggested many of the changes that we have incorporated in this revision. To all of them, we extend our sincere thanks: Maurice Abernethy, Bucknell University; Patrick L. Chapman, University of Illinois at Urbana-Champaign; Artice Davis, San Jose State University; Paul M. Firth, New Mexico State University; Roobik Ghirabaghi, St. Louis University; Reza Heshami, Northern Illinois University; Ward J. Helms, University of Washington; Huang Huo, Ohio State University; Marian Kazimierczuk, Wright State University; Roger King, University of Toledo; Robert J. Kugler, University of Wisconsin-Milwaukee; Un-Ki Moon, Oregon State University; John A. Ringo, Washington State University; Zvi S. Roth, Florida Atlantic University; Mulukutla Sarma, Northeastern University; John Scalzo, Louisiana State University; Ali Sheikholeslami, University of Toronto; Pierre Schmidt, Florida International University; Charles Sullivan, Dartmouth College; Gregory M. Wierzbicki, Michigan State University; and Alex Zaslavsky, Brown University.

We are also grateful to the following colleagues and friends who have provided many helpful suggestions: Anthony Chan-Caruso, University of Toronto; Rehan Ganov, University of Toronto; David Johns, University of Toronto; Ken Martin, University of Toronto; Wai-Tung Ng, University of Toronto; Khoram Phang, University of Toronto; Gordon Roberts, McGill University; and Ali Sheikholeslami, University of Toronto.

We remain grateful to the reviewers of the four previous editions: Michael Burns, University of Memphis; Roy H. Comely, New Jersey Institute of Technology; Dale L. Critchlow, University of Vermont; Steven de Haas, California State University-Sacramento; Elly G. Friedman, University of Rochester; Rhet T. George, Jr., Duke University; Richard Hornsey, York University; Robert Irvine, California State University, Pomona; John Khoury, Columbia University; Steve Janes, Broadcom; Jacob B. Khurgin, The Johns Hopkins University; David Lune, University of New Brunswick; Bahram Nabet, Drexel University; Dipankar Nagchoudhuri, Indian Institute of Technology, Delhi, India; David Nairn, Analog Devices; Joseph H. Nevin, University of Cincinnati; Ruben Raut, Concordia University; Richard Schirer, Analog Devices; Dipak Ganguli, royal Melbourne Institute of Technology; Michael L. Simpson, University of Tennessee; Karl A. Spuhl, Washington University; Daniel van der Weide, University of Delaware.

A number of instructors made significant contributions to the development of this edition. Anas Hamoui of the University of Toronto played a key role in shaping both the organization and content of this edition. In addition, he wrote the SPICE sections. Olivier Tiret of the University of Toronto performed the SPICE simulations. Richard Schreter of Analog Devices helped us look at the excellent cover photo. Wai-Tung Ng of the University of Toronto completely rewrote Appendix A. Gordon Roberts of McGill University gave us permission to use some of the examples from the book SPICE by Roberts and Sedra. Mandana Amiri, Karen Kosrin, Shahriar Mirabbasi, Roberto Ronaldo, Jim Sonnen of Sonoma Designworks, and John Wilson all helped significantly in preparing the student and instructor support materials. Jennifer Rodgers typed all the revisions with skill and good humor and assisted with many of the logistics. Laura Fujino assisted in the preparation of the index, and perhaps more importantly, in keeping one of us focused. To all of these friends and colleagues we say thank you.

The authors would like to thank Cadence Design Systems, Inc., for allowing Oxford University Press to distribute Orcad Family Release 9.2 Lite Edition software with this book. We are grateful to John Genc from Analog Devices for providing the cover photo and to Toma McGee from (from TWM Research).

A large number of people at Oxford University Press contributed to the development of this edition and its various ancillaries. We would like to specifically mention Barbara Wasser, Lisa Murphy, Mary Beth Jerald, Marc Hawkins, Barbara Brown, Catherine Bennett, Celeste Alexander, Chris Critelli, Eve Siegel, Mary Hopkins, Jeanne Ambrozo, Trent Haywood, Jennifer Smaack, Ned Escobar, Jim Brooks, Debbie Agee, Sylvia Parrish, Lee Rozakis, Kathleen Kelly, Sheridan Orr, and Kerry Cahill.
We wish to extend special thanks to our Publisher at Oxford University Press, Chris Rogers. We are also grateful to Scott Burns, Marketing and Sales Director, for his many excellent and creative ideas and for his friendship. We received a great deal of support and advice from our previous editor and friend, Peter Gordon. After Peter’s departure, the leadership of the project has been ably assumed by Danielle Christensen, our current editor. Elyse Dubin, Director of Editorial, Design, and Production, played a pivotal role in ensuring that the book would receive the greatest possible attention in the various stages of design and production.

If there is a single person at Oxford University Press that is responsible for this book coming out on time and looking so good, it is our Managing Editor, Karen Shapiro. She has been simply great, and we are deeply indebted to her. We also wish to thank our families for their support and understanding.

Adel S. Sedra
Kenneth C. Smith
PART I

DEVICES AND BASIC CIRCUITS

CHAPTER 1
Introduction to Electronics 5

CHAPTER 2
Operational Amplifiers 63

CHAPTER 3
Diodes 139

CHAPTER 4
MOS Field-Effect Transistors (MOSFETs) 235

CHAPTER 5
Bipolar Junction Transistors (BJTs) 377

INTRODUCTION

Part I, Devices and Basic Circuits, includes the most fundamental and essential topics for the study of electronic circuits. At the same time, it constitutes a complete package for a first course on the subject.

Besides silicon diodes and transistors, the basic electronic devices, the op amp is studied in Part I. Although not an electronic device in the most fundamental sense, the op amp is commercially available as an integrated circuit (IC) package and has well-defined terminal characteristics. Thus, despite the fact that the op amp’s internal circuit is complex, typically incorporating 20 or more transistors, its almost-ideal terminal behavior makes it possible to treat the op amp as a circuit element and to use it in the design of powerful circuits, as we do in Chapter 2, without any knowledge of its internal construction. We should mention, however, that the study of op amps can be delayed to a later point, and Chapter 2 can be skipped with no loss of continuity.

The most basic silicon device is the diode. In addition to learning about diodes and a sample of their applications, Chapter 3 also introduces the general topic of device modeling for the purpose of circuit analysis and design. Also, Section 3.7 provides a substantial introduction to the physical operation of semiconductor devices. This subject is then continued in Section 4.1 for the MOSFET and in Section 5.1 for the BJT. Taken together, these three sections provide a physical background sufficient for the study of electronic circuits at the level presented in this book.

The heart of this book, and of any electronics course, is the study of the two transistor types in use today: the MOS field-effect transistor (MOSFET) in Chapter 4 and the bipolar junction transistor (BJT) in Chapter 5. These two chapters have been written to be completely independent of one another and thus can be studied in either desired order. Furthermore, the two chapters have the same structure, making it easier and faster to study the second device, as well as to draw comparisons between the two device types.

Chapter 1 provides both an introduction to the study of electronics and a number of important concepts for the study of amplifiers (Sections 1.4–1.6) and of digital circuits (Section 1.7).

Each of the five chapters concludes with a section on the use of SPICE simulation in circuit analysis and design. Of particular importance here are the device models employed by SPICE. Finally, note that as in most of the chapters of this book, the must-know material is placed near the beginning of a chapter while the good-to-know topics are placed in the latter part of the chapter. Some of this latter material can therefore be skipped in a first course and covered at a later time, when needed.
Introduction to Electronics

INTRODUCTION

The subject of this book is modern electronics, a field that has come to be known as microelectronics. Microelectronics refers to the integrated-circuit (IC) technology that at the time of this writing is capable of producing circuits that contain millions of components in a small piece of silicon (known as a silicon chip) whose area is on the order of 100 mm2. One such microelectronic circuit, for example, is a complete digital computer, which accordingly is known as a microcomputer or, more generally, a microprocessor.

In this book we shall study electronic devices that can be used singly (in the design of discrete circuits) or as components of an integrated-circuit (IC) chip. We shall study the design and analysis of interconnections of these devices, which form discrete and integrated circuits of varying complexity and perform a wide variety of functions. We shall also learn about available IC chips and their application in the design of electronic systems.

The purpose of this first chapter is to introduce some basic concepts and terminology. In particular, we shall learn about signals and about one of the most important signal-processing functions electronic circuits are designed to perform, namely, signal amplification. We shall then look at models for linear amplifiers. These models will be employed in subsequent chapters in the design and analysis of actual amplifier circuits.

Whereas the amplifier is the basic element of analog circuits, the logic inverter plays this role in digital circuits. We shall therefore take a preliminary look at the digital inverter, its circuit function, and important characteristics.
In addition to motivating the study of electronics, this chapter serves as a bridge between the study of linear circuits and that of the subject of this book: the design and analysis of electronic circuits.

1.1 SIGNALS

Signals contain information about a variety of things and activities in our physical world. Examples abound: Information about the weather is contained in signals that represent the air temperature, pressure, wind speed, etc. The voice of a radio announcer reading the news into a microphone provides an acoustic signal that contains information about world affairs. To monitor the status of a nuclear reactor, instruments are used to measure a multitude of relevant parameters, each instrument producing a signal.

To extract required information from a set of signals, the observer (be it a human or a machine) invariably needs to process the signals in some predetermined manner. This signal processing is usually most conveniently performed by electronic systems. For this to be possible, however, the signal must first be converted into an electric signal, that is, a voltage or a current. This process is accomplished by devices known as transducers. A variety of transducers exist, each suitable for one of the various forms of physical signals. For instance, the sound waves generated by a human can be converted into electric signals using a microphone, which is in effect a pressure transducer. It is not our purpose here to study transducers; rather, we shall assume that the signals of interest already exist in the electrical domain that can be represented by a graph such as that shown in Fig. 1.2. In fact, the information parameters are related by important to be familiar with Thevenin's and Norton's theorems (for a brief review, see later in this chapter when we study the different types of amplifiers. For the time being, it is high. The reader will come to appreciate this point

Although the two representations are equivalent, that in Fig. 1.1(a) (known as the Thevenin form) is preferred when \(R_s \) is low. The representation of Fig. 1.1(b) (known as the Norton form) is preferred when \(R_s \) is high. The reader will come to appreciate this point later in this chapter when we study the different types of amplifiers. For the time being, it is important to be familiar with Thevenin's and Norton's theorems (for a brief review, see Appendix D) and to note that for the two representations in Fig. 1.1 to be equivalent, their parameters are related by

\[
\nu(t) = R_s i_s(t)
\]

From the discussion above, it should be apparent that a signal is a time-varying quantity that can be represented by a graph such as that shown in Fig. 1.2. In fact, the information content of the signal is represented by the changes in its magnitude as time progresses; that is, the information is contained in the "wiggles" in the signal waveform. In general, such waveforms are difficult to characterize mathematically. In other words, it is not easy to describe succinctly an arbitrary-looking waveform such as that of Fig. 1.2. Of course, such a

\[
\nu(t) = V_m \sin \omega t
\]

1.2 FREQUENCY SPECTRUM OF SIGNALS

An extremely useful characterization of a signal, and for that matter of any arbitrary function of time, is in terms of its frequency spectrum. Such a description of signals is obtained through the mathematical tools of Fourier series and Fourier transform. We are not interested at this point in the details of these transformations; suffice it to say that they provide the means for representing a voltage signal \(\nu(t) \) or a current signal \(i(t) \) as the sum of sine-wave signals of different frequencies and amplitudes. This makes the sine wave a very important signal in the analysis, design, and testing of electronic circuits. Therefore, we shall briefly review the properties of the sinusoid.

Figure 1.3 shows a sine-wave voltage signal \(\nu(t) \).

\[
\nu(t) = V_m \sin \omega t
\]

The reader who has not yet studied these topics should not be alarmed. No detailed application of this material will be made until Chapter 6. Nevertheless, a general understanding of Section 1.2 should be very helpful when studying early parts of this book.
INTRODUCTION TO ELECTRONICS

The sine-wave signal is completely characterized by its peak value \(V_a \), its frequency \(\omega_0 \), and its phase with respect to an arbitrary reference time. In the case depicted in Fig. 1.3, the time origin has been chosen so that the phase angle is 0. It should be mentioned that it is common to express the amplitude of a sine-wave signal in terms of its root-mean-square (rms) value, which is equal to the peak value divided by \(\sqrt{2} \). Thus the rms value of the sinusoid \(v_a(t) \) of Fig. 1.3 is \(V_a/\sqrt{2} \). For instance, when we speak of the wall power supply in our homes as being 120 V, we mean that it has a sine waveform of 120 \(\sqrt{2} \) volts peak value.

Returning now to the representation of signals as the sum of sinusoids, we note that the Fourier series is utilized to accomplish this task for the special case when the signal is a periodic function of time. On the other hand, the Fourier transform is more general and can be used to obtain the frequency spectrum of a signal whose waveform is an arbitrary function of time.

The Fourier series allows us to express a given periodic function of time as the sum of an infinite number of sinusoids whose frequencies are harmonically related. For instance, the symmetrical square-wave signal in Fig. 1.4 can be expressed as

\[
v(t) = \frac{4V}{\pi} \left(\sin \omega_0 t + \frac{1}{3} \sin 3\omega_0 t + \frac{1}{5} \sin 5\omega_0 t + \cdots \right)
\]

where \(V \) is the amplitude of the square wave and \(\omega_0 = 2\pi/\tau \) (\(\tau \) is the period of the square wave) is called the fundamental frequency. Note that because the amplitudes of the harmonics progressively decrease, the infinite series can be truncated, with the truncated series providing an approximation to the square waveform.

The sinusoidal components in the series of Eq. (1.2) constitute the frequency spectrum of the square-wave signal. Such a spectrum can be graphically represented as in Fig. 1.5, where the horizontal axis represents the angular frequency \(\omega \) in radians per second.

The Fourier transform can be applied to a nonperiodic function of time, such as that depicted in Fig. 1.2, and provides its frequency spectrum as a continuous function of frequency, as indicated in Fig. 1.6. Unlike the case of periodic signals, where the spectrum consists of discrete frequencies (at \(\omega_0 \) and its harmonics), the spectrum of a nonperiodic signal contains in general all possible frequencies. Nevertheless, the essential parts of the spectra of practical signals are usually confined to relatively short segments of the frequency \(\omega \) axis—an observation that is very useful in the processing of such signals. For instance, the spectrum of audible sounds such as speech and music extends from about 20 Hz to about 20 kHz—a frequency range known as the audio band. Here we should note that although some musical tones have frequencies above 20 kHz, the human ear is incapable of hearing frequencies that are much above 20 kHz. As another example, analog video signals have their spectra in the range of 0 MHz to 4.5 MHz.

We conclude this section by noting that a signal can be represented either by the manner in which its waveform varies with time, as for the voltage signal \(v_a(t) \) shown in Fig. 1.2, or in terms of its frequency spectrum, as in Fig. 1.6. The two alternative representations are known as the time-domain representation and the frequency-domain representation, respectively. The frequency-domain representation of \(v_a(t) \) will be denoted by the symbol \(V_a(\omega) \).
CHAPTER 1 INTRODUCTION TO ELECTRONICS

1.3 ANALOG AND DIGITAL SIGNALS

The voltage signal depicted in Fig. 1.2 is called an analog signal. The name derives from the fact that such a signal is analogous to the physical signal that it represents. The magnitude of an analog signal can take on any value; that is, the amplitude of an analog signal exhibits a continuous variation over its range of activity. The vast majority of signals in the world around us are analog. Electronic circuits that process such signals are known as analog circuits. A variety of analog circuits will be studied in this book.

An alternative form of signal representation is that of a sequence of numbers, each number representing the signal magnitude at an instant of time. The resulting signal is called a digital signal. To see how a signal can be represented in this form—that is, how signals can be converted from analog to digital form—consider Fig. 1.7(a). Here the curve represents a voltage signal, identical to that in Fig. 1.2. At equal intervals along the time axis we have marked the time instants \(t_0 \), \(t_1 \), \(t_2 \), and so on. At each of these time instants the magnitude of the signal is measured, a process known as sampling. Figure 1.7(b) shows a representation of the signal of Fig. 1.7(a) in terms of its samples. The signal of Fig. 1.7(b) is defined only at the sampling instants; it no longer is a continuous function of time, but rather, it is a discrete-time signal. However, since the magnitude of each sample can take any value in a continuous range, the signal in Fig. 1.7(b) is still an analog signal.

Now if we represent the magnitude of each of the signal samples in Fig. 1.7(b) by a number having a finite number of digits, then the signal amplitude will no longer be continuous; rather, it is said to be quantized, discretized, or digitized. The resulting digital signal then is simply a sequence of numbers that represent the magnitudes of the successive signal samples. The choice of number system to represent the signal samples affects the type of digital signals required to process the signals. It turns out that the binary number system results in the simplest possible digital signals and circuits. In a binary system, each digit in the number takes on one of only two possible values, denoted 0 and 1. Correspondingly, the digital signals in binary systems need have only two voltage levels, which can be labeled low and high. As an example, in some of the digital circuits studied in this book, the levels are 0 V and +5 V. Figure 1.8 shows the time variation of such a digital signal. Observe that the waveform is a pulse train with 0 V representing a 0 signal, or logic 0, and +5 V representing logic 1.
If we use N binary digits (bits) to represent each sample of the analog signal, then the digitized sample value can be expressed as

$$D = b_N 2^N + b_{N-1} 2^{N-1} + \cdots + b_1 2^1 + b_0 2^0 + \cdots + b_{n-1} 2^{n-1}$$

where $b_N, b_{N-1}, \ldots, b_0, b_{n-1}$ denote the N bits and have values of 0 or 1. Here bit b_N is the least significant bit (LSB), and bit b_{n-1} is the most significant bit (MSB). Conventionally, this binary number is written as $b_N b_{N-1} \ldots b_0$. We observe that such a representation quantizes the analog sample into one of 2^N levels. Obviously, the greater the number of bits (i.e., the larger the N), the closer the digital word D approximates the magnitude of the analog sample. That is, increasing the number of bits reduces the quantization error and increases the resolution of the analog-to-digital conversion. This improvement is, however, usually obtained at the expense of more complex and hence more costly circuit implementations. It is not our purpose here to delve into this topic any deeper; we merely want the reader to appreciate the nature of analog and digital signals. Nevertheless, it is an opportune time to introduce a very important circuit building block of modern electronic systems: the analog-to-digital converter (A/D or ADC) shown in block form in Fig. 1.9. The ADC accepts at its input the samples of an analog signal and provides for each input sample the corresponding N-bit digital representation (according to Eq. 1.3) at its N output terminals. Thus although the voltage at the input might be, say, 6.51 V, at each of the output terminals (say, at the nth terminal), the voltage will be either low (0 V) or high (5 V) if b_n is supposed to be 0 or 1, respectively. We shall study the ADC and its dual circuit the digital-to-analog converter (D/A or DAC) in Chapter 9.

Once the signal is in digital form, it can be processed using digital circuits. Of course digital circuits deal also with signals that do not have an analog origin, such as the signals that represent the various instructions of a digital computer.

Since digital circuits deal exclusively with binary signals, their design is simpler than that of analog circuits. Furthermore, digital systems can be designed using a relatively few different kinds of digital circuit blocks. However, a large number (e.g., hundreds, thousands or even millions) of each of these blocks are usually needed. Thus the design of digital circuits poses its own set of challenges to the designer but provides reliable and economic implementations of a great variety of signal processing functions, some of which are not possible with analog circuits. At the present time, more and more of the signal processing functions are being performed digitally. Examples around us abound: from the digital watch and the calculator to digital audio systems and, more recently, digital television. Moreover, some longstanding analog systems such as the telephone communication system are now almost entirely digital. And we should not forget the most important of all digital systems, the digital computer.

The basic building blocks of digital systems are logic circuits and memory circuits. We shall study both in this book, beginning in Section 1.7 with the most fundamental digital circuit, the digital logic inverter.

![Figure 1.9](image)

FIGURE 1.9 Block-diagram representation of the analog-to-digital converter (ADC).

One final remark: Although the digital processing of signals is at present all-pervasive, there remain many signal processing functions that are best performed by analog circuits. Indeed, many electronic systems include both analog and digital parts. It follows that a good electronics engineer must be proficient in the design of both analog and digital circuits, or mixed-signal or mixed-mode design as it is currently known. Such is the aim of this book.

EXERCISE

1.7 Consider a 4-bit digital word $D = b_3 b_2 b_1 b_0$ (see Fig. 1.3) used to represent an analog signal v_a that varies between 0 V and +15 V.

(a) Give D corresponding to $v_a = 0, 1, 5, 15$ V.

(b) What change in v_a causes a change from 0 to 1 in (i) b_3, (ii) b_2, (iii) b_1, and (iv) b_0?

(c) If $v_a = 5.2$ V, what do you expect D to be? What is the resulting error in representation?

1.4 AMPLIFIERS

In this section, we shall introduce a fundamental signal-processing function that is employed in some form in almost every electronic system, namely, signal amplification. We shall study the amplifier as a circuit building block, that is consider its external characteristics and leave the design of its internal circuit to later chapters.

1.4.1 Signal Amplification

From a conceptual point of view the simplest signal-processing task is that of signal amplification. The need for amplification arises because transducers provide signals that are said to be "weak," that is, in the microvolt (µV) or millivolt (mV) range and possessing little energy. Such signals are too small for reliable processing, and processing is much easier if the signal magnitude is made larger. The functional block that accomplishes this task is the signal amplifier.

It is inappropriate at this point to discuss the need for linearity in amplifiers. When amplifying a signal, care must be exercised so that the information contained in the signal is not changed and no new information is introduced. Thus when feeding the signal shown in Fig. 1.2 to an amplifier, we want the output signal of the amplifier to be an exact replica of that at the input, except of course for having larger magnitude. In other words, the "wiggles" in the output waveform must be identical to those in the input waveform. Any change in waveform is considered to be distortion and is obviously undesirable.

An amplifier that preserves the details of the signal waveform is characterized by the relationship

$$v_o(t) = Av_i(t)$$

where v_i and v_o are the input and output signals, respectively, and A is a constant representing the magnitude of amplification, known as amplifier gain. Equation (1.4) is a linear relationship; hence the amplifier it describes is a linear amplifier. It should be easy to see that if the relationship between v_i and v_o contains higher powers of v_i, then the waveform of v_o will no longer be identical to that of v_i. The amplifier is then said to exhibit nonlinear distortion.
The amplifiers discussed so far are primarily intended to operate on very small input signals. Their purpose is to make the signal magnitude larger and therefore are thought of as voltage amplifiers. The preamplifier in the home stereo system is an example of a voltage amplifier. However, it usually does more than just amplify the signal; specifically, it performs some shaping of the frequency spectrum of the input signal. This topic, however, is beyond our need at this moment.

At this time we wish to mention another type of amplifier, namely, the power amplifier. Such an amplifier may provide only a modest amount of voltage gain but substantial current gain. Thus while absorbing little power from the input signal source to which it is connected, often a preamplifier, it delivers large amounts of power to its load. An example is found in the power amplifier of the home stereo system, whose purpose is to provide sufficient power to drive the loudspeaker, which is the amplifier load. Here we should note that the loudspeaker is the output transducer of the stereo system; it converts the electric output signal of the system into an acoustic signal. A further appreciation of the need for linearity can be acquired by reflecting on the power amplifier. A linear power amplifier causes both soft and loud music passages to be reproduced without distortion.

1.4.2 Amplifier Circuit Symbol

The signal amplifier is obviously a two-port network. Its function is conveniently represented by the circuit symbol of Fig. 1.10(a). This symbol clearly distinguishes the input and output ports and indicates the direction of signal flow. Thus, in subsequent diagrams it will not be necessary to label the two ports “input” and “output.” For generality we have shown the amplifier to have two input terminals that are distinct from the two output terminals. A more common situation is illustrated in Fig. 1.10(b), where a common terminal exists between the input and output ports of the amplifier. This common terminal is used as a reference point and is called the circuit ground.

1.4.3 Voltage Gain

A linear amplifier accepts an input signal \(v_i(t) \) and provides at the output, across a load resistance \(R_L \) (see Fig. 1.11(a)), an output signal \(v_o(t) \) that is a magnified replica of \(v_i(t) \). The voltage gain of the amplifier is defined by

\[
A_v = \frac{v_o}{v_i} (1.5)
\]

Fig. 1.11(b) shows the transfer characteristic of a linear amplifier. If we apply to the input of this amplifier a sinusoidal voltage of amplitude \(V \), we obtain at the output a sinusoidal of amplitude \(A_v V \).

1.4.4 Power Gain and Current Gain

An amplifier increases the signal power, an important feature that distinguishes an amplifier from a transformer. In the case of a transformer, although the voltage delivered to the load could be greater than the voltage feeding the input side (the primary), the power delivered to the load (from the secondary side of the transformer) is less than or at most equal to the power supplied by the signal source. On the other hand, an amplifier provides the load with power greater than that obtained from the signal source. That is, amplifiers have power gain. The power gain of the amplifier in Fig. 1.11(a) is defined as

\[
\text{Power gain } (A_p) = \frac{P_o}{P_i} (1.6)
\]

where

\[
P_o = v_o i_o \quad \text{and} \quad P_i = v_i i_i
\]

From Eqs. (1.5) to (1.8) we note that

\[
A_p = A_v A_i (1.9)
\]

1.4.5 Expressing Gain in Decibels

The amplifier gains defined above are ratios of similarly dimensioned quantities. Thus they will be expressed either as dimensionless numbers or, for emphasis, as \(V/V \) for the voltage gain, \(A/V \) for the current gain, and \(W/W \) for the power gain. Alternatively, for a number of reasons, some of them historic, electronics engineers express amplifier gain with a logarithmic measure. Specifically the voltage gain \(A_v \) can be expressed as

\[
\text{Voltage gain in decibels } = 20 \log |A_v| \quad \text{dB}
\]
and the current gain A_i can be expressed as

$$\text{Current gain in decibels} = 20 \log (A_i) \text{ dB}$$

Since power is related to voltage (or current) squared, the power gain A_p can be expressed in decibels as

$$\text{Power gain in decibels} = 10 \log (A_p) \text{ dB}$$

The absolute values of the voltage and current gains are used because in some cases A_v or A_i may be negative numbers. A negative gain A_v simply means that there is a 180° phase difference between input and output signals; it does not imply that the amplifier is attenuating the signal. On the other hand, an amplifier whose voltage gain is, say, -20 dB is in fact attenuating the input signal by a factor of 10 (i.e., $A_v = 0.1 \text{ V/V}$).

1.4.6 The Amplifier Power Supplies

Since the power delivered to the load is greater than the power drawn from the signal source, the question arises as to the source of this additional power. The answer is found by observing that amplifiers need dc power supplies for their operation. These dc sources supply the extra power delivered to the load as well as any power that might be dissipated in the internal circuit of the amplifier (such power is converted to heat). In Fig. 1.11(a) we have not explicitly shown these dc sources.

Figure 1.12(a) shows an amplifier that requires two dc supplies: one positive of value V_x and one negative of value V_2. The amplifier has two terminals, labeled V^+ and V^-, for connection to the dc supplies. For the amplifier to operate, the terminal labeled V^+ has to be connected to the positive side of a dc source whose voltage is V_x and whose negative side is connected to the circuit ground. Also, the terminal labeled V^- has to be connected to the negative side of a dc source whose voltage is V_2 and whose positive side is connected to the circuit ground. Now, if the current drawn from the positive supply is denoted I_x and that from the negative supply is denoted I_2 (see Fig. 1.12(a)), then the dc power delivered to the amplifier is

$$P_{dc} = V_x I_x + V_2 I_2$$

If the power dissipated in the amplifier circuit is denoted $P_{dissipated}$, the power-balance equation for the amplifier can be written as

$$P_{in} + P_{out} = P_{dc} + P_{dissipated}$$

where P_{in} is the power drawn from the signal source and P_{out} is the power delivered to the load. Since the power drawn from the signal source is usually small, the amplifier efficiency is defined as

$$\eta = \frac{P_{out}}{P_{in}} \times 100 \text{ (1.10)}$$

The power efficiency is an important performance parameter for amplifiers that handle large amounts of power. Such amplifiers, called power amplifiers, are used, for example, as output amplifiers of stereo systems.

In order to simplify circuit diagrams, we shall adopt the convention illustrated in Fig. 1.12(b). Here the V^+ terminal is shown connected to an arrowhead pointing upward and the V^- terminal to an arrowhead pointing downward. The corresponding voltage is indicated next to each arrowhead. Note that in many cases we will not explicitly show the connections of the amplifier to the dc power sources. Finally, we note that some amplifiers require only one power supply.

Example 1.4

Consider an amplifier operating from ±10-V power supplies. It is fed with a sinusoidal voltage having 1 V peak and delivers a sinusoidal voltage output of 9 V peak to a 1-kΩ load. The amplifier draws a current of 9.5 mA from each of its two power supplies. The input current of the amplifier is found to be sinusoidal with 0.1 mA peak. Find the voltage gain, the current gain, the power gain, the power drawn from the dc supplies, the power dissipated in the amplifier, and the amplifier efficiency.

Solution

$$A_v = \frac{9}{0.1} = 90 \text{ V/A}$$

or

$$A_v = 20 \log 9 = 19.1 \text{ dB}$$

$$I_i = \frac{9}{1 \text{ kΩ}} = 9 \text{ mA}$$

$$A_i = \frac{I_i}{I_{in}} = \frac{9}{0.1} = 90 \text{ A/A}$$

or

$$A_i = 20 \log 90 = 39.1 \text{ dB}$$

$$P_L = V_{out} I_{out} = \frac{9}{0.1} = 40.5 \text{ mW}$$

$$P_i = V_{in} I_{in} = \frac{0.1}{0.1} = 0.05 \text{ mW}$$

$$A_p = \frac{P_i}{P_i} = \frac{40.5}{0.05} = 810 \text{ W/W}$$

or

$$A_p = 10 \log 810 = 29.1 \text{ dB}$$
1.4 Amplifiers

1.4.7 Amplifier Saturation

Practically speaking, the amplifier transfer characteristic remains linear only over a limited range of input and output voltages. For an amplifier operated from two power supplies the output voltage cannot exceed a specified positive limit and cannot decrease below a specified negative limit. The resulting transfer characteristic is shown in Fig. 1.13, with the positive and negative saturation levels denoted \(L_+ \) and \(L_- \), respectively. Each of the two saturation levels is usually within a volt or so of the voltage of the corresponding power supply.

![Figure 1.13](image)

From the above example we observe that the amplifier converts some of the dc power it draws from the power supplies to signal power that it delivers to the load.

![Graph](image)

1.4.8 Nonlinear Transfer Characteristics and Biasing

Except for the output saturation effect discussed above, the amplifier transfer characteristics have been assumed to be perfectly linear. In practical amplifiers the transfer characteristic may exhibit nonlinearities of various magnitudes, depending on how elaborate the amplifier circuit is and on how much effort has been expended in the design to ensure linear operation. Consider as an example the transfer characteristic depicted in Fig. 1.14. Such a characteristic is typical of simple amplifiers that are operated from a single (positive) power supply.

The transfer characteristic is obviously nonlinear and, because of the single-supply operation, is not centered around the origin. Fortunately, a simple technique exists for obtaining linear amplification from an amplifier with such a nonlinear transfer characteristic.

The technique consists of first biasing the circuit to operate at a point near the middle of the transfer characteristic. This is achieved by applying a dc voltage \(V_b \) as indicated in Fig. 1.14, where the operating point is labeled \(Q \) and the corresponding dc voltage at the output is \(V_o \).

The time-varying signal to be amplified, \(v_i(t) \), is then superimposed on the dc bias voltage \(V_b \) as indicated in Fig. 1.14. Now, as the total instantaneous input \(v_i(t) \) varies around \(V_b \), the instantaneous operating point moves up and down the transfer curve around the dc operating point \(Q \). In this way, one can determine the waveform of the total instantaneous output voltage \(v_o(t) \). It can be seen that by keeping the amplitude of \(v_i(t) \) sufficiently small, the instantaneous operating point can be confined to an almost linear segment of the transfer curve centered about \(Q \). This in turn results in the time-varying portion of the output being proportional to \(v_i(t) \); that is,

\[
v_o(t) = V_0 + v_i(t)
\]

with

\[
v_i(t) = A_v v_i(t)
\]

where \(A_v \) is the slope of the almost linear segment of the transfer curve; that is,

\[
A_v = \frac{dV_o}{dv_i} \bigg|_Q
\]

In this manner, linear amplification is achieved. Of course, there is a limitation: The input signal must be kept sufficiently small. Increasing the amplitude of the input signal can cause
INTRODUCTION TO ELECTRONICS

FIGURE 1.14 (a) An amplifier transfer characteristic that shows considerable nonlinearity. (b) To obtain linear operation the amplifier is biased as shown, and the signal amplitude is kept small. Observe that this amplifier is operated from a single power supply, V_{DD}.

This in turn results in a distorted output signal waveform. Such nonlinear distortion is undesirable: The output signal contains additional spurious information that is not part of the input. We shall use this biasing technique and the associated small-signal approximation frequently in the design of transistor amplifiers.

The operation to be no longer restricted to an almost linear segment of the transfer curve.

The solution of the equation $v_0 = 10^{-10} e^{v_0}$ (1.11) gives:

The limit L_- is obviously 0.3 V. The corresponding value of V_I is obtained by substituting $v_0 = 0.3$ V in Eq. (1.11); that is,

$$V_I = 0.690 \text{ V}$$

The limit L_+ is determined by $v_0 = 0$ and is thus given by

$$L_+ = 10^{-10} \times 10 = 10 \text{ V}$$

To bias the device so that $V_0 = 5$ V we require a dc input V_I whose value is obtained by substituting $v_0 = 5$ V in Eq. (1.11) to find:

$$V_I = 0.673 \text{ V}$$

The gain at the operating point is obtained by evaluating the derivative dv_0/dv_I at $v_I = 0.673$ V. The result is

$$A_v = -200 \text{ V/V}$$

which indicates that this amplifier is an inverting one; that is, the output is 180° out of phase with the input. A sketch of the amplifier transfer characteristic (not to scale) is shown in Fig. 1.15, from which we observe the inverting nature of the amplifier.

FIGURE 1.15 A sketch of the transfer characteristic of the amplifier of Example 1.2. Note that this amplifier is inverting (i.e., with a gain that is negative).
Once an amplifier is properly biased and the input signal is kept sufficiently small, the operation is assumed to be linear. We can then employ the techniques of linear circuit analysis to analyze the signal operation of the amplifier circuit. This is the topic of Sections 1.5 and 1.6.

1.4.9 Symbol Convention
At this point, we draw the reader's attention to the terminology used above and which we shall employ throughout the book. Total instantaneous quantities are denoted by a lowercase symbol with an uppercase subscript, for example, \(i(t) \), \(v(t) \). Direct-current (dc) quantities will be denoted by an uppercase symbol with an uppercase subscript, for example, \(I_A \), \(V_c \).

Power-supply (dc) voltages are denoted by an uppercase \(V \) with a double-letter uppercase subscript, for example, \(V_{DD} \). A similar notation is used for the dc current drawn from the power supply, for example, \(I_{DD} \). Finally, incremental signal quantities will be denoted by a lowercase symbol with a lowercase subscript, for example, \(i_a(t) \), \(v_c(t) \). If the signal is a sine wave, then its amplitude is denoted by an uppercase letter with a lowercase subscript, for example, \(I_a \), \(V_c \). This notation is illustrated in Fig. 1.16.

![Symbol convention employed throughout the book.](image)

FIGURE 1.16 Symbol convention employed throughout the book.

EXERCISES

1.8 An amplifier has a voltage gain of 100 V/V and a current gain of 1000 A/A. Express the voltage and current gains in decibels and find the power gain.

1.9 An amplifier operating from a single 15-V supply provides a 12-V peak-to-peak sine-wave signal to a load and draws negligible input current from the signal source. The dc current drawn from the 15-V supply is 8 mA. What is the power dissipated in the amplifier, and what is the amplifier efficiency?

1.5 CIRCUIT MODELS FOR AMPLIFIERS

A good part of this book is concerned with the design of amplifier circuits using transistors of various types. Such circuits will vary in complexity from those using a single transistor to those with 20 or more devices. In order to be able to apply the resulting amplifier circuit as a building block in a system, one must be able to characterize, or model, its terminal behavior. In this section, we study simple but effective amplifier models. These models apply irrespective of the complexity of the internal circuit of the amplifier. Values of the model parameters can be found either by analyzing the amplifier circuit or by performing measurements at the amplifier terminals.

1.5.1 Voltage Amplifiers

Figure 1.17(a) shows a circuit model for the voltage amplifier. The model consists of a voltage-controlled voltage source having a gain factor \(A_m \), an input resistance \(R_i \), and an output resistance \(R_o \) that accounts for the fact that the amplifier draws an input current from the signal source, and an output resistance \(R_o \) that accounts for the change in output voltage as the amplifier is called upon to

![Circuit model for the voltage amplifier.](image)

FIGURE 1.17 (a) Circuit model for the voltage amplifier. (b) The voltage amplifier with input signal source and load.
supply output current to a load. To be specific, we show in Fig. 1.17(a) that the amplifier model used with a signal source \(v_i \) having a resistance \(R_i \) and connected at the output to a load resistance \(R_L \). The nonzero output resistance \(R_L \) causes only a fraction of \(A_{in}v_i \) to appear across the output. Using the voltage-divider rule we obtain

\[
v_o = A_{in}v_i \frac{R_L}{R_i + R_L}
\]

Thus the voltage gain is given by

\[
A_v = \frac{v_o}{v_i} = A_{in} \frac{R_L}{R_i + R_L} = A_{in} R_L (1.12)
\]

It follows that in order not to lose gain in coupling the amplifier output to a load, the output resistance \(R_o \) should be much smaller than the load resistance \(R_L \). In other words, for a given \(R_o \) one must design the amplifier so that its \(R_o \) is much smaller than \(R_L \). Furthermore, there are applications in which \(R_L \) is known to vary over a certain range. In order to keep the output voltage \(v_o \) as constant as possible, the amplifier is designed with \(R_o \) much smaller than the lowest value of \(R_L \). An ideal voltage amplifier is one with \(R_o = 0 \). Equation (1.12) indicates also that for \(R_o = 0 \), \(A_v = A_{in} \). Thus \(A_{in} \) is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain. It should also be clear that in specifying the voltage gain of an amplifier, one must also specify the value of load resistance at which this gain is measured or calculated. If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain \(A_{in} \).

The finite input resistance \(R_i \) introduces another voltage-divider action at the input, with the result that only a fraction of the source signal \(v_i \) actually reaches the input terminals of the amplifier, that is,

\[
v_i = v_i \frac{R_i}{R_i + R_o}
\]

It follows that in order not to lose a significant portion of the input signal in coupling the signal source to the amplifier input, the amplifier must be designed to have an input resistance \(R_i \) much greater than the resistance of the signal source, \(R_i \gg R_o \). Furthermore, there are applications in which the source resistance is known to vary over a certain range. To minimize the effect of this variation on the value of the signal that appears at the input of the amplifier, the design ensures that \(R_i \) is much greater than the largest value of \(R_o \). An ideal voltage amplifier is one with \(R_i = \infty \). In this ideal case both the current gain and power gain become infinite.

The overall voltage gain \((v_o/v_i) \) can be found by combining Eqs. (1.12) and (1.13).

\[
\frac{v_o}{v_i} = A_{in} \frac{R_L}{R_i + R_L} \frac{R_i}{R_i + R_o} = A_{in} R_L (1.13)
\]

There are situations in which one is interested in voltage gain but only in a significant power gain. For instance, the source signal can have a respectable voltage but a source resistance which is much greater than the load resistance. Connecting the source directly to the load would result in significant signal attenuation. In such a case, one requires an amplifier with a high input resistance (much greater than the source resistance) and a low output resistance (much smaller than the load resistance) but with a modest voltage gain (or even unity gain). Such an amplifier is referred to as a buffer amplifier. We shall encounter buffer amplifiers often throughout this book.

1.5.2 Cascaded Amplifiers

In order to meet given amplifier specifications, it is often necessary to design the amplifier as a cascade of two or more stages. The stages are usually not identical; rather, each is designed to serve a specific purpose. For instance, the first stage is usually required to have a large input resistance, and the final stage in the cascade is usually designed to have a low output resistance. To illustrate the analysis and design of cascaded amplifiers, we consider a practical example.

Example 1.1

A transistor characterized by a voltage of 1 V rms and a resistance of 1 MΩ is available to drive a 10-kΩ load. If connected directly, what voltage and power levels result at the load? If a unity-gain (i.e., \(A_v = 1 \)) buffer amplifier with 1-MΩ input resistance and 10-kΩ output resistance is interposed between source and load, what do the output voltage and power levels become? For the new arrangement find the overall voltage gain from source to load, and the power gain (both expressed in decibels). Ans. 10 V rms, 10⁻⁹ W, 25 dB, 12 dB, 44 dB.

The output voltage of a voltage amplifier has been found to decrease by 20% when a load resistance of 1 kΩ is connected. What is the value of the amplifier's output resistance? Ans. 250 Ω.

An amplifier with a voltage gain of 10⁻⁹ dB, an input resistance of 10 kΩ, and an output resistance of 1 kΩ is used to drive a 1-kΩ load. What is the value of \(A_v \)? Find the value of power gain in dB. Ans. 100 V/V; 20 dB.

1.5 Circuit Models for Amplifiers

Figure 1.18 depicts an amplifier composed of a cascade of three stages. The amplifier is fed by a signal source with a source resistance of 100 kΩ and delivers its output into a load resistance of 100 Ω. The first stage has a relatively high input resistance and a modest gain factor of 10. The second stage has a higher gain factor but lower input resistance. Finally, the last, or output, stage has unity gain but a low output resistance. We wish to evaluate the overall voltage gain, that is, \(v_o/v_i \), the current gain, and the power gain.

FIGURE 1.18 Three-stage amplifier for Example 1.3.
CHAPTER 1 INTRODUCTION TO ELECTRONICS

1.5 CIRCUIT MODELS FOR AMPLIFIERS

Solution

The fraction of source signal appearing at the input terminals of the amplifier is obtained using the voltage-divider rule at the input, as follows:

\[
\frac{v_1}{v_i} = \frac{1 \text{ MQ}}{1 \text{ MQ} + 100 \text{ kΩ}} = 0.909 \text{ V/V}
\]

The voltage gain of the first stage is obtained by considering the input resistance of the second stage to be the load of the first stage; that is,

\[
A_{s1} = \frac{v_2}{v_1} = 10 \frac{100 \text{ kΩ}}{100 \text{ kΩ} + 1 \text{ kΩ}} = 9.9 \text{ V/V}
\]

Similarly, the voltage gain of the second stage is obtained by considering the input resistance of the third stage to be the load of the second stage,

\[
A_{s2} = \frac{v_3}{v_2} = 10 \frac{10 \text{ kΩ}}{10 \text{ kΩ} + 1 \text{ kΩ}} = 90.9 \text{ V/V}
\]

Finally, the voltage gain of the output stage is obtained by considering the input resistance of the amplifier model in the same table gives an open-circuit output voltage of 100 mV. Thus, the output voltage given by the voltage amplifier model of Table 1.1 is

\[
\text{Vo} = \frac{v_t}{v_i} = 1 \frac{v_t}{10 \text{ kΩ}} = 10 \text{ V/V}
\]

The current amplification from source to load is found from

\[
P_s = \frac{v_i}{v_t} = 10 \frac{10 \text{ kΩ}}{100 \text{ kΩ}} = 0.9 \text{ V/V}
\]

or 58.3 dB.

To find the voltage gain from source to load, we multiply \(A_v \) by the factor representing the loss of gain at the input, that is,

\[
A_v = \frac{v_3}{v_1} = A_{s1}A_{s2}A_{s3} = 818 \text{ V/V}
\]

or 57.4 dB.

The current gain is found as follows:

\[
A_i = \frac{i_t}{i_i} = \frac{v_t}{1 \text{ MQ}} = 10^9 \times 8.18 \times 10^9 \text{ A/A}
\]

or 138.3 dB.

The power gain is found from

\[
A_p = \frac{P_o}{P_i} = \frac{v_o^2}{v_i^2} = A_v^2 = 818 \times 8.18 \times 10^8 = 66.9 \times 10^8 \text{ W/W}
\]

or 98.3 dB. Note that

\[
A_p(\text{dB}) = 10 \log \left(A_v(\text{dB})^2 \right)
\]

A few comments on the cascade amplifier in the above example are in order. To avoid losing signal strength at the amplifier input where the signal is usually very small, the first stage is designed to have a relatively large input resistance (1 MQ), which is much larger than the source resistance. The trade-off appears to be a moderate voltage gain (10 V/V).

The second stage does not need to have such a high input resistance; rather, here we need to realize the bulk of the required voltage gain. The third and final, or output, stage is not asked to provide any voltage gain; rather, it functions as a buffer amplifier, providing a relatively large input resistance and a low output resistance, much lower than \(R_o \). It is this stage that enables connecting the amplifier to the 10-Ω load. These points can be made more concrete by solving the following exercises.

EXERCISES

1.34 What would the overall voltage gain of the cascade amplifier in Example 1.3 be without stage 3?

Ans. 81.8 V/V

1.35 For the cascade amplifier of Example 1.3, let \(v_i = 1 \) mV. Find \(v_1, v_2, v_3, \) and \(v_o \).

Ans. 0.1 mV; 9 mV; 818 mV; 743.6 mV

1.36 (a) Model the three-stage amplifier of Example 1.3 (without the source and load) using the voltage amplifier model. What are the values of \(R_{ij}, R_{ij'}, \) and \(R_j' \)?

(b) For \(R_j' \) varies in the range 100 Q to 1000 Q. Find the corresponding range of the overall voltage gain, \(v_o/v_i \).

Ans. 1.5 MQ, 900 V/V, 10 Q; 600 V/V to 819 V/V

1.5.3 Other Amplifier Types

In the design of an electronic system, the signal of interest—whether at the system input, at an intermediate stage, or at the output—can be either a voltage or a current. For instance, some transducers have very high output resistances and can be more appropriately modeled as current sources. Similarly, there are applications in which the output current rather than the voltage is of interest. Thus, although it is the most popular, the voltage amplifier considered above is just one of four possible amplifier types. The other three are the current amplifier, the transconductance amplifier, and the transresistance amplifier. Table 1.1 shows the four amplifier types, their circuit models, the definition of their gain parameters, and the ideal values of their input and output resistances.

1.5.4 Relationships Between the Four Amplifier Models

Although for a given amplifier a particular one of the four models in Table 1.1 is most preferable, any of the four can be used to model the amplifier. In fact, simple relationships can be derived to relate the parameters of the various models. For instance, the open-circuit voltage gain \(A_v \) can be related to the short-circuit current gain \(A_i \) as follows: The open-circuit output voltage given by the voltage amplifier model of Table 1.1 is

\[
\text{Vo} = A_v \frac{R}{R_i}
\]

where \(A_v \) is the current amplifier model in the same table gives an open-circuit output voltage of \(A_v R_i \). Equating these two values and noting that \(i_j = v_j/R_j \) gives

\[
A_v = A_i \left(\frac{R}{R_i} \right)
\]

(1.14)
CHAPTER 1 INTRODUCTION TO ELECTRONICS

TABLE 1.1 The Four Amplifier Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Circuit Model</th>
<th>Gain Parameter</th>
<th>Ideal Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Amplifier</td>
<td></td>
<td>Open-Circuit Voltage Gain</td>
<td>$A_v = \frac{v_0}{v_i}$ (V/V), $R_i = \infty$</td>
</tr>
<tr>
<td>Current Amplifier</td>
<td></td>
<td>Short-Circuit Current Gain</td>
<td>$A_i = \frac{i_0}{i_i}$ (A/A), $R_i = \infty$</td>
</tr>
<tr>
<td>Transconductance Amplifier</td>
<td></td>
<td>Short-Circuit Transconductance</td>
<td>$G_m = \frac{v_0}{i_{o(s)}}$ (A/V), $R_i = \infty$</td>
</tr>
<tr>
<td>Transresistance Amplifier</td>
<td></td>
<td>Open-Circuit Transresistance</td>
<td>$R_o = \frac{v_o}{i_i}$ (V/A), $R_i = \infty$</td>
</tr>
</tbody>
</table>

Similarly, we can show that

$$A_v = G_m R_o$$

and

$$A_i = \frac{R_o}{R_i} R_i$$

The expressions in Eqs. (1.14) to (1.16) can be used to relate any two of the gain parameters A_v, A_i, G_m, and R_o.

From the amplifier circuit models given in Table 1.1, we observe that the input resistance R_i of the amplifier can be determined by applying an input voltage v_i and measuring (or calculating) the input current i_i that is, $R_i = \frac{v_i}{i_i}$. The output resistance is found as the ratio of the open-circuit output voltage to the short-circuit output current. Alternatively, the output resistance can be found by eliminating the input signal source (then v_i will both be zero) and applying a voltage signal v_x to the output of the amplifier. If we denote the current drawn from v_x into the output terminals as i_x, then $R_o = \frac{v_x}{i_x}$. Although these techniques are conceptually correct, in actual practice more refined methods are employed in measuring R_i and R_o.

The amplifier models considered above are unilateral; that is, signal flow is unidirectional, from input to output. Most real amplifiers show some reverse transmission, which is usually undesirable but must nonetheless be modeled. We shall not pursue this point further at this time except to mention that more complete models for linear two-port networks are given in Appendix B. Also, in Chapters 4 and 5, we will augment the models of Table 1.1 to take into account the nonunilateral nature of some transistor amplifiers.

The amplifier models considered above are unilateral; that is, signal flow is unidirectional, from input to output. Most real amplifiers show some reverse transmission, which is usually undesirable but must nonetheless be modeled. We shall not pursue this point further at this time except to mention that more complete models for linear two-port networks are given in Appendix B. Also, in Chapters 4 and 5, we will augment the models of Table 1.1 to take into account the nonunilateral nature of some transistor amplifiers.

EXAMPLE 1.4

The bipolar junction transistor (BJTd, which will be studied in Chapter 5, is a three-terminal device that when dc biased and operated with small signals can be modeled by the linear circuit shown in Fig. 1.19(a). The three terminals are the base (B), the emitter (E), and the collector (C). The heart of the model is a transconductance amplifier represented by an input resistance between B and E (denoted r_i), a short-circuit transconductance g_m, and an output resistance r_o.

(a) With the emitter used as a common terminal between input and output, Fig. 1.19(b) shows a transistor amplifier known as a common-emitter or grounded-emitter circuit. Derive an expression for the voltage gain $A_o = \frac{v_o}{v_i}$ and evaluate its magnitude for the case $R_i = 5 \, \text{k}\Omega$, $r_i = 2.5 \, \text{k}\Omega$, $g_m = 40 \, \text{mA/V}$, $r_o = 100 \, \text{k}\Omega$, and $R_o = 5 \, \text{k}\Omega$. What would the gain value be if the effect of r_o were neglected?

(b) An alternative model for the transistor in which a current amplifier rather than a transconductance amplifier is utilized is shown in Fig. 1.19(c). What must the short-circuit current-gain A_i be?

Solution

(a) Using the voltage-divider rule, we determine the fraction of input signal that appears at the amplifier input as

$$v_o = v_i \frac{r_o}{r_o + R_i}$$

(b) An alternative model for the transistor in which a current amplifier rather than a transconductance amplifier is utilized is shown in Fig. 1.19(c). What must the short-circuit current-gain A_i be?

Give both an expression and a value.

Solution

(a) Using the voltage-divider rule, we determine the fraction of input signal that appears at the amplifier input as

$$v_o = v_i \frac{r_o}{r_o + R_i}$$
Next we determine the output voltage \(v_o \) by multiplying the current \(g_m v_{be} \) by the resistance \(R_l \).

\[
v_o = -g_m v_{be} (R_l || r_o)
\]

(1.18)

Substituting for \(v_{be} \) from Eq. (1.17) yields the voltage-gain expression

\[
\frac{v_o}{v_i} = \frac{-g_m v_{be}}{r_o - R_l}
\]

(1.19)

Observe that the gain is negative, indicating that this amplifier is inverting. For the given component values,

\[
\frac{v_o}{v_i} = \frac{-2.5 \times 2 \times 40 \times (5 \parallel 100)}{50}
\]

\[
= -63.5 \text{ V/V}
\]

Neglecting the effect of \(r_o \), we obtain

\[
\frac{v_o}{v_i} = \frac{-2.5 \times 2 \times 40 \times 5}{25}
\]

\[
= -66.7 \text{ V/V}
\]

which is quite close to the value obtained including \(r_o \). This is not surprising since \(r_o \gg R_l \).

(b) For the model in Fig. 1.19(c) to be equivalent to that in Fig. 1.19(a),

\[
\beta_i = \frac{v_o}{v_i}
\]

But \(i_t = v_o/r_o \); thus,

\[
\beta = g_m r_o
\]

For the values given,

\[
\beta = 40 \text{ mA/V}
\times \frac{2.5 \Omega}{25 \Omega}
\]

\[
= 100 \text{ A/A}
\]

EXERCISES

1.17 Consider a current amplifier having the model shown in the second row of Table 1.1. Let the amplifier be fed with a signal current-source \(i_s \) having a resistance \(R_s \), and let the output be connected to a load resistance \(R_L \). Show that the overall current gain is given by

\[
\beta_i = \frac{I_o}{i_s} = \frac{R_s}{R_l + R_s + r_o}
\]

1.18 Consider the transconduction amplifier whose model is shown in the third row of Table 1.1. Let a voltage signal-source \(v_s \) with a source resistance \(R_s \) be connected to the input and a load resistance \(R_L \) be connected to the output. Show that the overall voltage-gain is given by

\[
\frac{v_o}{v_i} = g_m R_s (R_l || R_s)
\]

1.19 Consider a transresistance amplifier having the model shown in the third row of Table 1.1. Let the amplifier be fed with a signal current-source \(i_s \) having a resistance \(R_s \), and let the output be connected to a load resistance \(R_L \). Show that the overall gain is given by

\[
\frac{v_o}{i_s} = \frac{R_s}{R_s + R_l + R_o}
\]

1.20 Find the input resistance between terminals B and G in the circuit shown in Fig. 1.20. The voltage \(v_s \) is a test voltage with the input resistance \(R_{in} \), defined as \(R_{in} = v_s/i_s \).

1.6 FREQUENCY RESPONSE OF AMPLIFIERS

From Section 1.2 we know that the input signal to an amplifier can always be expressed as the sum of sinusoidal signals. It follows that an important characterization of an amplifier is in terms of its response to input sinusoids of different frequencies. Such a characterization of amplifier performance is known as the amplifier frequency response.

1.6.1 Measuring the Amplifier Frequency Response

We shall introduce the subject of amplifier frequency response by showing how it can be measured. Figure 1.20 depicts a linear voltage amplifier fed at its input with a sine-wave signal of amplitude \(V_i \) and frequency \(\omega \). As the figure indicates, the signal measured at the output can be expressed as

\[
v_o = V_o \sin \omega t
\]

\[
v_o = V_o \sin (\omega t + \phi)
\]

FIGURE 1.20 Measuring the frequency response of a linear amplifier. At the test frequency \(\omega \) the amplifier gain is characterized by its magnitude \((V_o/V_i) \) and phase \(\phi \).
amplifier output also is sinusoidal with exactly the same frequency \(\omega \). This is an important point to note. Whenever a sine-wave signal is applied to a linear circuit, the resulting output is sinusoidal with the same frequency as the input. In fact, the sine wave is the only signal that does not change shape as it passes through a linear circuit. Observe, however, that the output sinusoid will in general have a different amplitude and will be shifted in phase relative to the input. The ratio of the amplitude of the output sinusoid \(V(c) \) to the amplitude of the input sinusoid \(V_I \) is the magnitude of the amplifier gain \(|T(\omega)| \) at the test frequency \(\omega \). Also, the angle \(\phi \) is the phase of the amplifier transmission at the test frequency \(\omega \). If we denote the amplifier transmission, or transfer function as it is more commonly known, by \(T(\omega) \), then

\[
|T(\omega)| = \frac{V_I}{V(c)} \\
\angle T(\omega) = \phi
\]

The response of the amplifier to a sinusoid of frequency \(\omega \) is completely described by \(|T(\omega)| \) and \(\angle T(\omega) \). Now, to obtain the complete frequency response of the amplifier we simply change the frequency of the input sinusoid and measure the new value for \(|T(\omega)| \) and \(\angle T(\omega) \). The end result will be a table and/or graph of gain magnitude \(|T(\omega)| \) versus frequency and a phase and/or graph of phase angle \(\angle T(\omega) \) versus frequency. These two plots together constitute the frequency response of the amplifier, the former is known as the magnitude or amplitude response, and the second is the phase response. Finally, we should mention that it is a common practice to express the magnitude of transmission in decibels and thus plot 20 log \(|T(\omega)|\) versus frequency.

1.6.2 Amplifier Bandwidth

Figure 1.21 shows the magnitude response of an amplifier. It indicates that the gain is almost constant over a wide frequency range, roughly between \(\omega_1 \) and \(\omega_2 \). Signals whose frequencies are below \(\omega_1 \) or above \(\omega_2 \) will experience lower gain, with the gain decreasing as we move farther away from \(\omega_1 \) and \(\omega_2 \). The band of frequencies over which the gain of the amplifier is almost constant, within a certain number of decibels (usually 3 dB), is called the **amplifier bandwidth**. Normally the amplifier is designed so that its bandwidth coincides with the spectrum of the signals it is required to amplify. If this were not the case, the amplifier would distort the frequency spectrum of the input signal, with different components of the input signal being amplified by different amounts.

\[
20 \log |T(\omega)|
\]

FIGURE 1.21 Typical magnitude response of an amplifier. \(|T(\omega)| \) is the magnitude of the amplifier transfer function—that is, the ratio of the output \(V(c) \) to the input \(V_I \).

1.6.3 Evaluating the Frequency Response of Amplifiers

Above, we described the method used to measure the frequency response of an amplifier. We now briefly discuss the method for analytically obtaining an expression for the frequency response. What we are about to say is just a preview of this important subject, whose detailed study starts in Chapter 4.

To evaluate the frequency response of an amplifier one has to analyze the amplifier equivalent circuit model, taking into account all reactive components. \(^2\) Circuit analysis proceeds in the usual fashion but with inductances and capacitances represented by their reactances. An inductance \(L \) has a reactance or impedance \(j\omega L \), and a capacitance \(C \) has a reactance or impedance \(1/j\omega C \), or equivalently, a susceptance or admittance \(j\omega C \). Thus in a frequency-domain analysis we deal with impedances and/or admittances. The result of the analysis is the amplifier transfer function \(T(\omega) \):

\[
T(\omega) = \frac{V(c)}{V_I}
\]

where \(V_I \) and \(V(c) \) denote the input and output signals, respectively. \(T(\omega) \) is generally a complex function whose magnitude \(|T(\omega)| \) gives the magnitude of transmission or the magnitude response of the amplifier. The phase of \(\angle T(\omega) \) gives the phase response of the amplifier.

In the analysis of a circuit to determine its frequency response, the algebraic manipulations can be considerably simplified by using the **complex frequency variable** \(s \). In terms of \(s \), the impedance of an inductance \(L \) is \(sL \), and that of a capacitance \(C \) is \(1/j\omega C \). Replacing the reactive elements with their impedances and performing standard circuit analysis, we obtain the transfer function \(T(s) \) as

\[
T(s) = \frac{V(c)}{V_I}
\]

Subsequently, we replace \(s \) by \(j\omega \) to determine the transfer function for physical frequencies, \(T(\omega) \). Note that \(T(j\omega) \) is the same function we called \(T(\omega) \) above; the additional \(j \) is included in order to emphasize that \(T(j\omega) \) is obtained from \(T(\omega) \) by replacing \(s \) with \(j\omega \).

1.6.4 Single-Time-Constant Networks

In analyzing amplifier circuits to determine their frequency response, one is greatly aided by knowledge of the frequency response characteristics of single-time-constant (STC) networks. An STC network is one that is composed of, or can be reduced to, one reactive component (inductance or capacitance) and one resistance. Examples are shown in Fig. 1.22. An STC network formed of an inductance \(L \) and a resistance \(R \) has a time constant \(\tau = L/R \). The time constant \(\tau \) of an STC network composed of a capacitance \(C \) and a resistance \(R \) is given by \(\tau = CR \).

Appendix D presents a study of STC networks and their responses to sinusoidal, step, and pulse inputs. Knowledge of this material will be needed at various points throughout this book, and the reader will be encouraged to refer to the Appendix. At this point we need in particular the frequency response results; we will, in fact, briefly discuss this important topic, now.

\(^2\) Note that in the models considered in previous sections no reactive components were included. These were simplified models and cannot be used alone to predict the amplifier frequency response.

\(^3\) At this stage, we are using \(s \) simply as a shorthand for \(j\omega \). We shall not require detailed knowledge of \(s \)-plane concepts until Chapter 6. A brief review of \(s \)-plane analysis is presented in Appendix E.
CHAPTER 1
INTRODUCTION TO ELECTRONICS

FIGURE 1.22 Two examples of STC networks: (a) a low-pass network and (b) a high-pass network.

TABLE 1.2 Frequency Response of STC Networks

<table>
<thead>
<tr>
<th>Transfer Function $T(s)$</th>
<th>Low-Pass (LP)</th>
<th>High-Pass (HP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>$K(s + s_0)$</td>
<td>$K s$</td>
</tr>
<tr>
<td>Transfer Function (for physical frequencies) $T(j\omega)$</td>
<td>$\frac{K}{1 + j(\omega/\omega_0)}$</td>
<td>$\frac{K}{1 - j(\omega_0/\omega)}$</td>
</tr>
<tr>
<td>Magnitude Response $</td>
<td>T(j\omega)</td>
<td>$</td>
</tr>
<tr>
<td>Phase Response $\angle T(j\omega)$</td>
<td>$-\tan^{-1}(\omega/\omega_0)$</td>
<td>$\tan^{-1}(\omega_0/\omega)$</td>
</tr>
<tr>
<td>Transmission at $\omega = 0$ (dc)</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>Transmission at $\omega = \infty$</td>
<td>0</td>
<td>K</td>
</tr>
<tr>
<td>3-dB Frequency</td>
<td>$\omega_0 = 1/T$; $T =$ time constant</td>
<td></td>
</tr>
<tr>
<td>Bode Plots</td>
<td>in Fig. 1.23</td>
<td>in Fig. 1.24</td>
</tr>
</tbody>
</table>

Most STC networks can be classified into two categories: low pass (LP) and high pass (HP), with each of the two categories displaying distinctly different signal responses. As an example, the STC network shown in Fig. 1.22(a) is of the low-pass type and that in Fig. 1.22(b) is of the high-pass type. To see the reasoning behind this classification, observe that the transfer function of each of these two circuits can be expressed as a voltage-divider ratio, with the divider composed of a resistor and a capacitor. Now, recalling how the impedance of a capacitor varies with frequency ($Z = 1/j\omega C$) it is easy to see that the transmission of the circuit in Fig. 1.22(a) will decrease with frequency and approach zero as ω approaches ω_0. Thus the circuit of Fig. 1.22(a) acts as a low-pass filter; it passes low-frequency sine-wave inputs with little or no attenuation (at $\omega = 0$, the transmission is unity) and attenuates high-frequency input sinusoids. The circuit of Fig. 1.22(b) does the opposite; its transmission is unity at $\omega = \infty$ and decreases as ω is reduced, reaching 0 for $\omega = 0$. The latter circuit, therefore, performs as a high-pass filter.

Table 1.2 provides a summary of the frequency response results for STC networks of both types. Also, sketches of the magnitude and phase responses are given in Figs. 1.23 and 1.24.

4 An important exception is the all-pass STC network studied in Chapter 11.
5 A filter is a circuit that passes signals in a specified frequency band (the filter passband) and stops or severely attenuates (filters out) signals in another frequency band (the filter stopband). Filters will be studied in Chapter 12.
6 The transfer functions in Table 1.2 are given in general form. For the circuits of Fig. 1.22, $K = 1$ and $\omega_0 = 1/RC$.

FIGURE 1.23 (a) Magnitude and (b) phase response of STC networks of the low-pass type.

FIGURE 1.24 (a) Magnitude and (b) phase response of STC networks of the high-pass type.
These frequency response diagrams are known as Bode plots and the 3-dB frequency (ω_0) is also known as the corner frequency or break frequency. The reader is urged to become familiar with this information and to consult Appendix D if further clarifications are needed.

In particular, it is important to develop a facility for the rapid determination of the time constant τ of an STC circuit.

Example 1.5:

Figure 1.25 shows a voltage amplifier having an input resistance R_i, an input capacitance C_i, a gain factor μ, and an output resistance R_o. The amplifier is fed with a voltage source V_s having source resistance R_s, and a load of resistance R_L is connected to the output.

(a) Derive an expression for the amplifier voltage gain V_o/V_s as a function of frequency. From this find expressions for the dc gain and the 3-dB frequency.

(b) Calculate the values of the dc gain, the 3-dB frequency, and the frequency at which the gain becomes 0 dB (i.e., unity) for the case $R_s = 20 \, \text{k} \Omega$, $R_i = 100 \, \text{k} \Omega$, $C_i = 60 \, \text{pF}$, $\mu = 144 \, \text{V/V}$, $R_o = 200 \, \text{Q}$, and $R_L = 1 \, \text{k} \Omega$.

(c) Find $v_o(t)$ for each of the following inputs:

(i) $v_i = 0.1 \sin 10^2 t$, V

(ii) $v_i = 0.1 \sin 10^4 t$, V

(iii) $v_i = 0.1 \sin 10^6 t$, V

(iv) $v_i = 0.1 \sin 10^8 t$, V

Solution:

(a) Utilizing the voltage-divider rule, we can express V_i in terms of V_s as follows

$$V_i = V_s \frac{Z_i + R_i}{Z_i + R_s}$$

where Z_i is the amplifier input impedance. Since Z_i is composed of two parallel elements it is obviously easier to work in terms of $Y_i = 1/Z_i$. Toward that end we divide the numerator and denominator by Z_i, thus obtaining

$$V_i = V_s \frac{1}{1 + (R_s/R_i)}$$

Thus,

$$\frac{V_o}{V_s} = \frac{1}{1 + (R_s/R_i)} + sC_iR_i$$

This expression can be put in the standard form for a low-pass STC network (see the top line of Table 1.2) by extracting $\frac{1}{1 + (R_s/R_i)}$ from the denominator; thus we have

$$\frac{V_o}{V_s} = \frac{1}{1 + (R_s/R_i)} \frac{1}{1 + sC_iR_i}$$

At the output side of the amplifier we can use the voltage-divider rule to write

$$V_o = \mu V_s \frac{R_o}{R_s}$$

This equation can be combined with Eq. (1.20) to obtain the amplifier transfer function as

$$\frac{V_o}{V_s} = \frac{1}{1 + (R_s/R_i)} \frac{1}{1 + sC_i(R_s/R_i)}$$

We note that only the last factor in this expression is new (compared with the expression derived in the last section). This factor is a result of the input capacitance C_i. The transfer function in Eq. (1.21) is of the form $K/(1 + (s/\omega_0))$, which corresponds to a low-pass STC network. The dc gain is found as

$$K = \frac{V_o}{V_s}(s = 0) = \mu \frac{1}{1 + (R_s/R_i)}$$

The 3-dB frequency ω_0 can be found from

$$\omega_0 = \frac{1}{\sqrt{1 + (R_s/R_i)}}$$

(b) Substituting the numerical values given into Eq. (1.23) results in

$$K = 144 \frac{1}{1 + (20/100)} \frac{1}{1 + (200/1000)} = 100 \, \text{V/V}$$

Thus the amplifier has a dc gain of 40 dB. Substituting the numerical values into Eq. (1.24) gives the 3-dB frequency

$$\omega_0 = \frac{1}{\sqrt{1 + (20/100)}}$$

Thus,

$$\omega_0 = 60 \, \text{pF} \times (20 \, \text{k} \Omega/100 \, \text{kHz})$$

$$= \frac{1}{60 \times 10^{12} \times (20 \times 100/(20 + 100)) \times 10^3} = 10^3 \, \text{rad/s}$$

Therefore,

$$f_0 = \frac{\omega_0}{2\pi} = 159.2 \, \text{kHz}$$
Since the gain falls off at the rate of -20 dB/decade, starting at a_0 (see Fig. 1.23a) the gain will reach 0 dB in two decades (a factor of 100), we have

Unity-gain frequency $= 100 \times a_0 = 10^7 \text{ rad/s}$ or 15.92 MHz.

(c) To find $v_o(t)$ we need to determine the gain magnitude and phase at 10^7, 10^8, 10^9, and 10^{10} rad/s. This can be done either approximately utilizing the Bode plots of Fig. 1.23 or exactly utilizing the expression for the amplifier transfer function,

$$T(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)} = \frac{100}{1 + j(\omega/10^7)}$$

We shall do both:

(i) For $\omega = 10^7 \text{ rad/s}$, which is $(a_0/10^7)$, the Bode plots of Fig. 1.23 suggest that $|T| = K = 100$ and $\phi = 0^\circ$. The transfer function expression gives $|T| = 100$ and $\phi = -\tan^{-1} 10^7 = 0^\circ$. Thus,

$$v_o(t) = 10 \sin 10^7 t, \text{ V}$$

(ii) For $\omega = 10^8 \text{ rad/s}$, which is $(a_0/10)$, the Bode plots of Fig. 1.23 suggest that $|T| = K = 100$ and $\phi = -5.7^\circ$. The transfer function expression gives $|T| = 99.5$ and $\phi = -\tan^{-1} 100 = -5.7^\circ$. Thus,

$$v_o(t) = 9.95 \sin(10^8 t - 5.7^\circ), \text{ V}$$

(iii) For $\omega = 10^9 \text{ rad/s} = a_0$, $|T| = \sqrt{10}/2 = 70.7 \text{ V/V}$ or 37 dB and $\phi = -45^\circ$. Thus,

$$v_o(t) = 7.07 \sin(10^9 t - 45^\circ), \text{ V}$$

(iv) For $\omega = 10^{10} \text{ rad/s}$, which is $(100a_0)$, the Bode plots suggest that $|T| = 1$ and $\phi = -90^\circ$. The transfer function expression gives

$$|T| = 1 \text{ and } \phi = -\tan^{-1} 100 = -89.4^\circ.$$

Thus,

$$v_o(t) = 0.1 \sin(10^{10} t - 89.4^\circ), \text{ V}$$

1.6.5 Classification of Amplifiers Based on Frequency Response

Amplifiers can be classified based on the shape of their magnitude-response curve. Figure 1.26 shows typical frequency response curves for various amplifier types. In Fig. 1.26(a) the gain remains constant over a wide frequency range but falls off at low and high frequencies. This is a common type of frequency response found in audio amplifiers.

As will be shown in later chapters, internal capacitances in the device (a transistor) cause the falloff of gain at high frequencies, just as C_C did in the circuit of Example 1.5. On the other hand, the falloff of gain at low frequencies is usually caused by coupling capacitors used to connect one amplifier stage to another, as indicated in Fig. 1.27. This practice is usually adopted to simplify the design process of the different stages. The coupling capacitors are usually chosen quite large (a fraction of a microfarad to a few tens of microfarads) so that their reactance (impedance) is small at the frequencies of interest. Nevertheless, at sufficiently low frequencies the reactance of a coupling capacitor will become large enough to cause part of the signal being coupled to appear as a voltage drop across the coupling capacitor and thus not reach the subsequent stage. Coupling capacitors thus cause loss of gain at low frequencies and cause the gain to be zero at dc. This is not at all surprising since from Fig. 1.27 we observe that the coupling capacitor, acting together with the input resistance of the subsequent stage, forms a high-pass STC circuit. It is the frequency response of this high-pass circuit that accounts for the shape of the amplifier frequency response in Fig. 1.26(a) at the low-frequency end.

There are many applications in which it is important that the amplifier maintain its gain at low frequencies down to dc. Furthermore, monolithic integrated-circuit (IC) technology does not allow the fabrication of large coupling capacitors. Thus IC amplifiers are usually designed as directly coupled or dc amplifiers (as opposed to capacitively coupled ac amplifiers). Figure 1.26(b) shows the frequency response of a dc amplifier. Such a frequency response characterizes what is referred to as a low-pass amplifier.

In a number of applications, such as in the design of radio and TV receivers, the need arises for an amplifier whose frequency response peaks around a certain frequency (called the center frequency) and falls off on both sides of this frequency, as shown in Fig. 1.26(c).
Amplifiers with such a response are called tuned amplifiers, bandpass amplifiers, or bandpass filters. A tuned amplifier forms the heart of the front-end or tuner of a communications receiver; by adjusting its center frequency to coincide with the frequency of a desired communications channel (e.g., a radio station), the signal of this particular channel can be received while those of other channels are attenuated or filtered out.

EXERCISES

1.21 Consider a voltage amplifier having a frequency response of the low-pass STC type with a dc gain of 60 dB and a 3-dB frequency of 1000 Hz. Find the gain in dB at \(f = 10 \) Hz, \(10 \) kHz, \(100 \) kHz, and \(1 \) MHz.

Ans. 60 dB; 40 dB; 20 dB; 0 dB

1.22 Consider a transconductance amplifier having the model shown in Table 1.1, with \(R_L = 5 \) kΩ, \(R_u = 50 \) kΩ, and \(C_u = 10 \) nF. If the amplifier load consists of a resistance \(R_L \) in parallel with a capacitance \(C_L \), convince yourself that this voltage transfer function realized \(V_v/V_i \) is of the low-pass STC type. What is the lowest value that \(R_L \) can have while a dc gain of at least 40 dB is obtained? With this value of \(R_L \) connected, find the highest value that \(C_L \) can have while a 3-dB bandwidth of at least 100 kHz is obtained.

Ans. 12.5 kΩ; 159.2 pF

1.23 Consider the situation illustrated in Fig. 1.27. Let the output resistance of the first voltage amplifier be 3 kΩ and the input resistance of the second voltage amplifier (including the resistor shown) be 9 kΩ. The resulting equivalent circuit is shown in Fig. E1.23 where \(V_s \) and \(R_s \) are the output voltage and output resistance of the first amplifier, \(C \) is a coupling capacitor, and \(R_i \) is the input resistance of the second amplifier. Convince yourself that \(V_v/V_i \) is a high-pass STC function. What is the smallest value for \(C \) that will ensure that the 3-dB frequency is not higher than 100 Hz?

Ans. 0.16 μF

FIGURE E1.23

![Figure E1.23](image)

1.7 **DIGITAL LOGIC INVERTERS**

The logic inverter is the most basic element in digital circuit design; it plays a role parallel to that of the amplifier in analog circuits. In this section we provide an introduction to the logic inverter.

1.7.1 Function of the Inverter

As its name implies, the logic inverter inverts the logic value of its input signal. Thus for a logic 0 input, the output will be a logic 1, and vice versa. In terms of voltage levels, consider

![Figure 1.28](image)
The simplest inverter implementation is shown in Fig. 1.31. The switch is a voltage-controlled switch. We will see in Chapter 4 that inverter circuits designed using the complementary metal-oxide-semiconductor (or CMOS) technology come very close to realizing the ideal VTC.

The question naturally arises as to what constitutes an ideal VTC for an inverter. The answer follows directly from the preceding discussion: An ideal VTC is one that maximizes the noise margins and distributes them equally between the low and high input regions. Such a VTC is shown in Fig. 1.30 for an inverter operated from a dc supply Vol. Observe that the output high level V_{OH} is at its maximum possible value of V_{DD} and the output low level is at its minimum possible value of 0 V. Observe also that the threshold voltages V_{THH} and V_{THL} are equalized and placed at the middle of the power supply voltage (V_{DD}/2). Thus the width of the transition region between the high and low output regions has been reduced to zero. The transition region, though obviously very important for amplifier applications, is of no value in digital circuits. The ideal VTC exhibits a steep transition at the threshold voltage V_{TH}/2 with the gain in the transition region being infinite. The noise margins are now equal:

\[NM_H = NM_L = V_{TH}/2 \]

We will see in Chapter 4 that inverter circuits designed using the complementary metal-oxide-semiconductor (or CMOS) technology come very close to realizing the ideal VTC.

1.7.5 Inverter Implementation

Inverters are implemented using transistors (Chapters 4 and 5) operating as voltage-controlled switches. The simplest inverter implementation is shown in Fig. 1.33. The switch is controlled by the inverter input voltage \(v_i \). When \(v_i \) is low, the switch will be open and \(v_o = V_{DD} \) since no current flows through \(R \). When \(v_i \) is high, the switch will be closed and, assuming an ideal switch, \(v_o = 0 \).

Transistor switches, however, as we will see in Chapters 4 and 5, are not perfect. Although their off resistances are very high and thus an open switch closely approximates...
CHAPTER 1 INTRODUCTION TO ELECTRONICS

A

FIGURE 1.31 (a) The simplest implementation of a logic inverter using a voltage-controlled switch; (b) equivalent circuit when \(v_o \) is low; and (c) equivalent circuit when \(v_o \) is high. Note that the switch is assumed to close when \(v_o \) is high.

FIGURE 1.32 A more elaborate implementation of the logic inverter utilizing two complementary switches. This is the basis of the CMOS inverter studied in Section 4.10.

1.7 DIGITAL LOGIC INVERTERS

FIGURE 1.33 Another inverter implementation utilizing a double-throw switch to steer the constant current \(I_{EE} \) to \(R_{cl} \) (when \(v_o \) is high) or \(R_{c2} \) (when \(v_o \) is low). This is the basis of the emitter-coupled logic (ECL) studied in Chapters 7 and 11.

1.7.6 Power Dissipation

Digital systems are implemented using very large numbers of logic gates. For space and other economic considerations, it is desirable to implement the system with as few integrated-circuit (IC) chips as possible. It follows that one must pack as many logic gates as possible on an IC chip. At present, 100,000 gates or more can be fabricated on a single IC chip in what is known as very-large-scale integration (VLSI). To keep the power dissipated in the chip to acceptable limits (imposed by thermal considerations), the power dissipation per gate must be kept to a minimum. Indeed, a very important performance measure of the logic inverter is the power it dissipates.

The simple inverter of Fig. 1.31 obviously dissipates no power when \(v_o \) is low and the switch is open. In the other state, however, the power dissipation is approximately \(V_{DD}/R \), and can be substantial. This power dissipation occurs even if the inverter is not switching closed and the PD switch open, resulting in the equivalent circuit of Fig. 1.32(b). Observe that in this case \(R_{on} \) of PU connects the output to \(V_{DD} \), thus establishing \(V_{OH} = V_{DD} \). Also observe that no current flows and thus no power is dissipated in the circuit. Next, if \(v_o \) is raised to the logic 1 level, the PU switch will open while the PD switch will close, resulting in the equivalent circuit shown in Fig. 1.32(c). Here \(R_{on} \) of the PD switch connects the output to ground, thus establishing \(V_{OL} = 0 \). Again no current flows, and no power is dissipated. The superiority of this implementation over that using the single pull-down switch and a resistor (known as a pull-up resistor) should be obvious. This circuit constitutes the basis of the CMOS inverter that we will study in Section 4.10. Note that we have not included offset voltages in the equivalent circuits because MOS switches do not exhibit a voltage offset (Chapter 4).

For a, consider the inverter implementation of Fig. 1.33. Here a double-throw switch is used to steer the constant current \(I_{EE} \) into one of two resistors connected to the positive supply \(V_{CC} \). The reader is urged to show that if a high \(v_o \) results in the switch being connected to \(R_{cl} \), then a logic inversion-function is realized at \(v_{oh} \). Note that the output voltage is independent of the switch resistance. This current-steering or current-mode logic arrangement is the basis of the fastest available digital logic circuits, called emitter-coupled logic (ECL), introduced in Chapter 7 and studied in Chapter 11.
and is thus known as static power dissipation. The inverter of Fig. 1.32 exhibits no static power dissipation, a definite advantage. Unfortunately, however, another component of power dissipation arises when a capacitance exists between the output node of the inverter and ground. This is always the case, for the devices that implement the switches have internal capacitances, the wires that connect the inverter output to other circuits have capacitance, and, of course, there is the input capacitance of whatever circuit the inverter is driving. Now, as the inverter is switched from one state to another, current must flow through the switches to charge (and discharge) the load capacitance. These currents give rise to power dissipation in the switches, called dynamic power dissipation. In Chapter 4, we shall study dynamic power dissipation in the CMOS inverter, and we shall show that an inverter switched at a frequency f Hz exhibits a dynamic power dissipation

\[P_{\text{dynamic}} = fCV_\text{DD}^2 \]

(1.28)

where \(C \) is the capacitance between the output node and ground and \(V_\text{DD} \) is the power-supply voltage. This result applies (approximately) to all inverter circuits.

1.7.7 Propagation Delay

Whereas the dynamic behavior of amplifiers is specified in terms of their frequency response, that of inverters is characterized in terms of the time delay between switching of \(V_\text{O} \) (from low to high or vice versa) and the corresponding change appearing at the output. Such a delay, called propagation delay, arises for two reasons: the transistors that implement the switches exhibit finite (nonzero) switching times, and the capacitance that is inevitably present between the inverter output node and ground needs to charge (or discharge, as the case may be) before the output reaches its required level of \(V_\text{OH} \) or \(V_\text{OL} \). We shall analyze the inverter switching times in subsequent chapters. Such a study depends on a thorough familiarity with the time response of single-time-constant (STC) circuits. A review of this subject is presented in Appendix D. For our purposes here, we remind the reader of the key equation in determining the response to a step function:

Consider a step-function input applied to an STC network of either the low-pass or high-pass type, and let the network have a time constant \(T \). The output at any time \(t \) is given by

\[y(t) = y_\infty - (y_\infty - y_0)e^{-\frac{t}{T}} \]

(1.29)

where \(y_\infty \) is the final value, that is, the value toward which the response is heading, and \(y_0 \) is the value of the response immediately after \(t = 0 \). This equation states that the output at any time \(t \) is equal to the difference between the final value \(y_\infty \) and a gap whose initial value is \(y_\infty - y_0 \) and that is shrinking exponentially.

EXAMPLE 1.6

Consider the inverter of Fig. 1.31(a) with a capacitor \(C = 10 \) pF connected between the output and ground. Let \(V_\text{DD} = 5 \) V, \(R = 1 \) k\(\Omega \), \(R_\text{in} = 100 \) k\(\Omega \), and \(V_\text{OL} = 0.1 \) V. If \(t = 0 \), \(V_\text{O} \) goes low and neglecting the delay time of the switch, that is, assuming that it opens immediately, find the time for the output to reach \(\frac{1}{2}(V_\text{OH} + V_\text{OL}) \). The time to this 50% point on the output waveform is defined as the low-to-high propagation delay, \(t_{\text{PLH}} \).

Solution

First we determine \(V_\text{OL} \), which is the voltage at the output prior to \(t = 0 \). From the equivalent circuit in Fig. 1.31(b), we find

\[V_\text{OL} = V_\text{OL} \text{ or } V_\text{OL} = V_\text{DD} \frac{R}{R + R_\text{in}} = 0.1 \text{ V} \]

\[= 0.1 \times \frac{5 - 0.1}{1} = 0.55 \text{ V} \]

Next, when the switch opens at \(t = 0 \), the circuit takes the form shown in Fig. 1.34(a). Since the voltage across the capacitor cannot change instantaneously, at \(t = 0^+ \) the output will still be 0.55 V.

Then the capacitor charges through \(R \), and \(V_\text{O} \) rises exponentially toward \(V_\text{DD} \). The output waveform will be as shown in Fig. 1.34(b), and its equation can be obtained by substituting in Eq. (1.29), \(v_\text{L}(t) = 5 \) V and \(y_\infty(0+) = 0.55 \) V. Thus,

\[v_\text{L}(t) = 5 - (5 - 0.55)e^{-\frac{t}{CR}} \]

where \(t = CR \). To find \(v_\text{OL}(t) \) we substitute

\[v_\text{OL}(t) = \frac{1}{2}(V_\text{OH} + V_\text{OL}) \]

The result is

\[t_{\text{PLH}} = 0.69 \times \frac{V_\text{OH} - V_\text{OL}}{R_\text{in}} \]

\[= 0.69 \times 10^3 \times 10^{-11} \]

\[= 6.9 \text{ ns} \]
We conclude this section by showing in Fig. 1.35 the formal definition of the propagation delay of an inverter. As shown, an input pulse with finite (nonzero) rise and fall times is applied. The inverted pulse at the output exhibits finite rise and fall times (labeled \(t_{\text{rise}} \) and \(t_{\text{fall}} \), where the subscript \(t \) denotes transition, \(LH \) denotes low-to-high, and \(HL \) denotes high-to-low). There is also a delay time between the input and output waveforms. The usual way to specify the propagation delay is to take the average of the high-to-low propagation delay, \(t_{\text{PLH}} \), and the low-to-high propagation delay, \(t_{\text{PHL}} \). As indicated, these delays are measured between the 50% points of the input and output waveforms. Also note that the transition times are specified using the 10% and 90% points of the output excursion (\(V_{\text{OH}} - V_{\text{OL}} \)).

FIGURE 1.35 Definitions of propagation delays and transition times of the logic inverter.

EXERCISES

1.24 For the inverter in Fig. 1.31, let \(V_{\text{OL}} = 5 \, \text{V}, R_L = 1 \, \text{k}\Omega, \beta = 80 \, \text{mA}, V_{\text{IH}} = 0.4 \, \text{V}, V_{\text{IL}} = 0.8 \, \text{V}, \) and \(V_{\text{OL}} = 1.2 \, \text{V}. \) Find \(V_{\text{OH}}, V_{\text{OC}}, V_{\text{IH}}, \) and \(V_{\text{IL}}. \) Also find the average static power dissipation assuming that the inverter spends half the time in each of its two states.

\[\text{Power} = 0.55 \, \text{mW} \]

1.25 Find the dynamic power dissipated in an inverter operated from a 5-V power supply. The inverter has a 2-pF capacitance load and is switched at 50 MHz.

\[\text{Power} = 1.1 \, \text{mW} \]

1.8 CIRCUIT SIMULATION USING SPICE

The use of computer programs to simulate the operation of electronic circuits has become an essential step in the circuit-design process. This is especially the case for circuits that are to be fabricated in integrated-circuit form. However, even circuits that are assembled on a printed-circuit board using discrete components can and do benefit from circuit simulation. Circuit simulation enables the designer to verify that the design will meet specifications when actual components (with their many imperfections) are used, and it can also provide additional insight into circuit operation allowing the designer to fine-tune the final design prior to fabrication. However, notwithstanding the advantages of computer simulation, it is not a substitute for a thorough understanding of circuit operation. It should be performed only at a later stage in the design process and, most certainly, after a paper-and-pencil design has been done.

Among the various circuit-simulation programs available for the computer-aided numerical analysis of microelectronic circuits, SPICE (Simulation Program with Integrated Circuit Emphasis) is generally regarded to be the most widely used. SPICE is an open-source program which has been under development by the University of California at Berkeley since the early 1970s. PSpice is a commercial personal-computer version of SPICE that is now commercially available from Cadence. Also available from Cadence is PSpice A/D—an advanced version of PSpace that can model the behavior and, hence, simulate circuits that process a mix of both analog and digital signals. SPICE was originally a text-based program: The user had to describe the circuit to be simulated and the type of simulation to be performed using an input text file, called a netlist. The simulation results were also displayed as text. As an example of more recent developments, Cadence provides a graphical interface, called OrCAD Capture CIS (Component Information System), for circuit schematic entry and editing. Such graphical interface tools are referred to in the literature as schematic entry, schematic editor, or schematic capture tools. Furthermore, PSpice A/D includes a graphical postprocessor, called Probe, to numerically analyze and graphically display the results of the PSpice simulations. In this text, "using PSpice" or "using SPICE" loosely refers to using Capture CIS, PSpice A/D, and Probe to simulate a circuit and to numerically analyze and graphically display the simulation results.

An evaluation (student) version of Capture CIS and PSpice A/D are included on the CD accompanying this book. These correspond to the OrCAD Family Release 9.2 Lic Edition available from Cadence. Furthermore, the circuit diagrams entered in Capture CIS are called Capture Schematics and the corresponding PSpice simulation files of all SPICE examples in this book can be found on the text's CD and website (www.ese1141.net). Access to these files will allow the reader to undertake further experimentation with those circuits, including investigating the effect of changing component values and operating conditions.

It is not our objective in this book to teach the reader how SPICE works nor the intricacies of using it effectively. This can be found in the SPICE books listed in Appendix F. Our objective in the sections of this book devoted to SPICE, usually the last section of each chapter, is to introduce the models that are used by SPICE to represent the various electronic devices, and to illustrate how useful SPICE can be in investigating circuit operation.

Sixth circuits are called mixed-signal circuits, and the simulation programs that can simulate such circuits are called mixed-signal simulators.
Summary

- An electrical signal source can be represented as either the Thévenin form (a voltage source V_0 in series with a source resistance R_0) or the Norton form (a current source I_0 parallel with a source resistance R_0). The Thévenin voltage V_0 is the open-circuit voltage between the source terminals, equal to the Norton current I_0 is equal to the short-circuit current between the source terminals. For the two representations to be equivalent, $V_0 = R_0 I_0$.

- The sine-wave signal is completely characterized by its peak value (or rms value) which is the peak (V_p or I_p), its frequency ($\omega = 2\pi f$), and phase (ϕ) with respect to an arbitrary reference time.

- A signal can be represented either by its waveform versus time, or as the sum of sinusoids. The latter representation is known as the frequency spectrum of the signal.

- Analog signals have magnitudes that can assume any value. Electronic circuits that process analog signals are called analog circuits. Sampling the magnitude of an analog signal at discrete instants of time and representing each signal sample as a number, results in a digital signal. Digital signals are processed by digital circuits.

- The simplest digital signals are obtained when the binary system is used. An individual digital signal then assumes only one of two possible values: low and high (say, 0 V and $+5\, \text{V}$). A signal can then be processed using digital circuits. Refer to Fig. 1.1b.

- An analog-to-digital converter (ADC) provides at its output the digits of the binary number representing the analog signal sample applied to its input. The output digital signal can then be processed using digital circuits. Refer to Figs. (1.23) and (1.24).

- The transfer function $T(s) = V_o(s)/V_i(s)$ of a voltage amplifier can be determined from circuit analysis. Substituting $s = j\omega$ gives $T(j\omega)$, whose magnitude is the gain and whose phase is the phase response of the amplifier.

- Amplifiers are classified according to the shape of their frequency response. Refer to Table 1.1.

- Single-tone-contours (STC) networks are those networks that are composed of, or can be reduced to, one reactive component (L or C) and one resistance (R). The time constant τ is either LR or CR.

- STC networks can be classified into two categories: low-pass (LP) and high-pass (HP) networks. The high-pass networks pass high frequencies and attenuate low frequencies. The opposite is true for LP networks.

- Measurements taken on various resistors are shown below. For each of the situations following, find the missing item:

 | (a) $R = 1\, \text{k}\Omega$, $V = 10\, \text{V}$ |
 | (b) $V = 10\, \text{V}$, $I = 1\, \text{mA}$ |
 | (c) $R = 10\, \text{k}\Omega$, $I = 10\, \text{mA}$ |
 | (d) $R = 100\, \text{\Omega}$, $V = 10\, \text{V}$ |

- Two measurements taken on various resistors are shown below. For each, calculate the power dissipated in the resistor and the power rating necessary for safe operation using standard components with power ratings of 1/8 W, 1/4 W, 1/2 W, 1 W, or 2 W:

 | (a) 1 KΩ conducting 30 mA |
 | (b) 1 KΩ conducting 40 mA |
 | (c) 10 KΩ conducting 3 mA |
 | (d) 10 KΩ conducting 4 mA |
 | (e) 1 kΩ dropping 20 V |
 | (f) 1 kΩ dropping 11 V |

- Ohm's law and the power law for a resistor relate V, I, R, and P, making only two variables independent. For each pair identified below, find the other two:

 | (a) $R = 1\, \text{k}\Omega$, $I = 10\, \text{mA}$ |
 | (b) $I = 10\, \text{mA}$, $V = 1\, \text{V}$ |
 | (c) $V = 10\, \text{V}$, $P = 0.1\, \text{W}$ |
 | (d) $R = 1\, \text{k}\Omega$, $P = 1\, \text{W}$ |

- Another very important performance parameter of the inverter is its propagation delay (see Fig. 1.35 for definitions).**

Circuit Basics

As a review of the basics of circuit analysis and for the reader to gauge their preparedness for the study of electronic circuits, this section presents a number of relevant circuit analysis problems. For a summary of Thévenin's and Norton's theorems, refer to Appendix F. The problems are grouped into appropriate categories.

Resistors and Ohm's Law

1.1 Ohm's law relates V, I, and R for a resistor. For each of the situations following, find the missing item:

- **1.5** In the analysis and test of electronic circuits, it is often useful to connect one resistor in parallel with another to obtain a nonstandard value, one which is smaller than the smaller of the two resistors. Often, particularly during circuit testing, one resistor is already installed, in which case the second, when connected in parallel, is said to "shunt" the first; if the original resistor is $10\, \text{K}\Omega$, what is the value of the shunting resistor needed to reduce the combined value by 1%, 5%, 10%, and 50%? What is the result of shunting a 10-kΩ resistor by $1\, \text{M}\Omega$? By $100\, \text{K}\Omega$? By $10\, \text{k}\Omega$?

Voltage Dividers

1.6 Figure P1.6(a) shows a two-resistor voltage divider. Its function is to generate a voltage V_D that is smaller than the power-supply voltage V_{PP} at all output nodes X. The circuit looking back at node X is equivalent to that shown in Fig. P1.6(b).

- **1.8** Observe that this is the Thévenin equivalent of the voltage divider circuit. Find expressions for V_D, R_X, and R_Y.
A two-resistor voltage divider employing a 3.3-kΩ and a 6.8-kΩ resistor is connected to a 9-V ground-referenced power supply to provide a relatively low voltage. Sketch the circuit. Assuming exact-valued resistors, what output voltage (measured to ground) and equivalent output resistance result? If the resistors used are not ideal but have a ±2% manufacturing tolerance, what are the extreme output voltages and resistances that can result?

You are given three resistors, each of 10 kΩ, and a 9-V battery whose negative terminal is connected to ground. With a voltage divider using some or all of your resistors, how many positive-voltage sources of magnitude less than 9 V can you design? List them in order, smallest first. What is the output resistance (i.e., the Thévenin resistance) of each?

Two resistors, with nominal values of 4.7 kΩ and 10 kΩ, are used in a voltage divider with a +15-V supply to create a nominal +10-V output. Assuming the resistor values to be exact, what is the actual output voltage produced? What is the input resistance of the resulting current divider in each case?

A two-resistor current divider fed with an ideal current source. Sketch the circuit. Assuming exact-valued resistors, what output current (measured to ground) and equivalent output resistance result? If the resistors used are not ideal but have a ±2% manufacturing tolerance, what are the extreme output currents and resistances that can result?

You suggest? What should be done if the requirement is 10.00 V and 3.00 kΩ while still using the original 4.7-kΩ and 10-kΩ resistors?

A designer searches for a simple circuit to provide one-third of a signal current I to a load resistance R. Suggest a solution using one resistor. What must its value be? What is the input resistance of the resulting current divider? For a particular value R, the designer discovers that the otherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?

A two-resistor voltage divider employing a 3.3-kΩ and 1.7 kΩ load resistance of exactly 3.33 kΩ is also required, what do you suggest? What must its value be?

Two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?

A designer searches for a simple circuit to provide one-third of a signal current to a load resistance. Suggest a solution using one resistor. What must its value be? What is the input resistance of the resulting current divider? For a particular value R, the designer discovers that the otherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?

A designer searches for a simple circuit to provide one-third of a signal current to a load resistance. Suggest a solution using one resistor. What must its value be? What is the input resistance of the resulting current divider? For a particular value R, the designer discovers that the otherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?

A designer searches for a simple circuit to provide one-third of a signal current to a load resistance. Suggest a solution using one resistor. What must its value be? What is the input resistance of the resulting current divider? For a particular value R, the designer discovers that the otherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?

A designer searches for a simple circuit to provide one-third of a signal current to a load resistance. Suggest a solution using one resistor. What must its value be? What is the input resistance of the resulting current divider? For a particular value R, the designer discovers that the otherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?

A designer searches for a simple circuit to provide one-third of a signal current to a load resistance. Suggest a solution using one resistor. What must its value be? What is the input resistance of the resulting current divider? For a particular value R, the designer discovers that the otherwise-best-available resistor is 10% too high. Suggest two circuit topologies using one additional resistor that will solve this problem. What is the value of the resistor required? What is the input resistance of the current divider in each case?
SECTION 1.2: FREQUENCY SPECTRUM OF SIGNALS

1.28 For the following peak or rms values of some important sine waves, calculate the corresponding other value:
(a) 117 Vpeak, a household power voltage in North America
(b) 33.9 Vpeak, a somewhat common peak voltage in rectifier circuits
(c) 220 Vpeak, a household power voltage in parts of Europe
(d) 220 Vrms, a high-voltage transmission-line voltage in North America

1.29 Give expressions for the sine-wave voltage signals having:
(a) 10 Vpeak amplitude and 10 kHz frequency
(b) 120 Vrms and 60-Hz frequency
(c) 0.2 Vpeak-to-peak and 1800-cps frequency
(d) 100 Vrms peak and 1-ms period

1.30 Using the information provided by Eq. (1.2) in association with Eq. (1.1), characterize the signal represented by
\[v(t) = 5 \sin(2\pi 500t) + 7 \sin(2\pi 1000t) \]

1.31 Measurements taken of a square-wave signal using a frequency-selective voltmeter (called a spectrum analyzer) show its spectrum to contain adjacent components (spectral lines) at 98 kHz and 126 kHz of amplitudes 63 mV and 49 mV, respectively. For this signal, what would direct measurement of the fundamental show its frequency and amplitude to be?

1.32 What is the fundamental frequency of the highest-frequency square wave for which the fifth and some of the higher harmonics are directly heard? (Note that the psychoacoustic properties of human hearing allow a listener to sense the lower harmonics as well.)

1.33 Find the amplitude of a symmetrical square wave of period T that provides the same power as a sine wave of peak amplitude \(V \) and the same frequency. Does this result depend on equality of the frequencies of the two waveforms?

SECTION 1.3: ANALOG AND DIGITAL SIGNALS

1.34 Give the binary representation of the following decimal numbers: 0, 5, 6, 25, and 57.

1.35 Consider a 4-bit digital word \(h_3h_2h_1h_0 \), in a format called signed-magnitude, in which the most-significant bit, \(h_3 \), is interpreted as a sign bit—0 for positive and 1 for negative values. List the values that can be represented by this scheme. What is peculiar about the representation of zero? For a particular analog-to-digital converter (ADC), each

change in \(i_0 \) corresponds to a 0.5-V change in the analog input. What is the full range of the analog signal that can be represented? What signal magnitude digital code results for \(V = \frac{1}{2} \text{FS} \) for \(\frac{3}{2} \text{FS} \)? For \(-rac{1}{2} \text{FS} \) when \(V = -rac{1}{2} \text{FS} \)?

1.40 An amplifier operating from \(\pm 5 \) V supplies provides a 2.2 Vpeak sine wave across a 100-kQ load when provided with a 0.2-Vpeak input from which 1.0 mAF is drawn. What is the actual resolution of the converter.

1.41 An amplifier using balanced power supplies is known to saturate for signals extending within 1.2 V of either supply. For linear operation, its gain is 500 V/V. What is the peak value of the largest undistorted sine wave output available, with input needed, with \(\pm 5 \) V supplies? With \(\pm 10 \) V supplies?

1.42 Synchronously saturated amplifiers, operating in the so-called clipping mode, can be used to convert sine waves to pseudo-square waves. For an amplifier with a small-signal gain of 1000 and clipping levels of 25 V, what peak value of input sinusoid is needed to produce an output whose extremes are just at the edge of clipping? Clipped 90% of the time?

1.43 A particular amplifier operating from a single supply exhibits clipped peaks for signals intended to extend above 8 V and below 1.5 V. What is the peak value of the largest possible undistorted sine wave when this amplifier is biased at +4.5 V? At what bias point is the largest undistorted sine wave available?

1.44 An amplifier designed using a single metal-oxide-semiconductor (MOS) transistor has the transfer characteristic

\[V_0 = 10 \mu V, i_0 = 10 \mu A, v_{IN} = 2V, R_L = 10 \Omega \]

1.45 An amplifier designed using a single metal-oxide-semiconductor (MOS) transistor has the transfer characteristic

\[V_0 = 2V, i_0 = 20 \mu A, v_{IN} = 2V, R_L = 10 \Omega \]

1.46 An amplifier designed using a single metal-oxide-semiconductor (MOS) transistor has the transfer characteristic

\[V_0 = 5V, i_0 = 50 \mu A, v_{IN} = 2V, R_L = 10 \Omega \]

1.47 An amplifier designed using a single metal-oxide-semiconductor (MOS) transistor has the transfer characteristic

\[V_0 = 10 V, i_0 = 100 \mu A, v_{IN} = 2V, R_L = 10 \Omega \]

1.48 An amplifier designed using a single metal-oxide-semiconductor (MOS) transistor has the transfer characteristic

\[V_0 = 15 V, i_0 = 200 \mu A, v_{IN} = 2V, R_L = 10 \Omega \]

1.49 An amplifier designed using a single metal-oxide-semiconductor (MOS) transistor has the transfer characteristic

\[V_0 = 20 V, i_0 = 500 \mu A, v_{IN} = 2V, R_L = 10 \Omega \]
(b) Bias the amplifier to obtain a dc output voltage of 5 V. What value of input dc voltage \(V_i \) is required?
(c) Calculate the value of the small-signal voltage gain at the bias point.
(d) If a sinusoidal input signal is superimposed on the dc bias voltage \(V_b \), what is \(V_{in} = V_b + V_i \) or

if the resulting \(v_i \) is non-sinusoidal. Using the trigonometric identity \(\cos \beta = \frac{x}{y} \) express \(v_i \) as the sum of a dc component, a component with frequency \(\omega \), and a sinusoidal component with frequency \(2 \omega \). The latter component is undesirable and is a result of the non-linear transfer characteristic of the amplifier. If it is required to limit the ratio of the second-harmonic component to the fundamental component to 1%, what is the corresponding upper limit on \(V_i \)? What output amplitude results?

SECTION 1.5: CIRCUIT MODELS

1.45 Consider the voltage-amplifier circuit model shown in Fig. 1.17(b), in which \(A_{in} = 10 \) V/\(V \) under the following conditions:

(a) \(R_L = R_0 \), \(R_i = R_{in} \), \(R_{in} = R_S \), \(R_S = \infty \).
(b) \(R_L = R_0 \), \(R_i = R_{in} \), \(R_{in} = R_S \), \(R_S = \infty \).
(c) \(R_L = R_0, R_i = R_{in} \), \(R_{in} = R_S \), \(R_S = \infty \).

Calculate the overall voltage gain \(v_{in} / v_i \) for each case, expressed both directly and in dB.

1.46 An amplifier with 40 dB of small-signal open-circuit voltage gain as an input resistance of 1 k\(\Omega \), and an output resistance of 10 k\(\Omega \) drives a load of 10 k\(\Omega \). What voltage and power gains (expressed in dB) would you expect with the load connected? If the amplifier has a peak output-current limitation of 100 mA, what is the rms value of the largest sine-wave input for which an undistorted output is possible? What is the corresponding output power available?

1.47 A 10 mV signal source having an internal resistance of 100 k\(\Omega \) is connected to an amplifier for which the input resistance is 10 k\(\Omega \), the open-circuit voltage gain is 1000 V/\(V \), and the output resistance is 1 k\(\Omega \). The amplifier is connected in turn to a 100 k\(\Omega \) load. What overall voltage gain results as measured from the source internal voltage to the load? Where did all the gain go? What would the gain be if the source was driven from a signal source having a 10 mV peak amplitude and a source resistance of 10 k\(\Omega \) to supply a peak output of 5 V across a 1 k\(\Omega \) load?

1.48 A buffer amplifier with a gain of 1 V/\(V \) has an input resistance of 1 M\(\Omega \) and an output resistance of 10 k\(\Omega \). It is connected between a 1 V, 100 m\(\Omega \) source and a 10 k\(\Omega \) load. What load voltage results? What are the corresponding voltage, current, and power gains expressed in dB?

1.49 Consider the cascade amplifier of Example 1.3. Find the overall voltage gain \(v_{in} / v_i \) obtained when the first and second-stage stages are interchanged. Compare this value with the result in Example 1.3, and comment.

1.50 You are given two amplifiers, A and B, to connect in cascade between a 10-mV, 10-k\(\Omega \) source and a 100-k\(\Omega \) load. The amplifiers have voltage gain, input resistance, and output resistance as follows: For A, 100 V/\(V \), 10 k\(\Omega \), 10 k\(\Omega \), respectively; for B, 1 V/\(V \), 100 k\(\Omega \), 100 k\(\Omega \), respectively. Your problem is to decide how the amplifiers should be connected. To proceed, evaluate the two possible connections between source S and load L, respectively. For each of these, calculate the overall gain. Which arrangement is best?

1.51 A designer has available voltage amplifiers with an input resistance of 10 k\(\Omega \), an output resistance of 1 k\(\Omega \), and an open-circuit voltage gain of 10. The signal source has a 10 k\(\Omega \) resistance and provides a 10 mV rms signal, and it is required to provide a signal of at least 2 V rms to a 1 M\(\Omega \) load. How many amplifier stages are required? What is the output voltage actually obtained?

1.52 Design an amplifier that provides 0.5 W of signal power to a 100-k\(\Omega \) load. The amplifiers must be connected in cascade between a 10-k\(\Omega \) source and a 100-k\(\Omega \) load resistance. How many amplifier stages are required? What is the output voltage actually obtained?

1.53 A voltage amplifier with an input resistance of 100 k\(\Omega \) and an output resistance of 1 k\(\Omega \) is to be connected between a 100-k\(\Omega \) source with an open-circuit voltage of 5 V. What is the largest output voltage to 5 V that the amplifier can produce if the output resistance is 1 k\(\Omega \)? What is the corresponding lower limit on the load resistance allowed?

1.54 A voltage amplifier with an input resistance of 1 k\(\Omega \), an output resistance of 200 k\(\Omega \), and a gain of 1000 V/\(V \) is connected to a 100-k\(\Omega \) source with an open-circuit voltage of 10 mV and a 100-k\(\Omega \) load. For this situation:

(a) What output voltage results?
(b) What is the voltage gain from source to load?
(c) What is the voltage gain from the amplifier input to the load?
(d) If the output voltage across the load is twice that needed and there are signs of internal amplifier overload, suggest the arrangements that would cause minimum disruption to an operating circuit.

1.55 A current amplifier for which \(R_l = 1 \) k\(\Omega \), \(R_i = 10 \) k\(\Omega \), and \(A_i = 100 \) A/\(A \) is to be connected between a 10-mV source with a resistance of 100 k\(\Omega \) and a load of 1 k\(\Omega \). What are the values of current gain, voltage gain, and power gain expressed directly and in dB?

1.56 A transconductance amplifier with \(R_e = 2 \) k\(\Omega \), \(G_m = 40 \) mS, and \(R_i = 20 \) k\(\Omega \) is fed with a voltage source having a source resistance of 2 k\(\Omega \) and is loaded with a 1-k\(\Omega \) resistance. Find the output voltage realized.

1.57 A designer is required to provide, across a 10-k\(\Omega \) load, the weighted sum, \(v_e = 10 v_i + 20 v_i \), of input signals \(v_i \) and \(v_i \), each having a source resistance of 10 k\(\Omega \). She has a number of transconductance amplifiers for which the input and output resistances are both 10 k\(\Omega \), and \(G_m = 20 \) mS, together with a selection of suitable resistors. Sketch an appropriate amplifier topology with additional resistors selected to provide the desired result.

1.58 Figures 1.53 to 1.58 show a transconductance amplifier whose output is fed back to its input. Find the input resistance \(R_{in} \), the resulting one-port network. (Hint: Apply a test voltage \(v_e \) between the two input terminals, and find the current \(i_v \) drawn from the source. Then, \(R_{in} = v_e / i_v \).)
1.63 For the circuit in Fig. 1.63, show that
\[\frac{v_o}{v_i} = \frac{-DB}{RL + (D+1)R_e} \]
and
\[v_o = \frac{R_o}{R_L + \left(\frac{R}{R_L + 1}\right)} \]

FIGURE P1.63

SECTION 1.6: FREQUENCY RESPONSE OF AMPLIFIERS

1.66 Using the voltage-divider rule, derive the transfer functions \(T(s) = V_o(s)/V_i(s) \) of the circuits shown in Fig. 1.22, and show that the transfer functions are of the form given at the top of Table 1.2.

1.67 Figure P1.67 shows a signal source connected to the input of an amplifier. Here, \(R_e \) is the source resistance, and \(R_i \) and \(C_i \) are the input resistance and input capacitance, respectively, of the amplifier. Derive an expression for \(V_o(s)/V_i(s) \), and show that it is of the low-pass STC type. Find the 3-dB frequency for the case \(R_e = 20 \text{k} \Omega, \ R_i = 80 \text{k} \Omega, \ C_i = 5 \text{pF} \).

FIGURE P1.67

1.68 For the circuit shown in Fig. 1.68, find the transfer function \(T(s) = V_o(s)/V_i(s) \), and arrange it in the appropriate standard form from Table 1.2. Is this a high-pass or a low-pass network? What is its transmission at very high frequencies? (Estimate this directly, as well as by letting \(s \to \infty \) in your expression for \(T(s) \).)

1.69 It is required to couple a voltage source \(V_i \) with a resistance \(R_i \) to a load \(R_L \) via a capacitor \(C \). Derive an expression for the transfer function from source to load (i.e., \(V_L/V_i \)), and show that it is of the high-pass STC type. For \(R_i = 5 \text{k} \Omega \) and \(R_L = 20 \text{k} \Omega \), find \(R_i \) and \(C \) such that the smallest capacitive reactance that will result in a 3-dB frequency no greater than 10 Hz.

FIGURE P1.68

FIGURE P1.69

1.70 Measurement of the frequency response of an amplifier yields the data in the following table:

| Frequency (Hz) | \(|T(j\omega)| \)dB |
|---------------|---------------------|
| 10 | 40 |
| 100 | 40 |
| 1000 | 37 |
| 10k | 20 |

Provide plausible approximate values for the missing entries. Also, sketch and clearly label the magnitude frequency response (Bode plot) of this amplifier.

1.71 Measurement of the frequency response of an amplifier yields the data in the following table:

| Frequency (Hz) | \(|T(j\omega)| \)dB |
|---------------|---------------------|
| 10 | 20 |
| 100 | 40 |
| 1000 | 37 |
| 10k | 20 |

Provide approximate plausible values for the missing table entries. Also, sketch and clearly label the magnitude frequency response (Bode plot) of this amplifier.

1.72 The unity-gain voltage amplifiers in the circuit of Fig. P1.72 have infinite input resistances and zero output resistances and thus function as perfect buffers. Convince yourself that the overall gain \(V_o/V_i \) will drop by 3 dB below the value at dc at the frequency for which the gain of each RC circuit is 1.0 dB down. What is that frequency in terms of \(CR \)?

1.73 An internal node of a high-frequency amplifier whose Thévenin-equivalent node resistance is 100 k\(\Omega \) is accidentally shorted to ground by a capacitor (i.e., the node is connected to ground through a capacitor) through a manufacturing error. If the measured 3-dB bandwidth of the amplifier is reduced from the expected 6 MHz to 120 kHz, estimate the value of the shunting capacitor. If the original cutoff frequency can be approximated to a small parasitic capacitance at the same internal node (i.e., between the node and ground), what would you estimate it to be?
1.74 A designer wishing to lower the overall upper 3-dB frequency of a three-stage amplifier to 10 kHz considers shunting one of its nodes: Node A, between the output of the first stage and the input of the second stage, and Node B, between the output of the second stage and the input of the third stage, to ground with a small capacitor. While measuring the overall frequency response of the amplifier, she notices a capacitor of 1 nF, first to node A and then to node B, lowering the 3-dB frequency from 2 MHz to 150 kHz and 15 kHz, respectively. If she knew that each amplifier stage has an input resistance of 100 kΩ, what output resistance must she design the driving stage to have at node A? At node B? What capacitor value should she connect to which node to solve her design problem most economically?

1.75 An amplifier with an input resistance of 100 kΩ and an output resistance of 1 kΩ is to be capacitor-coupled to a 10-kΩ source and a 1-kΩ load. Available capacitors have values only of the form 1 × 10⁻ⁿ F. What are the values of the smallest capacitors needed to ensure that the corner frequency associated with each is less than 100 kHz? What actual corner frequencies result? For the situation in which the basic amplifier has an open-circuit voltage gain (Aᵥ) of 100 V/V, find an expression for T(s) = Vₒ(s)/Vᵢ(s).

1.76 A voltage amplifier has the transfer function

\[Aᵥ = \frac{100}{(1 + sR)(1 + 10^4 s^2)} \]

Using the Bode plots for low-pass and high-pass STC networks (Fig. 1.7), sketch a Bode plot for Aᵥ. Give approximate values for the gain magnitude at f = 1 kHz, 10 kHz, 100 kHz, 1 MHz, and 10 MHz. Find the bandwidth of the amplifier (defined as the frequency range over which the gain remains within 3 dB of the maximum value). Provide a Bode magnitude plot for \[T(s) = \frac{Vₒ(s)}{Vᵢ(s)} \]. What is the bandwidth between 3-dB cutoff points?

1.77 For the circuit shown in Fig. P1.77 first, evaluate which the gain remains within 3 dB of the maximum value). Provide the overall frequency response of the amplifier, she notices a capacitor of 1 nF, first to node A and then to node B, lowering the 3-dB frequency from 2 MHz to 150 kHz and 15 kHz, respectively. If she knew that each amplifier stage has an input resistance of 100 kΩ, what output resistance must she design the driving stage to have at node A? At node B? What capacitor value should she connect to which node to solve her design problem most economically?

1.78 A transconductance amplifier having the equivalent circuit shown in Table 1.1 is fed with a voltage source \(Vᵢ \) having a source resistance \(Rᵢ \) and its output is connected to a load consisting of a resistance \(Rₒ \) in parallel with a capacitance \(Cₒ \). For given values of \(Rᵢ \), \(Rₒ \), and \(Cₒ \) it is required to specify the values of the amplifier parameters \(Rᵢ \), \(Gₒ \), and \(Rₒ \) to meet the following design constraints:

(a) At most, \(3\% \) of the input signal is lost in coupling the signal source to the amplifier (i.e., \(Vₒ ≥ (1 - (1/100))Vᵢ \)).
(b) The 3-dB frequency of the amplifier is equal to or greater than a specified value \(fₛ \).
(c) The dc gain \(Vₒ/Vᵢ \) is equal to or greater than a specified value \(Aₒ \).

Show that these constraints can be met by selecting

\[\frac{Vₒ}{Vᵢ} = \frac{Gₒ}{Rₒ} = \frac{Gₒ}{Rᵢ} \]

Find \(Rᵢ \), \(Rₒ \), and \(Gₒ \) for \(Rₒ = 10 kΩ \), \(\alpha = 29\% \), \(Aₒ = 80 \). \(Rᵢ = 10 kΩ \), \(Cₒ = 10 nF \), and \(fₛ = 3 \) MHz.

1.79 Use the voltage-divider rule to find the transfer function \(Vₒ(s)/Vᵢ(s) \) of the circuit in Fig. P1.79. Show that the transfer function can be made independent of frequency if the condition \(CₒRₒ = CᵢRᵢ \) applies. Under this condition the circuit is called a compensated attenuator and is frequently employed in the design of cascades of probes. Find the transfer function of the compensated attenuator in terms of \(Rᵢ \) and \(Rₒ \).

SECTION 1.7: DIGITAL LOGIC INVERTERS

1.81 A particular logic inverter is specified to have a voltage gain \(Gₒ = 100 \), a phase shift of magnitude no greater than \(0.3° \) over the amplifier bandwidth, which extends from 100 Hz to 1 kHz. It has been found that the gain fall-off at the low-frequency end is determined by the behavior of a high-pass STC circuit and that at the high-frequency end it is determined by a low-pass STC circuit. What do you expect the corner frequencies of these two circuits to be? What is the bandwidth in decibels (relative to the maximum gain) at the two frequencies that define the amplifier bandwidth? What are the frequencies at which the drop in gain is 3 dB?

1.82 The voltage-transfer characteristic of a particular logic inverter is modeled by three straight-line segments in the manner shown in Fig. 1.29. If \(Vₒ = 1.5 \, V \), \(Vᵢ = 2.5 \, V \), \(Vₒ = 0.9 \, V \), and \(Vᵢ = 4 \, V \), find:

(a) The noise margins.
(b) The value of \(αₒ \) at which \(Vₒ = αₒ \) (known as the inverter threshold).
(c) The voltage gain in the transition region. The TTL logic gates and other building blocks are available commercially in small-scale integrated (SSI) and medium-scale-integrated (MSI) packages. Such packages can be assembled on printed-circuit boards to implement a digital system. The device data sheets provide the following specifications of the basic TTL inverter (of the 7400 type):

- Logic-0 input level required to ensure a logic-0 level at the output: MIN (minimum) 2 V
- Logic-0 input level required to ensure a logic-1 level at the output: MAX (maximum) 0.8 V
- Logic-0 output voltage: MIN 2.4 V, Typ (typical) 3.3 V
- Logic-0 output voltage: TTL 2.2 V, MAX 6.4 V
- Logic-level input supply current: Typ 5 mA, MAX 5 mA
- Logic-level supply current: Typ 1 mA, MAX 2 mA
- Propagation delay time to logic-0 level (typ): TTL 7 ns, MAX 15 ns
- Propagation delay time to logic-1 level (typ): TTL 11 ns, MAX 22 ns

(a) Find the worst-case values of the noise margins.
(b) Assuming that the inverter is in the 1-state 50% of the time and in the 0-state 50% of the time, find the average static power dissipation in a typical circuit. The power supply is 5 V.
(c) Assuming that the inverter draws a constant current \(Iₒ = 40 \, μA \) and is switched at a 1-MHz rate, use the formula in Eq. (1.28) to estimate the dynamic power dissipation.
(d) Find the propagation delay \(τₒ \).

1.85 Consider an inverter implemented as in Fig. 1.31(a). Let \(Vₒ = 5 \, V \), \(R = 2 \, kΩ \), \(Vᵢ = 0.1 \, V \), \(Rᵢ = 200 \, kΩ \), \(Vₒ = 1 \, V \), and \(Vᵢ = 2 \, V \).

(a) Find \(Vₒ \), \(Vᵢ \), \(NMₒ \), and \(NMᵢ \).
(b) The inverter is driving \(1 \) identical inverters. Each of these load inverters, or fan-out inverters as they are usually called, is specified to require an input current of 0.8 mA when the input voltage (of the fan-out inverter) is high and zero current when the input voltage is low. Noting that the input current of the fan-out inverters will have to be supplied through \(R \) of the driving inverter, find the resulting value of \(Vₒ \) and \(NMₒ \) as a function of the number of fan-out inverters \(N \). Hence find the maximum \(Vₒ \) which the inverter is still providing an \(NMₒ \) value at least equal to its \(NMᵢ \).
(c) Assuming that the static power dissipation in the inverter in the two cases: (i) the output is low, and (ii) the output is high and driving the maximum fan-out found in (b).

1.86 A logic inverter is implemented using the arrangement of Fig. 1.32 with switches having \(R = 1 \, kΩ \), \(Vₒ = 3 \, V \), and \(Vᵢ = Vₒ = Vᵢ = 5 \, V/2 \).

(a) Find \(Vₒ \), \(Vᵢ \), \(NMₒ \), and \(NMᵢ \).
(b) If \(Vₒ \) rises instantaneously from 0 V to +5 V and assuming the switches operate instantaneously—i.e., that \(t = 0 \), the IC opens, and the PO closes—find an expression for \(Vₒ(t) \) assuming that a capacitance \(C \) is connected between the output node and ground. Hence find the high-to-low propagation delay \(τₒ \) for \(C = 1 \, pF \). Also find \(Vₒ \) (see Fig. 1.35).
(c) Repeat (h) for v_L falling instantaneously from +5 V to 0 V. Again assume that PD opens and PU closes instantaneously. Find an expression for $v_{OL}(t)$, and hence find τ_{OL}.

1.87 For the current-mode inverter shown in Fig. 1.33, let $V_{CC} = 5$ V, $I_{OL} = 1$ mA, and $R_P = R_N = 2$ kΩ. Find V_{OL} and V_{OH}.

1.88 Consider a logic inverter of the type shown in Fig. 1.32. Let $V_{CC} = 5$ V, and let a 10-pF capacitance be connected between the output node and ground. If the inverter is switched at the rate of 100 MHz, use the expression in Eq. (1.28) to estimate the dynamic power dissipation. What is the average current drawn from the dc power supply?

9**1.89 We wish to investigate the design of the inverter shown in Fig. 1.31(a). In particular we wish to determine the value for R. Selection of a suitable value for R is determined by two considerations: propagation delay, and power dissipation.

(a) Show that if v_L changes instantaneously from high to low and assuming that the switch opens instantaneously, the output voltage obtained across a load capacitance C will be

$$v_{OL}(t) = V_{OL} - (V_{OL} - V_{OH})e^{-t/\tau_L}$$

where $\tau_L = C R$. Hence show that the time required for $v_{OL}(t)$ to reach the 50% point, i.e. $(V_{OH} + V_{OL})/2$, is $\tau_{OL} = 0.693C R$.

(b) Following a steady state, if v_L goes high and assuming that the switch closes immediately and has the equivalent circuit in Fig. 1.31, show that the output falls exponentially according to

$$v_{OL}(t) = V_{OL} + (V_{OL} - V_{OH})e^{-t/\tau_{OL}}$$

where $\tau_L = C(R_P + R_N)$. Hence show that the time for $v_{OL}(t)$ to reach the 50% point is $\tau_{OL} = 0.693C R_{OL}$.

(c) Use the results of (a) and (b) to obtain the inverter propagation delay, defined as the average of τ_{PLH} and τ_{PHL}, as

$$\tau_p = 0.35C R$$

(d) Assuming that V_{OL} of the switch is much smaller than V_{CC}, show that for an inverter that spends half the time in the 0 state and half the time in the 1 state, the average static power dissipation is

$$F = V_{OL}^2 / 2 R$$

(e) Now that the trade-offs in selecting R should be obvious, show that for $V_{CC} = 5$ V and $C = 10$ pf, to obtain a propagation delay no greater than 10 ns and a power dissipation no greater than 10 mW, R should be in a specific range. Find that range and select an appropriate value for R. Then determine the resulting values of τ_p and P.

Operational Amplifiers

Introduction

Having learned basic amplifier concepts and terminology, we are now ready to undertake the study of a circuit building block of universal importance: the operational amplifier (op amp). Op amps have been in use for a long time, their initial applications being primarily in the areas of analog computation and sophisticated instrumentation. Early op amps were constructed from discrete components (vacuum tubes and then transistors, and resistors), and their cost was prohibitively high (tens of dollars). In the mid-1960s the first integrated-circuit (IC) op amp was produced. This unit (the μA 709) was made up of a relatively large number of transistors and resistors all on the same silicon chip. Although its characteristics were poor (by today’s standards) and its price was still quite high, its appearance signaled a new era in electronic circuit design. Electronics engineers started using op amps in large quantities, which caused their price to drop dramatically. They also demanded better-quality op amps. Semiconductor manufacturers responded quickly, and within the span of a few years, high-quality op amps became available at extremely low prices (tens of cents) from a large number of suppliers.

One of the reasons for the popularity of the op amp is its versatility. As we will shortly see, one can do almost anything with op amps! Equally important is the fact that the IC op amp has characteristics that closely approach the assumed ideal. This implies that it is quite
easy to design circuits using the IC op amp. Also, op-amp circuits work at performance levels that are quite close to those predicted theoretically. It is for this reason that we are studying op amps at this early stage. It is expected that by the end of this chapter the reader should be able to design nontrivial circuits successfully using op amps.

As already implied, an IC op amp is made up of a large number (tens) of transistors, resistors, and (usually) one capacitor connected in a rather complex circuit. Since we have not yet studied transistor circuits, the circuit inside the op amp will not be discussed in this chapter. Rather, we will treat the op amp as a circuit building block and study its terminal characteristics and its applications. This approach is quite satisfactory in many op-amp applications. Nevertheless, for the more difficult and demanding applications it is quite useful to know what is inside the op-amp package. This topic will be studied in Chapter 9. Finally, it should be mentioned that more advanced applications of op amps will appear in later chapters.

2.1 THE IDEAL OP AMP

2.1.1 The Op-Amp Terminals

From a signal point-of-view the op amp has three terminals: two input terminals and one output terminal. Figure 2.1 shows the symbol we shall use to represent the op amp. Terminals 1 and 2 are input terminals, and terminal 3 is the output terminal. As explained in Section 1.4, amplifiers require dc power to operate. Most IC op amps require two dc power supplies, as shown in Fig. 2.2. Two terminals, 4 and 5, are brought out of the op-amp package and connected to a positive voltage V_{cc} and a negative voltage $-V_{ee}$, respectively. In Fig. 2.2(b) EE and a negative voltage V_{cc}, connected to a positive voltage V_{ee}. From a signal point-of-view the op amp has three terminals: two input terminals and one output terminal. As explained in Section 1.4, amplifiers require dc power to operate. Most IC op amps require two dc power supplies, as shown in Fig. 2.2. Two terminals, 4 and 5, are brought out of the op-amp package and connected to a positive voltage V_{cc} and a negative voltage $-V_{ee}$, respectively. In Fig. 2.2(b) we explicitly show the two dc power supplies as batteries with a common ground. It is interesting to note that the reference grounding point in op-amp circuits is just the common terminal of the two power supplies; that is, no terminal of the op-amp package is physically connected to ground. In what follows we will not explicitly show the op-amp power supplies.

In addition to the three signal terminals and the two power-supply terminals, an op amp may have other terminals for specific purposes. These other terminals can include terminals for frequency compensation and terminals for offset nulling; both functions will be explained in later sections.

2.1.2 Function and Characteristics of the Ideal Op Amp

We now consider the circuit function of the op amp. The op amp is designed to sense the difference between the voltage signals applied at its two input terminals (i.e., the quantity $v_1 - v_2$), multiply this by a number A, and cause the resulting voltage $A(v_1 - v_2)$ to appear at output terminal 3. Here it should be emphasized that when we talk about the voltage at a terminal we mean the voltage between that terminal and ground; thus v_1 means the voltage applied between terminal 1 and ground.

The ideal op amp is not supposed to draw any input current; that is, the signal current into terminal 1 and the signal current into terminal 2 are both zero. In other words, the input impedance of an ideal op amp is supposed to be infinite.

How about the output terminal 3? This terminal is supposed to act as the output terminal of an ideal voltage source. That is, the voltage between terminal 3 and ground will always be equal to $A(v_1 - v_2)$, independent of the current that may be drawn from terminal 3 into a load impedance. In other words, the output impedance of an ideal op amp is supposed to be zero.

Putting together all of the above, we arrive at the equivalent circuit model shown in Fig. 2.3. Note that the output is in phase with (has the same sign as) v_1 and is out of phase with (has the opposite sign of) v_2. For this reason, input terminal 1 is called the inverting input terminal and is distinguished by a "−" sign, while input terminal 2 is called the non-inverting input terminal and is distinguished by a "+" sign.

As can be seen from the above description, the op amp responds only to the difference signal $v_1 - v_2$ and hence ignores any signal common to both inputs. That is, if $v_1 = v_2 = 1$ V, then the output will—ideally—be zero. We call this property common-mode rejection, and we conclude that an ideal op amp has zero common-mode gain or, equivalently, infinite common-mode rejection. We will have more to say about this point later. For the time being note that the op amp is a differential-input single-ended-output amplifier, with the latter term referring to the fact that the output appears between terminal 3 and...
CHAPTER 2 OPERATIONAL AMPLIFIERS

FIGURE 2.3 Equivalent circuit of the ideal op amp.

TABLE 2.1 Characteristics of the Ideal Op Amp

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Infinite input impedance</td>
<td></td>
</tr>
<tr>
<td>2. Zero output impedance</td>
<td></td>
</tr>
<tr>
<td>3. Zero common-mode gain or, equivalently, infinite common-mode rejection</td>
<td></td>
</tr>
<tr>
<td>4. Infinite open-loop gain A</td>
<td></td>
</tr>
<tr>
<td>5. Infinite bandwidth</td>
<td></td>
</tr>
</tbody>
</table>

An important characteristic of op amps is that they are direct-coupled or dc amplifiers, where dc stands for direct-coupled (it could equally well stand for direct current, since a direct-coupled amplifier is one that amplifies signals whose frequency is as low as zero).

The fact that op amps are direct-coupled devices will allow us to use them in many important applications. Unfortunately, though, the direct-coupling property can cause some serious practical problems, as will be discussed in a later section.

How about bandwidth? The ideal op amp has a gain A that remains constant down to zero frequency and up to infinite frequency. That is, ideal op amps will amplify signals of any frequency with equal gain, and are thus said to have infinite bandwidth.

We have discussed all of the properties of the ideal op amp except for one, which in fact is the most important. This has to do with the value of A. The ideal op amp should have a gain A whose value is very large and ideally infinite. One may justifiably ask: If the gain A is infinite, how are we going to use the op amp? The answer is very simple: In almost all applications the op amp will not be used alone in an open-loop configuration. Rather, we will use other components to apply feedback to close the loop around the op amp, as will be illustrated in detail in Section 2.2.

For future reference, Table 2.1 lists the characteristics of the ideal op amp.

Some op amps are designed to have differential outputs. This topic will be discussed in Chapter 9. In the current chapter we confine ourselves to single-ended-output op amps, which constitute the vast majority of commercially available op amps.

2.1.3 Differential and Common-Mode Signals

The differential input signal v_{d} is simply the difference between the two input signals v_{1} and v_{2}; that is,

$$v_{d} = v_{2} - v_{1} \tag{2.1}$$

The common-mode input signal v_{cm} is the average of the two input signals v_{1} and v_{2}; namely,

$$v_{cm} = \frac{1}{2} (v_{1} + v_{2}) \tag{2.2}$$

Equations (2.1) and (2.2) can be used to express the input signals v_{1} and v_{2} in terms of their differential and common-mode components as follows:

$$v_{1} = v_{cm} - \frac{v_{d}}{2} \tag{2.3}$$

and

$$v_{2} = v_{cm} + \frac{v_{d}}{2} \tag{2.4}$$

These equations can in turn lead to the pictorial representation in Fig. 2.4.

FIGURE 2.4 Representation of the signal sources v_{1} and v_{2} in terms of their differential and common-mode components.

EXERCISES

2.2 Consider an op amp that is ideal except that its open-loop gain $A = 10^6$. The op amp is used in a feedback circuit, and the voltages appearing at two of its three signal terminals are measured. In each of the following cases, use the measured voltages to find the expected value of the voltage at the third terminal. Also, give the differential and common-mode input signals in each case.

(a) $v_{1} = 0.002 \text{ V}$, $v_{2} = 2 \text{ V}$; (b) $v_{1} = 5.01 \text{ V}$, $v_{2} = -10 \text{ V}$; (c) $v_{1} = 1.002 \text{ V}$, $v_{2} = -0.998 \text{ V}$; (d) $v_{1} = -3.6 \text{ V}$, $v_{2} = 3.6 \text{ V}$.

Ans. (a) $v_{3} = 0.004 \text{ V}$; (b) $v_{3} = 5.005 \text{ V}$; (c) $v_{3} = 1 \text{ V}$; (d) $v_{3} = -3.6 \text{ V}$.
2.3 The internal circuit of a particular op amp can be modeled by the circuit shown in Fig. E2.3. Express \(i_1 \) as a function of \(v_1 \) and \(v_2 \). For the case \(G_C = 10 \text{ mA/V} \), \(R = 10 \text{ k}\Omega \), and \(\mu = 100 \), find the value of the open-loop gain \(A \).

\[v_1 = \frac{\mu V}{A}; A = 10,000 \text{ V/V or 80 dB} \]

Ans.

2.2 THE INVERTING CONFIGURATION

As mentioned above, op amps are not used alone; rather, the op amp is connected to passive components in a feedback circuit. There are two such basic circuit configurations employing an op amp and two resistors: the inverting configuration, which is studied in this section, and the noninverting configuration, which we shall study in the next section.

Figure 2.5 shows the inverting configuration. It consists of one op amp and two resistors \(R_1 \) and \(R_2 \). Resistor \(R_1 \) is connected from the output terminal of the op amp, terminal 3, back to the inverting or negative input terminal, terminal 1. We speak of \(R_2 \) as applying negative feedback; if \(R_2 \) were connected between terminals 3 and 2 we would have called this positive feedback. Note also that \(R_2 \) closes the loop around the op amp. In addition to adding \(R_2 \) we have grounded terminal 2 and connected a resistor \(R_1 \) between terminal 1 and an input signal source with a voltage \(v_1 \). The output of the overall circuit is taken at terminal 3 (i.e., between terminal 3 and ground). Terminal 3 is, of course, a convenient point to take the output, since the impedance level there is ideally zero. Thus the voltage \(v_0 \) will not depend on the value of the current that might be supplied to a load impedance connected between terminal 3 and ground.

2.2.1 The Closed-Loop Gain

We now wish to analyze the circuit in Fig. 2.5 to determine the closed-loop gain \(A \), defined as

\[G = \frac{v_0}{v_1} \]

We will do so assuming the op amp to be ideal. Figure 2.6(a) shows the equivalent circuit, and the analysis proceeds as follows: The gain \(A \) is very large (ideally infinite). If we assume that the circuit is "working" and producing a finite output voltage at terminal 3, then the voltage between the op amp input terminals should be negligibly small and ideally zero. Specifically, if we call the output voltage \(v_0 \), then, by definition,

\[v_0 - v_1 = 0 \]

It follows that the voltage at the inverting input terminal \(v_x \) is given by \(v_x = v_2 \). That is, because the gain \(A \) approaches infinity, the voltage \(v_1 \) approaches and ideally equals \(v_2 \). We speak of this as the two input terminals "tracking each other in potential." We also speak of a "virtual short circuit" that exists between the two input terminals. Here the word virtual should be emphasized, and one should not make the mistake of physically shorting terminals 1 and 2 together while analyzing a circuit. A virtual short circuit means that whatever voltage is at 2 will automatically appear at 1 because of the infinite gain \(A \). But terminal 2 happens to be connected to ground; thus \(v_2 = 0 \) and \(v_1 = 0 \). We speak of terminal 1 as being a virtual ground—that is, having zero voltage but not physically connected to ground.

Now that we have determined \(v_x \), we are in a position to apply Ohm's law and find the current \(i_x \) through \(R_1 \) (see Fig. 2.6) as follows:

\[i_x = \frac{v_2 - v_x}{R_1} = \frac{v_1}{R_1} \]

Where will this current go? It cannot go into the op amp, since the ideal op amp has an infinite input impedance and hence draws zero current. It follows that \(i_x \) will have to flow through \(R_2 \) to the low-impedance terminal 3. We can then apply Ohm's law to \(R_2 \) and determine \(v_0 \); that is,

\[v_0 = v_1 - i_x R_2 \]

Thus,

\[v_0 = \frac{R_2}{R_1} v_1 \]
which is the required closed-loop gain. Figure 2.6(b) illustrates these steps and indicates by the circled numbers the order in which the analysis is performed.

We thus see that the closed-loop gain is simply the ratio of the two resistances R_2 and R_x.

The minus sign means that the closed-loop amplifier provides signal inversion. Thus if $R_2/R_1 = 10$ and we apply at the input a sine-wave signal of 1 V peak-to-peak, then the output v_0 will be a sine wave of 10 V peak-to-peak and phase-shifted 180° with respect to the input sine wave. Because of the minus sign associated with the closed-loop gain, this configuration is called the inverting configuration.

The fact that the closed-loop gain depends entirely on external passive components (resistors R_1 and R_2) is very significant. It means that we can make the closed-loop gain as accurate as we want by selecting passive components of appropriate accuracy. It also means that the closed-loop gain is (ideally) independent of the op-amp gain. This is a dramatic illustration of negative feedback: We started out with an amplifier having very large gain A, and through applying negative feedback we have obtained a closed-loop gain R_2/R_1 that is much smaller than A but is stable and predictable. That is, we are trading gain for accuracy.

2.2.2 Effect of Finite Open-Loop Gain

The points just made are more clearly illustrated by deriving an expression for the closed-loop gain when the op-amp open-loop gain A is finite. Figure 2.7 shows the analysis. If we denote the output voltage v_0, then the voltage between the two input terminals of the op amp will be v_0/A. Since the positive input terminal is grounded, the voltage at the negative input terminal must be $-v_0/A$. The current i_1 through R_1 can now be found from

$$i_1 = \frac{v_i - (-v_0/A)}{R_1} = \frac{v_i + v_0/A}{R_1}$$

The infinite input impedance of the op amp forces the current i_1 to flow entirely through R_2. The output voltage v_0 can thus be determined from

$$v_0 = -\frac{v_1}{R_1},$$

Collecting terms, the closed-loop gain G is found as

$$G = \frac{v_0}{v_i} = -\frac{R_2/R_1}{1 + (1 + R_2/R_1)/A} \quad (2.5)$$

We note that as A approaches ∞, G approaches the ideal value of $-R_2/R_1$. Also, from Fig. 2.7 we see that as A approaches ∞, the voltage at the inverting input terminal approaches zero. This is the virtual-ground assumption we used in our earlier analysis when the op amp was assumed to be ideal. Finally, note that Eq. (2.5) in fact indicates that to minimize the dependence of the closed-loop gain G on the value of the open-loop gain A, we should make

$$1 + \frac{R_2}{R_1} \ll A$$
CHAPTER 2
OPERATIONAL AMPLIFIERS

EXAMPLE 2.2

Consider the inverting configuration with $R_x = 1 \text{k}\Omega$ and $R_2 = 100 \text{k}\Omega$.

(a) Find the closed-loop gain for the cases $A = 10^3, 10^4$, and 10^5. In each case determine the percentage error in the magnitude of G relative to the ideal value of R_2/R_1 (obtained with $A = \infty$). Also determine the voltage v_1 that appears at the inverting input terminal when $v_t = 0.1 \text{V}$.

(b) If the open-loop gain A changes from 100,000 to 50,000 (i.e., drops by 50%), what is the corresponding percentage change in the magnitude of the closed-loop gain G?

Solution

(a) Substituting the given values in Eq. (2.5), we obtain the values given in the following table where the percentage error ε is defined as

$$\varepsilon = \left[\frac{|G| - (R_2/R_1)}{(R_2/R_1)} \right] \times 100$$

The values of v_1 are obtained from $v_1 = -v_t/A = G v_t/A$ with $v_t = 0.1 \text{V}$.

| A | $|G|$ | ε (%) | v_1 (mV) |
|-------|-------|-------------------|------------|
| 10^3 | 90.83 | -0.176% | -0.08 mV |
| 10^4 | 99.00 | -0.100% | -0.03 mV |
| 10^5 | 99.90 | -0.010% | -0.00 mV |

(b) Using Eq. (2.5), we find that for $A = 50,000$, $|G| = 99.80$. Thus a -50% change in the open-loop gain results in a change of only ~0.1% in the closed-loop gain!

2.2.3 Input and Output Resistances

Assuming an ideal op amp with infinite open-loop gain, the input resistance of the closed-loop inverting amplifier of Fig. 2.5 is simply equal to R_x. This can be seen from Fig. 2.6(b), where

$$R_x = \frac{v_0}{i_x} = \frac{v_0}{v_t/R_1} = R_1$$

Now recall that in Section 1.5 we learned that the amplifier input resistance forms a voltage divider with the resistance of the source that feeds the amplifier. Thus, to avoid the loss of signal strength, voltage amplifiers are required to have high input resistance. In the case of the inverting configuration we are studying, to make R_x high we should select a high value for R_x.

However, if the required gain R_2/R_1 is also high, then R_x could become impractically large (e.g., greater than a few megaohms). We may conclude that the inverting configuration suffers from a low input resistance. A solution to this problem is discussed in Example 2.2 below.

Since the output of the inverting configuration is taken at the terminals of the ideal voltage source $A(v_0 - v_t)$ (see Fig. 2.6(a)), it follows that the output resistance of the closed-loop amplifier is zero.

 FIGURE 2.8 Circuit for Example 2.2. The circled numbers indicate the sequence of the steps in the analysis.

Solution

The analysis begins at the inverting input terminal of the op amp, where the voltage is

$$v_1 = -\frac{v_0}{A} = -\frac{v_0}{A} = 0$$

Here we have assumed that the circuit is "working" and producing a finite output voltage v_0. Knowing v_1, we can determine the current i_1 as follows:

$$i_1 = \frac{v_1 - v_t}{R_1} = \frac{v_0 - 0}{R_1} = \frac{v_0}{R_1}$$

Since zero current flows into the inverting input terminal, all of i_1 will flow through R_2, and thus

$$i_2 = i_1 = \frac{v_2}{R_2}$$

Now we can determine the voltage at node x:

$$v_0 = v_1 + i_2 R_2 = 0 + \frac{v_0}{R_1} R_2 = \frac{R_2}{R_1} v_0$$

This in turn enables us to find the current i_3:

$$i_3 = \frac{v_0 - v_2}{R_3} = \frac{v_0}{R_3 R_2}$$
Next, a node equation at \(x \) yields \(i_2 \):

\[
i_2 = i_x - i_y = \frac{v_y}{R_1} - \frac{v_x}{R_3}
\]

Finally, we can determine \(i_x \) from

\[
v_y = v_x - i_x R_3
\]

Thus the voltage gain is given by

\[
\frac{v_y}{v_x} = -\frac{R_3}{R_1}\left(1 + \frac{R_2}{R_3}\right)
\]

which can be written in the form

\[
\frac{v_y}{v_x} = -\frac{R_3}{R_1}\left(1 + \frac{R_2}{R_3}\right)
\]

Now, since an input resistance of 1 M\(\Omega \) is required, we select \(R_1 = 1 \) M\(\Omega \). Then, with the limitation of using resistors no greater than 1 M\(\Omega \), the maximum value possible for the first factor in the gain expression is 1 and is obtained by selecting \(R_3 = 1 \) M\(\Omega \). To obtain a gain of -100, \(R_2 \) and \(R_3 \) must be selected so that the second factor in the gain expression is 100. If we select the maximum allowed (in this example) value of 1 M\(\Omega \) for \(R_3 \), then the required value of \(R_2 \) can be calculated to be 10.2 k\(\Omega \). Then this circuit utilizes three 1 M\(\Omega \) resistors and a 10.2-k\(\Omega \) resistor. In comparison, if the inverting configuration were used with \(R_3 = 1 \) M\(\Omega \), we would have required a feedback resistor of 100 M\(\Omega \), an impractically large value!

Before leaving this example it is insightful to enquire into the mechanism by which the circuit is able to realize a large voltage gain without using large resistances in the feedback path. Toward that end, observe that because of the virtual ground at the inverting input terminal of the op amp, \(R_2 \) and \(R_3 \) are in effect in parallel. Thus, by making \(R_3 \) lower than \(R_2 \) by, say, a factor \(k \) (i.e., \(R_3 = R_2/k \)) where \(k > 1 \), \(R_3 \) is forced to carry a current \(k \) times that in \(R_2 \). Thus, while \(i_2 = i_3 \), \(i_1 = i_2 \), and \(i_2 = (k + 1)i_1 \); it is the current multiplication by a factor of \(k + 1 \) that enables a large voltage drop to develop across \(R_3 \) and hence a large \(i_3 \) without using a large value for \(R_3 \). Notice also that the current through \(R_3 \) is independent of the value of \(R_2 \). It follows that the circuit can be used as a current amplifier as shown in Fig. 2.9.

2.2.4 An Important Application—The Weighted Summer

A very important application of the inverting configuration is the weighted-summer circuit shown in Fig. 2.10. Here we have a number of input signals \(v_1, v_2, \ldots, v_m \) each applied to a corresponding resistor \(R_1, R_2, \ldots, R_m \) which are connected to the inverting terminal of the op amp. From our previous discussion, the ideal op amp will have a virtual ground appearing at its negative input terminal. Ohm’s law then tells us that the currents \(i_1, i_2, \ldots, i_m \) are given by

\[
i_1 = \frac{v_1}{R_1} \quad i_2 = \frac{v_2}{R_2} \quad \ldots \quad i_m = \frac{v_m}{R_m}
\]
Chapter 2: Operational Amplifiers

Figure 2.10: A weighted summer.

All these currents sum together to produce the current \(i \), that is,

\[
i = i_1 + i_2 + \cdots + i_n \quad (2.6)
\]

will be forced to flow through \(R_f \) (since no current flows into the input terminals of an ideal op amp). The output voltage \(v_0 \) may now be determined by another application of Ohm's law,

\[
v_0 = 0 - i R_f = -i R_f
\]

Thus,

\[
v_0 = -\left(\frac{R_1}{R_f} v_1 + \frac{R_2}{R_f} v_2 + \cdots + \frac{R_n}{R_f} v_n \right) \quad (2.7)
\]

That is, the output voltage is a weighted sum of the input signals \(v_1, v_2, \ldots, v_n \). This circuit is therefore called a weighted summer. Note that each summing coefficient may be independently adjusted by adjusting the corresponding “feed-in” resistor (\(R_i \) to \(R_n \)). This nice property, which greatly simplifies circuit adjustment, is a direct consequence of the virtual ground that exists at the inverting op-amp terminal. As the reader will soon come to appreciate, virtual grounds are extremely “handy.” The weighted summer of Fig. 2.10 has the constraint that all the summing coefficients are of the same sign. The need occasionally arises for summing signals with opposite signs. Such a function can be implemented using two op amps as shown in Fig. 2.11. Assuming ideal op amps, it can be easily shown that the output voltage is given by

\[
v_0 = \left(\frac{R_1}{R_f} v_1 + \frac{R_2}{R_f} v_2 + \cdots + \frac{R_n}{R_f} v_n \right) \quad (2.8)
\]

Figure 2.11: A weighted summer capable of implementing summing coefficients of both signs.

Exercises

2.7: Design an inverting op-amp circuit to form the weighted sum \(v_o \) of two inputs \(v_i \) and \(v_m \). It is required that \(v_o = -v_i + v_m \). Choose values for \(R_1, R_2, \) and \(R_f \) so that for a maximum output voltage of \(10 \) \(V \) the current in the feedback resistor will not exceed \(1 \) \(mA \).

Ans. A possible choice: \(R_1 = 10 \) \(k\Omega \), \(R_2 = 2 \) \(k\Omega \), and \(R_f = 10 \) \(k\Omega \).

2.8: Use the idea presented in Fig. 2.11 to design a weighted summer that provides

\[
v_o = 2v_1 + v_2 - 3v_3
\]

Ans. A possible choice: \(R_1 = 5 \) \(k\Omega \), \(R_2 = 10 \) \(k\Omega \), \(R_3 = 10 \) \(k\Omega \), \(R_4 = 10 \) \(k\Omega \), \(R_f = 2.5 \) \(k\Omega \), \(R_c = 10 \) \(k\Omega \).

Section 2.3: The Noninverting Configuration

The second closed-loop configuration we shall study is shown in Fig. 2.12. Here the input signal \(v_i \) is applied directly to the positive input terminal of the op amp while one terminal of \(R_f \) is connected to ground.

2.3.1 The Closed-Loop Gain

Analysis of the noninverting circuit to determine its closed-loop gain (\(v_o/v_i \)) is illustrated in Fig. 2.13. Notice that the order of the steps in the analysis is indicated by circled numbers.

Figure 2.12: The noninverting configuration.

Figure 2.13: Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by the circled numbers.
Assuming that the op amp is ideal with infinite gain, a virtual short circuit exists between its two input terminals. Hence the difference input signal is

\[v_i = \frac{v_0}{A} = 0 \quad \text{for } A = \infty \]

Thus the voltage at the inverting input terminal will be equal to that at the noninverting input terminal, which is the applied voltage \(v_i \). The current through \(R_i \) can then be determined as \(v_i/R_i \). Because of the infinite input impedance of the op amp, this current will flow through \(R_o \) as shown in Fig. 2.13. Now the output voltage can be determined from

\[v_o = v_i + \left(\frac{v_o}{R_o} \right) \frac{R_i}{R_o} \]

which yields

\[v_o = 1 + \left(\frac{R_i}{R_o} \right) \]

Further insight into the operation of the noninverting configuration can be obtained by considering the following: Since the current into the op-amp inverting input is zero, the circuit composed of \(R_i \) and \(R_o \) acts in effect as a voltage divider feeding a fraction of the output voltage back to the inverting input terminal of the op amp; that is,

\[v_i = v_o \left(\frac{R_i}{R_i + R_o} \right) \]

Then the infinite op-amp gain and the resulting virtual short circuit between the two input terminals of the op-amp forces this voltage to be equal to that applied at the positive input terminal; thus

\[v_o = \frac{v_i}{R_i} (R_i + R_o) \]

which yields the gain expression given in Eq. (2.9).

This is an appropriate point to reflect further on the action of the negative feedback present in the noninverting circuit of Fig. 2.12. Let \(v_o \) increase. Such a change in \(v_o \) will cause \(v_i \) to increase, and \(v_i \) will correspondingly increase as a result of the high (ideally infinite) gain of the op amp. However, a fraction of the increase in \(v_i \) will be fed back to the inverting input terminal of the op amp through the \(R_o \) voltage divider. The result of this feedback will be to counteract the increase in \(v_o \), driving \(v_o \) back to zero, albeit at a higher value of \(v_i \) that corresponds to the increased value of \(v_o \). This degenerative action of negative feedback gives it the alternative name degenerative feedback. Finally, note that the argument above applies equally well if \(v_o \) decreases. A formal and detailed study of feedback is presented in Chapter 8.

2.3.2 Characteristics of the Noninverting Configuration

The gain of the noninverting configuration is positive—hence the name noninverting. The input impedance of this closed-loop amplifier is ideally infinite, since no current flows into the positive input terminal of the op amp. The output of the noninverting amplifier is taken at the terminals of the ideal voltage source \(A(v_o - v_i) \) (see the op-amp equivalent circuit in Fig. 2.3), thus the output resistance of the noninverting configuration is zero.

2.3.3 Effect of Finite Open-Loop Gain

As we have done for the inverting configuration, we now consider the effect of the finite op-amp open-loop gain \(A \) on the gain of the noninverting configuration. Assuming the op amp to be ideal except for having a finite open-loop gain \(A \), it can be shown that the closed-loop gain of the noninverting amplifier circuit of Fig. 2.12 is given by

\[G = \frac{v_o}{v_i} = -\frac{1 + R_o/R_i}{1 + (R_o/R_i)} \]

Observe that the denominator is identical to that for the case of the inverting configuration (Eq. 2.5). This is no coincidence; it is a result of the fact that both the inverting and the noninverting configurations have the same feedback loop, which can be readily seen if the input signal source is eliminated (i.e., short-circuited). The numerator, however, are different, for the numerator gives the ideal or nominal closed-loop gain \((-R_o/R_i)\) for the inverting configuration, and \(1 + R_o/R_i\) for the noninverting configuration. Finally, we note (with reassurance) that the gain expression in Eq. (2.11) reduces to the ideal value for \(A = \infty \). In fact, it approximates the ideal value for

\[A = 1 + \frac{R_o}{R_i} \]

This is the same condition as in the inverting configuration, except that here the quantity on the right-hand side is the nominal closed-loop gain.

2.3.4 The Voltage Follower

The property of high input impedance is a very desirable feature of the noninverting configuration. It enables using this circuit as a buffer amplifier to connect a source with a high impedance to a low-impedance load. We have discussed the need for buffer amplifiers in Section 1.5. In many applications the buffer amplifier is not required to provide any voltage gain; rather, it is used mainly as an impedance transformer or a power amplifier. In such cases we may make \(R_i = 0 \) and \(R_o = \infty \) to obtain the unity-gain amplifier shown in Fig. 2.14(a). This circuit is commonly referred to as a voltage follower, since the output "follows" the input. In the ideal case, \(v_o = v_i \); \(v_o = v_t \), and the follower has the equivalent circuit shown in Fig. 2.14(b).

Since in the voltage-follower circuit the entire output is fed back to the inverting input, the circuit is said to have 100% negative feedback. The infinite gain of the op amp then acts to make \(v_o = 0 \) and hence \(v_o = v_i \). Observe that the circuit is elegant in its simplicity.

Since the noninverting configuration has a gain greater than or equal to unity, depending on the choice of \(R_o/R_i \), some prefer to call it "a follower with gain."
EXERCISES

2.9 Use the superposition principle to find the output voltage of the circuit shown in Fig. E2.9.

\[V_{out} = v_1 - v_2 \]

FIGURE E2.9

2.10 If in the circuit of Fig. E2.9 the 1-MΩ resistor is disconnected from ground and connected to a third signal source, use superposition to determine \(V_{out} \) in terms of \(v_1, v_2, \) and \(v_3 \).

\[V_{out} = v_1 - v_3 \]

2.11 Design a noninverting amplifier with a gain of 2. At the maximum output voltage of 10 V the current in the voltage divider is to be 10 μA.

\[I = \frac{V_{out}}{R} = 10 \text{ μA} \]

2.12 (a) Show that if the op amp in the circuit of Fig. 2.12 has a finite open-loop gain \(A \), then the closed-loop gain is given by Eq. (2.11). (b) For \(R_1 = 1 \text{ kΩ} \) and \(R_2 = 9 \text{ kΩ} \), find the percentage deviation \(e \) of the closed-loop gain from the ideal value of \((1 + R_2/R_1) \).

\[e = \frac{A_{ideal} - A_{closed}}{A_{ideal}} \times 100\% \]

2.13 For the circuit in Fig. E2.13 find the values of \(v_1, v_2, v_3, v_4, i_1, \) and \(i_2 \). Also find the voltage gain \(v_3/v_1 \), the current gain \(i_2/i_1 \), and the power gain \(P_2/P_1 \).

\[\text{Ans.} v_1 = 1 \text{ V}; v_2 = 1 \text{ mA}; v_3 = 10 \text{ V}; v_4 = 11 \text{ mA}; v_5 = 20 \text{ V} \]

2.14 It is required to connect a transducer having an open-circuit voltage of 1 V and a source resistance of 1 MΩ to a load of 1-MΩ resistance. Find the load voltage if the connection is done (a) directly and (b) through a unity-gain voltage follower.

\[V_{load} = \frac{R_{load}}{R_{source} + R_{load}} \times V_{source} \]

FIGURE E2.13

2.15 (a) Show that if the op amp in the circuit of Fig. 2.12 has a finite open-loop gain \(A \), then the closed-loop superposition principle is given by Eq. 2.13. (b) For \(A = 10^4 \) and \(10^6 \), find the output voltage for the cases \(A = 10^3 \) and \(10^4 \).

\[V_{out} = A_{closed}v_1 + A_{closed}v_2 \]

2.16 (a) Show that if the op amp in the circuit of Fig. 2.12 has a finite open-loop gain \(A \), then the closed-loop superposition principle is given by Eq. 2.13. (b) For \(A = 10^4 \) and \(10^6 \), find the output voltage for the cases \(A = 10^3 \) and \(10^4 \).

\[V_{out} = A_{closed}v_1 + A_{closed}v_2 \]

FIGURE 2.15

2.4 DIFFERENTIATION AMPLIFIERS

Having studied the two basic configurations of op-amp circuits together with some of their direct applications, we are now ready to consider a somewhat more involved but very important application. Specifically, we shall study the use of op amps to design difference or differential amplifiers. A difference amplifier is one that responds to the difference between the two signals applied at its input and ideally rejects signals that are common to the two inputs. The representation of signals in terms of their differential and common-mode components was given in Fig. 2.4. It is repeated here in Fig. 2.15 with slightly different symbols to serve as the input signals for the difference amplifiers we are about to design.

Although ideally the difference amplifier will amplify only the differential input signal \(v_1 \) and reject completely the common-mode input signal \(v_2 \), practical circuits will have an output voltage \(v_0 \) given by

\[v_0 = A_{diff}v_1 + A_{comm}v_2 \]

where \(A_{diff} \) denotes the amplifier differential gain and \(A_{comm} \) denotes its common-mode gain (ideally zero). The efficacy of a differential amplifier is measured by the degree of its rejection of common-mode signals in preference to differential signals. This is usually quantified by a measure known as the common-mode rejection ratio (CMRR), defined as

\[CMRR = 20 \log \frac{|A_{diff}|}{|A_{comm}|} \]

The need for difference amplifiers arises frequently in the design of electronic systems, especially those employed in instrumentation. As a common example, consider a transducer providing a small (e.g., 1 mV) signal between its two output terminals while each of the two wires leading from the transducer terminals to the measuring instrument may have a large interference signal (e.g., 1 V) relative to the circuit ground. The instrument front end obviously needs a difference amplifier.

Before we proceed any further we should address a question that the reader might have: The op amp is itself a difference amplifier; why not just use an op amp? The answer is that the very high (ideally infinite) gain of the op amp makes it impossible to use by itself.
Rather, as we did before, we have to devise an appropriate feedback network to connect to the op amp to create a circuit whose closed-loop gain is finite, predictable, and stable.

2.4.1 A Single Op-Amp Difference Amplifier

Our first attempt at designing a difference amplifier is motivated by the observation that the gain of the noninverting amplifier configuration is positive, \((1 + \frac{R_2}{R_1})\), while that of the inverting configuration is negative, \((-\frac{R_2}{R_1})\). Combining the two configurations together is then a step in the right direction—namely, getting the difference between two input signals. Of course, we have to make the two gain magnitudes equal in order to reject common-mode signals. This, however, can be easily achieved by attenuating the positive input signal to reduce the gain of the positive path from \((1 + \frac{R_2}{R_1})\) to \(\frac{R_2}{R_1}\). The resulting circuit would then look like that shown in Fig. 2.16, where the attenuation in the positive input path is achieved by the voltage divider \((R_3, R_4)\).

The proper ratio of this voltage divider can be determined from

\[
\frac{R_3}{R_4} = \frac{R_2}{R_1} \quad (2.15)
\]

This completes our work. However, we have perhaps proceeded a little too fast! Let's step back and verify that the circuit in Fig. 2.16 with \(R_3\) and \(R_4\) selected according to Eq. (2.15) does in fact function as a difference amplifier. Specifically, we wish to determine the output voltage \(v_o\) in terms of \(v_n\) and \(v_{I2}\).

To apply superposition, we first reduce \(v_{I2}\) to zero—that is, ground the terminal to which \(v_{I2}\) is applied—and then find the corresponding output voltage, which will be due entirely to \(v_n\). We denote this output voltage \(v_{01}\). Its value may be found from the circuit in Fig. 2.17(a), which we recognize as that of the inverting configuration. The existence of \(R_3\) and \(R_4\) does not affect the gain expression, since no current flows through either of them. Thus,

\[
v_{01} = -\frac{R_2}{R_1} v_n
\]

Next we reduce \(v_n\) to zero and evaluate the corresponding output voltage \(v_{02}\). The circuit will now take the form shown in Fig. 2.17(b), which we recognize as the noninverting configuration with an additional voltage divider, made up of \(R_3\) and \(R_4\), connected to the input \(v_{I2}\). The output voltage \(v_{02}\) is therefore given by

\[
v_{02} = \frac{R_2}{R_1} \left(\frac{R_3}{R_4} \frac{1 + \frac{R_2}{R_1}}{1 + \frac{R_3}{R_4}} \right) \frac{R_2}{R_1} v_{I2}
\]

where we have utilized Eq. (2.15).

The superposition principle tells us that the output voltage \(v_o\) is equal to the sum of \(v_{01}\) and \(v_{02}\). Thus we have

\[
v_o = \frac{R_2}{R_1} (v_{01} + v_{02}) = \frac{R_2}{R_1} v_{I2}
\]

Thus, as expected, the circuit acts as a difference amplifier with a differential gain \(A_d\) of

\[
A_d = \frac{R_2}{R_1}
\]

Of course this is predicated on the op amp being ideal and furthermore on the selection of \(R_3\) and \(R_4\) so that their ratio matches that of \(R_2\) and \(R_1\) (Eq. 2.15). To make this matching requirement a little easier to satisfy, we usually select

\[
R_3 = R_1 \quad \text{and} \quad R_4 = R_2
\]

Let's next consider the circuit with only a common mode signal applied at the input, as shown in Fig. 2.18. The figure also shows some of the analysis steps. Thus,

\[
i = \frac{1}{R_1} \left(v_{cm} - \frac{R_3}{R_4} \right) = \frac{R_2}{R_3} v_{cm}
\]

The output voltage can now be found from

\[
v_o = \frac{R_2}{R_1} v_{cm} - i R_1
\]
Now we have assumed that the resistors are selected so that \(R_1 = R_2 \) (i.e., the resistance seen by the differential input terminals is equal), and thus the differential input resistance \(r_{id} \) is

\[
\left(\frac{1}{R_1 + R_2} \right) R_2
\]

Consider Fig. 2.19. In addition to rejecting common-mode signals, a difference amplifier is usually required to have a high input resistance. To find the input resistance between the two input terminals of the difference amplifier, we may write a loop equation and obtain

\[
\frac{v_o}{v_{in}} = \frac{A_v}{R[1]} = \frac{v_o}{v_{in}} = \frac{A_v}{R[1]}
\]

Thus, \(A_v = R_1 i_1 = 0 + R_1 i_1 \)

Note that if the amplifier is required to have a large differential gain \((R_1/R_2) \), then \(R_1 \) of necessity will be relatively small and the input resistance will be correspondingly low, a drawback of this circuit. Another drawback of the circuit is that it is not easy to vary the differential gain of the amplifier. Both of these drawbacks are overcome in the instrumentation amplifier discussed next.

Exercises

2.15 Consider the difference-amplifier circuit of Fig. 2.16 for the case \(R_1 = R_2 = 2 \, \text{k} \Omega \) and \(R_3 = 2 \, \text{M} \Omega \).

(a) Find the value of the differential gain \(A_v \). (b) Find the value of the differential input resistance \(r_{id} \) and the output resistance \(r_o \). (c) If the resistors have 1% tolerance (i.e., each can be within ±1% of its nominal value) find the worst-case common-mode gain \(A_{cm} \) and the corresponding value of CMRR.

\[
\text{Ans.} (a) 100 \, \text{V/V (40 dB)}; (b) 4 \, \text{k} \Omega; (c) 0.04 \, \text{V/V, 68 dB}
\]

2.16 Find values for the resistances in the circuit of Fig. 2.16 so that the circuit behaves as a difference amplifier with an input resistance of 20 k\(\Omega \) and a gain of 10.

\[
\text{Ans.} R_1 = R_2 = 10 \, \text{k} \Omega; R_3 = R_4 = 100 \, \text{k} \Omega
\]

2.4.2 A Superior Circuit—The Instrumentation Amplifier

The low-input-resistance problem of the difference amplifier of Fig. 2.16 can be solved by buffering the two input terminals using voltage followers; that is, a voltage follower of the type in Fig. 2.14 is connected between each input terminal and the corresponding input terminal of the difference amplifier. However, if we are going to use two additional op amps, we should ask the question: Can we get more from them than just impedance buffering? An obvious answer would be that we should try to get some voltage gain. It is especially interesting that we can achieve this without compromising the high input resistance simply by using followers with gain rather than unity-gain followers. Achieving some or indeed the bulk of the required gain in this new first stage of the differential amplifier eases the burden on the second stage, leaving it to its main task of implementing the differentiating function and thus rejecting common-mode signals.

The resulting circuit is shown in Fig. 2.20(a). It consists of two stages. The first stage is formed by op amps \(A_1 \) and \(A_2 \) and their associated resistors, and the second stage is the by-now-familiar difference amplifier formed by op amp \(A_3 \) and its four associated resistors. Observe that as we set out to do, each of \(A_1 \) and \(A_2 \) is connected in the noninverting configuration and thus realizes a gain of \((1 + R_3/R_2) \). It follows that each of \(v_o \) and \(v_{id} \) is amplified by this factor, and the resulting amplified signals appear at the outputs of \(A_1 \) and \(A_2 \), respectively.

The difference amplifier in the second stage operates on the difference signal \((1 + R_3/R_2)(v_{id} - v_o) = (1 + R_3/R_2)v_{id} \) and provides at its output

\[
v_o = \frac{R_3}{R_2} \left(1 + \frac{R_3}{R_2} \right) v_{id}
\]
Thus the differential gain realized is

\[A_d = \left(\frac{R_2}{R_1} \right) \left(1 + \frac{R_2}{R_1} \right) \]

(2.21)

The common-mode gain will be zero because of the differencing action of the second-stage amplifier.

The circuit in Fig. 2.20(a) has the advantage of very high (ideally infinite) input resistance and high differential gain. Also, provided that \(A_1 \) and \(A_2 \) and their corresponding resistors are matched, the two signal paths are symmetric—a definite advantage in the design of a differential amplifier. The circuit, however, has three major disadvantages:

1. The input common-mode signal \(v_{cm} \) is amplified in the first stage by a gain equal to that experienced by the differential signal \(v_d \). This is a very serious issue, for it could result in the signals at the outputs of \(A_1 \) and \(A_2 \) being of such large magnitudes that the op amps saturate (more on op-amp saturation in Section 2.6). But even if the op amps do not saturate, the difference amplifier of the second stage will now have to deal with much larger common-mode signals, with the result that the CMRR of the overall amplifier will inevitably be reduced.

2. The two amplifier channels in the first stage have to be perfectly matched, otherwise a spurious signal may appear between their two outputs. Such a signal would get amplified by the difference amplifier in the second stage.

3. To vary the differential gain \(A_d \), two resistors have to be varied simultaneously, say the two resistors labeled \(R_x, R_z \). At each gain setting the two resistors have to be perfectly matched, a difficult task.

All three problems can be solved with a very simple wiring change: Simply disconnect the node between the two resistors labeled \(R_x \), node \(X \), from ground. The circuit with this small but functionally profound change is redrawn in Fig. 2.20(b), where we have lumped the two resistors \((R_x + R_z) \) together into a single resistor \((2R_x) \).

Analysis of the circuit in Fig. 2.20(b), assuming ideal op amps, is straightforward, as is illustrated in Fig. 2.20(c). The key point is that the virtual short circuits at the inputs of op amps \(A_1 \) and \(A_2 \) cause the input voltages \(v_n \) and \(v_l \) to appear at the two terminals of resistor \((2R_x) \). Thus the differential input voltage \(v_n - v_l \) of \(A_1 \) appears across \(2R_x \), and causes a current \(i = \frac{v_n - v_l}{2R_x} \) to flow through \(2R_x \), and the two resistors labeled \(R_z \). This current in turn produces a voltage difference between the output terminals of \(A_1 \) and \(A_2 \) given by

\[v_o - v_{o1} = \left(1 + \frac{2R_x}{2R} \right) v_o \]

The difference amplifier formed by op amp \(A_2 \) and its associated resistors senses the voltage difference \(v_o - v_{o1} \) and provides a proportional output voltage \(v_o \):

\[v_o = \frac{R_z}{R_x} (v_o - v_{o1}) \]

\[= \frac{R_z}{R_x} \left(1 + \frac{R_z}{R_x} \right) v_o \]

Thus the overall differential voltage gain is given by

\[A_d = \frac{v_o}{v_{o1}} = \frac{R_z}{R_x} \left(1 + \frac{R_z}{R_x} \right) \]

(2.22)
Observe that proper differential operation does not depend on the matching of the two resistors labeled R_1. Indeed, if one of the two is of different value, say R_1, the expression for A_2 becomes

$$A_2 = \frac{R_1}{R_1} \left(\frac{1 + R_2}{2R_2} \right)$$ \tag{2.22}

Consider next what happens when the two input terminals are connected together to a common-mode input voltage V_{cm}. It is easy to see that an equal voltage appears at the negative input terminals of A_1 and A_2, causing the current through $2R_2$ to be zero. Thus there will be no current flowing in the R_1 resistors, and the voltages at the output terminals of A_1 and A_2 will be equal to the input (i.e., V_{cm}). Thus the first stage no longer amplifies V_{cm}: it simply propagates V_{cm} to its two output terminals, where they are subtracted to produce a zero common-mode output by A_2. The difference amplifier in the second stage, however, now has a much improved situation at its input: The difference signal has been amplified by $(1 + R_2/R_1)$ while the common-mode voltage remained unchanged.

Finally, we observe from the expression in Eq. (2.22) that the gain can be varied by changing only one resistor, $2R_2$. We conclude that this is an excellent differential amplifier circuit and is widely employed as an instrumentation amplifier; that is, as the input amplifier used in a variety of electronic instruments.

EXAMPLE 2.3

Design the instrumentation amplifier circuit in Fig. 2.20(b) to provide a gain that can be varied over the range of 2 to 1000 utilizing a 100-kΩ variable resistance (a potentiometer, or “pot” for short).

Solution

It is usually preferable to obtain all the required gain in the first stage, leaving the second stage to perform the task of taking the difference between the outputs of the first stage and thereby rejecting the common-mode signal. In other words, the second stage is usually designed for a gain of 1. Adopting this approach, we select all the second-stage resistors to be equal to a practically convenient value, say 10 kΩ. The problem reduces to designing the first stage to realize a gain adjustable over the range of 2 to 1000. Implementing $2R_2$ as the series combination of a fixed resistor R_{f} and the variable resistor R_{v}, obtained using the 100 kΩ pot (Fig. 2.21), we can write

$$1 + \frac{2R_2}{R_{f}} = 2 \text{ to } 1000$$

Thus,

$$1 + \frac{2R_2}{R_{f}} = 1000$$

FIGURE 2.21 To make the gain of the circuit in Fig. 2.20(b) variable, $2R_2$ is implemented as the series combination of a fixed resistor R_{f} and a variable resistor R_{v}. Resistor R_{f} ensures that the maximum available gain is limited.

These two equations yield $R_{f} = 100 \Omega$ and $R_{v} = 50.050 \Omega$. Other practical values may be selected; for instance, $R_{f} = 100 \Omega$ and $R_{v} = 49.9 \Omega$ (both values are available as standard 1%-tolerance metal-film resistors; see Appendix G) results in a gain covering approximately the required range.

EXERCISE

2.17 Consider the instrumentation amplifier of Fig. 2.20(b) with a common-mode input voltage of +5 V (dc) and a differential input signal of 10-mV peak sine wave. Let $(2R_2) = 1 \text{ kΩ}, R_{f} = 0.5 \text{ MΩ}$, and $R_{v} = 40 \text{ kΩ}$. Find the voltage at every node in the circuit.

$$v_{+} = 5 - 0.005 \sin \omega t; v_{-} = 5 + 0.005 \sin \omega t; v_2 \text{ (op amp A2)} = 5 - 0.005 \sin \omega t; v_3 \text{ (op amp A3)} = 5 + 0.005 \sin \omega t; v_{cc} = 5 + 5 \times 0.005 \sin \omega t; v_{+} = -0.005 \sin \omega t; v_1 = 2.5 + 2.0025 \sin \omega t$$

2.5 EFFECT OF FINITE OPEN-LOOP GAIN AND BANDWIDTH ON CIRCUIT PERFORMANCE

Above we defined the ideal op amp, and we presented a number of circuit applications of op amps. The analysis of these circuits assumed the op amps to be ideal. Although in many applications such an assumption is not a bad one, a circuit designer has to be thoroughly familiar with the characteristics of practical op amps and the effects of such characteristics on the performance of op-amp circuits. Only then will the designer be able to use the op amp intelligently, especially if the application at hand is not a straightforward one. The nonideal properties of op amps will, of course, limit the range of operation of the circuits analyzed in the previous examples. In this and the two sections that follow, we consider some of the important nonideal properties of the op amp. We do this by treating one parameter at a time, beginning in this section with the most serious op-amp nonidealities, its finite gain and limited bandwidth.

2.5.1 Frequency Dependence of the Open-Loop Gain

The differential open-loop gain of an op amp is not infinite; rather, it is finite and decreases with frequency. Figure 2.22 shows a plot for A_2, with the numbers typical of most commercially available general-purpose op amps (such as the 741-type op amp, which is available from many semiconductor manufacturers and whose internal circuit is studied in Chapter 9).

We should note that real op amps have nonideal effects additional to those discussed in this chapter. These include finite (nonzero) common-mode gain a, equivalent noninfinite CMRR, noninfinite input resistance, and nonzero output resistance. The effect of these, however, on the performance of most of the closed-loop circuits studied here is not very significant, and their study will be postponed to later chapters (in particular Chapters 8 and 9). Nevertheless, some of these nonideal characteristics will be modeled in Section 2.9 in the context of circuit simulation using SPICE.
FIGURE 2.22 Open-loop gain of a typical general-purpose internally compensated op amp.

Note that although the gain is quite high at dc and low frequencies, it starts to fall off at a rather low frequency (10 Hz in our example). The uniform -20-dB/decade gain rolloff shown is typical of internally compensated op amps. These are units that have a network (usually a single capacitor) included within the same IC chip whose function is to cause the op-amp gain to have the single time-constant (STC) low-pass response shown. This process of modifying the open-loop gain is termed frequency compensation, and its purpose is to ensure that op-amp circuits will be stable (as opposed to oscillatory). The subject of stability of op-amp circuits—or, more generally, of feedback amplifiers—will be studied in Chapter 8.

By analogy to the response of low-pass STC circuits (see Section 1.6 and, for more detail, Appendix D), the gain \(A(s) \) of an internally compensated op amp may be expressed as

\[
A(s) = \frac{A_0}{1 + js/\omega_b} \tag{2.24}
\]

which for physical frequencies, \(s = j\omega \), becomes

\[
A(j\omega) = \frac{A_0}{1 + j\omega/\omega_b} \tag{2.25}
\]

where \(A_0 \) denotes the dc gain and \(\omega_b \) is the 3-dB frequency (corner frequency or "break" frequency). For the example shown in Fig. 2.22, \(A_0 = 10^6 \) and \(\omega_b = 2\pi \times 10^5 \) rad/s. For frequencies \(\omega > \omega_b \), (about 10 times and higher) Eq. (2.25) may be approximated by

\[
A(j\omega) \approx \frac{A_0\omega_b}{\omega} \tag{2.26}
\]

Thus,

\[
|A(j\omega)| \approx \frac{A_0\omega_b}{\omega} \tag{2.27}
\]

from which it can be seen that the gain \(|A| \) reaches unity (0 dB) at a frequency denoted by \(\omega_c \) and given by

\[
\omega_c = \frac{\omega_b}{A_0} \tag{2.28}
\]

Substituting in Eq. (2.26) gives

\[
A(j\omega) \approx \frac{\omega_c}{\omega} \tag{2.29}
\]

The frequency \(f_c = \omega_c/2\pi \) is usually specified on the data sheets of commercially available op amps and is known as the unity-gain bandwidth.\(^4\) Also note that for \(\omega \approx \omega_b \), the open-loop gain in Eq. (2.24) becomes

\[
A(j\omega) \approx \frac{A_0}{\omega} \tag{2.30}
\]

The gain magnitude can be obtained from Eq. (2.29) as

\[
|A(j\omega)| \approx \frac{\omega_c}{\omega} \tag{2.31}
\]

Thus if \(f_c \) is known (10\(^6 \) Hz in our example), one can easily determine the magnitude of the op-amp gain at a given frequency \(f \). Furthermore, observe that this relationship correlates with the Bode plot in Fig. 2.22. Specifically, for \(f \gg f_c \), doubling \(f \) (an octave increase) results in halving the gain (a 6-dB reduction). Similarly, increasing \(f \) by a factor of 10 (a decade increase) results in reducing \(|A| \) by a factor of 10 (20 dB).

As a matter of practical importance, we note that the production spread in the value of \(f_c \) between op-amp units of the same type is usually much smaller than that observed for \(A_0 \) and \(\omega_b \). For this reason, \(f_c \) is preferred as a specification parameter. Finally, it should be mentioned that an op amp having this uniform -6-dB/octave (or equivalently -20-dB/decade) gain rolloff is said to have a single-pole model. Also, since this single pole dominates the amplifier frequency response, it is called a dominant pole. For more on poles (and zeros), the reader may wish to consult Appendix E.

2.5.2 Frequency Response of Closed-Loop Amplifiers

We next consider the effect of limited op-amp gain and bandwidth on the closed-loop transfer functions of the two basic configurations: the inverting circuit of Fig. 2.5 and the noninverting circuit of Fig. 2.12. The closed-loop gain of the inverting amplifier, assuming a finite op-amp open-loop gain \(A \), was derived in Section 2.2 and given in Eq. (2.5), which we repeat here as

\[
\frac{V_o}{V_i} = -\frac{R_F/R_1}{1 + (1 + R_F/R_1)/A} \tag{2.32}
\]

\(^4\) Since \(f_c \) is the product of the dc gain \(A_0 \) and the 3-dB bandwidth \(f_c \) (where \(f_c = \omega_c/2\pi \)), it is also known as the gain-bandwidth product (GB). The reader is cautioned, however, that in some amplifiers, the unity-gain frequency and the gain-bandwidth product are not equal.
Substituting for A from Eq. (2.24) gives

$$V_0(s) = -\frac{R_2}{R_1} i + \left(\frac{1}{A_0} + \frac{1}{R_2/R_1}\right) \cdot * \cdot 2.33$$

For $A_0 \gg 1 + R_2/R_1$, which is usually the case,

$$V_0(s) = -\frac{R_2}{R_1} i + \frac{1}{A_0} \cdot \frac{1}{1 + R_2/R_1} \cdot 2.34$$

which is of the same form as that for a low-pass STC network (see Table 1.2, page 34). Thus the inverting amplifier has an STC low-pass response with a dc gain of magnitude equal to R_2/R_1. The closed-loop gain rolls off at a uniform -20-dB/decade slope with a corner frequency (3-dB frequency) given by

$$\alpha_0 = \frac{20}{1 + R_2/R_1} \cdot 2.35$$

Similarly, analysis of the noninverting amplifier of Fig. 2.12, assuming a finite open-loop gain A, yields the closed-loop transfer function

$$V_o(s) = \frac{1 + R_2/R_1}{1 + (1 + R_2/R_1)/A} \cdot 2.36$$

Substituting for A from Eq. (2.24) and making the approximation $A_0 \gg 1 + R_2/R_1$ results in

$$V_o(s) = \frac{1 + R_2/R_1}{1 + \frac{s}{A_0} (1 + R_2/R_1)} \cdot 2.37$$

Thus the noninverting amplifier has an STC low-pass response with a dc gain of $(1 + R_2/R_1)$ and a 3-dB frequency given also by Eq. (2.35).

EXAMPLE 2.4

Consider an op amp with $f_i = 1$ MHz. Find the 3-dB frequency of closed-loop amplifiers with nominal gains of $+1000$, $+100$, $+10$, $+1$, -1, -10, -100, and -1000. Sketch the magnitude frequency response for the amplifiers with closed-loop gains of $+10$ and -10.

Solution

Using Eq. (2.35), we obtain the results given in the following table:

<table>
<thead>
<tr>
<th>Closed-Loop Gain</th>
<th>R_2/R_1</th>
<th>$\alpha_0 = f_3/(1 + R_2/R_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+1000$</td>
<td>99</td>
<td>1 kHz</td>
</tr>
<tr>
<td>$+100$</td>
<td>99</td>
<td>10 kHz</td>
</tr>
<tr>
<td>$+10$</td>
<td>9</td>
<td>100 kHz</td>
</tr>
<tr>
<td>$+1$</td>
<td>1</td>
<td>1 MHz</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>0.5 MHz</td>
</tr>
<tr>
<td>-10</td>
<td>10</td>
<td>90 kHz</td>
</tr>
<tr>
<td>-100</td>
<td>100</td>
<td>9 kHz</td>
</tr>
<tr>
<td>-1000</td>
<td>1000</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

Consider an op amp with $f_i = 1$ MHz. Find the 3-dB frequency of closed-loop amplifiers with nominal gains of $+1000$, $+100$, $+10$, $+1$, -1, -10, -100, and -1000. Sketch the magnitude frequency response for the amplifiers with closed-loop gains of $+10$ and -10.

The table in Example 2.4 above clearly illustrates the trade-off between gain and bandwidth: For a given op amp, the lower the closed-loop gain required, the wider the bandwidth achieved. Indeed, the noninverting configuration exhibits a constant gain-bandwidth product equal to f_i of the op amp. An interpretation of these results in terms of feedback theory will be given in Chapter 8.

EXERCISES

2.19 An internally compensated op amp has a dc open-loop gain of 30^3 V/V and an ac open-loop gain of 40 dB at 10 kHz. Estimate its 3-dB frequency, its unity-gain frequency, its gain-bandwidth product, and its expected gain at 1 kHz.

Ans. 1 Hz, 1 MHz, 1 MHz, 60 dB
2.20 An op amp having a 106-dB gain at dc and a single-pole frequency response with \(f_c = 2 \) MHz is used to design a noninverting amplifier with nominal dc gain of 100. Find the 3-dB frequency of the closed-loop gain.

Ans.

1.11/\(f_c \)

2.6 LARGE-SIGNAL OPERATION OF OP AMPS

In this section, we study the limitations on the performance of op-amp circuits when large output signals are present.

2.6.1 Output Voltage Saturation

Similar to all other amplifiers, op amps operate linearly over a limited range of output voltages. Specifically, the op-amp output saturates in the manner shown in Fig. 1.13 with \(V_L \) and \(V_H \) within 1 V or so of the positive and negative power supplies, respectively. Thus, an op amp that is operating from ±15-V supplies will saturate when the output voltage reaches about ±13 V in the positive direction and -13 V in the negative direction. For this particular op amp the rated output voltage is said to be ±13 V. To avoid clipping off the peaks of the output waveform, and the resulting waveform distortion, the input signal must be kept correspondingly small.

2.6.2 Output Current Limits

Another limitation on the operation of op amps is that their output current is limited to a specified maximum. For instance, the popular 741 op amp is specified to have a maximum output current of ±20 mA. Thus, in designing closed-loop circuits utilizing the 741, the designer has to ensure that under no condition will the op amp be required to supply an output current, in either direction, exceeding 20 mA. This, of course, has to include both the current in the feedback circuit as well as the current supplied to a load resistor. If the circuit requires a larger current, the op-amp output voltage will saturate at the level corresponding to the maximum allowed output current.

EXAMPLE 2.25

Consider the noninverting amplifier circuit shown in Fig. 2.25. As shown, the circuit is designed for a nominal gain \((1 + R_2/R_1) = 10 \) V/V. It is fed with a low-frequency sine-wave signal of peak voltage \(V_p \) and is connected to a load resistor \(R_L \). The op amp is specified to have output saturation voltages of ±13 V and output current limits of ±20 mA.

(a) For \(V_p = 1 \) V and \(R_L = 1 \) kΩ, specify the signal resulting at the output of the amplifier.

(b) For \(V_p = 1.5 \) V and \(R_L = 1 \) kΩ, specify the signal resulting at the output of the amplifier.

(c) For \(R_L = 1 \) kΩ, what is the maximum value of \(V_p \) for which an undistorted sine-wave output is obtained?

(d) For \(V_p = 1 \) V, what is the lowest value of \(R_L \) for which an undistorted sine-wave output is obtained?

Solution

(a) For \(V_p = 1 \) V and \(R_L = 1 \) kΩ, the output will be a sine wave with peak value of 10 V. This is lower than output saturation level of ±13 V, and thus the amplifier is not limited that way. Also, when the output is at its peak (10 V), the current in the load will be 10 V/1 kΩ = 10 mA, and the current in the feedback network will be 10 V/(9 + 1) kΩ = 1 mA, for a total op-amp output current of 11 mA, well under its limit of 20 mA.

(b) Now if \(V_p \) is increased to 1.5 V, ideally the output would be a sine wave of 15-V peak. The op amp, however, will saturate at ±13 V, thus clipping the sine-wave output at these levels. Let’s next check on the op-amp output current: At 15-V output and \(R_L = 1 \) kΩ, \(i_o = 1.3 \) mA; thus \(i_o = 14.3 \) mA, again under the 20-mA limit. Thus the output will be a sine wave with its peaks clipped off at ±13 V, as shown in Fig. 2.25(b).

(c) For \(R_L = 1 \) kΩ, the maximum value of \(V_p \) for undistorted sine-wave output is 1.3 V. The output will be a 13-V peak sine wave, and the op-amp output current at the peaks will be 14.3 mA.

(d) For \(V_p = 1 \) V and \(R_L \) reduced, the lowest value possible for \(R_L \) while the output is remaining an undistorted sine wave of 10-V peak can be found from

\[i_o = 20 \text{ mA} = \frac{10 \text{ V}}{R_L} + \frac{10 \text{ V}}{9 \text{ kΩ} + 1 \text{ kΩ}} \]

which results in

\[R_L = 526 \text{ Ω} \]

2.6.3 Slew Rate

Another phenomenon that can cause nonlinear distortion when large output signals are present is that of slew-rate limiting. This refers to the fact that there is a specific maximum rate of change possible at the output of a real op amp. This maximum is known as the slew rate (SR) of the op amp and is defined as

\[SR = \frac{dV_o}{dt} \bigg|_{\text{max}} \]
CHAPTER 2 OPERATIONAL AMPLIFIERS

2.6 LARGE-SIGNAL OPERATION OF OP AMPs

The rate of change of this waveform is given by

$$\frac{dv}{dt} = \omega_0 V_{in} \cos(\omega_0 t)$$

with a maximum value of $\omega_0 V_{in}$. This maximum occurs at the zero crossings of the input sinusoid. Now if $\omega_0 V_{in}$ exceeds the slew rate of the op amp, the output waveform will be distorted in the manner shown in Fig. 2.27. Observe that the output cannot keep up with the large rate of change of the input signal at its zero crossings, and the op amp slews.

The op-amp data sheets usually specify a frequency f_M called the full-power bandwidth. It is the frequency at which an output sinusoid with amplitude equal to the rated output voltage of the op amp begins to show distortion due to slew-rate limiting. If we denote the rated output voltage V_{max}, then f_M is related to SR as follows:

$$\omega_0 V_{max} = SR$$

input sinusoidal signal when its frequency and amplitude are such that the corresponding ideal output would require v_o to change at a rate greater than SR. This is the origin of another related op-amp specification, its full-power bandwidth, to be explained later.

Before leaving the example in Fig. 2.26, however, we should point out that if the step input voltage V_i is sufficiently small, the output can be the exponentially rising ramp shown in Fig. 2.26(d). Such an output would be expected from the follower if the only limitation on its dynamic performance is the finite op-amp bandwidth. Specifically, the transfer function of the follower can be obtained by substituting $R_1 = \infty$ and $R_2 = 0$ in Eq. (2.37) to obtain

$$v_o(t) = \frac{V_i}{1 + \tau_s/\omega_0}$$

which is a low-pass STC response with a time constant $1/\omega_0$. Its step response would therefore be (see Appendix D)

$$v_o(t) = V_i(1 - e^{-\omega_0 t})$$

The initial slope of this exponentially rising function is $\omega_0 V_i$. Thus, as long as V_i is sufficiently small so that $\omega_0 V_i < SR$, the output will be as in Fig. 2.26(d).

EXERCISE

2.21 An op amp that has a slew rate of 1 V/μs and a unity-gain bandwidth f_v of 1 MHz is connected in the unity-gain follower configuration. Find the largest possible input voltage step for which the output waveform will still be given by the exponential ramp of Eq. (2.40). For this input voltage, what is the 10% to 90% rise time of the output waveform? If an input step 10 times as large is applied, find the 10% to 90% rise time of the output waveform.

Ans. 0.16 V; 0.35 μs; 1.28 μs
CHAPTER 2
OPERATIONAL AMPLIFIERS

Theoretical output
Output when op amp is slew-rate limited

FIGURE 2.27 Effect of slew-rate limiting on output sinusoidal waveforms.

Thus,

\[f_{\text{SR}} = \frac{SR}{2nV_{\text{omax}}} \]

(2.41)

It should be obvious that output sinusoids of amplitudes smaller than \(V_{\text{omax}} \) will show slew-rate distortion at frequencies higher than \(f_{\text{SR}} \). In fact, at a frequency \(\omega \) higher than \(f_{\text{SR}} \), the maximum amplitude of the undistorted output sinusoid is given by

\[V = V_{\text{omax}} \sqrt{\frac{\omega}{\omega_{\text{SR}}}} \]

(2.42)

2.22 An op amp has a rated output voltage of \(\pm10 \) V and a slew rate of \(1 \) \(\mu \)S. What is its full-power bandwidth? If an input sinusoid with frequency \(f' \) is applied to a unity-gain follower constructed using this op amp. what is the maximum possible amplitude that can be accommodated at the output without incurring SR distortion?

Ans. \(f' = \frac{10}{\pi} \) Hz

2.7 DC IMPERFECTIONS

2.7.1 Offset Voltage

Because op amps are direct-coupled devices with large gains at dc, they are prone to dc problems. The first such problem is the dc offset voltage. To understand this problem consider the following conceptual experiment: If the two input terminals of the op amp are tied together and connected to ground, it will be found that a finite dc voltage exists at the output. In fact, if the op amp has a high dc gain, the output will be at either the positive or negative saturation level. The op-amp output can be brought back to its ideal value of 0 V by connecting a dc voltage source of appropriate polarity and magnitude between the two input terminals of the op amp. This external source balances out the input offset voltage of the op amp. It follows that the input offset voltage \((V_{\text{os}}) \) must be of equal magnitude and of opposite polarity to the voltage we applied externally.

FIGURE 2.28 Circuit model for an op amp with input offset voltage \(V_{\text{os}} \).

The input offset voltage arises as a result of the unavoidable mismatches present in the input differential stage inside the op amp. In later chapters we shall study this topic in detail. Here, however, our concern is to investigate the effect of \(V_{\text{os}} \) on the operation of closed-loop op-amp circuits. Toward that end, we note that general-purpose op amps exhibit \(V_{\text{os}} \) in the range of 1 mV to 5 mV. Also, the value of \(V_{\text{os}} \) depends on temperature. The op-amp data sheets usually specify typical and maximum values for \(V_{\text{os}} \) at room temperature as well as the temperature coefficient of \(V_{\text{os}} \) (usually in \(\mu \)V/°C). They do not, however, specify the polarity of \(V_{\text{os}} \) because the component mismatches that give rise to \(V_{\text{os}} \) are obviously not known a priori; different units of the same op-amp type may exhibit either a positive or a negative \(V_{\text{os}} \).

To analyze the effect of \(V_{\text{os}} \) on the operation of op-amp circuits, we need a circuit model for the op amp with input offset voltage. Such a model is shown in Fig. 2.28. It consists of a dc source of value \(V_{\text{os}} \) placed in series with the positive input lead of an offset-free op amp.

EXERCISE

2.23 Use the model of Fig. 2.28 to sketch the transfer characteristic \(V_{\text{out}} \) versus \(V_{\text{in}} \) for \(V_{\text{os}} = 5 \) mV.

Ans. See Fig. E2.23.

FIGURE E2.23 Transfer characteristic of an op amp with \(V_{\text{os}} = 5 \) mV.
Analysis of op-amp circuits to determine the effect of the op-amp V_{os} on their performance is straightforward: The input voltage signal source is short circuited and the op amp is replaced with the model of Fig. 2.28. (Eliminating the input signal, done to simplify matters, is based on the principle of superposition.) Following this procedure we find that both the inverting and the noninverting amplifier configurations result in the same circuit, that shown in Fig. 2.29, from which the output dc voltage due to V_{os} is found to be

\[
V_o = V_{os} \left(1 + \frac{R_2}{R_1} \right)
\]

(2.43)

This output dc voltage can have a large magnitude. For instance, a noninverting amplifier with a closed-loop gain of 1000, when constructed from an op amp with a 5-mV input offset voltage, will have a dc output voltage of +5 V or -5 V (depending on the polarity of V_{os}) rather than the ideal value of 0 V. Now, when an input signal is applied to the amplifier, the corresponding signal output will be superimposed on the 5-V dc. Obviously then, the allowable signal swing at the output will be reduced. Even worse, if the signal to be amplified is dc, we would not know whether the output is due to V_{os} or to the signal!

Some op amps are provided with two additional terminals to which a specified circuit can be connected to trim to zero the output dc voltage due to V_{os}. Figure 2.30 shows such an arrangement that is typically used with general-purpose op amps. A potentiometer is connected between the offset-nulling terminals with the wiper of the potentiometer connected to the op-amp negative supply. Moving the potentiometer wiper introduces an imbalance that counteracts the asymmetry present in the internal op-amp circuitry and that gives rise to V_{os}. We shall return to this point in the context of our study of the internal circuitry of op amps in Chapter 9. It should be noted, however, that even though the dc output offset can be trimmed to zero, the problem remains of the variation (or drift) of V_{os} with temperature.

EXERCISE

2.24 Consider an inverting amplifier with a nominal gain of 1000 constructed from an op amp with an input offset voltage of 3 mV and with output saturated levels of ±10 V. (a) What is (approximately) the peak sine-wave input signal that can be applied without output clipping? (b) If the offset of V_{os} is nulled at room temperature (25°C), how large an input can one now apply if: (i) the circuit is to operate at a constant temperature? (ii) the circuit is to operate at a temperature in the range of 0°C to 75°C and the temperature coefficient of V_{os} is 10 μV/°C?

Ans. (a) 7 mV; (b) 10 mV, 9.5 mV

One way to overcome the dc offset problem is by capacitively coupling the amplifier. This, however, will be possible only in applications where the closed-loop amplifier is not required to amplify dc or very low-frequency signals. Figure 2.31(a) shows a capacitively coupled amplifier. Because of its infinite impedance at dc, the coupling capacitor will cause the gain to be zero at dc. As a result the equivalent circuit for determining the dc output voltage resulting from the op-amp input offset voltage V_{os} will be that shown in Fig. 2.31(b). Thus V_{os} seen in effect a unity-gain voltage follower, and the dc output voltage V_o will be equal to V_{os} rather than $V_{os}(1 + R_2/R_1)$, which is the case without the coupling capacitor.

As far as input signals are concerned, the coupling capacitor C forms together with R_x a STC high-pass circuit with a corner frequency of $\omega_0 = \sqrt{CR_x}$. Thus the gain of the capacitively coupled amplifier will fall off at the low-frequency end from a magnitude of $\frac{1}{1 + R_2/R_1}$ at high frequencies and will be 3 dB down at ω_0.
2.25 Consider the same amplifier as in Exercise 2.24—that is, an inverting amplifier with a nominal gain of 1000 constructed from an op amp with an input offset voltage of 3 mV and with output saturation levels of ±10 V—except here let the amplifier be capacitively coupled as in Fig. 2.31(a). (a) What is the dc offset voltage at the output, and what (approximately) is the peak sine-wave signal that can be applied at the input without output clipping? Is there a need for offset trimming? (b) If \(R_L = 1 \, \text{k} \Omega \) and \(R_2 = 1 \, \text{M} \Omega \), find the value of the coupling capacitor \(C \) that will ensure that the gain will be greater than 57 dB down to 100 Hz.

Ans. (a) 3 mV, 10 mV, no need for offset trimming; (b) 1.6 \(\mu \text{F} \).

2.72 Input Bias and Offset Currents

The second dc problem encountered in op amps is illustrated in Fig. 2.32. In order for the op amp to operate, its two input terminals have to be supplied with dc currents, termed the input bias currents. In Fig. 2.32 these two currents are represented by two current sources, \(I_m \) and \(I_{m2} \), connected to the two input terminals. It should be emphasized that the input bias currents are independent of the fact that a real op amp has finite though large input resistance (not shown in Fig. 2.32). The op-amp manufacturer usually specifies the average value of \(I_m \) and \(I_{m2} \) as well as their expected difference. The average value \(I_m \) is called the input bias current,

\[
I_m = \frac{I_{m1} + I_{m2}}{2}
\]

and the difference is called the input offset current and is given by

\[
I_{os} = |I_{m1} - I_{m2}|
\]

Typical values for general-purpose op amps that use bipolar transistors are \(I_m = 100 \, \text{nA} \) and \(I_{os} = 10 \, \text{nA} \). Op amps that utilize field-effect transistors in the input stage have a much smaller input bias current (of the order of picoamperes).

We now wish to find the dc output voltage of the closed-loop amplifier due to the input bias currents. To do this we ground the signal source and obtain the circuit shown in Fig. 2.33 for both the inverting and noninverting configurations. As shown in Fig. 2.33, the output dc voltage is given by

\[
V_o = I_{m1} R_2 = I_{m2} R_2
\]

This obviously places an upper limit on the value of \(R_2 \). Fortunately, however, a technique exists for reducing the value of the output dc voltage due to the input bias currents. The method consists of introducing a resistance \(R_3 \) in series with the noninverting input lead, as shown in Fig. 2.34. From a signal point of view, \(R_3 \) has a negligible effect (ideally no effect).

![FIGURE 2.32](image_url)

FIGURE 2.32 The op-amp input bias currents represented by two current sources, \(I_m \) and \(I_{m2} \).

![FIGURE 2.33](image_url)

FIGURE 2.33 Analysis of the closed-loop amplifier, taking into account the input bias currents.

![FIGURE 2.34](image_url)

FIGURE 2.34 Reducing the effect of the input bias currents by introducing a resistor \(R_3 \).
The appropriate value for R_3 can be determined by analyzing the circuit in Fig. 2.34, where analysis details are shown and the output voltage is given by

$$V_0 = -I_{B2}R_2 + I_{B1}(1 + R_2/R_1)$$ \hspace{1cm} (2.45)

Consider first the case $I_{B1} = I_{B2}$, which results in

$$V_0 = I_{B2} \left[R_2 - R_3 \left(1 + R_2/R_1 \right) \right]$$

Thus we can reduce V_0 to zero by selecting R_3 such that

$$R_3 = \frac{R_2}{1 + R_2/R_1}$$ \hspace{1cm} (2.46)

That is, R_3 should be made equal to the parallel equivalent of R_1 and R_2.

Having selected R_3 as above, let us evaluate the effect of a finite offset current I_{os}. Let $I_{os} = I_{os} + I_{os}R_2/2$ and substitute in Eq. (2.45). The result is

$$V_0 = I_{os}R_2$$ \hspace{1cm} (2.47)

which is usually about an order of magnitude smaller than the value obtained without R_3 (Eq. 2.44). We conclude that to minimize the effect of the input bias currents one should place in the positive lead a resistance equal to the dc resistance seen by the inverting terminal.

We should emphasize the word dc in the last statement; note that if the amplifier is ac-coupled, we should select $R_3 = R_2$, as shown in Fig. 2.35.

While we are on the subject of ac-coupled amplifiers, we should note that one must always provide a continuous dc path between each of the input terminals of the op amp and ground. For this reason the ac-coupled noninverting amplifier of Fig. 2.36 will not work without the resistance R_3 to ground. Unfortunately, including R_3 lowers considerably the input resistance of the closed-loop amplifier.

**2.26 Consider an inverting amplifier circuit designed using an op amp and two resistors, $R_x = 10 \, \text{k} \Omega$ and $R_2 = 1 \, \text{MO}$. If the op amp is specified to have an input bias current of 100 nA and an input offset current of 10 nA, find the output dc offset voltage resulting and the value of a resistor R_3 to be placed in series with the positive input lead in order to minimize the output offset voltage. What is the new value of V_0?

Ans.

0.1 V; 9.9 k\Omega; 0.01 V

2.8 INTEGRATORS AND DIFFERENTIATORS

The op-amp circuit applications we have studied thus far utilized resistors in the op-amp feedback path and in connecting the signal source to the circuit, that is, in the feed-in path. As a result circuit operation has been (ideally) independent of frequency. The only exception has been the use of coupling capacitors in order to minimize the effect of the dc imperfections of op amps (e.g., the circuits in Figs. 2.31(a) and 2.36). By allowing the use of capacitors together with resistors in the feedback and feed-in paths of op-amp circuits, we open the door to a very wide range of useful and exciting applications of the op amp. We begin our study of op-amp-RC circuits in this section by considering two basic applications, namely signal integrators and differentiators.

2.8.1 The Inverting Configuration with General Impedances

To begin with, consider the inverting closed-loop configuration with impedances $Z_x(s)$ and $Z_2(s)$ replacing resistors R_x and R_2, respectively. The resulting circuit is shown in Fig. 2.37 and, for an ideal op amp, has the closed-loop gain or, more appropriately, the closed-loop transfer function

$$\frac{V(s)}{V_i(s)} = \frac{Z_2(s)}{Z_1(s)}$$ \hspace{1cm} (2.48)

As explained in Section 1.6, replacing s by $j\omega$ provides the transfer function for physical frequencies ω, that is, the transmission magnitude and phase for a sinusoidal input signal of frequency ω.

FIGURE 2.35 In an ac-coupled amplifier the dc resistance seen by the inverting terminal is R_2, hence R_3 is chosen equal to R_2.

FIGURE 2.36 Illustrating the need for a continuous dc path for each of the op-amp input terminals: Specifically, note that the amplifier will not work without resistor R_3.

2.8 INTEGRATORS AND DIFFERENTIATORS

EXERCISE

2.1 Consider an inverting amplifier circuit designed using an op amp and two resistors, $R_x = 10 \, \text{k} \Omega$ and $R_2 = 1 \, \text{MO}$. If the op amp is specified to have an input bias current of 100 nA and an input offset current of 10 nA, find the output dc offset voltage resulting and the value of a resistor R_3 to be placed in series with the positive input lead in order to minimize the output offset voltage. What is the new value of V_0?

Ans.

0.1 V; 9.9 k\Omega; 0.01 V

FIGURE 2.37 The inverting configuration with general impedances in the feedback and the feed-in paths.
We could have found all this from the circuit in Fig. 2.38 by inspection. Specifically, note that the capacitor behaves as an open circuit at dc; thus at dc the gain is simply \(-R_2/R_1\). Furthermore, because there is a virtual ground at the inverting input terminal, the resistance seen by the capacitor is \(R_2\), and thus the time constant of the STC network is \(C_2R_2\).

Now to obtain a dc gain of 40 dB, that is, \(100 \text{ V/V}\), we select \(R_1/R_2 = 100\). For an input resistance of 1 k\(\Omega\), we select \(R_1 = 1 \text{ k}\(\Omega\) and \(R_2 = 100 \text{ k}\(\Omega\).

Finally, for a 3-dB frequency \(f_0 = 1 \text{ kHz}\), we select \(C_2\) from

\[
2\pi \times 1 \times 10^3 = \frac{1}{C_2 \times 100 \times 10^3}
\]

which yields \(C_2 = 1.59 \text{ n}\(\Omega\).

The circuit has gain and phase Bode plots similar to Fig. 1.23. As the gain falls off at the rate of \(-20 \text{ dB/decade}\), it will reach \(0 \text{ dB}\) in two decades, that is, \(\log_{10}(100) = 100 \text{ kHz}\). As Fig. 1.23(h) indicates, at such a frequency which is much greater than \(f_0\), the phase is approximately \(-90^\circ\). To this, however, we must add the 180\(^\circ\) arising from the inverting nature of the amplifier (i.e., the negative sign in the transfer function expression). Thus at 100 kHz, the total phase shift will be \(-270^\circ\) or, equivalently, \(+90^\circ\).

2.8.2 The Inverting Integrator

By placing a capacitor in the feedback path (i.e., in place of \(Z_2\) in Fig. 2.37) and a resistor at the input (in place of \(Z_1\)), we obtain the circuit of Fig. 2.39(a). We shall now show that this circuit realizes the mathematical operation of integration. Let the input be a time-varying function \(v(t)\). The virtual ground at the inverting input terminal causes the current \(i(t)\) to appear in the circuit, to generate the voltage \(v_C(t)\). The current flows through the capacitor, causing charge to accumulate on \(C\). If we assume that the circuit begins operation at time \(t = 0\), then at an arbitrary time \(t\) the current \(i(t)\) will have deposited on \(C\) a charge equal to \(\int_i(t) dt\). Thus the capacitor voltage \(v_C(t)\) will change by \(\int_i(t) dt\). If the initial voltage on \(C\) (at \(t = 0\)) is denoted \(V_C\), then

\[
v_C(t) = V_C + \int_i(t) dt
\]

Now the output voltage \(v_C(t)\) of the circuit, thus,

\[
v_C(t) = -\frac{1}{C R} \int_i(t) dt - V_C
\]

Thus the circuit provides an output voltage that is proportional to the time-integral of the input, with \(V_C\) being the initial condition of integration and \(1/C\) the integrator time-constant.

Note that, as expected, there is a negative sign attached to the output voltage, and thus this integrator circuit is said to be an inverting integrator. It is also known as a Miller integrator after an early worker in this area.

The operation of the integrator circuit can be described alternatively in the frequency domain by substituting \(Z_1(s) = R\) and \(Z_2(s) = 1/sC\) in Eq. (2.48) to obtain the transfer function

\[
\frac{V_C(s)}{V_i(s)} = \frac{1}{s C R}
\]
CHAPTER 2 OPERATIONAL AMPLIFIERS

FIGURE 2.39 (a) The Miller or inverting integrator. (b) Frequency response of the integrator.

For physical frequencies, \(s = j \omega \) and

\[
\frac{V_o(j \omega)}{V_i(j \omega)} = \frac{1}{sCR} \tag{2.51}
\]

Thus the integrator transfer function has magnitude

\[
\left| \frac{V_o}{V_i} \right| = \frac{1}{\omega CR} \tag{2.52}
\]

and phase

\[
\phi = +90^\circ \tag{2.53}
\]

The Bode plot for the integrator magnitude response can be obtained by noting from Eq. (2.52) that as \(\omega \) doubles (increases by an octave) the magnitude is halved (decreased by 6 dB). Thus the Bode plot is a straight line of slope -6 dB/octave (or, equivalently, -20 dB/decade). This line [shown in Fig. 2.39(b)] intersects the 0-dB line at the frequency that makes \(|V_o/V_i| = 1 \), which from Eq. (2.52) is

\[
\omega_{\text{int}} = \frac{1}{CR} \tag{2.54}
\]

The frequency \(\omega_{\text{int}} \) is known as the **integrator frequency** and is simply the inverse of the integrator time constant.

Comparison of the frequency response of the integrator to that of an STC low-pass network indicates that the integrator behaves as a low-pass filter with a corner frequency of zero. Observe also that at \(\omega = 0 \), the magnitude of the integrator transfer function is infinite. This indicates that at dc the op amp is operating with an open loop. This should also be obvious from the integrator circuit itself. Reference to Fig. 2.39(a) shows that the feedback element is a capacitor, and thus at dc, where the capacitor behaves as an open circuit, there is no negative feedback. This is a very significant observation and one that indicates a source of problems with the integrator circuit. Any tiny dc component in the input signal will theoretically produce an infinite output. Of course, no infinite output voltage results in practice; rather, the output of the amplifier saturates at a voltage close to the op-amp positive or negative power supply (\(V_+ \) or \(V_- \)), depending on the polarity of the input dc signal.

It should be clear from this discussion that the integrator circuit will suffer deleterious effects from the presence of the op-amp input dc offset voltage and current. To see the effect of the input dc offset voltage \(V_{os} \), consider the integrator circuit in Fig. 2.40, where for simplicity we have short-circuited the input signal source. Analysis of the circuit is straightforward and is shown in Fig. 2.40. Assuming for simplicity that at time \(t = 0 \) the voltage across the capacitor is zero, the output voltage as a function of time is given by

\[
v_o = V_{os} = \frac{V_{os}}{CR} \tag{2.55}
\]

Thus \(v_o \) increases linearly with time until the op amp saturates—clearly an unacceptable situation! As should be expected, the dc input offset current \(I_{os} \) produces a similar problem. Figure 2.41 illustrates the situation. Observe that we have added a resistance \(R \) in the op-amp positive-input lead in order to keep the input bias current \(I_B \) from flowing through \(C \).

![Figure 2.40](image-url)

Figure 2.40 Determining the effect of the op-amp input offset voltage \(V_{os} \) on the Miller integrator circuit. Note that since the output rises with time, the op-amp eventually saturates.

![Figure 2.41](image-url)

Figure 2.41 Effect of the op-amp input bias and offset currents on the performance of the Miller integrator circuit.
Nevertheless, the offset current i_{o} will flow through C and cause v_{0} to ramp linearly with time until the op amp saturates.

The dc problem of the integrator circuit can be alleviated by connecting a resistor R_{F} across the integrator capacitor C, as shown in Fig. 2.42. Such a resistor provides a dc path through which the dc currents (V_{o}/R_{F}) and i_{o} can flow, with the result that v_{0} will now have a dc component $(V_{o} + R_{F}/R_{o} + i_{o}R_{F})$ instead of rising linearly. To keep the dc offset at the output small, one would select a low value for R_{F}. Unfortunately, however, the lower the value of R_{F}, the less ideal the integrator circuit becomes. This is because R_{F} causes the frequency of the integrator pole to move from its ideal location at $s=0$ to one determined by the corner frequency of the STC network (R_{F}, C). Specifically, the integrator transfer function becomes

$$V_{o}(s) = \frac{R_{P}/R}{1 + sCR_{F}}$$

as opposed to the ideal function of $-1/ACT$. The lower the value we select for R_{F}, the higher the corner frequency $(1/CR_{F})$ will be and the more nonideal the integrator becomes. Thus selecting a value for R_{F} presents the designer with a trade-off between dc performance and signal performance. The effect of R_{F} on integrator performance is investigated further in Example 2.7. Before doing so, however, observe that R_{F} closes the negative-feedback loop at dc and provides the integrator circuit with a finite dc gain of $-R_{F}/R$.

EXAMPLE 2.7

Find the output produced by a Miller integrator in response to an input pulse of 1-V height and 1-ms width [Fig. 2.43(a)]. Let $R = 10 \, k\Omega$ and $C = 10 \, nF$. If the integrator capacitor is shunted by a 1-MQ resistor, how will the response be modified? The op amp is specified to saturate at ±13 V.

Solution

In response to a 1-V, 1-ms input pulse, the integrator output will be

$$v_{0}(t) = \int_{0}^{1/10 \, \mu s} i_{d} \, dt,$$

where we have assumed that the initial voltage on the integrator capacitor is 0. For $C = 10 \, nF$ and $R = 10 \, k\Omega$, $CR = 0.1 \, \mu s$, and

$$v_{0}(t) = \frac{-10}{0.1 \, \mu s} t, \quad 0 \leq t \leq 1 \, \mu s$$

which is the linear ramp shown in Fig. 2.43(b). It reaches a magnitude of -10 V at $t = 1 \, ms$ and remains constant thereafter.

Next consider the situation with resistor $R_{F} = 1 \, MQ$ connected across C. As before, the 1-V pulse will provide a constant current $I = 0.1 \, mA$ across the capacitor. This constant current $I = 0.1 \, mA$ supplies the capacitor with a charge I_{0}, and thus the capacitor voltage changes linearly as (I_{0}/C), resulting in $v_{0} = -(I_{0}/C)$. It is worth remembering that charging a capacitor with a constant current produces a linear voltage across it.
STC network composed of R_F in parallel with C. To find the output voltage, we use Eq. (1.29), which can be adapted to our case here as follows:

$$V_o(t) = V_o(\infty) - V_o(0+) e^{-t/CR}$$

where $V_o(\infty)$ is the final value, obtained as

$$V_o(\infty) = -IR_F = -0.1 \times 10^{-3} \times 1 \times 10^6 = -100 \text{ V}$$

and $V_o(0+)$ is the initial value, which is zero. That is, the output will be an exponential heading toward -100 V with a time constant of $CR_F = 10 \times 10^{-9} \times 1 \times 10^6 = 10 \text{ ms}$.

$$V_o(t) = -100(1 - e^{-t/CR}), \quad 0 \leq t \leq 1 \text{ ms}$$

Of course, the exponential will be interrupted at the end of the pulse, that is, at $t = 1 \text{ ms}$, and the output will reach the value

$$V_o(1 \text{ ms}) = -100(1 - e^{-1/10}) = -9.5 \text{ V}$$

The output waveform is shown in Fig. 2.43(c), from which we see that including R_F causes the ramp to be slightly rounded such that the output reaches only -9.5 V, 0.5 V short of the ideal value of -10 V. Furthermore, for $t > 1 \text{ ms}$, the capacitor discharges through R_F with the relatively long time-constant of 10 ms. Finally, we note that op amp saturation, specified to occur $\pm 13 \text{ V}$, has no effect on the operation of this circuit.

The preceding example hints at an important application of integrators, namely, their use in providing triangular waveforms in response to square-wave inputs. This application is explored in Exercise 2.27. Integrators have many other applications, including their use in the design of filters (Chapter 12).

2.8.3 The Op-Amp Differentiator

Interchanging the location of the capacitor and the resistor of the integrator circuit results in the circuit in Fig. 2.44(a), which performs the mathematical function of differentiation. To see how this comes about, let the input be the time-varying function $v_i(t)$, and note that the virtual ground at the inverting input terminal of the op amp causes $v_i(t)$ to appear in effect across the capacitor C. Thus the current through C will be $C(dv_i/dt)$, and this current flows through the feedback resistor R providing at the op-amp output a voltage $v_o(t)$.

$$v_o(t) = -CR(dv_i/dt) \quad \text{(2.56)}$$

The frequency-domain transfer function of the differentiator circuit can be found by substituting in Eq. (2.56), $Z_1(s) = 1/sC$ and $Z_2(s) = R$ to obtain

$$\frac{V_2(s)}{V_1(s)} = -\frac{CR}{s} \quad \text{(2.57)}$$

which for physical frequencies $s = j\omega$ yields

$$\frac{V_2(j\omega)}{V_1(j\omega)} = -j\omega CR \quad \text{(2.58)}$$

Thus the transfer function has magnitude

$$|\frac{V_2}{V_1}| = \omega CR \quad \text{(2.59)}$$

and phase

$$\phi = -90^\circ \quad \text{(2.60)}$$

The Bode plot of the magnitude response can be found from Eq. (2.59) by noting that for an octave increase in ω, the magnitude doubles (increases by 6 dB). Thus the plot is simply a straight line of slope $+6 \text{ dB/octave}$ (or, equivalently, $+20 \text{ dB/decade}$) intersecting the 0-dB line (where $|V_2/V_1| = 1$) at $\omega = 1/CR$, where CR is the differentiator time-constant (see Fig. 2.44(b)).

The frequency response of the differentiator can be thought of as that of an STC highpass filter with a corner frequency at infinity (refer to Fig. 1.24). Finally, we should note that the very nature of a differentiator circuit causes it to be a "noise magnifier." This is due to the spike introduced at the output every time there is a sharp change in $v_i(t)$; such a change could be interference coupled electromagnetically ("picked-up") from adjacent signal sources. For this reason and because they suffer from stability problems (Chapter 8), differentiator circuits are generally avoided in practice. When the circuit of Fig. 2.44(a) is used, it is usually necessary to connect a small-valued resistor in series with the capacitor. This modification, unfortunately, turns the circuit into a nonideal differentiator.
CHAPTER 2 OPERATIONAL AMPLIFIERS

Exercises

2.27 Consider a symmetrical square wave of 20-V peak-to-peak, 0 average, and 2-ms period applied to a Miller integrator. Find the value of the time constant C_R such that the triangular waveform at the output has a 20-V peak-to-peak amplitude.

Ans. 0.5 ms.

2.28 Using an ideal op amp, design an inverting integrator with an input resistance of 10 kΩ and an integration time constant of 10 ms. What is the gain magnitude and phase angle of this circuit at 1 rad/s and at 1 kHz? What is the frequency at which the gain magnitude is unity?

Ans. $R_I = 10$ kΩ, $C = 0.1 \mu F$ at $f = 10$ rad/s: $|V_O/V_I| = 100$ V/V and $\phi = 90^\circ$; at $f = 1$ kHz: $|V_O/V_I| = 1000$ V/V and $\phi = 100^\circ$.

2.29 Consider a Miller integrator with a time constant of 1 ms and an input resistance of 10 kΩ. Let the op amp have $V_{OS} = 2$ mV and output saturation voltages of ±12 V. (a) Assuming that the power supply is turned on after the capacitor voltage is zero, how long does it take for the amplifier to saturate? (b) Select the largest possible value for a feedback resistor R_F so that at least ±10 V of output signal swing remains available. What is the corner frequency of the resulting STC network?

Ans. (a) 6 s; (b) 10 MO, 0.16 Hz.

2.30 Design a differentiator to have a time constant of 10^3 s and an integration time constant of 10^{-3} s. What is the gain magnitude and phase shift of this circuit at 1 rad/s and at 1 kHz? What is the frequency at which the gain magnitude is unity?

Ans. $C = 100 \mu F$; $R = 1$ kΩ at 1 rad/s: $|V_O/V_I| = 0.1$ V/V and $\phi = -90^\circ$; at 1 kHz: $|V_O/V_I| = 10$ V/V and $\phi = -90^\circ$.

2.31 Consider a symmetrical square wave of 20-V peak-to-peak, 0 average, and 2-ms period applied to a two-stage op amp. Design a differentiator to have a time constant of 10 ms. What is $D_{2.28}$?

Ans. Design not possible.

2.32 Using an ideal op amp, design an inverting integrator with an input resistance of 10 kΩ and an integration time constant of 10 ms. What is the gain magnitude and phase angle of this circuit at 1 rad/s and at 1 kHz? What is the frequency at which the gain magnitude is unity?

Ans. $R_I = 10$ kΩ, $C = 0.1 \mu F$ at $f = 10$ rad/s: $|V_O/V_I| = 100$ V/V and $\phi = 90^\circ$; at $f = 1$ kHz: $|V_O/V_I| = 1000$ V/V and $\phi = 100^\circ$.

2.33 Consider a Miller integrator with a time constant of 1 ms and an input resistance of 10 kΩ. Let the op amp have $V_{OS} = 2$ mV and output saturation voltages of ±12 V. (a) Assuming that the power supply is turned on after the capacitor voltage is zero, how long does it take for the amplifier to saturate? (b) Select the largest possible value for a feedback resistor R_F so that at least ±10 V of output signal swing remains available. What is the corner frequency of the resulting STC network?

Ans. (a) 6 s; (b) 10 MO, 0.16 Hz.

2.34 Design a differentiator to have a time constant of 10^3 s and an integration time constant of 10^{-3} s. What is the gain magnitude and phase shift of this circuit at 1 rad/s and at 1 kHz? What is the frequency at which the gain magnitude is unity?

Ans. $C = 100 \mu F$; $R = 1$ kΩ at 1 rad/s: $|V_O/V_I| = 0.1$ V/V and $\phi = -90^\circ$; at 1 kHz: $|V_O/V_I| = 10$ V/V and $\phi = -90^\circ$.

2.9 THE SPICE OP-AMP MODEL AND SIMULATION EXAMPLES

As mentioned at the beginning of this chapter, the op amp is not a single electronic device, such as the junction diode or the MOS transistor, both of which we shall study later on; rather, it is a complex IC made up of a large number of electronic devices. Nevertheless, as we have seen in this chapter, the op amp can be treated and indeed effectively used as a circuit component or a circuit building block without the user needing to know the details of its internal circuitry. The user, however, needs to know the terminal characteristics of the op amp, such as its open-loop gain, its input resistance, its frequency response etc. Furthermore, in designing circuits utilizing the op amp, it is useful to be able to represent the op amp with an equivalent circuit model. Indeed, we have already done this in this chapter, albeit with very simple equivalent circuit models suitable for hand analysis. Since we are now going to use computer simulation, the models we use can be more complex to account as fully as possible for the op amp's nonideal performance.

Op amp models that are based on their observed terminal characteristics are known as macromodels. These are to be distinguished from models that are obtained by modeling every device in the op amp's actual internal circuit. The latter type of model can become very complex and unwieldy, especially if one attempts to use it in the simulation of a circuit that utilizes a large number of op amps.

The goal of macromodeling of a circuit block (in our case here, the op amp) is to achieve a very close approximation to the actual performance of the op amp while using circuit model of significantly reduced complexity compared to the actual internal circuit. Advantages of using macromodels include: A macromodel can be developed on the basis of data-sheet specification, without having to know the details of the internal circuitry of the op amp. Moreover, macromodels allow the simulation of a circuit containing a number of op amps to be performed much faster.

2.9.1 Linear Macromodel

The Capture schematic of a linear macromodel for an internally compensated op amp with finite gain and bandwidth is shown in Fig. 2.45. In this equivalent-circuit model, the gain constant A_{OL} of the voltage-controlled voltage source E_{OL} corresponds to the differential gain of the op amp at dc. Resistor R_F and capacitor C_F form an STC filter with a corner frequency

$$f_c = \frac{1}{2\pi R_F C_F} \quad (2.61)$$

The low-pass response of this filter is used to model the frequency response of the internally compensated op amp. The values of R_F and C_F used in the macromodel are chosen such that f_c corresponds to the 3-dB frequency of the op amp being modeled. This is done by arbitrarily selecting a value for either R_F or C_F (the selected value does not need to be a practical one) and then using Eq. (2.61) to compute the other value. In Fig. 2.45, the voltage-controlled voltage source E_{OL} with a gain constant of unity is used as a buffer to isolate the low-pass filter from any load at the op-amp output. Thus any op-amp loading will not affect the frequency response of the filter and hence that of the op amp.

The linear macromodel in Fig. 2.45 can be further expanded to account for other op-amp nonidealities. For example, the equivalent-circuit model in Fig. 2.46 can be used to model an internally compensated op amp while accounting for the following op-amp nonidealities:

1. Input Offset Voltage (V_{OS}): The dc voltage source V_{OS} models the op-amp input offset voltage.

2. Input Bias Current (I_{IB}) and Input Offset Current (I_{OS}): The dc current sources I_{IB} and I_{OS} model the input bias current at each input terminal of the op amp, with

$$I_{IB} = I_{OS} \frac{I_{OS}}{2} \quad \text{and} \quad I_{OS} = I_{IB} - \frac{I_{OS}}{2}$$

where I_{IB} and I_{OS} are, respectively, the input bias current and the input offset current specified by the op-amp manufacturer.

The reader is reminded that the Capture schematics and the corresponding PSpice simulation files of all SPICE examples in this book can be found on the text's CD, as well as on its website (www.edsrasmith.org).
3. Common-Mode Input Resistance (R_{cm}). If the two input terminals of an op amp are tied together and the input resistance (to ground) is measured, the result is the common-mode input resistance R_{cm}. In the macromodel of Fig. 2.46, we have split R_{cm} into two equal parts ($2R_{cm}$), each connected between one of the input terminals and ground.

4. Differential-Input Resistance (R_{d}). The resistance seen between the two input terminals of an op amp is the differential input resistance R_{d}.

5. Differential Gain at DC (A_{d}) and Common-Mode Rejection Ratio (CMRR). The output voltage of an op amp at dc can be expressed as

$$V_{o} = A_{d} (V_{2} - V_{1}) + A_{cm} (V_{1} + V_{2})$$

where A_{d} and A_{cm} are, respectively, the differential and common-mode gains of the op amp at dc. For an op amp with a finite CMRR,

$$A_{cm} = A_{cm}/CMRR$$

where CMRR is expressed in V/V (not in dB). Note that the CMRR value in Eq. (2.62) is that of the open-loop op amp while the CMRR in Eq. (2.14) is that of a particular closed-loop amplifier. In the macromodel of Fig. 2.46, the voltage-controlled voltage sources E_{cm} and E_{d}, with gains constants of A_{d} and A_{cm} account for the finite CMRR while source E_{cm} models A_{cm}.

6. Unity-Gain Frequency (f_{u}). From Eq. (2.28), the 3-dB frequency f_{3}, and the unity-gain frequency (or gain-bandwidth product) f_{u} of an internally compensated op amp with an STC frequency response are related through

$$f_{u} = \frac{f_{3}}{A_{d}}$$

As in Fig. 2.45, the finite op amp bandwidth is accounted for in the macromodel of Fig. 2.46 by setting the corner frequency of the filter formed by resistor R_{b} and capacitor C_{o} (Eq. 2.61) to equal the 3-dB frequency of the op amp (Eq. 2.63). It should be noted that here we are assuming that the differential gain and the common-mode gain have the same frequency response (not always a valid assumption).

7. Output Resistance (R_{o}). The resistance seen at the output terminal of an op amp is the output resistance R_{o}.
CHAPTER 2 OPERATIONAL AMPLIFIERS

resistances of the op amp. Such a large input resistance and small output resistance are indeed desirable characteristics for a voltage amplifier. This improvement in the small-signal resistances of the closed-loop amplifier is a direct consequence of applying negative feedback (through resistors R_1 and R_2) around the open-loop op amp. We will study negative feedback in Chapter 8, where we will also learn how the improvement factor (1000 in this case) corresponds to the ratio of the open-loop op-amp gain (10^5) to the closed-loop amplifier gain (100).

From Eqs. (2.37) and (2.35), the closed-loop amplifier has an STC low-pass response given by

$$V_{\text{out}}(s) = \frac{G_n}{1 + \frac{s}{2\pi f_{\text{cut}}}}$$

where V_{out} is the final output-voltage value (i.e., the voltage value toward which the output is heading) and $\tau = \frac{1}{2\pi f_{\text{cut}}}$ is the time constant of the amplifier. If we define $t_{\text{90\%}}$ and $t_{\text{10\%}}$ to be the time it takes for the output waveform to rise to, respectively, 90% and 10% of V_{final}, then from Eq. (2.64), $t_{\text{90\%}} = 2.3\tau$ and $t_{\text{10\%}} = 0.1\tau$. Therefore, the rise time t_r of the amplifier can be expressed as

$$t_r = t_{\text{90\%}} - t_{\text{10\%}} = 2.2\tau = \frac{2.2}{2\pi f_{\text{cut}}}$$

Therefore, if $f_{\text{cut}} = 9.9$ kHz, then $t_r = 35.4$ ms. To simulate the step response of the closed-loop amplifier, we apply a step voltage at its input, using a piece-wise-linear (PWL) source (with a very short rise time); then perform a transient-analysis simulation, and measure the voltage at the output versus time. In our simulation, we applied a 1-V step input, plotted the output waveform in Fig. 2.48, and measured t_r to be 35.3 ms.

FIGURE 2.47 Frequency response of the closed-loop amplifier in Example 2.8.

The linear macromodels in Figs. 2.45 and 2.46 assume that the op-amp circuit is operating in its linear range, and do not account for its nonideal performance when large signals are present at the output. Therefore, nonlinear effects, such as output saturation and slew rate, are not modeled. This is why, in the step response of Fig. 2.48, we could see an output voltage of 100 V when we applied a 1-V step input. However, IC op amps are not capable of producing such large output voltages. Hence, a designer must be very careful when using these models.

It is important to point out that we also saw output voltages of 100 V or so in the ac analysis of Fig. 2.47, where for convenience we applied a 1-V ac input to measure the gain of the closed-loop amplifier. So, would we see such large output voltages if the op-amp macromodel accounted for nonlinear effects (particularly output saturation)? The answer is yes, because in an ac analysis PSpice uses a linear model for nonlinear devices with the linear-model parameters evaluated at a bias point. We will have more to say about this in subsequent chapters. Here, however, we must keep in mind that the voltage magnitudes encountered in an ac analysis may not be realistic. What is of importance to the designer in this case are the voltage and current ratios (e.g., the output-to-input voltage ratio as a measure of voltage gain).

2.9.2 Nonlinear Macromodel

The linear macromodel in Fig. 2.46 can be further expanded to account for the op-amp nonlinear performance. For example, the finite output voltage swing of the op amp can be modeled by placing limits on the output voltage of the voltage-controlled voltage source E_C. In PSpice this can be done using the ETABLE component in the analog-behavioral-modeling (ABM) library and setting the output voltage limits in the look-up table of this component. Further details on how to build nonlinear macromodels for the op amp can be found in the references on Spice simulation. In general, robust macromodels that account for the nonlinear effects in an IC are provided by the op-amp manufacturers. Most simulators include such
macromodels for some of the popular off-the-shelf ICs in their libraries. For example, PSpice includes models for the μA741, the LF411, and the LM324 op amps.6

EXAMPLE 2.9

Characteristics of the 741 OP Amp

Consider the μA741 op amp whose macromodel is available in PSpice. Use PSpice to plot the open-loop gain and hence determine \(f \). Also, investigate the SR limitation and the output saturation of this op amp.

Solution

Figure 2.49 shows the Capture schematic used to simulate the frequency response of the μA741 op amp. The μA741 part has seven terminals. Terminals 7 and 4 are, respectively, the positive and negative dc power-supply terminals of the op amp. 741-type op amps are typically operated from ±15-V power supplies; therefore we connected the dc voltage sources \(V_{cc} = +15 \text{ V} \) and \(V_{ee} = -15 \text{ V} \) to terminals 7 and 4, respectively. Terminals 3 and 2 of the μA741 part correspond to the positive and negative input terminals, respectively, of the op amp. In general, as outlined in Section 2.1.3, the op amp input signals are expressed as

\[
\begin{align*}
V_{INP} & = V_{CP} + \frac{V_d}{2} \\
V_{INN} & = V_{CP} - \frac{V_d}{2}
\end{align*}
\]

where \(V_{CP} \) and \(V_{CP} \) are the signals at, respectively, the positive- and negative-input terminals of the op amp with \(V_{CP} \) being the common-mode input signal (which sets the dc bias voltage at the op amp input terminals) and \(V_d \) being the differential input signal to be amplified. The dc voltage source \(V_{CP} \) in Fig. 2.49 is used to set the common-mode input voltage. Typically, \(V_{CP} \) is set to the average of the dc power-supply voltages \(V_{cc} \) and \(V_{ee} \) to maximize the available input signal swing. Hence, we set \(V_{CP} = 0 \). The voltage source \(V_d \) in Fig. 2.49 is used to generate the differential input signal \(V_d \). This signal is applied differentially to the op-amp input terminals using the voltage-controlled voltage sources \(E_{1} \) and \(E_{2} \) whose gain constants are set to 0.5.

Terminals 1 and 5 of part μA741 are the offset-nulling terminals of the op amp (as depicted in Fig. 2.30). However, a check of the PSpice netlist of this part (by selecting Edit → PSpice Model, in the Capture menus), reveals that these terminals are floating; therefore the offset-nulling characteristic of the op amp is not incorporated in this macromodel.

To measure \(f \), of the op-amp, we set the voltage of source \(V_d \) to be 1-V ac, perform an ac-analysis simulation in PSpice, and plot the output voltage versus frequency as shown in Fig. 2.50. Accordingly, the frequency at which the op-amp voltage gain drops to 0 dB is \(f = 0.9 \text{ MHz} \) (which is close to the 1-MHz value reported in the data sheets for 741-type op amps).

To determine the slew rate of the μA741 op amp, we connect the op amp in a unity-gain configuration, as shown in Fig. 2.51, apply a large pulse signal at the input with very short rise and fall times to cause slew-rate limiting at the output, perform a transient-analysis simulation in PSpice, and plot the output voltage as shown in Fig. 2.52. The slope of the slew-rate limited output waveform corresponds to the slew-rate of the op amp and is found to be \(SR = 0.5 \text{ V/μs} \) (which agrees with the value specified in the data sheets for 741-type op amps).

To determine the maximum output voltage of the μA741 op amp, we set the dc voltage of the differential voltage source \(V_d \) in Fig. 2.49 to a large value, say +1 V, and perform a bias-point simulation in PSpice. The corresponding dc output voltage is the positive-output saturation voltage of the op amp. We repeat the simulation with the dc differential input voltage set to -1 V to find the negative-output saturation voltage. Accordingly, we find that the μA741 op amp has a maximum output voltage \(V_{omax} = 14.8 \text{ V} \).

6 The OrCAD 9.2 Lite Edition of PSpice, which is available on the CD accompanying this book, includes these models in its evaluation (EVAL) library.
The op-amp terminals are the inverting input terminal (1), the noninverting input terminal (2), the output terminal (3), the positive-supply terminal (V^+) to be connected to the positive power supply, and the negative-supply terminal (V^−) to be connected to the negative supply. The common terminal of the two supplies is the circuit ground.

Negative feedback applied to an op amp by connecting a passive component between its output terminal and its inverting (negative) input terminal. Negative feedback causes the voltage between the two input terminals to become very small and ideally zero. Correspondingly, a virtual short circuit is said to exist between the two input terminals. If the positive input terminal is connected to ground, a virtual ground appears on the negative input terminal.

The two most important assumptions in the analysis of op-amp circuits, presuming negative feedback exists and the op-amps are ideal, are: the two input terminals of the op amp are at the same voltage, and zero current flows into the op-amp input terminals.

With negative feedback applied and the loop closed, the closed-loop gain is almost entirely determined by external components: For the inverting configuration, \(V_o/V_i = -R_2/R_1 \), and for the noninverting configuration, \(V_o/V_i = 1 + R_2/R_1 \).

The noninverting closed-loop configuration features a very high input resistance. A special case is the unity-gain follower, frequently employed as a buffer amplifier to connect a high-resistance source to a low-resistance load.

For most internally compensated op amps, the open-loop gain falls off with frequency at a rate of -20 dB/decade, and \(f_\text{ZFB} \) is the 3-dB frequency of the open-loop gain. At any frequency \(f < f_\text{ZFB} \), the op-amp gain \(|A| = f/f_{f\text{ZFB}} \).

For both the inverting and the noninverting closed-loop configurations, the 3-dB frequency is equal to \(f_{f\text{ZFB}} \). The maximum rate at which the op-amp output voltage can change is called the slew rate. The slew rate, SR, is usually specified in V/us. Op-amp slew rate can result in nonlinear distortion of output signal waveforms.

The full power bandwidth, \(f_{\text{op}} \), is the maximum frequency at which an output sinusoid with an amplitude equal to the op-amp rated output voltage \(V_{\text{op}} \) can be produced without distortion: \(f_{\text{op}} = \text{SR}/2\pi V_{\text{op}} \).

The input offset voltage, \(V_{\text{os}} \), is the magnitude of dc voltage that when applied between the op amp input terminals, with appropriate polarity, reduces the dc offset voltage at the output to zero.

The effect of \(V_{\text{os}} \) on performance can be evaluated by including in the analysis a dc source \(V_{\text{os}} \) in series with the op-amp positive input lead. For both the inverting and the noninverting configurations, \(V_{\text{os}} \) results in a dc offset voltage at the output of \(V_{\text{os}}/(1 + R_2/R_1) \).

Capacitively coupling an op amp reduces the dc offset voltage at the output considerably.

The average of the two dc currents, \(I_{\text{os}1} \) and \(I_{\text{os}2} \), that flow in the input terminals of the op amp, is called the input bias current, \(I_{\text{ib}} \). In a closed-loop amplifier, \(I_{\text{ib}} \) gives rise to a dc offset voltage at the output of magnitude \(I_{\text{ib}}R_2 \). This voltage can be reduced to \(I_{\text{ib}}R_2 \) by connecting a source with a lower resistance in series with the positive input terminal equal to the total \(\text{dc} \) resistance seen by the negative input terminal. \(I_{\text{ib}} \) is the input offset current, that is, \(I_{\text{ib}} = [I_{\text{os}1} - I_{\text{os}2}] \).

Connecting a large resistance in parallel with the capacitor of an op-amp inverting integrator prevents op-amp saturation (due to the effect of \(V_{\text{os}} \) and \(I_{\text{ib}} \)).

Summary

- The IC op amp is a versatile circuit building block. It is easy to apply, and the performance of op-amp circuits closely matches theoretical predictions.

- The op-amp terminals are the inverting input terminal (1), the noninverting input terminal (2), the output terminal (3), the positive-supply terminal (V^+) to be connected to the positive power supply, and the negative-supply terminal (V^−) to be connected to the negative supply. The common terminal of the two supplies is the circuit ground.

- The ide al op amp responds only to the difference input signal, that is, \((v_2 - v_1) \); provides at the output, between terminal 3 and ground, a signal \(A(v_2 - v_1) \), where A, the open-loop gain, is very large (10^6 to 10^8) and ideally infinite; and has an infinite input resistance and a zero output resistance.

- Negative feedback is applied to an op amp by connecting a passive component between its output terminal and its inverting (negative) input terminal. Negative feedback causes the voltage between the two input terminals to become very small and ideally zero. Correspondingly, a virtual short circuit is said to exist between the two input terminals. If the positive input terminal is connected to ground, a virtual ground appears on the negative input terminal.

- The two most important assumptions in the analysis of op-amp circuits, presuming negative feedback exists and the op-amps are ideal, are: the two input terminals of the op amp are at the same voltage, and zero current flows into the op-amp input terminals.

- With negative feedback applied and the loop closed, the closed-loop gain is almost entirely determined by external components: For the inverting configuration, \(V_o/V_i = -R_2/R_1 \), and for the noninverting configuration, \(V_o/V_i = 1 + R_2/R_1 \).

- The noninverting closed-loop configuration features a very high input resistance. A special case is the unity-gain follower, frequently employed as a buffer amplifier to connect a high-resistance source to a low-resistance load.

- For most internally compensated op amps, the open-loop gain falls off with frequency at a rate of -20 dB/decade, and \(f_\text{ZFB} \) is the 3-dB frequency of the open-loop gain. At any frequency \(f < f_\text{ZFB} \), the op-amp gain \(|A| = f/f_{f\text{ZFB}} \).

- For both the inverting and the noninverting closed-loop configurations, the 3-dB frequency is equal to \(f_{f\text{ZFB}} \). The maximum rate at which the op-amp output voltage can change is called the slew rate. The slew rate, SR, is usually specified in V/us. Op-amp slew rate can result in nonlinear distortion of output signal waveforms.

- The full power bandwidth, \(f_{\text{op}} \), is the maximum frequency at which an output sinusoid with an amplitude equal to the op-amp rated output voltage \(V_{\text{op}} \) can be produced without distortion: \(f_{\text{op}} = \text{SR}/2\pi V_{\text{op}} \).

- The input offset voltage, \(V_{\text{os}} \), is the magnitude of dc voltage that when applied between the op amp input terminals, with appropriate polarity, reduces the dc offset voltage at the output to zero.

- The effect of \(V_{\text{os}} \) on performance can be evaluated by including in the analysis a dc source \(V_{\text{os}} \) in series with the op-amp positive input lead. For both the inverting and the noninverting configurations, \(V_{\text{os}} \) results in a dc offset voltage at the output of \(V_{\text{os}}/(1 + R_2/R_1) \).

- Capacitively coupling an op amp reduces the dc offset voltage at the output considerably.

- The average of the two dc currents, \(I_{\text{os}1} \) and \(I_{\text{os}2} \), that flow in the input terminals of the op amp, is called the input bias current, \(I_{\text{ib}} \). In a closed-loop amplifier, \(I_{\text{ib}} \) gives rise to a dc offset voltage at the output of magnitude \(I_{\text{ib}}R_2 \). This voltage can be reduced to \(I_{\text{ib}}R_2 \) by connecting a source with a lower resistance in series with the positive input terminal equal to the total \(\text{dc} \) resistance seen by the negative input terminal. \(I_{\text{ib}} \) is the input offset current, that is, \(I_{\text{ib}} = [I_{\text{os}1} - I_{\text{os}2}] \).

- Connecting a large resistance in parallel with the capacitor of an op-amp inverting integrator prevents op-amp saturation (due to the effect of \(V_{\text{os}} \) and \(I_{\text{ib}} \)).

PROBLEMS

SECTION 2.1: THE IDEAL OP AMP

2.1 What is the minimum number of pins required for a so-called dual-op-amp IC package, one containing two op-amps? What is the number of pins required for a so-called quad-op-amp package, one containing four op-amps?

2.2 The circuit of Fig. P2.2 uses an op amp that is ideal except for having a finite gain \(\beta \). Measurements indicate \(V_o = 4.0 \text{ V} \) when \(v_1 = +4.0 \text{ V} \). What is the op amp gain \(\beta \)?

2.3 Measurement of a circuit incorporating what is thought to be an ideal op amp shows the voltage at the op amp output to be...
2.4 A set of experiments are run on an op amp that is ideal except for having a finite gain A. The results are tabulated below. Are the results consistent? If not, are they reasonable, in view of the possibility of experimental error? What do they show the gain to be? Using this value, predict values of the measurements that were accidentally omitted (the blank entries).

2.5 Refer to Exercise 2.3. This problem explores an alternative internal structure for the op amp. In particular, we wish to model the internal structure of a particular op amp using two transconductance amplifiers and one transresistance amplifier. Suggest an appropriate topology. For equal transconductances G_m and a transresistance R_i, find an expression for the open-loop gain A. For $G_m = 100 \text{ mS/V}$ and $R_i = 10^5 \Omega$, what value of A results?

2.6 The two wires leading from the output terminals of a transducer pick up an interference signal that is a 60-Hz, 1-V sinusoid. The output signal of the transducer is sinusoidal at 10-nV amplitude and 1000-Hz frequency. Give expressions for v_o and v_i and the total signal between each wire and the system ground.

2.7 Nonideal (i.e., real) operational amplifiers respond to both the differential and common-mode components of their input signals (refer to Fig. 2.4 for signal representation). Thus the output voltage of the op amp can be expressed as

$$v_o = A_d v_d + A_m v_m,$$

where A_d is the differential gain (referred to simply as A in the text) and A_m is the common-mode gain (assumed to be zero in the text). The op amp’s effectiveness in rejecting common-mode signals is measured by its CMRR, defined as

$$\text{CMRR} = 20 \log \left(\frac{A_d}{A_m} \right).$$

Find expressions for A_d, A_m, and CMRR. If A_d is 80 dB and the two transconductances are matched to within 0.1% of each other, calculate A_m and CMRR.

SECTION 2.1: THE INVERTING CONFIGURATION

2.8 Assessing ideal op amps, find the voltage gain v_o/v_i and input resistance R_i of each of the circuits in Fig. P2.8.

2.9 A particular inverting circuit uses an ideal op amp and two 10-kQ resistors. What closed-loop gain would you expect? If the voltage of ±5.0 V is applied at the input, what output result? If the 10-kQ resistors are said to be ±5% resistors, having values somewhere in the range (±0.05) times the nominal value, what range of outputs would you expect to actually measure for an input of precisely 5.00 V?

2.10 You are provided with an ideal op amp and three 10-kΩ resistors. Using series and parallel resistor combinations, how many different inverting-amplifier circuit topologies are possible? What is the largest (nonlimiting) available voltage gain? What is the smallest (nonzero) available gain? What are the input resistances in these two cases?

2.11 For ideal op-amps operating with the following feedback networks in the inverting configuration, what closed-loop gain results?

(a) $R_1 = 10 \text{ kΩ}, R_2 = 10 \text{ kΩ}$
(b) $R_1 = 10 \text{ kΩ}, R_2 = 100 \text{ kΩ}$
(c) $R_1 = 100 \text{ kΩ}, R_2 = 1 \text{ kΩ}$
(d) $R_1 = 100 \text{ kΩ}, R_2 = 10 \text{ kΩ}$
(e) $R_1 = 100 \text{ kΩ}, R_2 = 1 \text{ MΩ}$
(f) $R_1 = 100 \text{ kΩ}, R_2 = 10 \text{ MΩ}$

2.12 Using an ideal op amp, what are the values of the resistors R_1 and R_2 to be used to design amplifiers with the closed-loop gains listed below? In your designs, use at least one 10-kΩ resistor and another larger resistor.

(a) -1 V/V
(b) -2 V/V
(c) -5 V/V
(d) -10 V/V

2.13 Design an inverting op-amp circuit for which the gain is -5 V/V and the total resistance used is 120 kΩ.

2.14 Using the circuit of Fig. 2.5 and assuming an ideal op amp, design an inverting amplifier with a gain of 26 dB having the largest possible input resistance under the constraint of having to use resistors no larger than 10 MΩ. What is the input resistance of your design?

2.15 An ideal op-amp connected as shown in Fig. 2.5 of the text with $R_1 = 10 \text{ kΩ}$ and $R_2 = 100 \text{ kΩ}$. A symmetrical square-wave signal with levels of 0 V and 1 V is applied at the input. Sketch and clearly label the waveform of the resulting output voltage. What is its average value? What is its highest value? What is its lowest value?

2.16 For the circuit in Fig. P2.16, find the currents through all branches and the voltages at all nodes. Since the current supplied by the op amp is greater than the current drawn from the input signal source, where does the additional current come from?

2.17 An inverting op amp circuit is fabricated with the resistors R_1 and R_2 having ±5% tolerance (i.e., the value of each resistance can deviate from the nominal value by as much as ±5%). What is the tolerance on the realized closed-loop gain? Assume the op amp to be ideal. If the nominal closed-loop gain is -100 V/V and $x = 5$, what is the range of gain values expected from such a circuit?

2.18 An ideal op amp with 5-kΩ and 15-kΩ resistors is used to create a -5 V supply from a $+5 \text{ V}$ reference. Sketch the circuit. What are the voltages at the ends of the 5-kΩ resistor? If these resistors are so-called 1% resistors, whose actual values are the range bounded by the nominal value ±1%, what are the limits of the output voltage produced? If the $+5 \text{ V}$ supply can also vary by ±1%, what is the range of the output voltages that might be found?

2.19 An inverting op-amp circuit for which the required gain is -50 V/V uses an op amp whose open-loop gain is only 200 V/V. If the larger resistor used is 100 kΩ, what must the smaller be adjusted? With what resistor must a 2-kΩ resistor connected to the input be shunted to achieve this goal? (Note that a resistor R_1 is said to be shunted by a resistor R_2 when R_1 is placed in parallel with R_2.)

2.20 (a) Design an inverting amplifier with a closed-loop gain of -100 V/V and an input resistance of 1 kΩ. (b) If the op amp is known to have an open-loop gain of 1000 V/V, what do you expect the closed-loop gain of your circuit to be (assuming the resistors have precise values)?

(a) Give the value of a resistor you can place in parallel (shunt) with R_1 to restore the closed-loop gain to its nominal value. Use the closest standard 1% resistor value (see Appendix G).

(b) An op amp with an open-loop gain of 1000 V/V is used in the inverting configuration. If in this application the output voltage ranges from -10 V to $+10 \text{ V}$, what is the maximum voltage that can be applied to the input?
2.22 The circuit in Fig. P2.22 is frequently used to provide an output voltage \(v_o \) proportional to an input signal current \(i_i \). Derive expressions for the transistors' gains and the input resistance \(R_i = v_i/i_i \), and the output resistance \(R_o = v_o/v_i \), for the following cases.

(a) \(A \) is infinite.
(b) \(A \) is finite.

FIGURE P2.22

2.23 Derive an expression for the input resistance of the inverting amplifier of Fig. 2.5 taking into account the finite open-loop gain \(A \) of the op amp.

2.24 For an inverting op amp with open-loop gain \(A \) and nominal closed-loop gain \(K_0/A \), find the minimum value of the gain \(A \) must have, in terms of \(K_0/A \), for a gain error of 0.1\%, 1\%, and 10\%. In each case, what value of resistor \(R_o \) can be used to shunt \(R_o \) to achieve the nominal result?

FIGURE P2.25

2.25 Figure P2.25 shows an op amp that is ideal except for having a finite open-loop gain \(A \) and finite closed-loop gain \(K_1/R_o \). To compensate for the gain reduction due to the finite \(A \), a resistor \(R_2 \) is shunted across \(R_1 \). Show that perfect compensation is achieved when \(R_2 \) is selected according to

\[
R_2 = \frac{A - G}{1 + G} R_1
\]

For a closed-loop gain of \(-100\) and a gain error of \(\pm 10\%\), what is the minimum \(A \) required?

2.26 Using Eq. (2.5), determine the value of \(A \) for which a reduction of \(A \) by \(x/10 \) results in a reduction in \(K_1 \) by \((x/10)^2 \). Derive this expression for the case in which the nominal closed-loop gain is 100, \(x \) is 50, and \(G \) is 100.

2.27 Consider the circuit in Fig. 2.8 with \(R_1 = R_2 = R_o = 1 \) MQ, and assume the op amp to be ideal. Find values for \(R_1 \) to obtain the following gains:

(a) \(-10 \) V/V
(b) \(-100 \) V/V
(c) \(-2 \) V/V

FIGURE P2.31

2.28 The circuit in Fig. 2.8 is used with three resistors of \(R \) to obtain the following gains:

(a) \(-10 \) V/V
(b) \(-100 \) V/V
(c) \(-2 \) V/V

2.29 Derive an expression for the input resistance of the current amplifier. If the amplifier is fed with a current source having a current of 1 mA and a source resistance of 10 k\(\Omega \), find \(i_o \).

FIGURE P2.32

2.30 The circuit in Fig. 2.30 is composed of a resistor \(R_3 \) and a virtual ground at the inverting input terminal. Use these two relationships to find the (approximate) relationship between \(v_o \) and \(v_i \).

2.31 The circuit in Fig. P2.31 can be considered an extension of the circuit in Fig. 2.8.

(a) Find the resistances looking into node 1, \(R_1 \); node 2, \(R_2 \); node 3, \(R_3 \); and node 4, \(R_4 \).
(b) Find the currents \(i_1 \), \(i_2 \), \(i_3 \), and \(i_4 \) in terms of the input current \(i_i \).

FIGURE P2.33

2.32 The circuit shown in Fig. 2.10 is redrawn in Fig. P2.32 in a way that emphasizes the feedback network. The circuit is redrawn in Fig. 2.30 in a way that emphasizes the feedback network. The feedback network is composed of a resistor \(R_2 \) and the virtual ground at the inverting input terminal. Use these two relationships to obtain the (approximate) relationship between \(v_o \) and \(v_i \).

2.33 The op amp is considered to be ideal and is required to design the circuit shown in Fig. P2.33 to implement a current amplifier with gain \(i_o/i_i = 20 \) A/A.

FIGURE P2.34

2.34 For an inverting op amp with open-loop gain \(A \) and ideal compensation is achieved when \(x \) is shunted across \(R_o \). Show that perfect compensation is achieved when \(x \) is shunted across \(R_o \).}

2.35 Design the circuit shown in Fig. P2.35 to have an input resistance of 100 k\(\Omega \) and a gain that can be varied from \(-1 \) V/V to \(-10 \) V/V using the 10-k\(\Omega \) potentiometer \(R_k \). What
D2.41 Use two ideal op amps and resistors to implement the summation function:
\[v_0 = v_1 + 2v_2 - 3v_3 - 4v_4 \]

D2.42 In an instrumentation system, there is a need to take the difference between two signals. One of the inputs is \(60 \sin(2\pi f) + 0.01 \sin(2\pi f 	imes 10000) \) volts and another is \(3 \sin(2\pi f 	imes 60\,000) - 0.01 \sin(2\pi f 	imes 10000) \) volts. Draw a circuit that finds the required difference using two op-amps and mainly 10-k\(\Omega \) resistors. Since it is desirable to amplify the 10-kHz component in the process, arrange to provide an overall gain of 10 as well. The op-amps available are ideal except that their output voltage swing is limited to \(\pm 10 \) V.

D2.43 Figure P2.43 shows a circuit for a digital-to-analog converter (DAC). The circuit accepts a 4-bit input binary word \(a_3a_2a_1a_0 \), where \(a_3, a_2, a_1, \) and \(a_0 \) take the values of 0 or 1, and it provides an output voltage \(v_o \), proportional to the value of the digital input. Each of the bits of the input word controls the correspondingly numbered switch. For instance, if \(a_3 \) is 0 then switch \(S_2 \) connects the 20-k\(\Omega \) resistor to ground, while if \(a_3 \) is 1 then \(S_2 \) connects the 30-k\(\Omega \) resistor to the -5-V power supply. Show that \(v_o \) is given by
\[v_o = R_{s1}(2a_3v_1 + 2a_2v_2 + 2a_1v_3 + 2a_0v_4) \]

FIGURE P2.43

2.36 A weighted summer circuit using ideal op-amps has three inputs using 100-k\(\Omega \) resistors and a feedback resistor of 50-k\(\Omega \). A signal \(v_1 \) is connected to two of the inputs with a signal \(v_2 \) connected to the third. Express \(v_0 \) in terms of \(v_1 \) and \(v_2 \). If \(v_1 = 3 \) V and \(v_2 = 4 \) V, what is \(v_0 \)?

D2.37 Design an op amp circuit to provide an output \(v_o = -(v_1 + v_2 + v_3) \). Choose relatively low values of resistors but ones for which the input current (from each input signal source) does not exceed 0.1 mA for 1-V input signals.

D2.38 Using the scheme illustrated in Fig. 2.10, design an op-amp circuit with inputs \(v_1, v_2, \) and \(v_3 \) whose output is \(v_o = (-v_1 + v_2 + v_3) \), using small resistors but no smaller than 10-k\(\Omega \).

D2.39 An ideal op amp is connected in the weighted sum configuration of Fig. 2.10. The feedback resistor \(R_f = 10 \, k\Omega \) and six 10-k\(\Omega \) resistors are connected to the inverting input terminal of the op amp. Show, by sketching the various circuit configurations, how this basic circuit can be used to implement the following functions:
(a) \(v_0 = -(v_1 + 2v_2 + 3v_3) \)
(b) \(v_0 = -(v_1 - v_2 + v_3) \)
(c) \(v_0 = -(v_1 - 2v_2 - 3v_3) \)
(d) \(v_0 = -6v_1 \)

In each case find the input resistance seen by each of the signal sources supplying \(v_1, v_2, v_3, \) and \(v_0 \). Suggest at least two additional summing functions that you can realize with this circuit. How would you realize a summing coefficient that is 0.5?

D2.40 Give a circuit, complete with component values, for a weighted summer that shifts the dc level of a sine-wave signal of 5 V (at times) from zero to \(-5 \) V. Assume that in addition to the sine-wave signal you have a dc reference voltage of 2 V available. Sketch the output signal waveform.

SECTION 2.3: THE NONINVERTING CONFIGURATION

D2.44 Using an ideal op amp to implement designs for the following closed-loop gains, what values of resistors \(R_1, R_2 \) should be used? Where possible, use at least one 10-k\(\Omega \) resistor as the smallest resistor in your design.
(a) +1 \text{ V/V}
(b) +2 \text{ V/V}
(c) +10 \text{ V/V}
(d) +100 \text{ V/V}

D2.45 Design a circuit based on the topology of the non-inverting amplifier to obtain a gain of +1.5 V/V, using only 10-k\(\Omega \) resistors. Note that there are two possibilities. Which of these can be easily converted to have a gain of either +1.0 V/V or +2.0 V/V simply by short-circuiting a single resistor in each case?

D2.46 Figure P2.46 shows a circuit for an analog voltmeter of very high input resistance that uses an inexpensive moving-coil meter. The voltmeter measures the voltage \(v \) applied between the op amp's positive input terminal and ground. Assuming that the moving coil produces full-scale deflection when the current passing through it is 100 \mu\text{A}, find the value of \(R \) such that full-scale reading is obtained when \(v = +10 \) V. Does the meter resistance affect the voltmeter calibration?

FIGURE P2.46

D2.47 (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by
\[v_o = R_{s1}v_1 + R_{s2}v_2 + R_{s3}v_3 + R_{s4}v_4 + \cdots + R_{sn}v_n \]
\[+ \sum \left[R_{i} \right] \left(R_{s1} + R_{s2} + R_{s3} + \cdots + R_{sn} \right) \]

where \(R_{i} = R_{s1}R_{s2} \cdots R_{s(i-1)}R_{s(i+1)} \cdots R_{sn} \)

and \(R_{o} = R_{s1}R_{s2} \cdots R_{sn} \)

(b) Design a circuit to obtain
\[v_o = -2v_1 + v_2 + 2v_3 \]

The smallest resistor used should be 10-k\(\Omega \).

FIGURE P2.47

2.48 Design a circuit, using one ideal op amp, whose output is \(v_o = v_1 + 3v_2 - 2(v_3 + 3v_4) \). (Note: Use a structure similar to that shown in general form in Fig. P2.47.)

2.49 Derive an expression for the voltage gain \(v_o/v_1 \) of the circuit in Fig. P2.49.

FIGURE P2.49

2.50 For the circuit in Fig. P2.50, use superposition to find \(v_o \) in terms of the input voltages \(v_1 \) and \(v_2 \). Assume an ideal op amp. For
\[v_1 = 10 \text{mV}(2 \times 60) - 0.1 \text{mA}(2 \times 10000) \text{ volts} \]
\[v_2 = 10 \text{mA}(2 \times 60) - 0.1 \text{mA}(2 \times 10000) \text{ volts} \]

find \(v_o \).

FIGURE P2.49
The circuit shown in Fig. P2.51 utilizes a 10-kΩ potentiometer to realize an adjustable-gain amplifier. Derive an expression for the gain as a function of the potentiometer setting *x*. Assume the op amp to be ideal. What is the range of gains obtained? Show how to add a fixed resistor so that the gain range can be 1 to 21 V/V. What should the resistor value be?

FIGURE P2.51

D2.55 A noninverting op-amp circuit with nominal gain of 10 V/V uses an op amp with open-loop gain of 500 V/V and a lowest-value resistor of 10 kΩ. What closed-loop gain actually results? With what value resistor can this result be obtained? If in the manufacture process, an op amp of gain 100 V/V were used, what closed-loop gain would result in each case (the uncompensated one, and the compensated one)?

2.55 Using Eq. (2.11), show that if the reduction in the closed-loop gain G from the nominal value \(G_0 = 1 + R_2/R_1 \) is to be kept less than 5% of \(G_0 \), then the open-loop gain of the op amp must exceed \(G_0 \) by at least a factor \(F = (100/\delta - 1) = 100/\delta \). Find the required \(F \) for \(\delta = 0.01, 0.1, \) and 1.0. Utilize these results to find for each value of \(\delta \) the minimum required open-loop gain to obtain closed-loop gains of 1, 10, 10², and 10³ V/V.

2.56 For each of the following combinations of op-amp open-loop gain \(A \) and nominal closed-loop gain \(G_0 \), calculate the actual closed-loop gain \(G \) that is achieved. Also, calculate the percentage of gain change from the nominal gain magnitude \(G_0 \).

<table>
<thead>
<tr>
<th>Case</th>
<th>(G_0) (V/V)</th>
<th>(A) (V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
<td>10²</td>
</tr>
<tr>
<td>c</td>
<td>1000</td>
<td>10³</td>
</tr>
<tr>
<td>d</td>
<td>10000</td>
<td>10⁴</td>
</tr>
<tr>
<td>e</td>
<td>100000</td>
<td>10⁵</td>
</tr>
<tr>
<td>f</td>
<td>1000000</td>
<td>10⁶</td>
</tr>
<tr>
<td>g</td>
<td>10000000</td>
<td>10⁷</td>
</tr>
</tbody>
</table>

2.57 Using Eq. (2.12), show that if the reduction in the closed-loop gain \(G \) from the nominal value \(G_0 = 1 + R_2/R_1 \) is to be kept less than 10% of \(G_0 \), then the closed-loop gain \(G \) is given by \(G = G_0 (1 + x/R_1) \). Where does the load current come from in case (b)? In each case find the load current and the current supplied by the source?

2.58 For the circuit shown in Fig. P2.62, express \(v_0 \) as a function of \(v_1 \) and \(v_2 \). What is the input resistance seen by \(v_1 \) alone? By \(v_2 \) alone? By a source connected to both input terminals? By a source connected to both input terminals simultaneously?

2.59 For the circuit shown in Fig. P2.62, show how the op amp is connected to realize a differential gain of 100 V/V, a differential input resistance of 100 kΩ, and a minimum CMRR of 80 dB. Assume the op amp to be ideal and that 1% resistors are used.

2.60 Design the difference amplifier circuit of Fig. 2.16 to realize a differential gain of 100, a differential input resistance of 20 kΩ, and a maximum CMRR of 80 dB. Assume the op amp to be ideal. Specify both the resistor values and their required tolerance (e.g., better than ±0.5%).

2.61 Using the difference amplifier configuration of Fig. 2.16 and assuming an ideal op-amp, design the circuit to provide the following differential gains in each case the differential input resistance should be 20 kΩ.

<table>
<thead>
<tr>
<th>Case</th>
<th>(G_0) (V/V)</th>
<th>(A) (V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 V/V</td>
<td>10²</td>
</tr>
<tr>
<td>b</td>
<td>2 V/V</td>
<td>10³</td>
</tr>
<tr>
<td>c</td>
<td>100 V/V</td>
<td>10⁴</td>
</tr>
<tr>
<td>d</td>
<td>50 V/V</td>
<td>10⁵</td>
</tr>
</tbody>
</table>

2.62 For the circuit shown in Fig. P2.62, express \(v_0 \) as a function of \(v_1 \) and \(v_2 \). What is the input resistance seen by \(v_1 \) alone? By \(v_2 \) alone? By a source connected to both input terminals? By a source connected to both input terminals simultaneously?

2.63 Consider the difference amplifier of Fig. 2.16 with the two input terminals connected together to an input common-mode signal source. For \(R_{1}/R_{2} = R_{1}/R_{3} \) show that the input common-mode resistance is \((R_{1} + R_{2})(1 + R_{3}/R_{2}) \).

2.64 Consider the circuit of Fig. 2.16, and let all the gains be 100 kΩ ± 2%. Find an expression for the worst-case common-mode gain that results. Evaluate this for \(x = 0.1, 1, \) and 5. Also, evaluate the resulting CMRR in each case.

2.65 For the difference amplifier shown in Fig. P2.62, let all the resistors be 100 kΩ ± 2%. Find an expression for the worst-case common-mode gain that results. Evaluate this for \(x = 0.1, 1, \) and 5. Also, evaluate the resulting CMRR in each case.

2.66 For the difference amplifier of Fig. 2.16, show that if each resistor has a tolerance of ±10% (i.e., for, say, a 5% resistor, \(K = 0.05 \)) then the worst-case CMRR is given approximately by

\[
\text{CMRR} = 20 \log_{10} \left(\frac{K + 1}{0.01 - K} \right)
\]

where \(K \) is the nominal (ideal) value of the ratios \(R_{1}/R_{2} \) and \(R_{1}/R_{3} \). Calculate the value of worst-case CMRR for an amplifier designed to have a differential gain of ideally 100 V/V, assuming that the op amp is ideal and that 1% resistors are used.

2.67 Design the difference amplifier circuit of Fig. 2.16 to realize a differential gain of 100, a differential input resistance of 20 kΩ, and a maximum CMRR of 80 dB. Assume the op amp to be ideal. Specify both the resistor values and their required tolerance (e.g., better than ±0.5%).

2.68 (a) Find \(A_{d} \) and \(A_{cm} \) for the difference amplifier circuit shown in Fig. P2.68.

(b) If the op amp is specified to operate properly so long as the common-mode voltage at its positive and negative inputs falls in the range ±2.5 V, and when the corresponding input common-mode signal is ±1.5 V, what is the corresponding limitation on the range of the input common-mode signal \(v_{cm} \)?

(c) The circuit is modified by connecting a 10-kΩ resistor between node A and ground and another 10-kΩ resistor between node B and ground. What will be the values of \(A_{d} \) and \(A_{cm} \), and the input common-mode range?
2.69 To obtain a high-gain, high-input-resistance difference amplifier, the circuit in Fig. P2.69 employs positive feedback, in addition to the negative feedback provided by the resistor R connected from the output to the negative input of the op amp. Specifically, a voltage divider (R_5, R_6) connected across the output feeds a fraction β of the output, that is, a voltage V_{or} back to the positive-input terminal of the op amp through a resistor R. Assume that R_5 and R_6 are much smaller than R so that the current through R is much larger than the current in the voltage divider, with the result that $\beta = R_6/(R_5 + R_6)$. Show that the differential gain is given by

$$A_d = \frac{V_o}{V_i} = \frac{1}{1 - \beta}$$

Design the circuit to obtain a differential gain of 10 V/V and differential input resistance of 2 MΩ. Select values for R, R_5, and R_6 such that $(R_5 + R_6) \leq R/100$.

FIGURE P2.69

2.70 Figure P2.70 shows a modified version of the difference amplifier. The modified circuit includes a resistor R, which can be used to vary the gain. Show that the differential voltage gain is given by

$$V_{out} = -\frac{R}{R_1} \left(1 + \frac{R_2}{R_1}\right) V_{in}$$

(Hint: The virtual short circuit at the op amp input causes the current through the R_1 resistors to be $V_{in}/2R_1$.)

FIGURE P2.70

2.71 The circuit shown in Fig. P2.71 is a representation of a versatile, commercially available IC, the INA105, manufactured by Burr-Brown and known as a differential amplifier module. It consists of an op amp and precision, laser-trimmed, metal-film resistors. The circuit can be configured for a variety of applications by the appropriate connection of terminals A, B, C, D, and O.

FIGURE P2.71

(a) Show how the circuit can be used to implement a difference amplifier of unity gain.

(b) Show how the circuit can be used to implement single-ended amplifiers with gains:

(i) -1 V/V
(ii) $+1$ V/V
(iii) $+2$ V/V
(iv) $+1.5$ V/V

Avoid leaving a terminal open-circuited, for such a terminal may act as an "antenna," picking up interference and noise through capacitive coupling. Rather, find a convenient node to connect such a terminal in a redundant way. When more than one circuit implementation is possible, comment on the relative merits of each, taking into account such considerations as dependence on component matching and input resistance.

2.72 Consider the instrumentation amplifier of Fig. 2.20(b) with a common-mode input voltage of ± 5 V (dc) and a differential input signal of 85 mV peak-to-peak sine wave. Let $2R_1 = 1$ kΩ, $R_5 = 50$ kΩ, $R_6 = R$. Find the voltage at every node in the circuit.

2.73 (a) Consider the instrumentation amplifier circuit of Fig. 2.20(a). If the op amps are ideal except that their outputs saturate at ± 14 V, in the manner shown in Fig. 1.13, find the maximum allowed input common-mode signal for the case $R_1 = 1$ kΩ and $R_2 = 100$ kΩ.

(b) Repeat (a) for the circuit in Fig. 2.20(b), and comment on the difference between the two circuits.

2.74 (a) Expressing v_{02} and v_{01} in terms of differential and common-mode components, find v_{02} and v_{01} in the circuit in Fig. 2.20(a) and hence find their differential component $v_{02} - v_{01}$ and their common-mode component $\frac{1}{2}(v_{02} + v_{01})$. Now find the differential gain and the common-mode gain of the first stage of this instrumentation amplifier and hence the CMRR.

(b) Repeat for the circuit in Fig. 2.20(b), and comment on the difference between the two circuits.

2.75 For an instrumentation amplifier of the type shown in Fig. 2.20(b), a designer proposes to make $R_2 = R_1 = 100$ kΩ, and $2R_1 = 10$ kΩ. For ideal components, what difference-mode gain, common-mode gain, and CMRR result? Reevaluate the worst-case values for these for the situation in which all resistors are specified to ±10% units. Repeat the latter analysis for the case in which $2R_1$ is reduced to 1 kΩ. What do you conclude about the importance of the relative difference gains of the first and second stages?

2.76 Design the instrumentation-amplifier circuit of Fig. 2.20(b) to realize a differential gain, variable in the range 1 to 100, utilizing a 100-kΩ pot as variable resistor. (Hint: Design the second stage for a gain of 0.5.)

2.77 The circuit shown in Fig. P2.77 is intended to supply a voltage to floating loads (those for which both terminals are ungrounded) while making greatest possible use of the available power supply.

(a) Assuming ideal op amps, sketch the voltage waveforms at nodes B and C for a 1-V peak-to-peak sine wave applied at A. Also sketch v_0.

(b) What is the voltage gain V_{01}/V_{02}?

(c) Assuming that the op amps operate from ±15-V power supplies and that their output saturates at ±14 V, what are the largest sine wave output that can be accommodated? Specify both its peak-to-peak and rms values.

FIGURE P2.77

2.78 The two circuits in Fig. P2.78 are intended to function as voltage-to-current converters; that is, they supply a load impedance Z_L with a current proportional to V_0 and independent of the value of Z_L. Show that this is indeed the case, and find for each circuit I_0 as a function of V_0. Comment on the differences between the two circuits.

FIGURE P2.78
2.80 A measurement of the open-loop gain of an internally compensated op amp intended for high-frequency operation indicates that the gain is 5.1 x 10^4 at 100 kHz and 8.3 x 10^7 at 10 kHz. Estimate its 3-dB frequency, its unity-gain frequency, and its dc gain.

2.81 Measurements made on the internally compensated amplifiers listed below provide the dc gain and the frequency at which the gain has dropped by 20 dB. For each, what are the 3-dB and unity-gain frequencies?

(a) 3 x 10^5 V/V and 6 x 10^5 Hz
(b) 50 x 10^5 V/V and 10 kHz
(c) 1500 V/V and 0.1 MHz
(d) 200 V/V and 0.1 GHz
(e) 25 V/V and 25 kHz

2.82 An inverting amplifier with nominal gain of 20-V/V employs an op amp having a dc gain of 10^7 and a unity-gain frequency of 100 Hz. What is the 3-dB frequency of the op amp?

2.83 A particular op amp, characterized by a gain-bandwidth product of 20 MHz, is operated with a closed-loop gain of 100 V/V. What 3-dB bandwidth results? At what frequency does the closed-loop amplifier exhibit a —60° phase shift? A —90° phase shift?

2.84 Find the f_, required for internally compensated op-amps to be used in the implementation of closed-loop amplifiers with the following nominal dc gains and 3-dB bandwidths:

(a) -100 V/V; 10 kHz
(b) -10 V/V; 100 kHz
(c) -1 V/V; 100 MHz
(d) -2 V/V; 10 MHz
(e) -10 V/V; 20 kHz
(f) -10 V/V; 5 MHz
(g) -5 V/V; 1 MHz

2.85 Consider the use of an op amp with a unity-gain frequency f_, in the realization of

(a) an inverting amplifier with dc gain of magnitude K
(b) a noninverting amplifier with dc gain of K

In each case find the 3-dB frequency and the gain-bandwidth product (GBP = |Gain| x f_(GBP)). Comment on the results.

2.86 A noninverting op-amp circuit with a gain of 100 V/V is found to have a 3-dB frequency of 8 kHz. For a particular system application, a bandwidth of 20 kHz is required. What is the highest gain available under these conditions?

2.87 Consider a unity-gain follower utilizing an internally compensated op amp with a 3-dB frequency of the follower? At what frequency is the gain of the follower 1% below its low-frequency magnitude? If the input to the follower is a 1-V step, find the 10% to 90% rise time of the output voltage. (Note: The step response of STC low-pass networks is discussed in Appendix D.)

2.88 It is required to design a noninverting amplifier with a dc gain of 10. When a step voltage of 100 mV is applied at the input, it is required that the output be within 1% of its final value of V in at most 10 ns. What must the f_ of the op amp be? (Note: The step response of STC low-pass networks is discussed in Appendix D.)

2.89 This problem illustrates the use of cascaded closed-loop amplifiers to obtain an overall bandwidth greater than that achievable using a single-stage amplifier with the same overall gain. (a) Show that cascading two identical amplifier stages, each having a low-pass STC frequency response with a 3-dB frequency f_, results in an overall amplifier with a 3-dB frequency given by f_3dB = f_1 f_2

(b) It is required to design a noninverting amplifier with a dc gain of 40 dB utilizing a single internally-compensated op amp with f_ = 1 MHz. What is the 3-dB frequency obtained?

2.90 A designer, wanting to achieve a stable gain of 1000 V/V, requires to satisfy her need? Unfortunately, the best available amplifier has an f_ of 40 MHz. How many such amplifiers connected in a cascade of identical noninverting stages would she need to achieve her goal? What is the 3-dB frequency of each stage she can use? Is the overall 3-dB frequency found?

2.91 Consider the use of an op amp having a 3-dB frequency f_, in the realization of

(a) an inverting amplifier with dc gain of magnitude K
(b) a noninverting amplifier with dc gain of K

In each case find the 3-dB frequency and the gain-bandwidth product (GBP = |Gain| x f_(GBP)). Comment on the results.

2.92 Consider an inverting summer with two inputs V_in and V_out, and with V_0 = (V_in + V_out). Find the 3-dB frequency of each of the gain functions V_/V_in and V_/V_out in terms of the op amp f_. (Note: In each case, the other input to the summer can be set to zero—to avoid application of superposition.)

2.93 A particular op amp using ±15-V supplies operates linearly for outputs in the range —12 V to +12 V. If used in an inverting amplifier configuration of gain = -10, what is the rms value of the largest possible sine wave that can be applied at the input without output clipping?

2.94 Consider an op amp connected in the inverting configuration to realize a closed-loop gain of -100 V/V including resistors of 1 kΩ and 100 kΩ. A load resistors f_ is connected from the output to ground, and a low-frequency sine-wave signal of peak amplitude V_in is applied to the input. Let the op amp be ideal except that its output voltage saturates at ±10 V and its output current is limited to the range ±20 mA.

(a) For R 1 kΩ, what is the maximum possible value of V_in while an undistorted output sinusoid is obtained?
(b) Repeat (a) for R_1 = 10 kΩ.
(c) If it is desired to obtain an output sinusoid of 10-V peak amplitude, what maximum value of R_ can be tolerated?

2.95 An op amp having a slew rate of 20 V/µs is to be used in the unity-gain follower configuration, with input pulses that rise from 0 to 3 V. What is the shortest pulse that can be used while creating full-amplitude output? For such a pulse, describe the output resulting.

2.96 For operation with 10-V output pulses with the requirement that the sum of the rise and fall times should represent only 20% of the pulse width (at half amplitude), what is the slew-rate requirement for an op amp to handle pulses 2 µs wide? (Note: The rise and fall times of a pulse signal are usually measured between the 10%- and 90%-height points.)

2.97 What is the highest frequency of a triangle wave of 20-V peak-to-peak amplitude that can be reproduced by an op amp whose slew rate is 10 V/µs? For a sine wave of the same frequency, what is the maximum amplitude of output signal that remains undistorted?

2.98 For an amplifier having a slew rate of 60 V/µs, what is the highest frequency at which a 20-V peak-to-peak sine wave can be produced at the output?

2.99 In designing op amp one has to check the limitations on the voltage and frequency ranges of operation of the closed-loop amplifier, imposed by the op amp finite bandwidth (f_ B), slew rate (S_R), and output saturation (V_max).

2.100 An op amp with f_ B = 2 MHz, S_R = 1 V/µs, and V_max = 10 V is to be used in the design of a noninverting amplifier with a gain of 10. Assume a sine-wave input with peak amplitude V_in.

(a) What is the maximum frequency before the output distorts?
(b) If f_ = 20 kHz, what is the maximum value of V_in before the output distorts?
(c) If V_max = 50 mV, what is the useful frequency range of operation?
(d) If f_ = 5 kHz, what is the useful input voltage range?

2.101 A noninverting amplifier with a gain of 200 uses an op amp having an input offset voltage of ±2 mV. Find the output when the input is 0.01 sin t volts.

2.102 A noninverting amplifier with a closed-loop gain of 1000 is designed using an op amp having an input offset voltage of ±3 mV and output saturation levels of ±5 V. What is the maximum amplitude of the sine wave that can be applied at the input without the output clipping? If the amplifier is capacitively coupled in the manner indicated in Fig. 2.2b, what would the maximum possible amplitude be?

2.103 An op amp connected in a closed-loop inverting configuration having a gain of 1000 V/V and using relatively small-valued resistors is measured with input grounded, having R_1 = 100 kΩ and f_1 = 1 kHz, an output dc voltage of 0.3 V. If the input bias current is known to be very small, find the input offset voltage.

2.104 A particular inverting amplifier with nominal gain of 1000 V/V uses an imperfect op amp in conjunction with 100-kΩ and 10-MΩ resistors. The output voltage is found to be +9.31 V when measured with the input open and +9.05 V with the input grounded.

(a) What is the bias current of this amplifier? In what direction does it flow?

(b) Estimate the value of the input offset voltage.

(c) A 10-MΩ resistor is connected between the positive input terminal and ground. With the input left floating (disconnected), the output dc voltage is measured to be —0.8 V. What is the input offset voltage? Prepare an offset-voltage-source skecth resembling that in Fig. 2.2b. Be careful of polarities.

2.105 A particular inverting amplifier with nominal gain of 1000 V/V uses an imperfect op amp in conjunction with 100-kΩ and 10-MΩ resistors. The output voltage is found to be +9.31 V when measured with the input open and +9.05 V with the input grounded.

(a) What is the bias current of this amplifier? In what direction does it flow?

(b) Estimate the value of the input offset voltage.

(c) A 10-MΩ resistor is connected between the positive input terminal and ground. With the input left floating (disconnected), the output dc voltage is measured to be —0.8 V. What is the input offset voltage? Prepare an offset-voltage-source skecth resembling that in Fig. 2.2b. Be careful of polarities.
bias current of 1 μA and an offset current of 0.1 μA, what range of outputs would you expect? Indicate where you would add an additional resistor to compensate for the bias current. What does the range of possible outputs then become? A designer wishes to use this amplifier with a 15-kΩ source. In order to compensate for the bias current in this case, what resistor would you use? And where?

2.106 The circuit of Fig. P2.106 is used to create an ac-coupled noninverting amplifier with a gain of 200 V/V using resistors no larger than 100 kΩ. What values of \(R_1, R_2, \) and \(R_3 \) should be used? For a break frequency due to \(C_1 \) at 100 Hz, and due to \(C_2 \) at 10 Hz, what values of \(C_1 \) and \(C_2 \) are needed?

2.107 Consider the difference amplifier circuit in Fig. 2.16. \(I_{os} = 0.005 \) mA and \(I_{os} = 0 \) nA, find the worst-case (largest) dc offset voltage at the output.

2.108 The circuit shown in Fig. P2.108 uses an op amp having a 24-mV offset. What is its output offset voltage? What does the output offset become with the input ac-coupled through a capacitor \(C \)? If, instead, the 1-kΩ resistor is used, what does the output offset become with the input ac-coupled through a capacitor \(C \)?

FIGURE P2.108

2.109 Using offset-nulling facilities provided for the op amp, a closed-loop amplifier with gain of +1000 is adjusted at 50°C to produce zero output with the input grounded. If the input offset-voltage drift of the op amp is specified to be 10 μV/°C, what output would you expect at 0°C and at 75°C? While nothing can be said separately about the polarity of the output offset errors at either 0°C or 75°C, what would you expect their relative polarities to be?

2.110 An op amp is connected in a closed loop with gain of +100 utilizing a feedback resistor of 1 kΩ. What is the input bias current? What range of outputs would you expect? Indicate where you would add an additional resistor to compensate for the input bias current. What does the range of possible outputs then become? A designer wishes to use this amplifier with a 15-kΩ source. In order to compensate for the input bias current in this case, what resistor would you use? And where?

FIGURE P2.109

2.111 An op amp intended for operation with a closed-loop gain of -100 V/V uses feedback resistors of 10 kΩ and 1 MΩ with a bias-current-compensation resistor \(R_c \). What should the value of \(R_c \) be? With input grounded, the op amp output voltage is found to be 0.02 V. Estimate the input offset current assuming zero input offset voltage. If the input offset voltage can be as large as 1 mV of unknown polarity, what range of offset current is possible? What current injected into, or extracted from, the nongrounded end of \(R_c \) would reduce the op amp output voltage to zero? For available \(\pm 5-V \) supplies, what resistor and supply voltage would you use?

SECTION 2.8: INTEGRATORS AND DIFFERENTIATORS

2.112 A Miller integrator incorporates an ideal op amp, a resistor \(R = 100 \) kΩ, and a capacitor \(C = 10 \) nF. A sine-wave signal is applied to its input.

(a) At what frequency (in Hz) are the input and output signals equal in amplitude?

(b) At what frequency does the phase of the output sine wave relate to that of the input?

(c) If the frequency is lowered by a factor of 10 from that found in (a), by what factor does the output sine-wave voltage change, and in what direction (smaller or larger)?

(d) What is the phase relation between the input and output signals in situation (c)?

FIGURE P2.110

2.113 A Miller integrator with a time constant of one second and an input resistance of 100 kΩ. For a dc voltage of -1 V applied at the input at time 0, at which moment does the integral of the input of 1 V/V exceed 1 V?

2.114 An op-amp-based inverting integrator is measured at 1 kHz to have a voltage gain of -100 V/V. What is the gain product of offset voltage at this frequency?

FIGURE P2.111

2.115 A Miller integrator that has a unity-gain frequency of 1 kHz and an input resistance of 100 kΩ. Sketch the output you would expect for the situation in which, with output initially at 0 V, a 5-V 3-s pulse is applied to the input. Characterize the output that results when a sine wave 2 Hz 1000 ms is applied to the input.

FIGURE P2.112

2.116 Design a Miller integrator whose input resistance is 20 kΩ and unity-gain frequency is 10 kHz. What components are needed? For long-term stability, a feedback resistor is introduced across the capacitor, which limits the dc gain to 10 V/V. What is its value? What is the associated lower 3-dB frequency?

(a) Sketch and label the output which results with a 0.1-s, 1-V positive-input pulse (initially at 0 V) with (a) no feedback resistor connected.

(b) Sketch and label the output waveform that results. Indicate what happens if the input levels are ±2 V, with the time constant constant (the same (1 ms) and with the time constant raised to 2 ms.

FIGURE P2.117

2.119 Consider a Miller integrator having a time constant of 1 ms, and whose output is initially zero, when fed with a 1-V peak-amplitude triangular wave of 10-V peak amplitude at 1 kHz is applied to the input. What is its peak amplitude? What is its average value? What is the phase of the output?

FIGURE P2.118

2.120 A differentiator utilizes an ideal op amp, a 10-kΩ resistor, and a 6.01-μF capacitor. The frequency \(f \) (in Hz) at which its input and output sine-wave signals have equal magnitude?

FIGURE P2.119

2.121 A differentiator utilizes an ideal op amp, a 10-kΩ resistor, and a 6.01-μF capacitor. What is the frequency \(f \) (in Hz) at which its input and output sine-wave signals have equal magnitude?

FIGURE P2.118

2.122 An op-amp differentiator with a 1-ms time constant is driven by the rate-controlled step shown in Fig. P2.122. Assuming \(v_i \) to be zero initially, sketch the output waveform.

FIGURE P2.122

2.123 What is the output signal for a 1-V peak-to-peak sine wave at a frequency of 1 kHz? What is the output signal for a 1-V peak-to-peak sine wave at a frequency of 10 kHz?
CHAPTER 2 OPERATIONAL AMPLIFIERS

the (original) circuit, what output waveform is produced? What is its peak amplitude? Calculate this three ways: First, use the second formula in Fig. 2.44(a); second, use the third formula in Fig. 2.44(a); third, use the maximum slope of the input sine wave. In each case, establish a value for the peak output voltage and its location.

2.124 Using an ideal op amp, design a differentiation circuit for which the time constant is 10^{-3} s using a 10-nF capacitor. What are the gains and phase shifts found for this circuit at one-tenth and 10 times the unity-gain frequency? A series input resistor is added to limit the gain magnitude at high frequencies to 100 V/V. What is the associated 3-dB frequency? What gain and phase shift result at 10 times the unity-gain frequency?

2.125 Figure P2.125 shows a circuit that performs the high-pass single-time-constant function. Such a circuit is known as a first-order high-pass active filter. Derive the transfer function and show that the high-frequency gain is \(-R_1/C\) and the 3-dB frequency \(\omega_0 = 1/RC\). Design the circuit to obtain a high-frequency input resistance of 10 k\Omega, a high-frequency gain of 40 dB, and a 3-dB frequency of 1000 Hz. At what frequency does the magnitude of the transfer function reduce to unity?

2.126 Derive the transfer function of the circuit in Fig. P2.126 for an ideal op amp and show that it can be written in the form

\[V_o = \frac{-R_1}{V_i} \left[1 + \frac{1}{\omega_0 C R_2} \right] \left[1 + \frac{\omega_0}{\omega_0/2} \right] \]

where \(\omega_0 = 1/CR_1\) and \(\omega_0 = 1/CR_2\). Assuming that the circuit is designed such that \(\omega_0 \gg \omega_1\), find approximate expressions for the transfer function in the following frequency regions:

(a) \(\omega < \omega_0\),
(b) \(\omega_0 < \omega < \omega_1\),
(c) \(\omega > \omega_1\).

Use these approximations to sketch a Bode plot for the magnitude response. Observe that the circuit performs as an amplifier whose gain rolls off at the low-frequency end in the manner of a high-pass STC network, and at the high-frequency end in the manner of a low-pass STC network.

Design the circuit to provide a gain of 60 dB in the "middle frequency range," a low-frequency 3-dB point at 10 Hz, a high-frequency 3-dB point at 10 kHz, and an input resistance (at \(\omega > \omega_1\)) of 1 k\Omega.

Diodes

INTRODUCTION

In the previous chapter we dealt almost entirely with linear circuits; any nonlinearity, such as that introduced by amplifier output saturation, was considered a problem to be solved by the circuit designer. However, there are many other signal-processing functions that can be implemented only by nonlinear circuits. Examples include the generation of dc voltages from the ac power supply and the generation of signals of various waveforms (e.g., sinusoids, square waves, pulses, etc.). Also, digital logic and memory circuits constitute a special class of nonlinear circuits.

The simplest and most fundamental nonlinear circuit element is the diode. Just like a resistor, the diode has two terminals; but unlike the resistor, which has a linear (straight-line) relationship between the current flowing through it and the voltage appearing across it, the diode has a nonlinear i-v characteristic.

This chapter is concerned with the study of diodes. In order to understand the essence of the diode function, we begin with a fictitious element, the ideal diode. We then introduce the silicon junction diode, explain its terminal characteristics, and provide techniques for the analysis of diode circuits. The latter task involves the important subject of device modeling.
3.1 THE IDEAL DIODE

3.1.1 Current-Voltage Characteristic

The ideal diode may be considered the most fundamental nonlinear circuit element. It is a two-terminal device having the circuit symbol of Fig. 3.1(a) and the i-v characteristic shown in Fig. 3.1(b). The terminal characteristic of the ideal diode can be interpreted as follows: If a negative voltage (relative to the reference direction indicated in Fig. 3.1a) is applied to the diode, no current flows and the diode behaves as an open circuit (Fig. 3.1c). Diodes operated in this mode are said to be reverse biased, or operated in the reverse direction. An ideal diode has zero current when operated in the reverse direction and is said to be cut off, or simply off.

On the other hand, if a positive current (relative to the reference direction indicated in Fig. 3.1a) is applied to the ideal diode, zero voltage drop appears across the diode. In other words, the ideal diode behaves as a short circuit in the forward direction (Fig. 3.1d); it passes any current with zero voltage drop. A forward-biased diode is said to be turned on, or simply on.

From the above description it should be noted that the external circuit must be designed to limit the forward current through a conducting diode, and the reverse voltage across a cutoff diode, to predetermined values. Figure 3.2 shows two diode circuits that illustrate this point. In the circuit of Fig. 3.2a the diode is obviously conducting. Thus its voltage drop will be zero, and the current through it will be determined by the +10-V supply and the 1-kΩ resistor as 10 mA. The diode in the circuit of Fig. 3.2b is obviously cut off, and thus its current will be zero, which in turn means that the entire 10-V supply will appear as reverse bias across the diode.

The positive terminal of the diode is called the anode and the negative terminal the cathode, a carryover from the days of vacuum-tube diodes. The i-v characteristic of the ideal diode (conducting in one direction and not in the other) should explain the choice of its arrow-like circuit symbol.

As should be evident from the preceding description, the i-v characteristic of the ideal diode is highly nonlinear; although it consists of two straight-line segments, they are at 90° to one another. A nonlinear curve that consists of straight-line segments is said to be piecewise linear. If a device having a piecewise-linear characteristic is used in a particular application in such a way that the signal across its terminals swings along only one of the linear segments, then the device can be considered a linear circuit element as far as that particular circuit application is concerned. On the other hand, if signals swing past one or more of the break points in the characteristic, linear analysis is no longer possible.

3.1.2 A Simple Application: The Rectifier

A fundamental application of the diode, one that makes use of its severely nonlinear i-v curve, is the rectifier circuit shown in Fig. 3.3a. The circuit consists of the series connection...
CHAPTER 3
DIODES

3.1 THE IDEAL DIODE

3.1 THE IDEAL DIODE

of a diode D and a resistor R. Let the input voltage v_i be the sinusoid shown in Fig. 3.3(b), and assume the diode to be ideal. During the positive half-cycles of the input sinusoid, the positive v_i will cause current to flow through the diode in its forward direction. It follows that the diode voltage v_D will be very small—ideally zero. Thus the circuit will have the equivalent shown in Fig. 3.3(c), and the output voltage v_o will be equal to the input voltage v_i. On the other hand, during the negative half-cycles of v_i, the diode will not conduct. Thus the circuit will have the equivalent shown in Fig. 3.3(d), and v_o will be zero. Thus the output voltage will have the waveform shown in Fig. 3.3(e). Note that while v_o alternates in polarity and has a zero average value, v_D is unidirectional and has a finite average value or a dc component. Thus the circuit of Fig. 3.3(a) rectifies the signal and hence is called a rectifier. It can be used to generate dc from ac. We will study rectifier circuits in Section 3.5.

EXERCISES

3.1 For the circuit in Fig. 3.3(a), sketch the transfer characteristic v_D versus v_i. See Fig. E3.1.

3.2 For the circuit in Fig. 3.3(a), sketch the waveform of v_D. See Fig. E3.2.

3.3 In the circuit of Fig. 3.3(a), let v_i have a peak value of 10 V and $R = 1$ kΩ. Find the peak value of i_D, and the dc component of v_o. Ans. 10 mA, 3.18 V.

EXAMPLE 3.1

Figure 3.4(a) shows a circuit for charging a 12-V battery. If v_s is a sinusoid with 24-V peak amplitude, find the fraction of each cycle during which the diode conducts. Also, find the peak value of the diode current and the maximum reverse-bias voltage that appears across the diode.

FIGURE E3.1

FIGURE E3.2
144 CHAPTER 3 DIODES

FIGURE 3.4 Circuit and waveforms for Example 3.1.

Solution

The diode conducts when v_s exceeds 12 V, as shown in Fig. 3.4(b). The conduction angle is 2θ, where θ is given by

$$24 \cos \theta = 12$$

Thus $\theta = 60^\circ$ and the conduction angle is 120°, or one-third of a cycle.

The peak value of the diode current is given by

$$I_d = \frac{24 - 12}{100} = 0.12 \text{ A}$$

The maximum reverse voltage across the diode occurs when v_s is at its negative peak and is equal to $24 + 12 = 36$ V.

3.1.3 Another Application: Diode Logic Gates

Diodes together with resistors can be used to implement digital logic functions. Figure 3.5 shows two diode logic gates. To see how these circuits function, consider a positive-logic system in which voltage values close to 0 V correspond to logic 0 (or low) and voltage values close to +5 V correspond to logic 1 (or high). The circuit in Fig. 3.5(a) has three inputs, v_A, v_B, and v_C. It is easy to see that diodes connected to +5-V inputs will conduct, thus clamping the output v_Y to a value equal to +5 V. This positive voltage at the output will keep the diodes whose inputs are low (around 0 V) cut off. Thus the output will be high if one or more of the inputs are high. The circuit therefore implements the logic OR function, which in Boolean notation is expressed as

$$Y = A + B + C$$

Similarly, the reader is encouraged to show that using the same logic system mentioned above, the circuit of Fig. 3.5(b) implements the logic AND function,

$$Y = A \cdot B \cdot C$$

3.1.4 Example 3.2

Assuming the diodes to be ideal, find the values of I and V in the circuits of Fig. 3.6.

Solution

In these circuits it might not be obvious at first sight whether none, one, or both diodes are conducting. In such a case, we make a plausible assumption, proceed with the analysis, and then check whether we end up with a consistent solution. For the circuit in Fig. 3.6(a), we shall assume that both diodes are conducting. It follows that $V_A = 0$ and $V = 0$. The current through D_1 can now be determined from

$$I_{D1} = \frac{10 - V}{10} = 1 \text{ mA}$$

FIGURE 3.6 Circuits for Example 3.2.
CHAPTER 3 DIODES

Writing a node equation at B,

\[i + 1 = \frac{0 - (-10)}{5} \]

results in \(i = 1 \text{ mA} \). Thus \(D_1 \) is conducting as originally assumed, and the final result is \(i = 1 \text{ mA} \) and \(V = 0 \).

For the circuit in Fig. 3.6(b), if we assume that both diodes are conducting, then \(V_B = 0 \) and \(V = 0 \). The current in \(D_2 \) is obtained from

\[I_{D_2} = \frac{-10 - 0}{5} = 2 \text{ mA} \]

The node equation at B is

\[i + 2 = \frac{0 - (-10)}{10} \]

which yields \(i = -1 \text{ mA} \). Since this is not possible, our original assumption is not correct. We start again, assuming that \(D_1 \) is off and \(D_2 \) is on. The current \(I_{D_2} \) is given by

\[I_{D_2} = \frac{10 - (-10)}{15} = 1.33 \text{ mA} \]

and the voltage at node B is

\[V_B = -10 + 10 \times 1.33 = +3.3 \text{ V} \]

Thus \(D_1 \) is reverse biased as assumed, and the final result is \(i = 0 \) and \(V = 3.3 \text{ V} \).

EXERCISES

3.4 Find the values of \(I \) and \(V \) in the circuits shown in Fig. 3.4.

![Figure E3.4](image)

3.5 Figure E3.5 shows a circuit for an ac voltmeter. It utilizes a moving-coil meter that gives a full-scale reading when the average current flowing through it is 1 mA. The moving-coil meter has a 50 Ω resistance.

Find the value of \(R \) that results in the meter indicating a full-scale reading when the input sine-wave voltage \(v \) is 20 V peak-to-peak. (Hint: The average value of half-sine waves is \(V_p/\pi \)).

Ans. 3.153 kΩ

3.2 TERMINAL CHARACTERISTICS OF JUNCTION DIODES

In this section we study the characteristics of real diodes—specifically, semiconductor junction diodes made of silicon. The physical processes that give rise to the diode terminal characteristics, and to the name "junction diode," will be studied in Section 3.7.

Figure 3.7 shows the \(i-v \) characteristic of a silicon junction diode. The same characteristic is shown in Fig. 3.8 with some scales expanded and others compressed to reveal details. Note that the scale changes have resulted in the apparent discontinuity at the origin.

As indicated, the characteristic curve consists of three distinct regions:

1. The forward-bias region, determined by \(v > 0 \)
2. The reverse-bias region, determined by \(v < 0 \)
3. The breakdown region, determined by \(v < -V_{BR} \)

These three regions of operation are described in the following sections.
3.2.1 The Forward-Bias Region

The forward-bias—or simply forward—region of operation is entered when the terminal voltage \(v \) is positive. In the forward region the \(i-v \) relationship is closely approximated by

\[
i = I_s e^{\frac{v}{nV_T}} - 1
\]

In this equation, \(I_s \) is a constant for a given diode at a given temperature. A formula for \(I_s \) in terms of the diode's physical parameters and temperature will be given in Section 3.7. The current \(I_s \) is usually called the saturation current (for reasons that will become apparent shortly). Another name for \(I_s \) and one that we will occasionally use, is the scale current.

This name arises from the fact that \(I_s \) is directly proportional to the cross-sectional area of the diode. Thus doubling of the junction area results in a diode with double the value of \(I_s \) and, as the diode equation indicates, double the value of current \(i \) for a given forward voltage \(v \).

For "small-signal" diodes, which are small-size diodes intended for low-power applications, \(I_s \) is on the order of \(10^{-14} \) A. The value of \(I_s \), however, is a very strong function of temperature. As a rule of thumb, \(I_s \) doubles in value for every 5°C rise in temperature.

The voltage \(V_T \) in Eq. (3.1) is a constant called the thermal voltage and is given by

\[
V_T = \frac{kT}{q}
\]

where

\[
k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ joules/kelvin} \\
T = \text{the absolute temperature in kelvins} = 273 + \text{temperature in °C} \\
q = \text{the magnitude of electronic charge} = 1.60 \times 10^{-19} \text{ coulomb}
\]

At room temperature (20°C) the value of \(V_T \) is 25.2 mV. In rapid approximate circuit analysis we shall use \(V_T = 25 \) mV at room temperature.

In the diode equation the constant \(n \) has a value between 1 and 2, depending on the material and the physical structure of the diode. Diodes made using the standard integrated-circuit fabrication process exhibit \(n = 1 \) when operated under normal conditions. Diodes available as discrete two-terminal components generally exhibit \(n = 2 \). In general, we shall assume \(n = 1 \) unless otherwise specified.

For appreciable current \(i \) in the forward direction, specifically for \(i > I_s \), Eq. (3.1) can be approximated by the exponential relationship

\[
i = I_s e^{\frac{v}{nV_T}}
\]

This relationship can be expressed alternatively in the logarithmic form

\[
v = nV_T \ln \left(\frac{i}{I_s} \right)
\]

where \(\ln \) denotes the natural (base \(e \)) logarithm.

The exponential relationship of the current \(i \) to the voltage \(v \) holds over many decades of current (a span of as many as seven decades—i.e., a factor of \(10^7 \)—can be found). This is quite a remarkable property of junction diodes, one that is also found in bipolar junction transistors and that has been exploited in many interesting applications.

Let us consider the forward \(i-v \) relationship in Eq. (3.3) and evaluate the current \(I_x \) corresponding to a diode voltage \(V_x \):

\[
I_x = I_s e^{\frac{V_x}{nV_T}}
\]

A slightly higher ambient temperature (25°C or so) is usually assumed for electronic equipment operating inside a cabinet. At this temperature, \(V_T = 25.8 \) mV. Nevertheless, for the sake of simplicity and to preserve rapid circuit analysis, we shall use the more arithmetically convenient value of \(V_T = 25 \) mV throughout this book.

In an integrated circuit, diodes are usually obtained by connecting a bipolar junction transistor (BJT) as a two-terminal device, as will be seen in Chapter 5.
Similarly, if the voltage is \(V_2 \), the diode current \(I_2 \) will be
\[
I_2 = I_s e^{V_2/kT}
\]
These two equations can be combined to produce
\[
\frac{I_2}{I_1} = e^{(V_2 - V_1)/kT}
\]
which can be rewritten as
\[
V_2 - V_1 = n kT \log \frac{I_2}{I_1}
\]
or, in terms of base-10 logarithms,
\[
V_2 - V_1 = 2.3 n kT \log (\frac{I_2}{I_1})
\]
This equation simply states that for a decade (factor of 10) change in current, the diode voltage drop changes by 2.3 \(n kT \), which is approximately 60 mV for \(n = 1 \) and 120 mV for \(n = 2 \).

This also suggests that the diode \(i-v \) relationship is most conveniently plotted on semilog paper. Using the vertical, linear axis for \(v \) and the horizontal, log axis for \(i \), one obtains a straight line with a slope of 2.3 \(n kT \) per decade of current. Finally, it should be mentioned that not knowing the exact value of \(n \) (which can be obtained from a simple experiment), circuit designers use the convenient approximate number of 0.1 V/decade for the slope of the diode logarithmic characteristic.

A glance at the \(i-v \) characteristic in the forward region (Fig. 3.8) reveals that the current is negligibly small for \(v \) smaller than about 0.5 V. This value is usually referred to as the cut-in voltage. It should be emphasized, however, that this apparent threshold in the characteristic is simply a consequence of the exponential relationship. Another consequence of this relationship is the rapid increase of \(i \). Thus, for a "fully conducting" diode, the voltage drop lies in a narrow range, approximately 0.6 V to 0.8 V. This gives rise to a simple "model" for the diode where it is assumed that a conducting diode has approximately a 0.7-V drop across it. Diodes with different current ratings (i.e., different areas and correspondingly different \(I_s \)) will exhibit the 0.7-V drop at different currents. For instance, a small-signal diode may be considered to have a 0.7-V drop at \(i = 1 \) mA, while a higher-power diode may have a 0.7-V drop at \(i = 1 \) A. We will study the topics of diode-circuit analysis and diode models in the next section.

EXERCISES

3.6 Consider a silicon diode with \(n = 1 \). Find the change in voltage if the current changes from 0.1 mA to 10 mA.
Ans. 1.725 mV

3.7 A silicon junction diode with \(n = 1 \) has \(v = 0.7 \) V at \(i = 1 \) mA. Find the voltage drop at \(i = 0.1 \) mA and \(i = 10 \) mA.
Ans. 0.064 V; 0.76 V

3.8 Using the fact that a silicon diode has \(I_s = 10^{-14} \) A at 25°C and that \(I_s \) increases by 15% per °C rise in temperature, find the value of \(I_s \) at 125°C.
Ans. 1.17 \(\times 10^{-12} \) A

FIGURE 3.9 Illustrating the temperature dependence of the diode forward characteristic.
At a constant current, the voltage drop decreases by approximately 2 mV for every 1°C increase in temperature.
3.2.2 The Reverse-Bias Region
The reverse-bias region of operation is entered when the diode voltage \(V \) is made negative. Equation (3.1) predicts that if \(V \) is negative and a few times larger than \(V_T \) (25 mV) in magnitude, the exponential term becomes negligibly small compared to unity, and the diode current becomes

\[
i \approx -I_D
\]

That is, the current in the reverse direction is constant and equal to \(I_D \). This constancy is the reason behind the term saturation current.

Real diodes exhibit reverse currents that, though quite small, are much larger than \(I_D \). For instance, a small-signal diode whose \(I_D \) is on the order of \(10^{-16} \) A to \(10^{-15} \) A could show a reverse current on the order of 1 nA. The reverse current also increases somewhat with the increase in magnitude of the reverse voltage. Note that because of the very small magnitude of the current, these details are not clearly evident on the diode characteristic of Fig. 3.8.

A large part of the reverse current is due to leakage effects. These leakage currents are proportional to the junction area, just as \(I_D \) is. Their dependence on temperature, however, is different from that of \(I_D \). Thus, whereas \(I_D \) doubles for every 2°C rise in temperature, the corresponding rule of thumb for the temperature dependence of the reverse current is that it doubles for every 10°C rise in temperature.

EXERCISE

3.9 The diode in the circuit of Fig. 3.8 is a large high-current device whose reverse leakage is reasonably independent of voltage. If \(V = -1 \) V at 20°C, find the value of \(I_R \) at 25°C.

![Figure 3.9](image)

FIGURE E3.9

3.3 MODELING THE DIODE FORWARD CHARACTERISTIC

The most accurate description of the diode operation in the forward region is provided by the exponential model. Unfortunately, however, its severely nonlinear nature makes this model the most difficult to use. To illustrate, let's analyze the circuit in Fig. 3.10 using the exponential diode model.

Assuming that \(V_{DD} \) is greater than 0.5 V or so, the diode current will be much greater than \(I_D \), and we can represent the diode \(i-v \) characteristic by the exponential relationship, resulting in

\[
I_D = I_D e^{V_D/V_T}
\]

The other equation that governs circuit operation is obtained by writing a Kirchhoff loop equation, resulting in

\[
I_D = \frac{V_{DD} - V_D}{R}
\]

Assuming that the diode parameters \(I_D \) and \(n \) are known, Eqs. (3.6) and (3.7) are two equations in the two unknown quantities \(I_D \) and \(V_D \). Two alternative ways for obtaining the solution are graphical analysis and iterative analysis.

![Figure 3.10](image)
3.3.2 Graphical Analysis Using the Exponential Model

Graphical analysis is performed by plotting the relationships of Eqs. (3.6) and (3.7) on the i-v plane. The solution can then be obtained as the coordinates of the point of intersection of the two graphs. A sketch of the graphical construction is shown in Fig. 3.11. The curve represents the exponential diode equation (Eq. 3.6), and the straight line represents Eq. (3.7). Such a straight line is known as the load line, a name that will become more meaningful in later chapters. The load line intersects the diode curve at point \(Q \), which represents the operating point of the circuit. Its coordinates give the values of \(I_D \) and \(V_D \).

Graphical analysis aids in the visualization of circuit operation. However, the effort involved in performing such an analysis, particularly for complex circuits, is too great to be justified in practice.

3.3.3 Iterative Analysis Using the Exponential Model

Equations (3.6) and (3.7) can be solved using a simple iterative procedure, as illustrated in the following example.

Example 3.4

Determine the current \(I_D \) and the diode voltage \(V_D \) for the circuit in Fig. 3.10 with \(V_{DD} = 5 \text{ V} \) and \(R = 1 \text{ k}\Omega \). Assume that the diode has a current of 1 mA at a voltage of 0.7 V and that its voltage drop changes by 0.1 V for every decade change in current.

Solution

To begin the iteration, we assume that \(V_D = 0.7 \text{ V} \) and use Eq. (3.7) to determine the current,

\[
I_D = \frac{V_{DD} - V_D}{R} = \frac{5 - 0.7}{1} = 4.3 \text{ mA}
\]

We then use the diode equation to obtain a better estimate for \(V_D \). This can be done by employing Eq. (3.5), namely,

\[
V_2 = V_1 - 2.36 \cdot V_T \log \frac{I_2}{I_1}
\]

For our case, \(2.36 \cdot V_T = 0.1 \text{ V} \). Thus,

\[
V_2 = V_1 - 0.1 \log \frac{I_2}{I_1}
\]

Substituting \(V_1 = 0.7 \text{ V}, I_1 = 1 \text{ mA}, \) and \(I_2 = 4.3 \text{ mA} \) results in \(V_D = 0.763 \text{ V} \). Thus the results of the first iteration are \(I_D = 4.3 \text{ mA} \) and \(V_D = 0.763 \text{ V} \). The second iteration proceeds in a similar manner:

\[
I_D = \frac{5 - 0.763}{1} = 4.237 \text{ mA}
\]

\[
V_2 = 0.763 + 0.1 \log \frac{4.237}{4.3} = 0.762 \text{ V}
\]

Thus the second iteration yields \(I_D = 4.237 \text{ mA} \) and \(V_D = 0.762 \text{ V} \). Since these values are not much different from the values obtained after the first iteration, no further iterations are necessary, and the solution is \(I_D = 4.237 \text{ mA} \) and \(V_D = 0.762 \text{ V} \).

3.3.4 The Need for Rapid Analysis

The iterative analysis procedure utilized in the example above is simple and yields accurate results after two or three iterations. Nevertheless, there are situations in which the effort and time required are still greater than can be justified. Specifically, if one is doing a pencil-and-paper design of a relatively complex circuit, rapid circuit analysis is a necessity. Through quick analysis, the designer is able to evaluate various possibilities before deciding on a suitable circuit design. To speed up the analysis process one must be content with less precise results. This, however, is seldom a problem, because the more accurate analysis can be postponed until a final or almost-final design is obtained. Accurate analysis of the almost-final design can be performed with the aid of a computer circuit-analysis program such as SPICE (see Section 3.9). The results of such an analysis can then be used to further refine or "fine-tune" the design.

To speed up the analysis process, we must find simpler models for the diode forward characteristic.

3.3.5 The Piecewise-Linear Model

The analysis can be greatly simplified if we can find linear relationships to describe the diode terminal characteristics. An attempt in this direction is illustrated in Fig. 3.12, where the exponential curve is approximated by two straight lines, line A with zero slope and line B with a slope of \(1/R_D \). It can be seen that for the particular case shown in Fig. 3.12, over the current range of 0.1 mA to 10 mA the voltages predicted by the straight-line model shown differ from those predicted by the exponential model by less than 50 mV. Obviously, the choice of these two straight lines is not unique, but one can obtain a closer approximation by restricting the current range over which the approximation is required.
CHAPTER 3 DIODES

3.3 Modeling the Diode Forward Characteristic

The straight-lines (or piecewise-linear) model of Fig. 3.12 can be described by

\[i_D = \frac{V_D - V_{D0}}{r_D} \text{, where } V_D > V_{D0} \]

where \(V_{D0} \) is the intercept of line B on the voltage axis and \(r_D \) is the inverse of the slope of line B. For the particular example shown, \(V_{D0} = 0.65 \text{ V} \) and \(r_D = 20 \text{ Q} \).

The piecewise-linear model described by Eqs. (3.8) can be represented by the equivalent circuit shown in Fig. 3.13. Note that an ideal diode is included in this model to constrain \(i_D \) to flow in the forward direction only. This model is also known as the battery-plus-resistance model.

The diode voltage \(V_D \) can now be computed:

\[V_D = V_{D0} + h R_D = 0.65 + 4.26 \times 0.02 = 0.735 \text{ V} \]

3.3.6 The Constant-Voltage-Drop Model

An even simpler model of the diode forward characteristics can be obtained if we use a vertical straight line to approximate the fast-rising part of the exponential curve, as shown in Fig. 3.15. The resulting model simply says that a forward-conducting diode exhibits a constant voltage drop \(V_D \). The value of \(V_D \) is usually taken to be 0.7 V. Note that for the particular diode whose characteristics are depicted in Fig. 3.15, this model predicts the diode voltage to within ±0.1 V over the current range of 0.1 mA to 10 mA. The constant-voltage-drop model can be represented by the equivalent circuit shown in Fig. 3.16.

The constant-voltage-drop model is the one most frequently employed in the initial phases of analysis and design. This is especially true if at these stages one does not have detailed information about the diode characteristics, which is often the case.

Finally, note that if we employ the constant-voltage-drop model to solve the problem in Examples 3.4 and 3.5, we obtain

\[V_D = 0.7 \text{ V} \]
FIGURE 3.15 Development of the constant-voltage-drop model of the diode forward characteristics. A vertical straight line (B) is used to approximate the fast-rising exponential. Observe that this simple model predicts \(V_D \) to within +0.1 V over the current range of 0.1 mA to 10 mA.

\[h_A - V_D = 0.7 \text{ V} \]

FIGURE 3.16 The constant-voltage-drop model of the diode forward characteristics and its equivalent circuit representation.

\[V_D = \frac{V_{pd} - 0.7}{R} \]

\[= \frac{5 - 0.7}{1} = 4.3 \text{ mA} \]

which are not too different from the values obtained before with the more elaborate models.

3.3.7 The Ideal-Diode Model

In applications that involve voltages much greater than the diode voltage drop (0.6-0.8 V), we may neglect the diode voltage drop altogether while calculating the diode current. The result is the ideal-diode model, which we studied in Section 3.1. For the circuit in Examples 3.4 and 3.5 (i.e., Fig. 3.10 with 5 V and \(R = 1 \text{ k} \Omega \)), utilization of the ideal-diode model leads to

\[V_D = 0 \text{ V} \]

\[I_D = \frac{5 - 0}{1} = 5 \text{ mA} \]

which for a very quick analysis would not be bad as a gross estimate. However, with almost no additional work, the 0.7-V-drop model yields much more realistic results. We note, however, that the greatest utility of the ideal-diode model is in determining which diodes are on and which are off in a multidiode circuit, such as those considered in Section 3.1.

EXERCISES

3.10 For the circuit in Fig. 3.10, find \(I_D \) and \(V_D \) for the case \(V_{pp} = 5 \text{ V} \) and \(R = 10 \text{ k} \Omega \). Assume that the diode has a voltage of 0.7 V at 1-mA current and that the voltage changes by 0.1 V/decade of current change. Line (a) Strata, (b) the piecewise-linear model with \(V_D = 0.65 \text{ V} \) and \(R_D = 20 \text{ Q} \), (c) the constant-voltage-drop model with \(V_D = 0.7 \text{ V} \).

Ans. (a) 0.34 mA, 0.663 V; (b) 0.45 mA, 0.659 V; (c) 0.45 mA, 0.7 V

3.11 Consider a diode that is 10 times as large (injunction area) as that whose characteristics are displayed in Fig. 3.12. If we approximate the characteristics in a manner similar to that in Fig. 3.12 but for a current range 100 times as large, how would the model parameters \(V_m \) and \(r_f \) change?

Ans. \(V_m \) does not change; \(r_f \) decreases by a factor of 100 to 0.02 Q

3.12 Design the circuit in Fig. E3.12 to provide an output voltage of 2.4 V. Assume that the diodes available have 0.7-V drop in 1 mA and that AV = 0.1 V/decade change in current.

Ans. \(A' \) = 760

3.13 Repeat Exercise 3.4 using the 0.7-V-drop model to obtain better estimates of \(I \) and \(V \) than those found in Exercise 3.4 (using the ideal-diode model).

Ans. (a) 1.72 mA, 0.7 V; (b) 0 mA, 5 V; (c) 0 mA, 5 V; (d) 1.72 mA, 0.7 V; (e) 3.2 mA, +2.3 V; (f) 3.3 mA, +1.7 V

3.3.8 The Small-Signal Model

There are applications in which a diode is biased to operate at a point on the forward \(i-v \) characteristic and a small ac signal is superimposed on the dc quantities. For this situation, we first have to determine the dc operating point \((V_D \) and \(I_D \)) of the diode using one of the models discussed above. Most frequently, the 0.7-V-drop model is utilized. Then, for
small-signal operation around the dc bias point, the diode is best modeled by a resistance equal to the inverse of the slope of the tangent to the exponential $i-V$ characteristic at the bias point. The concept of biasing a nonlinear device and restricting signal excursion to a short, almost-linear segment of its characteristic around the bias point was introduced in Section 1.4 for two-port networks. In the following, we develop such a small-signal model for the junction diode and illustrate its application.

Consider the conceptual circuit in Fig. 3.17(a) and the corresponding graphical representation in Fig. 3.17(b). A dc voltage V_D, represented by a battery, is applied to the diode, and a time-varying signal $v_d(t)$, assumed (arbitrarily) to have a triangular waveform, is superimposed on the dc voltage V_D. In the absence of the signal $v_d(t)$ the diode voltage is equal to V_D, and correspondingly, the diode will conduct a dc current I_D given by

$$I_D = \frac{V_D}{nV_T}$$ \hspace{1cm} (3.9)

When the signal $v_d(t)$ is applied, the total instantaneous diode voltage $v_D(t)$ will be given by

$$v_D(t) = V_D + v_d(t)$$ \hspace{1cm} (3.10)

Correspondingly, the total instantaneous diode current $i_D(t)$ will be

$$i_D(t) = I_De^{v_D(t)/nV_T}$$

Substituting for v_D from Eq. (3.10) gives

$$i_D(t) = I_De^{v_d(t)/nV_T}$$

which can be rewritten

$$i_D(t) = I_De^{v_d(t)/nV_T}$$

Using Eq. (3.9) we obtain

$$i_D(t) = I_De^{v_d(t)/nV_T}$$

Now if the amplitude of the signal $v_d(t)$ is kept sufficiently small such that

$$\frac{v_d}{nV_T} \ll 1$$ \hspace{1cm} (3.13)

then we may expand the exponential of Eq. (3.12) in a series and truncate the series after the first two terms to obtain the approximate expression

$$i_D(t) = I_D\left(1 + \frac{v_d}{nV_T}\right)$$

This is the small-signal approximation. It is valid for signals whose amplitudes are smaller than about 10 mV for the case $n = 2$ and 5 mV for $n = 1$ (see Eq. 3.13 and recall that $V_T = 25 mV$).

From Eq. (3.14) we have

$$i_D(t) = I_D + \frac{I_Dv_d}{nV_T}$$

Thus, superimposed on the dc current I_D, we have a signal current component directly proportional to the signal voltage v_d. That is,

$$i_D = I_D + I_f$$

\hspace{1cm} (3.16)

where

$$I_f = \frac{I_Dv_d}{nV_T}$$

The quantity relating the signal current i_f to the signal voltage v_d has the dimensions of conductance, mhos (\text{mhos}), and is called the diode small-signal conductance. The inverse of this parameter is the diode small-signal resistance, or incremental resistance, r_d

$$r_d = \frac{nV_T}{I_D}$$

\hspace{1cm} (3.18)

Note that the value of r_d is inversely proportional to the bias current I_D.

\textbf{FIGURE 3.17} Development of the diode small-signal model. Note that the numerical values shown are for a diode with $n = 2$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3_17.png}
\caption{Development of the diode small-signal model. Note the numerical values shown are for a diode with $n = 2$.}
\end{figure}

1For $n = 2$, $v_d/nV_T = 0.2$ with $v_d = 10$ mV. Thus the next term in the series expansion of the exponential will be $0.01(0.2)^2 = 0.002$, a factor of 10 lower than the linear term we kept. A better approximation can be achieved by keeping v_d smaller. Also note that for $n = 1$, v_d should be limited to, say, 5 mV.
Let us return to the graphical representation in Fig. 3.17(b). It is easy to see that using the small-signal approximation is equivalent to assuming that the signal amplitude is sufficiently small such that the excursion along the i-v curve is limited to a short almost-linear segment. The slope of this segment, which is equal to the slope of the tangent to the i-v curve at the operating point Q, is equal to the small-signal conductance. The reader is encouraged to prove that the slope of the i-v curve at \(I = I_0 \) is equal to \(\frac{I_0}{V_t} \), where \(V_t \) is 1/\(r_d \); that is,
\[
\frac{dV}{di} = \frac{I_0}{V_t}
\]

From the preceding we conclude that superimposed on the quantities \(V_d \) and \(I_d \) that define the dc bias point, or quiescent point, of the diode will be the small-signal quantities \(\delta V_d \) and \(\delta I_d \), which are related by the diode small-signal resistance \(r_d \) evaluated at the bias point (Eq. 3.18). Thus the small-signal analysis can be performed separately from the dc bias analysis, a great convenience that results from the linearization of the diode characteristics inherent in the small-signal approximation. Specifically, after the dc analysis is performed, the small-signal equivalent circuit is obtained by eliminating all dc sources (i.e., short-circuiting dc voltage sources and open-circuiting dc current sources) and replacing the diode by its small-signal resistance. The following example should illustrate the application of the small-signal model.

EXAMPLE 3.6

Consider the circuit shown in Fig. 3.18(a) for the case in which \(R = 10 \Omega \). The power supply \(V^+ \) is a dc voltage of 10 V on which is superimposed a 60-Hz sinusoidal of 1-V peak amplitude. This “signal” component of the power-supply voltage is an imperfection in the power-supply design. It is known as the power-supply ripple. More on this later.) Calculate both the dc voltage of the diode and the amplitude of the sine-wave signal appearing across it. Assume the diode to have a 0.7-V drop at 1-mA current and \(n = 2 \).

\[I = 0.7 - V \text{ drop at } 1\text{-mA current and } n = 2. \]

Solution

Considering dc quantities only, we assume \(V_d = 0.7 \text{ V} \) and calculate the diode dc current
\[
I_d = 10 \times 0.7 = 0.7 \text{ mA}
\]

FIGURE 3.18 (a) Circuit for Example 3.6. (b) Circuit for calculating the dc operating point. (c) Small-signal equivalent circuit.

3.3 MODELING THE DIODE FORWARD CHARACTERISTIC

Since this value is very close to 1 mA, the diode voltage will be very close to the assumed value of 0.7 V. At this operating point, the diode incremental resistance \(r_d \) is
\[
r_d = \frac{\delta V_d}{\delta I_d} = \frac{V_t}{I_0} = \frac{2}{0.93} = 2.0538 \Omega
\]

The signal voltage across the diode can be found from the small-signal equivalent circuit in Fig. 3.18(c). Here \(V_0 \) denotes the 60-Hz 1-V peak sinusoidal component of \(V^+ \) and \(v_d \) is the corresponding signal across the diode. Using the voltage-divider rule provides the peak amplitude of \(v_d \) as follows:
\[
V_d (\text{peak}) = \frac{V^+ R + r_d}{10 + 0.0538} = 5.35 \text{ mV}
\]

Finally we note that since this value is quite small, our use of the small-signal model of the diode is justified.

3.3.9 Use of the Diode Forward Drop in Voltage Regulation

A further application of the diode small-signal model is found in a popular diode application, namely the use of diodes to create a regulated voltage. A voltage regulator is a circuit whose purpose is to provide a constant dc voltage between its output terminals. The output voltage is required to remain as constant as possible in spite of (a) changes in the load current drawn from the regulator output terminal and (b) changes in the dc power-supply voltage that feeds the regulator circuit. Since the forward voltage drop of the diode remains almost constant at approximately 0.7 V while the current through it varies by relatively large amounts, a forward-biased diode can make a simple voltage regulator. For instance, we have seen in Example 3.6 that while the 10-V dc supply voltage had a ripple of 2 V peak-to-peak (a ±10% variation), the corresponding ripple in the diode voltage was only about ±5.4 mV (a ±0.8% variation). Regulated voltages greater than 0.7 V can be obtained by connecting a number of diodes in series. For example, the use of three forward-biased diodes in series provides a voltage of about 2 V. One such circuit is investigated in the following example, which utilizes the diode small-signal model to quantify the efficacy of the voltage regulator that is realized.

EXAMPLE 3.7

Consider the circuit shown in Fig. 3.19. A string of three diodes is used to provide a constant voltage of about 2.1 V. We want to calculate the percentage change in the regulated voltage caused by (a) a ±10% change in the power-supply voltage and (b) connection of a 1-kΩ load resistance. Assume \(n = 2 \).

Solution

With no load, the nominal value of the current in the diode string is given by
\[
I = \frac{10 - 2.1}{3} = 7.9 \text{ mA}
\]

Thus each diode will have an incremental resistance of
\[
r_d = \frac{\delta V_d}{I} = 2.0538 \Omega
\]
CHAPTER 3 DIODES

FIGURE 3.19 Circuit for Example 3.7.

Using \(n = 2 \) gives

\[
r = \frac{2 \times 25}{7.9} = 6.3 \, \Omega
\]

The three diodes in series will have a total incremental resistance of

\[
r = 3r = 18.9 \, \Omega
\]

This resistance, along with the resistance \(R \), forms a voltage divider whose ratio can be used to calculate the change in output voltage due to a ±10\% (i.e., ±1-V) change in supply voltage. Thus the peak-to-peak change in output voltage will be

\[
\Delta V_0 = \frac{2}{r + R} \approx 0.0189 \approx 10 \%
\]

That is, corresponding to the ±1-V (±10\%) change in supply voltage, the output voltage will change by ±18.5 mV or ±0.9\%. Since this implies a change of about 26.2 mV per diode, our use of the small-signal model is justified.

When a load resistance of 1 k\(\Omega \) is connected across the diode string, it draws a current of approximately 2.1 mA. Thus the current in the diodes decreases by 2.1 mA, resulting in a decrease in voltage across the diode string given by

\[
\Delta V_0 = -2.1 \times r = -2.1 \times 18.9 = -39.7 \, mV
\]

Since this implies that the voltage across each diode decreases by about 13.2 mV, our use of the small-signal model is not entirely justified. Nevertheless, a detailed calculation of the voltage change using the exponential model results in \(\Delta V_0 = -35.5 \, mV \), which is not too different from the approximate value obtained using the incremental model.

EXERCISES

3.14 Find the value of the diode small-signal resistance \(r_d \) at bias currents of 0.1 mA, 1 mA, and 10 mA. Assume \(n = 1 \).

Ans. 250 \(\Omega \); 25 \(\Omega \); 2 \(\Omega \)

3.15 Consider a diode with \(n = 2 \) biased at 1 mA. Find the change in current as a result of changing the voltage by (a) +20 mV, (b) -10 mV, (c) -5 mV, (d) +5 mV, (e) +10 mV, and (f) -20 mV. In each case, do the calculations (i) using the small-signal model and (ii) using the exponential model.

Ans. (a) -0.40, -0.33 mA; (b) -0.20, -0.18 mA; (c) -0.10, -0.10 mA; (d) +0.10, +0.11 mA; (e) +0.20, +0.22 mA; (f) +0.40, +0.49 mA

3.16 Design the circuit of Fig. E3.16 so that \(V_o = 3 \) V when \(I_L = 0 \) and \(V_o \) changes by 40 mV per 1 mA of load current. Find the value of \(R \) and the junction area of each diode (assume all four diodes are identical) relative to a diode with 0.7-V drop at 1-mA current. Assume \(n = 1 \).

3.10 Summary

As a summary of this important section on diode modeling, Table 3.1 lists the five diode models studied and provides pertinent comments regarding each. These comments are intended to aid in the selection of an appropriate model for a particular application. The question “which model?” is one that circuit designers face repeatedly, not just with diodes but with every circuit element. The problem is finding an appropriate compromise between accuracy and speed of analysis. One’s ability to select appropriate device models improves with practice and experience.

TABLE 3.1 Modeling the Diode Forward Characteristic

<table>
<thead>
<tr>
<th>Model</th>
<th>Graph</th>
<th>Equations</th>
<th>Circuit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td></td>
<td>(I_o = I_{o} e^{\frac{V_D}{nV_T}})</td>
<td></td>
<td>(I_L = 10^{-12} , A) to (10^{-14} , A), depending on junction area. (V_o \approx 25 , mV) for (n = 1) to 2.</td>
</tr>
</tbody>
</table>
3.4 OPERATION IN THE REVERSE BREAKDOWN REGION—ZENER DIODES

The very steep \(i-v \) curve that the diode exhibits in the breakdown region (Fig. 3.8) and the almost-constant voltage drop that this indicates suggest that diodes operating in the breakdown region can be used in the design of voltage regulators. From the previous section, the reader will recall that voltage regulators are circuits that provide constant dc output voltages in the face of changes in their load current and in the system power-supply voltage. This in fact turns out to be an important application of diodes operating in the reverse breakdown region, and special diodes are manufactured to operate specifically in the breakdown region. Such diodes are called breakdown diodes or, more commonly, zener diodes, after an early worker in the area.

Figure 3.20 shows the circuit symbol of the zener diode. In normal applications of zener diodes, current flows into the cathode, and the cathode is positive with respect to the anode. Thus \(I_z \) and \(V_z \) in Fig. 3.20 have positive values.

3.4.1 Specifying and Modeling the Zener Diode

Figure 3.21 shows details of the diode \(i-v \) characteristics in the breakdown region. We observe that for currents greater than the knee current \(I_{zk} \) (specified on the data sheet of the diode),

\[
I_z = 10 I_{zk} \quad \text{or} \quad 0.7 V
\]

where \(I_z \) is the current and \(V_z \) is the voltage.

The diode characteristic with the breakdown region shown in some detail.

\[
\text{Slope} = \frac{1}{r_z} \quad \text{for small signals superimposed on} \quad I_z \text{and} \quad I_{chk}.
\]

Ideal doubling, \(V_z = V_D \) (for \(n = 1, V_D \) is limited to 5 mV; for \(n = 2, 10 \text{ mV} \)).
the zener diode, the i-v characteristic is almost a straight line. The manufacturer usually specified the voltage across the zener diode V_z at a specified test current, I_z. We have illustrated these parameters in Fig. 3.11 as the coordinates of the point labeled Q. Thus a 6.8-V zener diode will exhibit at 6.8-V drop at a specified test current of, say, 10 mA. As the current through the zener deviates from I_z, the voltage across it will change, though only slightly. Figure 3.21 shows that corresponding to current change ΔI the zener voltage changes by ΔV, which is related to ΔI by

$$\Delta V = r_z \Delta I,$$

where r_z is the inverse of the slope of the almost-linear i-v curve at point Q. Resistance r_z is the incremental resistance of the zener diode at operating point Q. It is also known as the dynamic resistance of the zener, and its value is specified on the device data sheet. Typically, r_z is in the range of a few ohms to a few tens of ohms. Obviously, the lower the value of r_z, the more constant the zener voltage remains as its current varies and thus the more ideal its performance becomes in the design of voltage regulators. In this regard, we observe from Fig. 3.21 that while r_z remains low and almost constant over a wide range of current, its value increases considerably in the vicinity of the knee. Therefore, as a general design guideline, one should avoid operating the zener in this low-current region.

Zener diodes are fabricated with voltages V_z in the range of a few volts to a few hundred volts. In addition to specifying V_z (at a particular current I_z), r_z, and I_z, the manufacturer also specifies the maximum power that the device can safely dissipate. Thus a 0.5-W, 6.8-V zener diode can operate safely at currents up to a maximum of about 70 mA.

The almost-linear i-v characteristic of the zener diode suggests that the device can be modeled as indicated in Fig. 3.22. Here V_{zo} denotes the point at which the straight line of slope $1/r_z$ intersects the voltage axis (refer to Fig. 3.21). Although V_{zo} is shown to be slightly different from the knee voltage V_{zk}, it applies for $I_z > I_{zk}$ and, obviously, $V_z > V_{zo}$.

3.4.2 Use of the Zener as a Shunt Regulator

We now illustrate, by way of an example, the use of zener diodes in the design of shunt regulators, so named because the regulator circuit appears in parallel (shunt) with the load.

![Figure 3.22](image)

Model for the zener diode.

EXAMPLE 3.8

The 6.8-V zener diode in the circuit of Fig. 3.21(a) is specified to have $V_z = 6.8\ V$ at $I_z = 5\ mA$, $r_z = 20\ \Omega$, and $I_{zk} = 6.35\ mA$. The supply voltage V^+ is nominally 10 V but can vary by ±1 V.

(a) Find V_o with no load and with V^+ at its nominal value.

(b) Find the change in V_o resulting from the ±1-V change in V^+. Note that $(\Delta V_o/\Delta V^+)$, usually expressed in mV/V, is known as line regulation.

(c) Find the change in V_o resulting from connecting a load resistance R_L that draws a current $I_L = 1\ mA$, and hence find the load regulation $(\Delta V_o/\Delta L)$. Express the load regulation in mV/mA.

(d) Find the change in V_o when $R_L = 2\ k\Omega$.

(e) Find the value of R_L for which the diode still operates in the breakdown region.

(f) What is the minimum value of R_L for which the diode still operates in the reverse breakdown region?

Solution

First we must determine the value of the parameter V_{zo} of the zener diode model. Substituting $V_z = 6.8\ V$, $I_z = 5\ mA$, and $r_z = 20\ \Omega$ in Eq. (3.20) yields $V_{zo} = 6.7\ V$. Figure 3.22(b) shows the circuit with the zener diode replaced with its equivalent circuit model.

(a) With no load connected, the current through the zener is given by

$$I_z = I^+ - V_z/R + r_z = 10 - 6.7/0.5 + 0.02 = 6.35\ mA$$

Thus,

$$V_o = V_{zo} + I_z r_z = 6.7 + 6.35 \times 0.02 = 6.83\ V$$
3.4.3 Temperature Effects

The dependence of the zener voltage \(V_z \) on temperature is specified in terms of its temperature coefficient \(TC \), or \(\Delta V_z \). As it is commonly known, which is usually expressed in millivolts per degree Celsius (mV/°C). The value of \(TC \) depends on the zener voltage, and for a given diode the \(TC \) varies with the operating current. Zener diodes whose \(V_z \) are lower than about 5 V exhibit a negative \(TC \). On the other hand, zeners with higher voltages exhibit a positive TC. The TC of a zener diode with a \(V_z \) of about 5 V can be made zero by operating the diode at a specified current. Another commonly used technique for obtaining a reference voltage with low temperature coefficient is to connect a zener diode with a positive temperature coefficient of about 2 mV/°C in series with a forward-conducting diode. Since the forward-conducting diode has a voltage drop of \(\approx 0.7 \) V and a TC of about \(-2 \) mV/°C, the series combination will provide a voltage of \((V_z + 0.7)\) with a TC of about zero.

Exercises

3.17 A zener diode whose nominal voltage is 10 V at 10 mA has an incremental resistance of 50 \(\Omega \). What voltage do you expect if the diode current is halved? What is the value of \(V_z \) in the zener model?

Ans: 5.1 V; 10.5 V

3.18 A zener diode exhibits a constant voltage of \(5.6 \) V for currents greater than five times the knee current. \(I_{ZK} \) is specified to be 1 mA. The zener must be used in the design of a shunt regulator fed from a 15 V supply. The load current varies over the range of 0 mA to 15 mA. Find a suitable value for the resistor \(R \). What is the maximum power dissipation of the zener diode?

Ans: 470 \(\Omega \); 112 mW

3.19 A shunt regulator utilizes a zener diode whose voltage is \(5.1 \) V at a current of 50 mA and whose incremental resistance is \(7 \) \(\Omega \). The diode is fed from a supply of 15 V nominal voltage through a 200 \(\Omega \) resistor. What is the output voltage at no load? Find the line regulation and the load regulation.

Ans: 5.1 V; 33.8 mV/V; -7 mV/mA

3.4.4 A Final Remark

Though simple and useful, zener diodes have lost a great deal of their popularity in recent years. They have been virtually replaced in voltage-regulator design by specially designed integrated circuits (ICs) that perform the voltage regulation function much more effectively and with greater flexibility than zener diodes.

3.5 Rectifier Circuits

One of the most important applications of diodes is in the design of rectifier circuits. A diode rectifier forms an essential building block of the dc power supplies required to power electronic equipment. A block diagram of such a power supply is shown in Fig. 3.24. As indicated, the power supply is fed from the 120-V (rms) 60-Hz ac line, and it delivers a dc voltage \(V_d \) (usually in the range of 5–20 V) to an electronic circuit represented by the load block. The dc voltage \(V_d \) is required to be constant as possible in spite of variations in the ac line voltage and in the current drawn by the load.

The first block in a dc power supply is the power transformer. It consists of two separate coils wound around an iron core that magnetically couples the two windings. The primary winding, having \(N_p \) turns, is connected to the 120-V ac supply, and the secondary winding, having \(N_s \) turns, is connected to the circuit of the dc power supply. Thus an ac voltage \(V_d \)
of $120(N_2/N_1)V$ (rms) develops between the two terminals of the secondary winding. By selecting an appropriate turns ratio (N_1/N_2) for the transformer, the designer can step the line voltage down to the value required to yield the particular dc voltage output of the supply. For instance, a secondary voltage of 8-V rms may be appropriate for a dc output of 5 V. This can be achieved with a 15:1 turns ratio.

In addition to providing the appropriate sinusoidal amplitude for the dc power supply, the power transformer provides electrical isolation between the electronic equipment and the power-line circuit. This isolation minimizes the risk of electric shock to the equipment user.

The diode rectifier converts the input sinusoid v_s to a unipolar output, which can have the pulsating waveform indicated in Fig. 3.24. Although this waveform has a nonzero average or a dc component, its pulsating nature makes it unsuitable as a dc source for electronic circuits, hence the need for a filter. The variations in the magnitude of the rectifier output are considerably reduced by the filter block in Fig. 3.24. In the following sections we shall study a number of rectifier circuits and a simple implementation of the output filter.

3.5.1 The Half-Wave Rectifier

The half-wave rectifier utilizes alternate half-cycles of the input sinusoid. Figure 3.25(a) shows the circuit of a half-wave rectifier. This circuit was analyzed in Section 3.1 (see Fig. 3.3) assuming an ideal diode. Using the more realistic battery-plus-resistance diode model, we obtain the equivalent circuit shown in Fig. 3.25(b), from which we can write

$$v_0 = V_{DD}, \quad v_3 < V_{m} \quad (3.21a)$$

$$v_3 = \frac{R}{R + r_D} v_2 - \frac{R}{R + r_D} V_{DD}, \quad v_0 \approx V_{DC} \quad (3.21b)$$

The transfer characteristic represented by these equations is sketched in Fig. 3.25(c). In many applications, $r_D \ll R$ and the second equation can be simplified to

$$v_0 = v_3 - V_{DD} \quad (3.22)$$

where $V_{DD} = 0.7 \text{ V or } 0.8 \text{ V}$. Figure 3.25(d) shows the output voltage obtained when the input v_3 is a sinusoid.

In selecting diodes for rectifier design, two important parameters must be specified: the current-handling capability required of the diode, determined by the largest current the diode is expected to conduct, and the peak inverse voltage (PIV) that the diode must be able to withstand without breakdown, determined by the largest reverse voltage that is expected.
to appear across the diode. In the rectifier circuit of Fig. 3.25(a), we observe that when v_1 is negative the diode will be cut off and v_2 will be zero. It follows that the PIV is equal to the peak of v_1.

$$
PIV = V_i
$$

It is usually prudent, however, to select a diode that has a reverse breakdown voltage at least 50% greater than the expected PIV.

Before leaving the half-wave rectifier, the reader should note two points. First, it is possible to use the diode exponential characteristic to determine the exact transfer characteristic of the rectifier (see Problem 3.73). However, the amount of work involved is usually too great to be justified in practice. Of course, such an analysis can be easily done using a computer circuit-analysis program such as SPICE (see Section 3.9).

Second, whether we analyze the circuit accurately or not, it should be obvious that this circuit does not function properly when the input signal is small. For instance, this circuit cannot be used to rectify an input sinusoid of 100-mV amplitude. For such an application one resorts to a so-called precision rectifier, a circuit utilizing diodes in conjunction with op amps. One such circuit is presented in Section 3.5.5.

EXERCISE

1. For the half-wave rectifier circuit in Fig. 3.25(a), neglecting the effect of series drop V_d, determine the following: (a) For the half-cycles during which the diode conducts, show the following: (i) For $0 < \theta < \pi$, a total conduction angle of $\phi = 180\times(V_{pd}/V_i)$, and $V_{PD} = V_{PD}/2$. (ii) The peak diode current is $I_{Dp} = (V_{PD} - V_d)/R$. (iii) Final numerical values for these quantities for the case of 12-V sine sinusoidal input, $V_{PD} = 0.75 V$, and $R = 100 \Omega$. Also, give the value for PIV.

 $\text{Ans. (a)} \theta = 2.4^\circ$, conduction angle $= 175^\circ$, 5.05V, $(b) 163 \text{mA}$, 17V

3.5.2 The Full-Wave Rectifier

The full-wave rectifier utilizes both halves of the input sinusoid. To provide a unipolar output, it inverts the negative halves of the sine wave. One possible implementation is shown in Fig. 3.26(a). Here the transformer secondary winding is center-tapped to provide two equal voltages v_1 across the two halves of the secondary winding with the polarities indicated. Note that when the input line voltage (feeding the primary) is positive, both of the signals labeled v_1 will be positive. In this case D_1 will conduct and D_2 will be reverse biased. The current through D_1 will flow through R and back to the center tap of the secondary. The circuit then behaves like a half-wave rectifier, and the output during the positive half cycles when D_1 conducts will be identical to that produced by the half-wave rectifier.

Now, during the negative half cycle of the ac line voltage, both of the voltages labeled v_1 will be negative. Thus D_1 will be cut off while D_2 will conduct. The current conducted by D_2 will flow through R and back to the center tap. It follows that during the negative half cycles while D_1 conducts, the circuit behaves again as a half-wave rectifier. The important point, however, is that the current through R always flows in the same direction, and thus v_o will be unipolar, as indicated in Fig. 3.26(c). The output waveform shown is obtained by assuming that a conducting diode has a constant voltage drop V_d. Thus the transfer characteristic of the full-wave rectifier takes the shape shown in Fig. 3.26(b).

The full-wave rectifier obviously produces a more "energetic" waveform than that provided by the half-wave rectifier. In almost all rectifier applications, one opts for a full-wave type of some kind.

To find the PIV of the diodes in the full-wave rectifier circuit, consider the situation during the positive half-cycles. Diode D_1 is conducting, and D_2 is cut off. The voltage at the cathode of D_1 is v_{D1} and that at its anode is $-v_o$. Thus the reverse voltage across D_2 will be $(v_D + v_o)$, which will reach its maximum when v_D is at its peak value of $(V_i - V_D)$, and v_o is at its peak value of V_i; thus,

$$
PIV = 2V_i - V_D
$$

which is approximately twice that for the case of the half-wave rectifier.
3.21 For the full-wave rectifier circuit in Fig. 3.26(a), neglecting the effect of ripple, show the following: (a) The output is zero for a range of 2π rad (V_C/V_I) centered around the zero crossing point of the sine-wave input where each diode is (V_C/V_I) = (2/π)V_P. (b) Find the fraction (percentage) of each cycle during which V_C is greater than R. Ans. 97.4%; Ir = V_C = 163 mA; V_C = 33.2 V; R = 1.00 kΩ.

3.5.3 The Bridge Rectifier

An alternative implementation of the full-wave rectifier is shown in Fig. 3.27(a). The circuit, known as the bridge rectifier because of the similarity of its configuration to that of the Wheatstone bridge, does not require a center-tapped transformer, a distinct advantage over the full-wave rectifier circuit of Fig. 3.26. The bridge rectifier, however, requires four diodes as compared to two in the previous circuit. This is not much of an disadvantage, because diodes are inexpensive and one can buy a diode bridge in one package.

The bridge rectifier circuit operates as follows: During the positive half-cycles of the input voltage, V_I is positive, and thus current is conducted through diode D_1, resistor R, and diode D_2. Meanwhile, diodes D_3 and D_4 will be reverse biased. Observe that there are two diodes in series in the conduction path, and thus V_o will be lower than V_I by two diode drops (compared to one drop in the circuit previously discussed). This is somewhat of a disadvantage of the bridge rectifier.

Next, consider the situation during the negative half-cycles of the input voltage. The secondary voltage V_S will be negative, and thus V_o will be positive, forcing current through D_1, R, and D_2. Meanwhile, diodes D_3 and D_4 will be reverse biased. The important point to note, though, is that during both half-cycles, current flows through R in the same direction (from right to left), and thus V_o will always be positive, as indicated in Fig. 3.27(b).

To determine the peak inverse voltage (PIV) of each diode, consider the circuit during the positive half-cycles. The reverse voltage across D_3 can be determined from the loop formed by D_3, R, and D_2 as

\[V_{RP} = V_{P} - 2V_{D} + V_{C} = V_{C} - V_{D} \]

Thus the maximum value of \(V_{RP} \) occurs at the peak of V_I and is given by

\[PIV = V_{P} - 2V_{D} + V_{C} = V_{C} - V_{D} \]

Observe that here the PIV is about half the value for the full-wave rectifier with a center-tapped transformer. This is another advantage of the bridge rectifier.

Yet one more advantage of the bridge rectifier circuit over that utilizing a center-tapped transformer is that only about half as many turns are required for the secondary winding of the transformer. Another way of looking at this point can be obtained by observing that each half of the secondary winding of the center-tapped transformer is utilized for only half the time. These advantages have made the bridge rectifier the most popular rectifier circuit configuration.

EXERCISE

3.22 For the bridge rectifier circuit of Fig. 3.27(a), use the constant-voltage-drop diode model to show that (a) the average value (or dc component) of the output voltage is \(V_{DC} = \frac{2}{n}V_{P} \), (b) the peak diode current is \(I_{D} = \frac{2V_{P}}{nR} \). Find numerical values for the quantities in (a) and (b) and the PIV for the case in which \(V_{P} = 12 \text{ V (rms)} \), \(R = 100 \Omega \), and \(V_{C} = 0.7 \text{ V} \). Ans. 9.4 V; 156 mA; 16.3 V.

3.5.4 The Rectifier with a Filter Capacitor—The Peak Rectifier

The pulsating nature of the output voltage produced by the rectifier circuits discussed above makes it unsuitable as a dc supply for electronic circuits. A simple way to reduce the variation of the output voltage is to place a capacitor across the load resistor. It will be shown that this filter capacitor serves to reduce substantially the variations in the rectifier output voltage.

To see how the rectifier circuit with a filter capacitor works, consider first the simple circuit shown in Fig. 3.28. Let the input voltage be a sinusoid with a peak value \(V_{P} \), and assume the diode to be ideal. As \(V_C \) goes positive, the diode conducts and the capacitor is charged so that \(V_C = V_{P} \). This situation continues until \(V_C \) reaches its peak value \(V_{C} \). Beyond the peak, as \(V_C \) decreases the diode becomes reverse biased and the output voltage remains constant at the value \(V_C \). In fact, theoretically speaking, the capacitor will retain its charge and hence its voltage indefinitely, because there is no way for the capacitor to discharge. Thus the circuit provides a dc voltage output equal to the peak of the input sine wave. This is a very encouraging result in view of our desire to produce a dc output.
CHAPTER 3 DIODES

Next, we consider the more practical situation where a load resistance R is connected across the capacitor C, as depicted in Fig. 3.29(a). However, we will continue to assume the diode to be ideal. As before, for a sinusoidal input, the capacitor charges to the peak of the input V_p. Then the diode cuts off, and the capacitor discharges through the load resistance R. The capacitor discharge will continue for almost the entire cycle, until the time at which v_o exceeds the capacitor voltage. Then the diode turns on again and charges the capacitor up to the peak of v_b and the process repeats itself. Observe that to keep the output voltage from decreasing too much during capacitor discharge, one selects a value for C so that the time constant CR is much greater than the discharge interval.

We are now ready to analyze the circuit in detail. Figure 3.29(b) shows the steady-state input and output voltage waveforms under the assumption that $CR > T$, where T is the period of the input sinusoid. The waveforms of the load current $i_L = v_o/R$ and of the diode current (when it is conducting)

$$i_D = i_C = i_L$$

and $\frac{dV_o}{dt} = i_C$ (3.23)

$$= e^{-\frac{t}{RC}}$$

(3.24)

are shown in Fig. 3.29(c). The following observations are in order:

1. The diode conducts for a brief interval, Δt, near the peak of the input sinusoid and supplies the capacitor with charge equal to that lost during the much longer discharge interval. The latter is approximately equal to the period T.

2. Assuming an ideal diode, the diode conduction begins at time t_1, at which the input V_p equals the exponentially decaying output v_o. Conduction stops at t_2 shortly after the peak of V_p; the exact value of t_2 can be determined by setting $i_D = 0$ in Eq. (3.25).
3. During the diode-off interval, the capacitor \(C \) discharges through \(R \), and thus \(v_C \) decays exponentially with a time constant \(CR \). The discharge interval begins just past the peak of \(v_C \); at the end of the discharge interval, which lasts for almost the entire period \(T \), \(v_C = V_r \), where \(V_r \) is the peak-to-peak ripple voltage. When \(CR \gg T \), the value of \(V_r \) is small.

4. When \(V_r \) is small, \(v_C \) is almost constant and equal to the peak value of \(v_C \). Thus the dc output voltage is approximately equal to \(V_r \). Similarly, the current \(i_L \) is almost constant, and its dc component \(I_L \) is given by

\[
I_L = \frac{V_f}{R} \tag{3.26}
\]

If desired, a more accurate expression for the output dc voltage can be obtained by taking the average of the extreme values of \(v_C \).

\[
V_f = V_f - jV_r \tag{3.27}
\]

With these observations in hand, we now derive expressions for \(V_f \) and for the average and peak values of the diode current. During the diode-off interval, \(v_C \) can be approximated as

\[
v_C = v_(e^{j\omega t}) CR
\]

At the end of the discharge interval we have

\[
v_f = v_C e^{-j\omega t} \tag{3.28}
\]

Now, since \(CR \gg T \), we can use the approximation \(v_C e^{-j\omega t} \approx 1 - T/CR \) to obtain

\[
v_f = V_f e^{-j\omega t} \tag{3.29a}
\]

We observe that to keep \(v_f \) small we must select a capacitance \(C \) so that \(CR \gg T \). The ripple voltage \(V_f \) in Eq. (3.28) can be expressed in terms of the frequency \(f = 1/T \) as

\[
v_f = \frac{V_f}{jCR} \tag{3.29b}
\]

Using Eq. (3.26) we can express \(V_f \) by the alternative expression

\[
v_f = \frac{V_f}{R} \tag{3.29c}
\]

Note that an alternative interpretation of the approximation made above is that the capacitor discharges by means of a constant current \(I_L = v_C e^{-j\omega t} / R \). This approximation is valid as long as \(v_C \ll V_r \). Using Fig. 3.29(b) and assuming that diode conduction ceases almost at the peak of \(v_C \), we can determine the conduction interval \(\Delta t \) from

\[
V_r \cos (\omega \Delta t) = V_f - V_r
\]

where \(\omega = 2\pi f = 2\pi / T \) is the angular frequency of \(v_C \). Since \(\omega \Delta t \) is a small angle, we can employ the approximation \(\cos (\omega \Delta t) \approx 1 - (1/2) (\omega \Delta t)^2 \) to obtain

\[
\omega \Delta t = \sqrt{2V_r} / V_f \tag{3.30}
\]

We note that when \(V_r \ll V_f \), the conduction angle \(\omega \Delta t \) will be small, as assumed.

Example 3.2

Consider a peak rectifier fed by a 60-Hz sinusoid having a peak value \(V_p = 100 \) V. Let the load resistance \(R = 10 \) k\(\Omega \). Find the value of the capacitance \(C \) that will result in a peak-to-peak ripple of 2 V. Also, calculate the fraction of the cycle during which the diode is conducting and the average and peak values of the diode current.

Solution

From Eq. (3.29a) we obtain the value of \(C \) as

\[
C = \frac{V_p}{V_f} = \frac{100}{2 \times 60 \times 10^{-2}} = 83.3 \ \mu F
\]

The conduction angle \(\omega \Delta t \) is found from Eq. (3.30) as

\[
\omega \Delta t = \sqrt{2V_r} / V_f = 0.2 \ \text{rad}
\]

Thus the diode conducts for \((0.2/2\pi) \cdot 100 = 3.16\% \) of the cycle. The average diode current is obtained from Eq. (3.31), where \(I_f = 100/10 = 10 \) mA, as

\[
I_{rms} = 10(1 + \pi \sqrt{2} / 100/2) = 32.4 \ mA
\]

The peak diode current is found using Eq. (3.32),

\[
I_{p} = 10(1 + 2\pi \sqrt{2} / 100/2) = 638 \ mA
\]
3.23 Derive the expressions in Eqs. (3.33), (3.34), and (3.35).

The circuit of Fig. 3.29(a) is known as a half-wave peak rectifier. The full-wave rectifier circuits of Figs. 3.26(a) and 3.27(a) can be converted to peak rectifiers by including a capacitor across the load resistor. As in the half-wave case, the output dc voltage will be almost equal to the peak value of the input sine wave (Fig. 3.30). The ripple frequency, however, will be twice that of the input. The peak-to-peak ripple voltage, for this case, can be derived using a procedure identical to that above but with the discharge period $T/2$ replaced by $T/4$, resulting in

$$V_p = \frac{V_{RMS}}{\sqrt{2}CF}$$ \hspace{1cm} (3.33)

While the diode conduction interval, Δt, will still be given by Eq. (3.30), the average and peak currents in each of the diodes will be given by

$$I_{AVG} = I_D(1 + \pi/(\sqrt{2}V_p))$$ \hspace{1cm} (3.34)

$$I_{PEAK} = I_D(1 + 2\pi/(\sqrt{2}V_p))$$ \hspace{1cm} (3.35)

Comparing these expressions with the corresponding ones for the half-wave case, we note that for the same values of V_p, f, R, and V_D (and thus the same I_D), we need a capacitor half the size of that required in the half-wave rectifier. Also, the current in each diode in the full-wave rectifier is approximately half that which flows in the diode of the half-wave circuit.

The analysis above assumed ideal diodes. The accuracy of the results can be improved by taking the diode voltage drop into account. This can be easily done by replacing the peak voltage V_p to which the capacitor charges with $(V_p - V_D)$ for the half-wave circuit and with $(V_p - 2V_D)$ for the bridge-rectifier case.

We conclude this section by noting that peak-rectifier circuits find application in signal-processing systems where it is required to detect the peak of an input signal. In such cases, the circuit is referred to as a peak detector. A particularly popular application of the peak detector is in the design of a demodulator for amplitude-modulated (AM) signals. We shall not discuss this application further here.

Exercises

1. Derive the equation in Eq. (3.31), that is, $V_{RMS}/\sqrt{2}CF$.

3.5 Precision Half-Wave Rectifier—The Super Diode

The rectifier circuits studied thus far suffer from having one or two diode drops in the signal paths. Thus these circuits work well only when the signal to be rectified is much larger than the voltage drop of a conducting diode (0.7 V or so). In such a case the details of the diode forward characteristics or the exact value of the diode voltage drop do not play a prominent role in determining circuit performance. This is indeed the case in the application of rectifier circuits in power-supply design. There are other applications, however, where the signal to be rectified is small (e.g., on the order of 100 mV or so) and thus clearly insufficient to turn on a diode. Also, in instrumentation applications, the need arises for rectifier circuits with very precise and predictable transfer characteristics. For these applications, a class of circuits has been developed utilizing op amps (Chapter 2) together with diodes to provide precision rectification. In the following discussion, we study one such circuit, leaving a more comprehensive study of op amp-diode circuits to Chapter 13.

Figure 3.31(a) shows a precision half-wave rectifier circuit consisting of a diode placed in the negative-feedback path of an op amp, with the rectifier load resistance. The op amp, of course, needs power supplies for its operation. For simplicity, these are not shown in the circuit diagram. The circuit works as follows: If v_i goes positive, the output voltage v_o of the op amp will go positive and the diode will conduct, establishing a closed feedback path between the op amp's output terminal and the negative input terminal.

![Figure 3.31](image)

Figure 3.31 The "superdiode" precision half-wave rectifier and its almost-ideal transfer characteristics. Note that when $v_i > 0$ and the diode conducts, the op amp conducts the load current, and the source is conveniently buffered, an added advantage. Not shown are the op-amp power supplies.

This section requires knowledge of operational amplifiers.
This negative-feedback path will cause a virtual short circuit to appear between the two input terminals. Thus the voltage at the negative input terminal, which is also the output voltage \(v_0 \), will equal (to within a few millivolts) that at the positive input terminal, which is the input voltage \(v_i \):

\[
v_0 = v_i \quad v_i \geq 0
\]

Note that the offset voltage (\(-0.6 \text{ V}\)) exhibited in the simple half-wave rectifier circuit of Fig. 3.25 is no longer present. For the op-amp circuit to start operation, \(v_i \) has to exceed only a negligibly small voltage equal to the diode drop divided by the op amp's open-loop gain. In other words, the straight-line transfer characteristic \(v_o \sim v_i \) almost passes through the origin. This makes this circuit suitable for applications involving very small signals.

Consider now the case when \(v_i \) goes negative. The op amp's output voltage \(v_o \) will tend to follow and go negative. This will reverse-bias the diode, and no current will flow through resistance \(R \), causing \(v_0 \) to remain equal to 0 V. Thus, for \(v_i < 0 \), \(v_0 = 0 \). Since in this case the diode is off, the op amp will be operating in an open-loop fashion, and its output will be at the negative saturation level.

The transfer characteristic of this circuit will be that shown in Fig. 3.31(b), which is almost identical to the ideal characteristic of a half-wave rectifier. The nonideal diode characteristics have been almost completely masked by placing the diode in the negative-feedback path of an op amp. This is another dramatic application of negative feedback, a subject we will study formally in Chapter 8. The combination of diode and op amp, shown in the dotted box in Fig. 3.31(a), is appropriately referred to as a "superdiode."

EXERCISES

- **3.25** Consider the operational rectifier or superdiode circuit of Fig. 3.31(a), with \(R = 1 \, \text{k}\Omega \). For \(v_i = 0 \, \text{mV} \), \(v = 1 \, \text{V} \), and \(-1 \, \text{V} \), what are the voltages that result at the rectifier output and at the output of the op amp?
- **3.26** If the diode in the circuit of Fig. 3.31(a) is reversed, find the transfer characteristic \(v_o \) as a function of \(v_i \).
- **3.27** If \(v_i = 0 \) for \(v_i \geq 0 \), \(v_o = v_i \) for \(v_i \leq 0 \).

3.6 LIMITING AND CLAMPING CIRCUITS

In this section, we shall present additional nonlinear circuit applications of diodes.

3.6.1 Limiter Circuits

Figure 3.32 shows the general transfer characteristic of a limiter circuit. As indicated, for inputs in a certain range, \(L_- \leq v_i \leq L_+ / K \), the limiter acts as a linear circuit, providing an output proportional to the input, \(v_o = v_i / K \). Although in general \(K \) can be greater than 1, the circuits discussed in this section have \(K \leq 1 \) and are known as passive limiters. (Examples of active limiters will be presented in Chapter 13.) If \(v_i \) exceeds the upper threshold \(L_+/K \), the output voltage \(v_o \) is limited or clamped to the upper limiting level \(L_+ \). On the other hand, if \(v_i \) is reduced below the lower limiting threshold \(L_- / K \), the output voltage \(v_o \) is limited to the lower limiting level \(L_- \).

The general transfer characteristic of Fig. 3.32 describes a double limiter—that is, a limiter that works on both the positive and negative peaks of an input waveform. Single limiters, of course, exist. Finally, note that if an input waveform such as that shown in Fig. 3.33 is fed to a double limiter, its two peaks will be clipped off. Limiters therefore are sometimes referred to as clippers.

The limiter whose characteristics are depicted in Fig. 3.32 is described as a hard limiter. Soft limiting is characterized by smoother transitions between the linear region and the saturation regions and a slope greater than zero in the saturation regions, as illustrated in Fig. 3.34. Depending on the application, either hard or soft limiting may be preferred.
Limiters find application in a variety of signal-processing systems. One of their simplest applications is in limiting the voltage between the two input terminals of an op amp to a value lower than the breakdown voltage of the transistors that make up the input stage of the op-amp circuit. We will have more to say on this and other limiter applications at later points in this book.

Diodes can be combined with resistors to provide simple realizations of the limiter function. A number of examples are depicted in Fig. 3.35. In each part of the figure both the circuit and its transfer characteristic are given. The transfer characteristics are obtained using the constant-voltage-drop ($V_D = 0.7 \, \text{V}$) diode model but assuming a smooth transition between the linear and saturation regions of the transfer characteristic. Better approximations for the transfer characteristics can be obtained using the piecewise-linear diode model. If this is done, the saturation region of the characteristic acquires a slight slope (due to the effect of r_D).

The circuit in Fig. 3.35(a) is that of the half-wave rectifier except that here the output is taken across the diode. For $v_i < 0.5 \, \text{V}$, the diode is cut off, no current flows, and the voltage drop across R is zero, thus $v_o = v_i$. As v_i exceeds 0.5 V, the diode turns on, eventually limiting v_o to one diode drop (0.7 V). The circuit of Fig. 3.35(b) is similar to that in Fig. 3.35(a) except that the diode is reversed.

Double limiting can be implemented by placing two diodes of opposite polarity in parallel, as shown in Fig. 3.35(c). Here the linear region of the characteristic is obtained for $-0.5 \, \text{V} \leq v_i \leq 0.5 \, \text{V}$. For this range of v_i, both diodes are off and $v_o = v_i$. As v_i exceeds 0.5 V, D_1 turns on and eventually limits v_o to $+0.7 \, \text{V}$. Similarly, as v_i goes more negative than $-0.5 \, \text{V}$, D_2 turns on and eventually limits v_o to $-0.7 \, \text{V}$.

The thresholds and saturation levels of diode limiters can be controlled by using strings of diodes and/or by connecting a dc voltage in series with the diode(s). The latter idea is illustrated in Fig. 3.35(d). Finally, rather than strings of diodes, we may use two zener diodes in series, as shown in Fig. 3.35(e). In this circuit, limiting occurs in the positive direction at a voltage of $V_Z + 0.7$, where 0.7 V represents the voltage drop across zener diode Z_1 when conducting in the forward direction. For negative inputs, Z_2 acts as a zener, while Z_1 conducts in the forward direction. It should be mentioned that pairs of zener diodes connected in series are available commercially for applications of this type under the name double-anode zener.

More flexible limiter circuits are possible if op amps are combined with diodes and resistors. Examples of such circuits are discussed in Chapter 13.

EXERCISE

3.27 Assuming the diodes to be ideal, describe the transfer characteristics of the circuit shown in Fig. E3.27.

3.6.2 The Clamped Capacitor or DC Restorer

If in the basic peak-rectifier circuit the output is taken across the diode rather than across the capacitor, an interesting circuit with important applications results. The circuit, called a dc restorer, is shown in Fig. 3.36 fed with a square wave. Because of the polarity in which the diode is connected, the capacitor will charge to a voltage v_c with the polarity indicated in Fig. 3.36 and equal to the magnitude of the most negative peak of the input signal. Subsequently, the diode turns off and the capacitor retains its voltage indefinitely. If, for instance, the input square wave has the arbitrary levels $-6 \, \text{V}$ and $+4 \, \text{V}$, then v_c will be equal to 6 V.
Now, since the output voltage v_0 is given by

$$v_0 = v_c + v_0$$

it follows that the output waveform will be identical to that of the input, except that it is shifted upward by v_c volts. In our example the output will thus be a square wave with levels of 0 V and +10 V.

Another way of visualizing the operation of the circuit in Fig. 3.36 is to note that because the diode is connected across the output with the polarity shown, it prevents the output voltage from going below 0 V (by conducting and charging up the capacitor, thus causing the output to rise to 0 V), but this connection will not constrain the positive excursion of v_0. The output waveform will therefore have its lowest peak clamped to 0 V, which is why the circuit is called a clamped capacitor. It should be obvious that reversing the diode polarity will provide an output waveform whose highest peak is clamped to 0 V. In either case, the output waveform will have a finite average value or dc component. This dc component is entirely unrelated to the average value of the input waveform. As an application, consider a pulse signal being transmitted through a capacitively coupled or ac-coupled system. The capacitive coupling will cause the pulse train to lose whatever dc component it originally had. Feeding the resulting pulse waveform to a clamping circuit provides it with a well-determined dc component, a process known as dc restoration. This is why the circuit is also called a dc restorer.

When a load resistance R is connected across the diode in a clamping circuit, as shown in Fig. 3.37, the situation changes significantly. While the output is above ground, a net dc current must flow in R. Since at this time the diode is off, this current obviously comes from the capacitor, thus causing the capacitor to discharge and the output voltage to fall. This is shown in Fig. 3.37 for a square-wave input. During the interval t_0 to t_1, the output voltage falls exponentially with time constant CR. At t_1, the input decreases by V_a volts, and the output attempts to follow. This causes the diode to conduct heavily and to quickly charge the capacitor. At the end of the interval t_1 to t_2, the output voltage would normally be a few tenths of a volt negative (e.g., -0.5 V). Then, as the input rises by V_a volts (at t_2), the output follows, and the cycle repeats itself. In the steady state the charge lost by the capacitor during the interval t_0 to t_1 is recovered during the interval t_1 to t_2. This charge equilibrium enables us to calculate the average diode current as well as the details of the output waveform.

3.6.3 The Voltage Doubler

Figure 3.38(a) shows a circuit composed of two sections in cascade: a clamp formed by C_1 and D_1, and a peak rectifier formed by D_2 and C_2. When excited by a sinusoid of amplitude V_s the clamping section provides the voltage waveform shown, assuming ideal diodes, in Fig. 3.38(b). Note that while the positive peaks are clamped to 0 V, the negative peak is $-2V_s$. The duty cycle of a pulse waveform is the proportion of each cycle occupied by the pulse. In other words, it is the pulse width expressed as a fraction of the pulse period.

3. The duty cycle of a pulse waveform is the proportion of each cycle occupied by the pulse. In other words, it is the pulse width expressed as a fraction of the pulse period.
CHAPTER 3 DIODES

If the diode in the circuit of Fig. 3.36 is reversed, what will the dc component of \(v \) become?

Ans. \(-5 \text{ V}\)

3.7 PHYSICAL OPERATION OF DIODES

Having studied the terminal characteristics and circuit applications of junction diodes, we will now briefly consider the physical processes that give rise to the observed terminal characteristics. The following treatment of device physics is somewhat simplified; nevertheless, it should provide sufficient background for a fuller understanding of diodes and for understanding the operation of transistors in the following two chapters.

3.7.1 Basic Semiconductor Concepts

The \(p-n \) Junction

The semiconductor diode is basically a \(p-n \) junction, as shown schematically in Fig. 3.39. As indicated, the \(p-n \) junction consists of \(p \)-type semiconductor material (e.g., silicon) brought into close contact with \(n \)-type semiconductor material (also silicon). In actual practice, both the \(p \) and \(n \) regions are part of the same silicon crystal; that is, the \(p-n \) junction is formed within a single silicon crystal by creating regions of different “dopings” (\(p \) and \(n \) regions). Appendix A provides a brief description of the process employed in the fabrication of \(p-n \) junctions. As indicated in Fig. 3.39, external wire connections to the \(p \) and \(n \) regions (i.e., diode terminals) are made through metal (aluminum) contacts.

In addition to being essentially a diode, the \(p-n \) junction is the basic element of bipolar junction transistors (BJTs) and plays an important role in the operation of field-effect transistors (FETs). Thus an understanding of the physical operation of \(p-n \) junctions is important to the understanding of the operation and terminal characteristics both of diodes and transistors.

Intrinsic Silicon

Although either silicon or germanium can be used to manufacture semiconductor devices—indeed, earlier diodes and transistors were made of germanium—today’s integrated-circuit technology is based almost entirely on silicon. For this reason, we will deal mostly with silicon devices throughout this book.

A crystal of pure or intrinsic silicon has a regular lattice structure where the atoms are held in their positions by bonds, called covalent bonds, formed by the four valence electrons associated with each silicon atom. Figure 3.40 shows a two-dimensional representation of such a structure. Observe how the covalent bonds are formed by sharing of the valence electrons. At 0 K, all bonds are intact and no free electrons are available for current conduction.

At sufficiently low temperatures, all covalent bonds are intact and no (or very few) free electrons are available to conduct electric current. However, at room temperature, some of the bonds are broken by thermal ionization and some electrons are freed. As shown in Fig. 3.41, when a covalent bond is broken, an electron leaves its parent atom; thus a positive charge, equal to the magnitude of the electron charge, is left with the parent atom. An electron from a neighboring atom may be attracted to this positive charge, leaving its parent atom. This action fills up the “hole” that existed in the ionic atom but creates a new hole in the other atom. This process may repeat itself, with the result that we effectively have a positively charged carrier, or hole, moving through the silicon crystal structure and being available to conduct electric current. The charge of a hole is equal in magnitude to the charge of an electron.

Thermal ionization results in free electrons and holes in equal numbers and hence equal concentrations. These free electrons and holes move randomly through the silicon crystal structure, and in the process some electrons may fill some of the holes. This process, called recombination, results in the disappearance of free electrons and holes. The recombination rate is proportional to the number of free electrons and holes, which, in turn, is determined by

An exception is the subject of gallium arsenide (GaAs) circuits, which though not covered in this edition of the book, is studied in some detail in material provided on the text website and on the CD accompanying the text.
the ionization rate. The ionization rate is a strong function of temperature. In thermal equilibrium, the recombination rate is equal to the ionization or thermal-generation rate, and one can calculate the concentration of free electrons \(n \), which is equal to the concentration of holes \(p \),

\[
 n = p = n_t
\]

where \(n_t \) denotes the concentration of free electrons or holes in intrinsic silicon at a given temperature. Study of semiconductor physics shows that at an absolute temperature \(T \) (in kelvins), the intrinsic concentration (i.e., the number of free electrons and holes per cubic centimeter) can be found from

\[
 n_t = B T^3 e^{(-E_G/k T)}
\]

where \(B \) is a material-dependent parameter \(= 5.4 \times 10^{31} \) for silicon, \(E_G \) is a parameter known as the bandgap energy \(=1.12 \) electron volts (eV) for silicon, and \(k \) is Boltzmann’s constant \(= 8.62 \times 10^{-5} \) eV/K. Although we shall not make use of the bandgap energy in this circuit-focused introductory exposition, it is interesting to note that \(E_G \) represents the minimum energy required to break a covalent bond and thus generate an electron-hole pair. Substitution in Eq. (3.36) of the parameter values given shows that for intrinsic silicon at room temperature \((T \approx 300 K) \),

\[
 n_t = 1.5 \times 10^{10} \text{ carriers/cm}^3
\]

and holes, this random motion does not result in a net flow of charge (i.e., current). On the other hand, if by some mechanism the concentration of, say, free electrons is made higher in one part of the piece of silicon than in another, then electrons will diffuse from the region of high concentration to the region of low concentration. This diffusion process gives rise to a net flow of charge, or diffusion current. As an example, consider the bar of silicon shown in Fig. 3.42(a), in which the hole concentration profile shown in Fig. 3.42(b) has been created along the \(x \)-axis by some unspecified mechanism. The existence of such a concentration profile results in a hole diffusion current in the \(x \)-direction, with the magnitude of the current at any point being proportional to the slope of the concentration curve, or the concentration gradient, at that point.

\[
 J_p = -q D_p \frac{dp}{dx} \tag{3.37}
\]

where \(J_p \) is the current density (i.e., the current per unit area of the plane perpendicular to the \(x \)-axis) in \(\text{A/cm}^2 \), \(q \) is the magnitude of electron charge \(= 1.6 \times 10^{-19} \) C, and \(D_p \) is a constant called the diffusion constant or diffusivity of holes. Note that the gradient \((dp/dx) \) is negative, resulting in a positive current in the \(x \)-direction, as should be expected. In the case of electron diffusion resulting from an electron concentration gradient, a similar relationship applies, giving the electron-current density

\[
 J_n = q D_n \frac{dn}{dx} \tag{3.38}
\]

where \(D_n \) is the diffusivity of electrons. Observe that a negative \((dn/dx) \) gives rise to a negative current, a result of the convention that the positive direction of current is taken to be that of the flow of positive charge (and opposite to that of the flow of negative charge). For holes and electrons diffusing in intrinsic silicon, typical values for the diffusion constants are \(D_p = 12 \text{ cm}^2/\text{s} \) and \(D_n = 34 \text{ cm}^2/\text{s} \).

The other mechanism for carrier motion in semiconductors is drift. Carrier drift occurs when an electric field is applied across a piece of silicon. Free electrons and holes are accelerated by the electric field and acquire a velocity component (superimposed on the velocity of their thermal motion) called drift velocity. If the electric field strength is denoted...
194 CHAPTER 3 DIODES

\[\begin{align*}
E (\text{in V/cm}), \text{the positively charged holes will drift in the direction of } E \text{ and acquire a velocity } v_{\text{holes}} \text{ (in cm/s) given by:} \\
v_{\text{holes}} = \mu_p E \\
\end{align*} \]

where \(\mu_p \) is a constant called the mobility of holes which has the units of cm²/V·s. For intrinsic silicon, \(\mu_p \) is typically 480 cm²/V·s. The negatively charged electrons will drift in a direction opposite to that of the electric field, and their velocity is given by a relationship similar to that in Eq. (3.39), except that \(\mu_n \) is replaced by \(\mu_e \), the electron mobility. For intrinsic silicon, \(\mu_e \) is typically 1550 cm²/V·s, about 2.5 times greater than the hole mobility.

Consider now a silicon crystal having a hole density \(p \) and a free-electron density \(n \) subjected to an electric field \(E \). The holes will drift in the same direction as \(E \) (call it the \(x \) direction) with a velocity \(\mu_p E \). Thus we have a positive charge of density \(\rho (\text{coulombs/cm}^3) \) moving in the \(x \) direction with velocity \(\mu_p E \) (cm/s). It follows that in 1 second, a charge of \(\rho \mu_p EA \) (coulombs) will cross a plane of area \(A \) (cm²) perpendicular to the \(x \)-axis. This is the current component caused by hole drift. Dividing by the area \(A \) gives the current density

\[J_{\text{holes}} = \rho \mu_p E \]

(3.40a)

The free electrons will drift in the direction opposite to that of \(E \). Thus we have a charge of density \((-\rho_n) \) moving in the negative \(x \) direction, and thus it has a negative velocity \((-\mu_e E) \). The result is a positive current component with a density given by

\[J_{\text{electrons}} = -\rho \mu_e E \]

(3.40b)

The total drift current density is obtained by combining Eqs. (3.40a) and (3.40b),

\[J_{\text{total}} = q(p + n) \mu E \]

(3.40c)

It should be noted that this is a form of Ohm's law with the resistivity \(\rho \) (in units of \(\Omega \text{-cm} \)) given by

\[\rho = \frac{1}{\sigma} = \frac{1}{\frac{q(p + n) \mu E}{1}} \]

(3.41)

Finally, it is worth mentioning that a simple relationship, known as the Einstein relationship, exists between the carrier diffusivity and mobility,

\[D_i = D_e = \frac{\mu_i}{\mu_e} = \frac{\mu_p}{\mu_e} = V_T \]

(3.42)

where \(V_T \) is the thermal voltage that we have encountered before, in the diode \(I-V \) relationship (see Eq. 3.5). Recall that at room temperature, \(V_T = 25 \text{ mV} \). The reader can easily check the validity of Eq. (3.42) by substituting the typical values given above for intrinsic silicon.

Doped Semiconductors The intrinsic silicon crystal described above has equal concentrations of free electrons and holes generated by thermal ionization. These concentrations, denoted \(n_i \) and \(p_i \), are strongly dependent on temperature. Doped semiconductors are materials in which carriers of one kind (electrons or holes) predominate. Doped silicon in which the majority of charge carriers are the negatively charged electrons is called \(n \)-type, while silicon doped so that the majority of charge carriers are the positively charged holes is called \(p \)-type.

Doping of a silicon crystal to turn it into \(p \)-type or \(n \)-type is achieved by introducing a small number of impurity atoms. For instance, introducing an impurity atom of a pentavalent element such as phosphorus results in \(n \)-type silicon, because the phosphorus atoms that replace some of the silicon atoms in the crystal structure have five valence electrons, four of which bond with the neighboring silicon atoms while the fifth becomes a free electron (Fig. 3.43). Thus each phosphorus atom donates a free electron to the silicon crystal, and the phosphorus impurity is called a donor. It should be clear, though, that no holes are generated by this process; hence the majority of charge carriers in the phosphorus-doped silicon will be electrons. In fact, if the concentration of donor atoms (phosphorus) is \(N_D \) in thermal equilibrium the concentration of free electrons in the \(n \)-type silicon, \(n_0 \), will be

\[n_0 \approx N_D \]

(3.43)

where the additional subscript \(0 \) denotes thermal equilibrium. From semiconductor physics, it turns out that in thermal equilibrium the product of electron and hole concentrations remains constant; that is,

\[n_p \approx n_i^2 \]

(3.44)

Thus the concentration of holes, \(p_0 \), that are generated by thermal ionization will be

\[p_0 \approx n_i^2 \]

(3.45)

Since \(n_i \) is a function of temperature (Eq. 3.36), it follows that the concentration of the minority holes will be a function of temperature whereas that of the majority electrons is independent of temperature.

To produce a \(p \)-type semiconductor, silicon has to be doped with a trivalent impurity such as boron. Each of the impurity boron atoms accepts one electron from the silicon crystal, so that they may form covalent bonds in the lattice structure. Thus, as shown in Fig. 3.44, each boron atom gives rise to a hole, and the concentration of the majority holes in \(p \)-type silicon, under thermal equilibrium, is approximately equal to the concentration \(N_B \) of the acceptor (boron) impurity.

\[p_{\text{intrinsic}} \approx N_B \]

(3.46)
In this p-type silicon, the concentration of the minority electrons, which are generated by thermal ionization, can be calculated using the fact that the product of carrier concentrations remains constant; thus,

$$n_p = \frac{n_i^2}{N_A}$$

(3.47)

It should be emphasized that a piece of n-type or p-type silicon is electrically neutral; the majority free carriers (electrons in n-type silicon and holes in p-type silicon) are neutralized by bound charges associated with the impurity atoms.

EXERCISES

3.29 Calculate the intrinsic carrier density \(n_i \) at 250 K, 300 K, and 350 K.

$$n_i = 1.5 \times 10^{10} \, \text{cm}^{-3}$$

3.30 Consider an n-type silicon in which the dopant concentration \(N_A \) is \(10^{17} \, \text{cm}^{-3} \). Find the electron and hole concentrations at 250 K, 300 K, and 350 K. You may use the results of Exercise 3.29.

$$n_i = 1.5 \times 10^{10} \, \text{cm}^{-3}$$

3.31 Find the resistivity of (a) intrinsic silicon and (b) p-type silicon with \(N_A = 10^{16} \, \text{cm}^{-3} \). Use \(n_i = 1.5 \times 10^{10} \, \text{cm}^{-3} \) and assume that for intrinsic silicon \(\mu_e = 1850 \, \text{cm}^2/\text{V} \cdot \text{s} \) and \(\mu_h = 480 \, \text{cm}^2/\text{V} \cdot \text{s} \) and for the doped silicon \(\mu_e = 1100 \, \text{cm}^2/\text{V} \cdot \text{s} \) and \(\mu_h = 200 \, \text{cm}^2/\text{V} \cdot \text{s} \). (Note that doping results in reduced carrier mobilities.)

$$\rho = 2.28 \times 10^{-5} \, \Omega \cdot \text{cm}$$

3.7 The \(pn \) Junction Under Open-Circuit Conditions

Figure 3.45 shows a \(pn \) junction under open-circuit conditions—that is, the external terminals are left open. The “+” signs in the p-type material denote the majority holes. The charge of these holes is neutralized by an equal amount of bound negative charge associated with the acceptor atoms. For simplicity, these bound charges are not shown in the diagram. Also not shown are the minority electrons generated in the p-type material by thermal ionization.

In the n-type material the majority electrons are indicated by “−” signs. Here also, the bound positive charge, which neutralizes the charge of the majority electrons, is not shown in order to keep the diagram simple. The n-type material also contains minority holes generated by thermal ionization that are not shown in the diagram.

The Diffusion Current \(I_D \)

Because the concentration of holes is high in the p region and low in the n region, holes diffuse across the junction from the p side to the n side; similarly, electrons diffuse across the junction from the n side to the p side. These two current components add together to form the diffusion current \(I_D \), whose direction is from the p side to the n side, as indicated in Fig. 3.45.

The Depletion Region

The holes that diffuse across the junction into the n region quickly recombine with some of the majority electrons present there and thus disappear from the scene. This recombination process results in the disappearance of some free electrons from the n-type material. Thus some of the bound positive charge will no longer be neutralized by free electrons, and this charge is said to be uncovered. Since recombination takes place close to the junction, there will be a region close to the junction that is depleted of free electrons and contains uncovered bound positive charge, as indicated in Fig. 3.45.
The electrons that diffuse across the junction into the p region quickly recombine with some of the majority holes there, and thus disappear from the scene. This results also in the disappearance of some majority holes, causing some of the bound negative charge to be uncovered (i.e., no longer neutralized by holes). Thus, in the p material close to the junction, there will be a region depleted of holes and containing uncovered bound negative charge, as indicated in Fig. 3.45.

From the above it follows that a carrier-depletion region will exist on both sides of the junction, with the n side of this region positively charged and the p side negatively charged. This carrier-depletion region—or, simply, depletion region—is also called the space-charge region. The charges on both sides of the depletion region cause an electric field to be established across the region; hence a potential difference results across the depletion region, with the n side at a positive voltage relative to the p side, as shown in Fig. 3.45(b). Thus the resulting electric field opposes the diffusion of holes into the n region and electrons into the p region. In fact, the voltage drop across the depletion region acts as a barrier that has to be overcome for holes to diffuse into the n region and electrons to diffuse into the p region. The larger the barrier voltage, the smaller the number of carriers that will be able to overcome the barrier and hence the lower the magnitude of diffusion current. Thus the diffusion current I_D depends strongly on the voltage drop V_0 across the depletion region.

The Drift Current I_D and Equilibrium In addition to the current component I_D due to majority-carrier drift, a component due to minority-carrier diffusion, a component due to minority-carrier drift exists across the junction. Specifically, some of the thermally generated holes in the n material diffuse through the depletion region across the depletion region. There, they experience the electric field in the depletion region, which sweeps them across that region into the p side. Similarly, some of the minority thermally generated electrons in the p material diffuse to the edge of the depletion region and get swept by the electric field in the depletion region across that region into the n side. These two current components—electrons moved by drift from p to n and holes moved by drift from n to p—add together to form the drift current I_D, whose direction is from the n side to the p side of the junction, as indicated in Fig. 3.45. Since the current I_D is carried by thermally generated minority carriers, its value is strongly dependent on temperature, however, it is independent of the value of the depletion-layer voltage V_0.

Under open-circuit conditions (Fig. 3.45) no external current exists; thus the two opposite currents across the junction should be equal in magnitude:

$$I_D = I_S$$

This equilibrium condition is maintained by the barrier voltage V_0. Thus, if for some reason I_D exceeds I_S, then more bound charge will be uncovered on both sides of the junction, the depletion layer will widen, and the voltage across it (V_0) will increase. This in turn causes I_D to decrease until equilibrium is achieved with $I_D = I_S$. On the other hand, if I_D exceeds I_S, then the amount of uncovered charge will decrease, the depletion layer will narrow, and the voltage across it (V_0) will decrease. This causes I_D to increase until equilibrium is achieved with $I_D = I_S$.

The Junction Built-In Voltage With no external voltage applied, the voltage V_0 across the pn junction can be shown to be given by

$$V_0 = V_T \ln \left(\frac{N_p}{N_n} \right)$$

(3.48)

where N_p and N_n are the doping concentrations of the p side and n side of the junction, respectively. Thus V_0 depends both on doping concentrations and on temperature. It is known as the junction built-in voltage. Typically, for silicon at room temperature, V_0 is in the range of 0.5 V to 0.8 V.

When the pn junction terminals are left open-circuited, the voltage measured between them will be zero. That is, the voltage V_0 across the depletion region does not appear between the diode terminals. This is because of the contact voltages existing at the metal-semiconductor junctions at the diode terminals, which counter and exactly balance the barrier voltage. If these were not the case, we would have been able to draw energy from the isolated pn junction, which would clearly violate the principle of conservation of energy.

Width of the Depletion Region From the above, it should be apparent that the depletion region exists in both the p and n materials and that equal amounts of charge exist on both sides. However, since usually the doping levels are not equal in the p and n materials, one can reason that the width of the depletion region will not be the same on the two sides. Rather, in order to uncover the same amount of charge, the depletion layer will extend deeper into the more lightly doped material. Specifically, if we denote the width of the depletion region in the p side by x_p and in the n side by x_n, this charge-equality condition can be stated as

$$x_p \propto A N_p = x_n A N_0$$

where A is the cross-sectional area of the junction. This equation can be rearranged to yield

$$\frac{x_p}{x_n} = \frac{N_n}{N_p}$$

(3.49)

In actual practice, it is usual that one side of the junction is much more heavily doped than the other, with the result that the depletion region exists almost entirely on one side (the lightly doped side). Finally, from device physics, the width of the depletion region of an open-circuited junction is given by

$$W_{dep} = x_p + x_n = \frac{2e \epsilon_0}{q} \left(\frac{1}{N_p} + \frac{1}{N_n} \right) V_0$$

(3.50)

where ϵ_0 is the electrical permittivity of silicon = 11.7 ϵ_0 = 1.04×10^{-12} F/cm. Typically, W_{dep} is in the range of 0.1 μm to 1 μm.

Exercise

3.32 For a pn junction with $N_p = 10^{18}$/cm3 and $N_n = 10^{13}$/cm3 find, at $T = 300$ K, the built-in voltage. The width of the depletion region, and the distance it extends in the p side and in the n side of the junction. Use $N_n = 1.5 \times 10^{16}$/cm3.

Ans. 728 mV, 0.32 μm, 0.03 μm, and 0.29 μm.

3.7.3 The pn Junction Under Reverse-Bias Conditions

The behavior of the pn junction in the reverse direction is more easily explained on a microscopic scale if we consider excitation the junction with a constant-current source (rather than with a voltage source), as shown in Fig. 3.46. The current source is obviously in the reverse direction. For the time being let the magnitude of I be less than I_D, if I is greater than I_D, breakdown will occur, as explained in Section 3.7.4.
CHAPTER 3 DIODES

The Depletion Capacitance

From the above we observe the analogy between the depletion layer of a pn junction and a capacitor. As the voltage across the pn junction changes,

\[V \]

the charge stored in the depletion layer changes accordingly. Figure 3.47 shows a sketch of typical charge-versus-external-voltage characteristic of a pn junction. Note that only the portion of the curve for the reverse-bias region is shown.

An expression for the depletion-layer stored charge \(q_f \) can be derived by finding the charge stored on either side of the junction (which charges are, of course, equal). Using the \(n \) side, we write

\[q_f = q_0 = qN_0 x_n A \]

where \(A \) is the cross-sectional area of the junction (in a plane perpendicular to the page).

Next we use Eq. (3.49) to express \(x_n \) in terms of the depletion-layer width \(W_{\text{dep}} \) to obtain

\[x_n = \left(\frac{q_0}{q N_0 A} \right) \left(\frac{1}{N_D + N_A} \right) W_{\text{dep}} \]

where \(W_{\text{dep}} \) can be found from Eq. (3.50) by replacing \(V_0 \) by the total voltage across the depletion region, \((V_0 + V_0) \).

Combining Eqs. (3.51) and (3.52) yields the expression for the nonlinear \(q_f - V_0 \) relationship depicted in Fig. 3.47. This relationship obviously does not represent a linear capacitor.

However, a linear-capacitance approximation can be used if the device is biased and the signal swing around the bias point is small, as illustrated in Fig. 3.47. This is the technique we utilized in Section 3.4 to obtain linear amplification from an amplifier having a nonlinear transfer characteristic and in Section 3.3 to obtain a small-signal model for the diode in the forward-bias region. Under this small-signal approximation, the depletion capacitance (also called the junction capacitance) is simply the slope of the \(q_f - V_0 \) curve at the bias point \(Q \).

\[C_j = \frac{dJ}{dV_b} \]

where

\[J = \cases{
 q_0 & for \ V < 0 \\
 q N_A & for \ V > 0
} \]

and

\[V_b = \cases{
 +V_b & for \ V < 0 \\
 -V_b & for \ V > 0
} \]

Thus the depletion capacitance is given by

\[C_j = \frac{\frac{dJ}{dV_b}}{V_b} \]

The depletion capacitance is typically greater than the diffusion capacitance because it is associated with the space-charge region.
3.7 PHYSICAL OPERATION OF DIODES

The pn junction in the breakdown region

In considering diode operation in the reverse-bias region in Section 3.7.3, it was assumed that the reverse-current source \(I \) (Fig. 3.46) was smaller than \(I_b \) or, equivalently, that the reverse voltage \(V \) was smaller than the breakdown voltage \(V_b \). (Refer to Fig. 3.8 for the definition of \(V_b \).) We now wish to consider the breakdown mechanisms in pn junctions and explain the reasons behind the almost-vertical line representing the \(I-V \) relationship in the breakdown region. For this purpose, let the pn junction be excited by a current source that causes a constant current \(I \) greater than \(I_b \) to flow in the reverse direction, as shown in Fig. 3.46. This current source will move holes from the p material through the external circuit into the n material and electrons from the n material through the external circuit into the p material. This action results in more and more of the bound charge being uncovered; hence the depletion layer widens and the barrier voltage rises. This latter effect causes the diffusion current to decrease; eventually it will be reduced to almost zero. Nevertheless, this is not sufficient to reach a steady state, since \(I \) is greater than \(I_b \). Therefore the process leading to the widening of the depletion layer continues until a sufficiently high junction voltage develops, at which point a new mechanism sets in to supply the charge carriers needed to support the current \(I \). As will be now explained, this mechanism for supplying reverse currents in excess of \(I_b \) can take one of two forms depending on the pn junction material, structure, and so on.

The two possible breakdown mechanisms are the zener effect and the avalanche effect. If a pn junction breaks down with a breakdown voltage \(V_b < 5 \) \(V \), the breakdown mechanism is usually the zener effect. Avalanche breakdown occurs when \(V \) is greater than approximately \(7 \) \(V \). For junctions that break down between \(5 \) \(V \) and \(7 \) \(V \), the breakdown mechanism is either the zener or the avalanche effect or a combination of the two.

Zener breakdown occurs when the electric field in the depletion layer increases to the point where it can break covalent bonds and generate electron-hole pairs. The electrons generated in this way will be swept by the electric field into the n side and the holes into the p side. These electrons and holes constitute a reverse current across the junction that helps support the external current \(I \). Once the zener effect starts, a large number of carriers can be generated, with a negligible increase in the junction voltage. Thus the reverse current in the breakdown region will be determined by the external circuit, while the reverse voltage appearing between the diode terminals will remain close to the rated breakdown voltage \(V_b \).

The other breakdown mechanism is avalanche breakdown, which occurs when the minority carriers that cross the depletion region under the influence of the electric field gain enough energy to create additional electron-hole pairs. This process continues until the reverse current reaches a value that supports the external current \(I \). The avalanche effect is usually associated with high-energy particles and is not considered in standard diode operation.

EXERCISE

For a pn junction with \(N_p = 10^7 \text{ cm}^{-3} \) and \(N_n = 10^6 \text{ cm}^{-3} \) operating at \(T = 780 \) \(K \), find (a) the value of \(C_j \) per unit junction area \(\text{pm}^{-2} \) using a convenient unit and (b) the capacitance \(C_j \) as a reverse-bias voltage of 2 \(V \), assuming a junction area of 2500 \(\mu \text{m}^2 \). Use \(n = 3.5 \times 10^{16} \text{ cm}^{-3} \text{ s}^{-1} \), \(m = \frac{1}{2} \) and the value of \(V_b \) found in Exercise 3.13. (\(V_b = 0.728 \) \(V \).)

SOLUTION

(a) 0.32 \(\mu \text{F} \) \(\text{cm}^{-2} \); (b) 0.41 \(\mu \text{F} \).
sufficient kinetic energy to be able to break covalent bonds in atoms with which they collide. The carriers liberated by this process may have sufficiently high energy to be able to cause other carriers to be liberated in another ionizing collision. This process occurs in the fashion of an avalanche, with the result that many carriers are created that are able to support any value of reverse current, as determined by the external circuit, with a negligible change in the voltage drop across the junction.

As mentioned before, pn junction breakdown is not a destructive process, provided that the maximum specified power dissipation is not exceeded. This maximum power-dissipation rating in turn implies a maximum value for the reverse current.

3.7 The pn Junction Under Forward-Bias Conditions

We next consider operation of the pn junction in the forward-bias region. Again, it is easier to explain physical operation if we excite the junction by a constant-current source supplying a current \(I \) in the forward direction, as shown in Fig. 3.49. This causes majority carriers to be supplied to both sides of the junction by the external circuit; holes in the \(p \) material and electrons to the \(n \) material. These majority carriers will neutralize some of the uncovered bound charge, causing less charge to be stored in the depletion layer. Thus the depletion layer narrows and the depletion barrier voltage decreases.

The reduction in barrier voltage enables more holes to cross the barrier from the \(p \) material into the \(n \) material and more electrons from the \(n \) side to cross into the \(p \) side. Thus the diffusion current \(I_D \) increases until equilibrium is achieved with \(I_D = I \), the externally supplied forward current.

Let us now examine closely the current flow across the forward-biased pn junction in the steady state. The barrier voltage is now lower than \(V \) by an amount \(V_B \) that appears between the diode terminals as a forward voltage drop (i.e., the work of the diode would be more positive than the cathode by \(V \) volts). Owing to the decrease in the barrier voltage or, alternatively, because of the forward voltage drop \(V \), holes are injected across the junction into the \(n \) region and electrons are injected across the junction into the \(p \) region. The holes injected into the \(n \) region will cause the minority-carrier concentration there, \(P_n \), to exceed the thermal equilibrium value, \(P_{n0} \).

The excess concentration \((P_n - P_{n0}) \) will be highest near the edge of the depletion layer and will decrease (exponentially) as one moves away from the junction, eventually reaching zero. Figure 3.50 shows such a minority-carrier distribution.

In the steady state the concentration profile of excess minority carriers remains constant, and indeed it is such a distribution that gives rise to the increase of diffusion current \(I_D \) above the value \(I \). This is because the distribution shown causes injected minority holes to diffuse away from the junction into the \(n \) region and disappear by recombination. To maintain equilibrium, an equal number of electrons will have to be supplied by the external circuit, thus replenishing the electron supply in the \(n \) material.

Similar statements can be made about the minority electrons in the \(p \) material. The diffusion current \(I_D \) is, of course, the sum of the electron and hole components.

The Current-Voltage Relationship

We now show how the diode \(I-V \) relationship of Eq. (3.1) arises. Toward that end, we consider in some detail the current component caused by the holes injected across the junction into the \(n \) region. An important result from semiconductor physics relates the concentration of minority carriers at the edge of the depletion region, denoted by \(P_n(x) \) in Fig. 3.50, to the forward voltage \(V \),

\[
P_n(x) = P_{n0} e^{-x/L_n} \tag{3.58}
\]

This is known as the law of the junction; its proof is normally found in textbooks dealing with device physics.

The distribution of excess hole concentration in the \(n \) region, shown in Fig. 3.50, is an exponentially decaying function of distance and can be expressed as

\[
P_n(x) = P_{n0} \left[P_n(x) - P_{n0} \right] e^{-x/L_n} \tag{3.59}
\]

where \(I_D \) is a constant that determines the steepness of the exponential decay. It is called the diffusion length of holes in the \(n \)-type silicon. The smaller the value of \(I_D \), the faster the injected holes will recombine with majority electrons, resulting in a steeper decay of minority-carrier concentration.
concentration. In fact, L_n is related to another semiconductor parameter known as the excess-minority-carrier lifetime, τ_p. It is the average time it takes for a hole injected into the n region to recombine with a majority electron. The relationship is

$$L_n = \sqrt{D_L \tau_p}$$ \hspace{1cm} (3.66)

where, as mentioned before, D_L is the diffusion constant for holes in the n-type silicon. Typical values for L_n are 1 pm to 100 pm, and the corresponding values of τ_p are in the range of 1 ns to 10,000 ns.

The holes diffusing in the n region will give rise to a hole current whose density can be evaluated using Eqs. (3.37) and (3.59) with $p(x)$ obtained from Eq. (3.58),

$$J_p = \frac{qD_p}{L_n} n_p(x) \left(e^{V/R_T} - 1 \right) e^{-x/L_n}$$

Observe that J_p is largest at the edge of the depletion region ($x = x''$) and decays exponentially with distance. The decay is, of course, due to the recombination with the majority electrons. In the steady state, the majority carriers will have to be replenished, and thus electrons will be supplied from the external circuit to the n region at a rate that will keep the current constant at the value it has at $x = x''$. Thus the current density due to hole injection is given by

$$J_p = \frac{qD_p}{L_n} n_p(x + r_\text{p}) \left(e^{V/R_T} - 1 \right)$$ \hspace{1cm} (3.61)

A similar analysis can be performed for the electrons injected across the junction into the p region resulting in the electron-current component J_n,

$$J_n = \frac{qD_n}{L_n} n \left(e^{V/R_T} - 1 \right)$$ \hspace{1cm} (3.62)

where L_n is the diffusion length of electrons in the p region. Since J_p and J_n are in the same direction, they can be added and multiplied by the junction cross-sectional area A to obtain the total current I

$$I = A \left(\frac{qD_n}{L_n} n \left(e^{V/R_T} - 1 \right) \right)$$

Substituting for $p_{sat} = n'/N_o$ and for $n_{sat} = n''/N_o$, we can express I in the form

$$I = AqE_{sat} \left(\frac{D_p}{L_n N_o} + \frac{D_n}{L_n N_o} \right) \left(e^{V/R_T} - 1 \right)$$ \hspace{1cm} (3.63)

We recognize this as the diode equation where the saturation current I_s is given by

$$I_s = AqE_{sat} \left(\frac{D_p}{L_n N_o} + \frac{D_n}{L_n N_o} \right)$$ \hspace{1cm} (3.64)

Observe that, as expected, I_s is directly proportional to the junction area A. Furthermore, I_s is proportional to n'', which is a strong function of temperature (Eq. 3.36). Also, note that the exponential in Eq. (3.63) does not include the constant n''; n is a "fix-up" parameter that is included to account for nonideal effects.

Diffusion Capacitance From the description of the operation of the pn junction in the forward region, we note that in the steady state a certain amount of excess minority-carrier charge is stored in each of the p and n bulk regions. If the terminal voltage changes, this charge will have to change before a new steady state is achieved. This charge-storage phenomenon gives rise to another capacitive effect, distinctly different from that due to charge storage in the depletion region.

To calculate the excess minority-carrier stored charge, refer to Fig. 3.50. The excess hole charge stored in the n region can be found from the shaded area under the exponential as follows:

$$Q_n = Aq \left(e^{V/R_T} - 1 \right)$$

Substituting for $p(x)$ from Eq. (3.58) and using Eq. (3.61) enables us to express Q_n as

$$Q_n = \frac{L_n^2}{D_p} I_s$$

where I_s is the hole component of the current across the junction. Now, using Eq. (3.60), we can substitute for $I_s^p/D_p = \tau_p$, the hole lifetime, to obtain

$$Q_n = \tau_p I_s$$ \hspace{1cm} (3.65)

This attractive relationship says that the stored excess hole charge is proportional to both the hole current-component and the hole lifetime. A similar relationship can be developed for the electron charge stored in the p region.

$$Q_p = \tau_p I_s$$ \hspace{1cm} (3.66)

where I_s is the electron lifetime in the p region. The total excess minority-carrier charge can be obtained by adding together Q_n and Q_p.

$$Q = \tau_p I_s + \tau_p I_s$$ \hspace{1cm} (3.67)

This charge can be expressed in terms of the diode current $I = I_p + I_n$ as

$$Q = \tau_p I$$ \hspace{1cm} (3.68)

where τ_p is called the mean transit time of the diode. Obviously, τ_p is related to τ_p and τ_e.

Furthermore, in most practical devices, one side of the junction is much more heavily doped than the other. For instance, if $N_o > N_p$, one can show that $I_p > I_n$, $I = I_p$, $Q_p > Q_n$, $Q = Q_p$, and thus $\tau_p = \tau_e$. This case is illustrated in Exercise 3.34 on page 208.

For small changes around a bias point, we can define the small-signal diffusion capacitance C_d as

$$C_d = \frac{q}{dV}$$

and can show that

$$C_d = \left(\frac{\tau_p}{V_T} \right) I_s$$ \hspace{1cm} (3.69)

where I is the diode current at the bias point. Note that C_d is directly proportional to the diode current I and is thus negligibly small when the diode is reverse biased. Also, note that to keep C_d small, the transit time τ_p must be made small, an important requirement for diodes intended for high-speed or high-frequency operation.
3.7.6 Summary

For easy reference, Table 3.2 provides a listing of the important relationships that describe the physical operation of pn junctions.

TABLE 3.2 Summary of Important Equations for pn-Junction Operation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Relationship</th>
<th>Values of Constants and Parameters (for intrinsic Si at T = 300 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier concentration in intrinsic silicon (/cm(^3))</td>
<td>(n_i^0 = BT e^{-eV/2kT})</td>
<td>(B = 5.4 \times 10^{10} \text{cm}^3/\text{s}) (E_c = 1.12 \text{eV}) (k = 8.62 \times 10^{-5} \text{eV/K}) (n_i = 1.5 \times 10^{12} \text{cm}^{-3})</td>
</tr>
<tr>
<td>Diffusion current density (A/cm(^2))</td>
<td>(J_H = -qD_H \frac{dn}{dx}) (J_D = qD_D \frac{dn}{dx})</td>
<td>(q = 1.6 \times 10^{-19} \text{coulomb}) (D_H = 12 \text{cm}^2/\text{s}) (D_D = 34 \text{cm}^2/\text{s})</td>
</tr>
<tr>
<td>Drift current density (A/cm(^2))</td>
<td>(J_{\text{drift}} = \mu_H p + \mu_D n)</td>
<td>(\mu_H = 480 \text{cm}^2/\text{V} \cdot \text{s}) (\mu_D = 1350 \text{cm}^2/\text{V} \cdot \text{s})</td>
</tr>
<tr>
<td>Resistivity ((\Omega \cdot \text{cm}))</td>
<td>(\rho = \frac{1}{\mu_H p + \mu_D n})</td>
<td>(\mu_H) and (\mu_D) decrease with the increase in doping concentration</td>
</tr>
<tr>
<td>Relationship between mobility and diffusivity</td>
<td>(D_H = \frac{D_D}{\mu_D \mu_H} Y_r)</td>
<td>(Y_r = \frac{2kT}{q})</td>
</tr>
<tr>
<td>Carrier concentration in p-type silicon (/cm(^3))</td>
<td>(N_H = N_i) (\rho_H = N_i^2/N_o)</td>
<td>(25.8 \text{mV})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junction Capacitance

The depletion-layer or junction capacitance under forward-bias conditions can be found by replacing \(V_0 \) with \(-V\) in Eq. (3.57). It turns out, however, that the accuracy of this relationship in the forward-bias region is rather poor. As an alternative, circuit designers use the following rule of thumb:

\[
C_J = 2C_{jn}
\] (3.70)

3.8 SPECIAL DIODE TYPES

In this section, we discuss briefly some important special types of diodes.

1. This section can be skipped with no loss in continuity.
3.8.1 The Schottky-Barrier Diode (SBD)

The Schottky-barrier diode (SBD) is formed by bringing metal into contact with a moder­
dately doped n-type semiconductor material. The resultant metal-semiconductor junction
behaves like a diode, conducting current in one direction (from the metal anode to the semi­
conductor cathode) and acting as an open-circuit in the other, and is known as the Schottky­
barrier diode or simply the Schottky diode. In fact, the current-voltage characteristic of
the SBD is remarkably similar to that of a p-n-junction diode, with two important exceptions:

1. In the SBD, current is conducted by majority carriers (electrons). Thus the SBD does
not exhibit the minority-carrier charge-storage effects found in forward-biased p-n
junctions. As a result, Schottky diodes can be switched from on to off, and vice versa,
much faster than is possible with p-n junction diodes.

2. The forward voltage drop of a conducting SBD is lower than that of a p-n-junction diode.
For example, an SBD made of silicon exhibits a forward voltage drop of 0.3 V to 0.5 V,
compared to the 0.6 V to 0.8 V found in silicon p-n-junction diodes. SBDs can also be
made of gallium arsenide (GaAs) and, in fact, play an important role in the design of
GaAs circuits.

Apart from GaAs circuits, Schottky diodes find application in the design of a special form
of bipolar-transistor logic circuits, known as Schottky-TTL, where TTL stands for transistor­
transistor logic.

Before leaving the subject of Schottky-barrier diodes, it is important to note that not
every metal-semiconductor contact is a diode. In fact, metal is commonly deposited on the
semiconductor surface in order to make terminals for the semiconductor devices and to con­
cnect different devices in an integrated-circuit chip. Such metal-semiconductor contacts are
known as ohmic contacts to distinguish them from the rectifying contacts that result in
SBDs. Ohmic contacts are usually made by depositing metal on very heavily doped (and
thus low-resistivity) semiconductor regions.

3.8.2 Varactors

Earlier, we learned that reverse-biased p-n junctions exhibit a charge-storage effect that is
modeled with the depletion-layer or junction capacitance C_j. As Eq (3.57) indicates, C_j is a
function of the reverse-bias voltage V_r. This dependence turns out to be useful in a number
of applications, such as the automatic tuning of radio receivers. Special diodes are therefore
fabricated to be used as voltage-variable capacitors known as varactors. These devices are
optimized to make the capacitance a strong function of voltage by arranging that the grading
coefficient m is 3 or 4.

3.8.3 Photodiodes

If a reverse-biased p-n junction is illuminated—that is, exposed to incident light—the pho­
tons impacting the junction cause electron-hole pairs to be created in the depletion layer. The electric field in the depletion region then sweeps the liberated electrons to the n side and the holes to the p side, giving rise to a reverse current
across the junction. This current, known as photocurrent, is proportional to the intensity of
the incident light. Such a diode, called a photodiode, can be used to convert light signals into
electrical signals.

Photodiodes are usually fabricated using a compound semiconductor such as gallium
arsenide. The photodiode is an important component of a growing family of circuits known
as optoelectronics or photonics. As the name implies, such circuits utilize an optimum
combination of electronics and optics for signal processing, storage, and transmission. Usu­
ally, electronics is the preferred means for signal processing, whereas optics is most suited
for transmission and storage. Examples include fiber-optic transmission of telephone and
television signals and the use of optical storage in CD-ROM computer disks. Optical trans­
mittance provides very wide bandwidths and low signal attenuation. Optical storage allows
large amounts of data to be stored reliably in a small space.

Finally, we should note that without reverse bias, the illuminated photodiode functions
as a solar cell. Usually fabricated from low-cost silicon, a solar cell converts light to electrical
energy.

3.8.4 Light-Emitting Diodes (LEDs)

The light-emitting diode (LED) performs the inverse of the function of the photodiode; it
converts a forward current into light. The reader will recall that in a forward-biased p-n
junction, minority carriers are injected across the junction and diffuse into the p and n regions.
The diffusion of minority carriers then recombine with the majority carriers. Such recombina­
tion can be made to give rise to light emission. This can be done by fabricating the p-n
junction using a semiconductor of the type known as direct-bandgap materials. Gallium
arsenide belongs to this group and can thus be used to fabricate light-emitting diodes.

The light emitted by an LED is proportional to the number of recombinations that take
place, which in turn is proportional to the forward current in the diode. LEDS are very popu­
lar devices. They find application in the design of numerous types of displays, including the
displays of laboratory instruments such as digital voltmeters. They can be made to produce
light in a variety of colors. Furthermore, LEDs can be designed so as to produce coherent
light with a very narrow bandwidth. The resulting device is a laser diode. Laser diodes find
application in optical communication systems and in CD players, among other things.

Combining an LED with a photo diode in the same package results in a device known as
an optoisolator. The LED converts an electrical signal applied to the optoisolator into light,
which the photodiode detects and converts back into an electrical signal at the output of
the optoisolator. Use of the optoisolator provides complete electrical isolation between the
electrical circuit that is connected to the isolator's input and the circuit that is connected to its
output. Such isolation can be useful in reducing the effect of electrical interference on signal
transmission within a system, and thus optoisolators are frequently employed in the design
of digital systems. They can also be used in the design of medical instruments to reduce the
risk of electrical shock to patients.

Note that the optical coupling between an LED and photodiode need not be accom­
plished inside a small package. Indeed, it can be implemented by a long distance using an
optical fiber, as is done in fiber-optic communication links.

3 The CD accompanying the text and the text's website contain material on GaAs circuits.

10 Whereas in elemental semiconductor, such as silicon, use on element from column IV of the periodic table, a compound semiconductor use a combination of elements from columns III and V or III and VI. For example, GaAs is formed of gallium (column III) and arsenic (column V) and is thus known as a III-V compound.
3.9 THE SPICE DIODE MODEL AND SIMULATION EXAMPLES

We conclude this chapter with a description of the model that SPICE uses for the diode. We will also illustrate the use of SPICE in the design of a dc power supply.

3.9.1 The Diode Model

To the designer, the value of simulation results is a direct function of the quality of the models used for the devices. The more faithfully the model represents the various characteristics of the device, the more accurately the simulation results will describe the operation of an actual fabricated circuit. In other words, to use the effect of various imperfections in device operation on circuit performance, these imperfections must be included in the device model used by the circuit simulator. These comments about device modeling obviously apply to all devices and not just to diodes.

The large-signal SPICE model for the diode is shown in Fig. 3.51. The static behavior is modeled by the exponential $i-v$ relationship. The dynamic behavior is represented by the nonlinear capacitor C_0, which is the sum of the diffusion capacitance C_d and the junction capacitance C_j. The series resistance R_s represents the total resistance of the p and n regions on both sides of the junction. The value of this parasitic resistance is ideally zero, but it is typically in the range of a few ohms for small-signal diodes. For small-signal analysis, SPICE uses the diode incremental resistance r_d and the incremental values of C_d and C_j.

Table 3.3 provides a partial listing of the diode-model parameters used by SPICE, all of which should be familiar to the reader. But, having a good device model solves only half of the modeling problem; the other half is to determine appropriate values for the model parameters. This is by no means an easy task. The values of the model parameters are determined using a combination of characterization of the device-fabrication process and specific measurements performed on the actual manufactured devices. Semiconductor manufacturers expend enormous effort and money to extract the values of the model parameters for their devices. For discrete diodes, the values of the SPICE model parameters can be determined from the diode data sheets, supplemented if needed by key measurements. Circuit simulators (such as PSpice) include in their libraries the model parameters of some of the popular off-the-shelf components. For instance, in Example 3.10, we will use the commercially available 1N4148 $p-n$-junction diode whose SPICE model parameters are available in PSpice.

![FIGURE 3.51 The SPICE diode model.](image)

3.9.2 The Zener Diode Model

The diode model above does not adequately describe the operation of the diode in the breakdown region. Hence, it does not provide a satisfactory model for zener diodes. However, the equivalent-circuit model shown in Fig. 3.52 can be used to simulate a zener diode in SPICE. Diode D_1 is ideal and can be approximated in SPICE by using a very small value for n (say $n = 0.01$).

![FIGURE 3.52 Equivalent-circuit model used to simulate the zener diode in SPICE.](image)

\[I_e = I_0 e^{\frac{V}{nV_T}} - 1 \]
\[C_0 = C_d + C_j = \frac{C_d}{V_T} \left(I_0 e^{\frac{V}{nV_T}} - 1 \right) \]

3.9.3 Design of a DC Power Supply

In this example, we will design a dc power supply using the rectifier circuit whose Capture schematic is shown in Fig. 3.53. This circuit consists of a full-wave diode rectifier, a filter

\[I = \frac{V_0}{V_T} \left(I_0 e^{\frac{V}{nV_T}} - 1 \right) \]

The reader is reminded that the Capture schematics, and the corresponding PSpice simulation files, of all SPICE examples in this book can be found on the text's CD as well as on its website (www.lederamith.com). In those schematics (as shown in Fig. 3.53), we use variable parameters (www.sedrasmith.org). In these schematics (as shown in Fig. 3.53), we use variable parameters (www.sedrasmith.org).
capacitor, and a zener voltage regulator. The only perhaps-puzzling component is R_{load}, the 100-kΩ resistor between the secondary winding of the transformer and ground. This resistor is included to provide dc continuity and thus "keep SPICE happy"; it has little effect on circuit operation.

Let it be required that the power supply (in Fig. 3.53) provide a nominal dc voltage of 5 V and be able to supply a load current I_{load} as large as 25 mA; that is, R_{load} can be as low as 200 Ω.

The power supply is fed from a 120-V (rms) 60-Hz ac line. Note that in the PSpice schematic (Fig. 3.53), we use a sinusoidal voltage source with a 160-V peak amplitude to represent the 120-V rms supply (in 120-V rms = 169-V peak). Assume the availability of a 5.1-V zener diode having $I_Z = 10.7$ mA (and thus $V_Z = 4.9$ V), and that the required minimum current through the zener diode is $I_Z = 5$ mA.

An approximate first-cut design can be obtained as follows: The 120-V (rms) supply is stepped down to provide 12-V (peak) sinesoids across each of the secondary windings using a 14:1 turns ratio for the center-tapped transformer. The choice of 12 V is a reasonable compromise between the need to allow for sufficient voltage (above the 5-V output) to operate the rectifier and the smoothing capacitor C and the voltage V_{in} across the load resistor R_{load}. The simulation results for $R_{\text{load}} = 200$ Ω (high R_{load}), we can use the following expression:

$$R = \frac{V_{\text{out}} - V_Z - I_{\text{load}}}{F_Z}$$

where an estimate for V_{out}, the minimum voltage across the capacitor, can be obtained by subtracting a diode drop (say, 0.8 V) from 12 V and allowing for a ripple voltage across the capacitor of, say, $V_{\text{ripple}} = 0.5$ V. Thus, $V_{\text{out}} = 10.7$ V. Furthermore, we note that $I_{\text{load}} = 0.025$ mA and $I_Z = 5$ mA, and that $V_Z = 4.9$ V and $I_Z = 10$ mA. The result is that $R = 191$ Ω.

Next, we determine C using a restatement of Eq. (3.33) with V_{in}/R replaced by the current through the 191 Ω resistor. This current can be estimated by noting that the voltage across C varies from 10.7 to 11.2 V, and that has an average value of 10.95 V. Furthermore, the desired voltage across the zener is 5 V. The result is $C = 520$ μF.

Now, with an approximate design in hand, we can proceed with the SPICE simulation. For the zener diode, we use the model of Fig. 3.52, and assume (arbitrarily) that D_1 has $I_Z = 100$ pA.

The 1N4148 model is included in the evaluation (EVAL) library of PSpice (OrCad 9.2 Lite Edition), which is available on the CD accompanying this book.
EXERCISE

3.35 Use PSpice to investigate the operation of the voltage doubler whose Capture schematic is shown in Fig. E3.35(a). Specifically, plot the transient behavior of the voltages v_2 and v_{ma} when the input is a sinusoid of 10 V peak and 1 kHz frequency. Assume that the diodes are of the 1N4148 type (with $I_s = 2682 \text{nA}$, $n = 1.836$, $f = 0.366 \text{k} \Omega$, $V_T = 0.5 \text{V}$, $C_0 = 4 \text{pF}$, $R_C = 0.5 \text{V}$, $C_0 = 10 \text{V}$, $I_{dc} = 0.05 \text{mA}$).

Ans: The voltage waveforms are shown in Fig. E3.35(b).

PARAMETERS

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>V_{OR}</th>
<th>V_{MPL}</th>
<th>F_{MPL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10 V</td>
<td>1 k</td>
</tr>
</tbody>
</table>

FIGURE E3.35 (a) Capture schematic of the voltage-doubler circuit (in Exercise 3.35).

FIGURE E3.35 (Continued) Various voltage waveforms in the voltage-doubler circuit. The top graph displays the input sine-wave voltage signal, the middle graph displays the voltage across diode D_2, and the bottom graph displays the voltage that appears at the output.

SUMMARY

- In the forward direction, the ideal diode conducts any current forced by the external circuit while displaying a zero voltage drop. The ideal diode does not conduct in the reverse direction; any applied voltage appears as reverse bias across the diode.

- The unidirectional-current-flow property makes the diode useful in the design of rectifier circuits.

- The forward conduction of practical silicon diodes is accurately characterized by the relationship $i = I_s e^{v/T}$.
3.1 An A flashlight cell, whose Thévenin equivalent is a voltage source of 1.5 V and a resistance of 1 kΩ, is connected to the terminals of an ideal diode. Describe two possible situations that could result. What are the diode current and terminal voltage when (a) the connection is between the diode cathode and the positive terminal of the battery and (b) the anode and the positive terminal are connected?

3.2 For the circuits shown in Fig. P3.2 using ideal diodes, find the values of the voltages and currents indicated.

3.3 For the circuits shown in Fig. P3.3 using ideal diodes, find the values of the labeled voltages and currents.

3.4 In each of the ideal-diode circuits shown in Fig. P3.4, \(\nu_a \) is a 1-kHz, 10-V peak sine wave. Sketch the waveforms resulting at \(\nu_b \). What are its positive and negative peak values?

3.5 The circuit shown in Fig. P3.5 is a model for a battery charger. Here \(\nu_a \) is a 10-V peak sine wave, \(D_1 \) and \(D_2 \) are ideal diodes, \(J_1 \) is a 100-mA current source, and \(B \) is a 4.5-V battery. Sketch and label the waveform of the battery current \(I_b \). What is its peak value? What is its average value? If the peak value

3.6 In p-type silicon there is an overabundance of holes (positively charged carriers), while in n-type silicon electrons are abundant.

3.7 A carrier-depletion region develops at the interface in a p-n junction, with the p side positively charged and the n side negatively charged. The voltage difference resulting is called the barrier voltage.

3.8 A diffusion current \(I_D \) flows in the forward direction (carried by holes from the p side and electrons from the n side), and a current \(I_F \) flows in the reverse direction (created by thermally generated minority carriers). In an open-circuit junction, \(I_F = I_D \) and the barrier voltage is denoted \(V_b \). \(V_b \) is also called the junction built-in voltage.

3.9 Applying a reverse-bias voltage \(|V| \) to a p-n junction causes the depletion region to widen, and the barrier voltage increases to \((V_b + |V|) \). The diffusion current decreases and a net reverse current of \((I_F - I_D) \) flows.

3.10 Applying a forward-bias voltage \(|V| \) to a p-n junction causes the depletion region to narrow, and the barrier voltage decreases to \((V_b - |V|) \). The diffusion current increases, and a net forward current of \((I_F - I_D) \) flows.

3.11 For a summary of the diode models in the forward region, refer to Table 3.1.

3.12 For a summary of the relationships that govern the physical operation of the p-n junction, refer to Table 3.2.
CHAPTER 3 DIODES

3.1 For the logic gate of Fig. 3.5(a), assume ideal diodes and input voltage levels of 0 V and +5 V. Find a suitable value for R so that the current required from each of the input signal sources does not exceed 0.1 mA.

3.2 Repeat Problem 3.1 for the logic gate of Fig. 3.5(b).

3.3 Assuming that the diodes in the circuits of Fig. 3.9 are ideal, find the values of the labeled voltages and currents.

3.4 For the rectifier circuit of Fig. 3.3(a), let the input sine wave have 120-V rms value and assume the diode to be ideal. Select a suitable value for R so that the peak diode current does not exceed 50 mA. What is the greatest reverse voltage that will appear across the diode?

3.5 Consider the rectifier circuit of Fig. 3.3 in the event that the input source has a source resistance R_s. For the case R_s = R and assuming the diode to be ideal, sketch and clearly label the transfer characteristic V_L versus I_L.

3.6 A square wave of 6-V peak-to-peak amplitude and zero average is applied to a circuit resembling that in Fig. 3.3(a) and employing a 100-Ω resistor. What is the peak output voltage that results? What is the average output voltage that results? What is the peak diode current? What is the average diode current? What is the maximum reverse voltage across the diode?

3.7 Design a battery-charging circuit, resembling that in Fig. 3.4 and using an ideal diode, in which current flows to the 12-V battery 20% of the time and has an average value of 100 mA. What peak-to-peak sine-wave voltage is required? What resistance is required? What peak diode current flows? What peak reverse voltage does the diode endure? If resistance can be specified to only one significant digit and the peak-to-peak voltage only to the nearest volt, what design would you choose to guarantee the required charging current? What fraction of the cycle does diode current flow? What is the average diode current? What is the peak diode current? What peak reverse voltage does the diode endure?

3.8 The circuit of Fig. P3.16 can be used in a signalling system using one wire plus a common ground return. At any moment, the input has one of three values: +3 V, 0 V, -3 V. What is the status of the lamps for each input value? (Note that the lamps can be located apart from each other and that there may be several of each type of connection, all on one wire.)

3.9 The circuits shown in Fig. P3.6 can function as logic gates for input voltages are either high or low. Using "1" to denote the high value and "0" to denote the low value, prepare a table with four columns including all possible input combinations and the resulting values of X and Y. What logic function is X of A and S? What logic function is Y of A and B?

For what values of A and S do X and Y have the same value?

For what values of A and B do X and Y have opposite values?
n = 1, but 2D

In the circuit shown in Fig. P3.25, both diodes have 3.24 1 = 1.

is the change in output voltage? V required to obtain an output voltage 1 and 3.24 V = 0.700 V at 10 mA and 600 V. Subsequent measurements indicate that Rb = 520 kΩ. What do you expect the voltages Vb1 and Vb2 to become at 0°C and at 40°C?

of V results? To obtain a value for V of 50 mV, what current I is needed?

The following measurements are taken on particular junction diodes to which V = 25 mV in your computations.

(a) V = 0.700 V at I = 1.00 A
(b) V = 0.650 V at I = 10 mA
(c) V = 0.650 V at I = 10 mA
(d) V = 0.700 V at I = 10 mA

3.27 Several diodes having a range of sizes, but all with n = 1, are measured at various temperatures and junction currents as noted below. For each, estimate the diode voltage at 1 mA and 35°C.

(a) 820 mV at 10 mA and 0°C
(b) 790 mV at 1 A and 50°C
(c) 590 mV at 100 mA and 100°C
(d) 850 mV at 10 mA and -35°C
(e) 700 mV at 100 mA and 75°C

3.28 In the circuit shown in Fig. P3.28, D2 is a large-area high-current diode whose reverse leakage is high and independent of applied voltage while D1 is a much smaller, low-current diode for which n = 1. At an ambient temperature of 20°C, resistor Rb is adjusted to make Vb1 = Vb2 = 520 mV. Subsequent measurements indicate that Rb = 520 kΩ. What do you expect the voltages Vb1 and Vb2 to become at 0°C and at 40°C?

3.29 When a 15-A current is applied to a particular diode, it is found that the junction voltage immediately becomes 700 mV. However, as the power dissipated in the diode raises its temperature, it is found that the voltage decreases and eventually reaches 580 mV. What is the apparent rise in junction voltage? What is the power dissipated in the diode in its final state? What is the temperature (in K) of the power dissipated? (This is called the thermal resistance.)

3.30 A designer of an instrument that must operate over a wide supply-voltage range, noting that a diode's junction-voltage drop is relatively independent of junction current, considers the use of a large diode to establish a small relatively constant voltage. A power diode, for which the maximum current at 0.8 V is 10 A, is available. Furthermore, the designer has reason to believe that n = 2. For the available

FIGURE P3.23

FIGURE P3.26

FIGURE P3.24

FIGURE P3.28

SECTION 3.3: MODELING THE DIODE FORWARD CHARACTERISTIC

3.32 Consider the graphical analysis of the diode circuit of Fig. 3.10 with Vb1 = V, I = 1 mA, and a diode having I = 10⁻³ A and n = 1. Calculate a small number of points on the diode characteristic in the vicinity of where you expect the load line to intersect it, and use a graphical process to refine your estimate of diode current. What value of diode current and voltage do you find? Analytically, find the voltage corresponding to your estimate of current. By how much does it differ from the graphically estimated value?

3.33 Use the iterative-analysis procedure to determine the diode voltage and current in the circuit of Fig. 3.10 for Vb1 = 1 V and a diode having I = 10⁻³ A and n = 1.

3.34 A "1-mA diode" (i.e., one that has iD = 0.7 V at iD = 1 mA) is connected in series with a 200-Ω resistor to a 12-V supply.

(a) Provide a rough estimate of the diode current you would expect.
(b) If the diode is characterized by n = 2, estimate the diode current more closely using iterative analysis.

3.35 A collection of circuits, which are variants of that shown in Fig. 3.30, are listed below. For each circuit, find the measured junction current iD1 and diode voltage Vb1 resulting from the diode's exponential equation and iteration. (Hint: To reduce your workload, note the very special relationship between the circuit and diode parameters in many—but not all—cases. Finally, note that using such relationships, or approximations
to them, can often make your first pass at a circuit design much easier and faster!

<table>
<thead>
<tr>
<th>Circuit</th>
<th>(V_D(V))</th>
<th>(R_{(k\Omega)})</th>
<th>(I_0(mA))</th>
<th>(V_{ON}(mV))</th>
<th>(V_{OFF}(mV))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10.0</td>
<td>0.5</td>
<td>1.0</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>b</td>
<td>3.0</td>
<td>2.3</td>
<td>1.0</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>e</td>
<td>0.1</td>
<td>0.30</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1.0</td>
<td>0.30</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.5</td>
<td>0.5</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.5</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>0.5</td>
<td>0.5</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

D.3.38 Assuming the availability of diodes for which \(v_D = 0.7 \) V at \(i_D = 1 \) mA and \(n = 1 \), design a circuit that utilizes four diodes connected in series, in series with a resistor \(R \) connected to a 10-V power supply. The voltage across the series of diodes is to be 3.6 V.

3.37 Find the parameters of a piecewise-linear model of a diode for which \(v_D = 0.7 \) V at \(i_D = 1 \) mA and \(n = 2 \). The model is to fit exactly at 1 mA and 10 mA. Calculate the error in millivolts in predicting \(v_D \) using the piecewise-linear model at \(i_D = 0.5, 5, 10 \) mA.

3.38 Using a copy of the diode curve presented in Fig. 3.12, approximate the diode characteristic using a straight line that exactly matches the diode characteristic at both 10 mA and 1 mA. What is the slope? What is \(v_{CEO} \)? What is \(v_{CEO} \)?

D.3.39 On a copy of the diode characteristics presented in Fig. 3.12, draw a load line corresponding to an external circuit consisting of a 0.9-V voltage source and a 100-\(\Omega \) resistor. What are the values of diode drop and loop current you estimate using:

(a) the actual diode characteristics?
(b) the two-segment model shown?

3.40 For the diodes characterized below, find \(V_{fA} \) and \(V_{fB} \), the elements of the battery-plus-resistor model for which the straight line intersects the diode exponential characteristic at 0.1x and 10x the specified diode current.

(a) \(V_D = 0.7 \) V at \(I_D = 1 \) mA and \(n = 1 \)
(b) \(V_D = 0.7 \) V at \(I_D = 1 \) A and \(n = 1 \)
(c) \(V_D = 0.7 \) V at \(I_D = 10 \) mA and \(n = 1 \)

3.41 The diode whose characteristic curve is shown in Fig. 3.15 is to be operated at 10 mA. What would likely be a suitable voltage choice for an appropriate constant-voltage-drop model?

3.42 A diode operates in a series circuit with \(R \) and \(V \). A designer, considering using a constant-voltage model, is uncertain whether to use 0.7 V or 0.5 V for \(V_D \). For what value of \(V \) is the difference in the calculated value of current only 1%? For \(V = 2 \) V and \(R = 1 \) k\(\Omega \), what two currents would result from the use of the two values of \(V_D \)? What is the percentage difference in the current?

D.3.43 A designer has a relatively large number of diodes, for which a current of 20 mA flows at 0.7 V and the 0.1-V decade approximation is relatively good. Using a 10-mA current source, the designer wishes to create a reference voltage of 1.25 V. Suggest a combination of series and parallel diodes that will do this job as well as possible. How many diodes are needed? What voltage is actually achieved?

3.44 Consider the half-wave rectifier circuit of Fig. 3.3(a) with \(R = 1 \) k\(\Omega \) and the diode having the characteristics and the piecewise-linear model shown in Fig. 3.12 \(V_D = 0.65 \) V, \(r_D = 20 \) k\(\Omega \). Analyze the rectifier circuit using the piecewise-linear model for the diode, and then find the output voltage \(v_o \) as a function of \(i_l \). Sketch the transfer characteristic \(v_T \) versus \(i_l \) for \(0 \leq i_l \leq 0.5 \) V. For \(i_l \) being a signal with 10 V peak amplitude, sketch and clearly label the waveform of \(v_o \).

3.45 Solve the problems in Example 3.2 using the constant-voltage-drop \((V_D = 0.7 \) V) diode model.

3.46 For the circuits shown in Fig. 3.2, using the constant-voltage-drop \((V_D = 0.7 \) V) diode model, find the voltages and currents indicated.

3.47 For the circuits shown in Fig. 3.3, using the constant-voltage-drop \((V_D = 0.7 \) V) diode model, find the voltages and currents indicated.

3.48 For the circuits in Fig. 3.9, using the constant-voltage-drop \((V_D = 0.7 \) V) diode model, find the values of the labeled currents and voltages.

3.49 For the circuit in Fig. 3.10, utilize Thévenin's theorem to simplify the circuits and find the values of the labeled currents and voltages. Assume that conducting diodes can be represented by the constant-voltage-drop model \((V_D = 0.7 \) V).

D.3.50 Repeat Problem 3.11, representing the diode by its constant-voltage-drop \((V_D = 0.7 \) V) model. How different is the resulting design?

3.51 Repeat the problem in Example 3.1 assuming that the diode has 10 times the area of the device whose characteristics and piecewise-linear model are displayed in Fig. 3.12. Represent the diode by its piecewise-linear model \((V_D = 0.65 \) V).

3.52 The small-signal model is said to be valid for voltage variations of about 10 V. To what percentage current change does this correspond (consider both positive and negative signals)?

(a) \(n = 1 \)
(b) \(n = 2 \)

For each case, what is the maximum allowable voltage signal (positive or negative) if the current change is to be limited to 10%?

3.53 In a particular circuit application, ten “20-mA diodes” (a 20-mA diode is a diode that provides a 0.7-V drop when the current through it is 20 mA) connected in parallel operate at a total current of 0.1 A. For the diodes closely matched, with \(n = 1 \), what current flows in each? What is the corresponding small-signal resistance of each diode and of the combination? Compare this with the incremental resistance of a single diode conducting 0.1 A. If each of the 20-mA diodes has a series resistance of 0.2 \(\Omega \) associated with the wire bonds in the junction, what is the equivalent resistance of the 10 parallel-connected diodes? What connection resistance would a single diode used in order to be totally equivalent? (Note: True, why the parallel connection of real diodes can often be used to advantage.)

3.54 In the circuit shown in Fig. P3.54, \(j \) is a dc current and \(v_n \) is a sinusoidal signal. Capacitors \(C_1 \) and \(C_2 \) are very large, thus their function is to couple the signal to and from the diode but block the dc current from flowing into the signal source or the load (not shown). Use the diode small-signal model to show that the signal component of the output voltage is

\[v_{out} = v_n + \frac{v_n}{R} \]

If \(v_n = 10 \) V, find \(v_o \) for \(j = 1 \) mA, 0.1 mA, and 1 mA. Let \(R \) be 1 k\(\Omega \) and \(n = 2 \). At what value of \(j \) does \(v_o \) becomes one-half of \(v_n \)? Note that this circuit functions as a signal attenuator with the attenuation factor controlled by the value of the dc current \(j \).

FIGURE P3.56

For the current in each diode in excess of 10 mA, what is the largest input signal for which the critical diode current remains within 10% of its dc value?

3.55 In the attenuator circuit of Fig. P3.54, let \(R_1 = 10 \) k\(\Omega \). The diode is a 1-mA device; that is, it exhibits a voltage drop of 0.7 V at a dc current of 1 mA and has \(n = 1 \). For small input signals, what value of current \(j \) is needed for \(v_{out} = 0.5(0.107 + 0.071) \) V? In each case, what is the largest input signal that can be used while ensuring that the signal component of the diode current is limited to 10% of its dc current? What output signals correspond?

FIGURE P3.54

In the circuit shown in Fig. P3.56, \(j \) is a dc current that varies from 0 mA to 3 mA, \(D_1 \) and \(D_2 \) are diodes with \(n = 1 \), and \(C_1 \) and \(C_2 \) are large coupling capacitors. For very small input signals, find the values of the ratio \(v_{out}/v_n \) for \(j \) equal to:

(a) 0 mA
(b) 1 \(\mu \)A
(c) 10 \(\mu \)A
(d) 100 \(\mu \)A
(e) 500 \(\mu \)A
(f) 600 \(\mu \)A
(g) 900 \(\mu \)A
(h) 900 \(\mu \)A
(i) 1 mA
FIGURE P3.57

(b) For a forward-conducting diode, what is the largest signal-voltage magnitude that it can support while the corresponding signal current is limited to 10% of the dc bias current? Now, for the circuit in Fig. P3.57, for 10-mV peak inputs, what is the smallest value of I for which the diode currents remain within ±10% of their dc values?

(2) For $I = 1$ mA, what is the largest possible output signal for which the diode currents deviate by at most 10% of their dc values? What is the corresponding peak input?

*3.58 Consider the voltage-regulator circuit shown in Fig. P3.59. The value of R is selected to obtain an output voltage V_o across the diode of 0.7 V.

(a) Use the diode small-signal model to show that the change in output voltage corresponding to a change of 1 V in V^+ is

$$\Delta V_o = \frac{n V_T}{V^+ - n V_T - 0.7}$$

This quantity is known as the line regulation and is usually expressed in mV/V.

(b) Generalize the expression above for the case of n diodes connected in series and the value of R adjusted so that the voltage across each diode is 0.7 V and $V_T = 0.7$ V.

(c) Calculate the value of line regulation for the case $V^+ = 10$ V (nominally) and (i) $n = 1$ and (ii) $n = 3$. Use $n = 2$. Partial specifications of a collection of zener diodes are provided below. Identify the missing parameter, and estimate its value. Note from Fig. 3.21 that $V_Z = 5$ V.

- **3.61** Design a diode voltage regulator to supply 1.2 V to a 150-Ω load. Use two diodes specified to have a 0.7-V drop at a current of 10 mA and $n = 1$. The diodes are to be connected in series to provide a voltage drop of 1.5 V through a resistor R. Specify the value for R. What is the diode current with the load connected? What is the increase resulting in the output voltage when the load is disconnected? What change results if the load resistance is reduced to 100 Ω? To 30 Ω?

- **3.62** A voltage regulator consisting of two diodes in series fed with a constant-current source is used as a replacement for a single carbon-zinc cell (battery) of nominal voltage 1.5 V. The regulator load current varies from 2 mA to 7 mA. Constant-current supplies of 5 mA, 10 mA, and 15 mA are available. Which would you choose, and why? What change in output voltage would result when the load current varies over its full range? Assume that the diodes have $n = 2$.

3.63 A particular design of a voltage regulator is shown in Fig. P3.63. Diodes D_1 and D_2 are 30-Ω units that, each has a voltage drop of 0.7 V at a current of 10 mA. Each has $n = 1$.

(a) What is the regulator output voltage V_o with the 150-Ω load connected?

(b) Find V_o with no load.

(c) With the load connected, to what value can the 5-V supply be lowered while maintaining the load voltage output voltage within 0.1 V of its nominal value?

(d) What does the load output voltage become when the 5-V supply is raised by the same amount as the drop found in (c)?

(e) For the range of changes explored in (c) and (d), by what percentage does the output voltage change for each percent change in the regulated output voltage?

(f) If the raw supply changes by 1.3 V, what is the corresponding change in the regulated output voltage?

- **3.64** A designer requires a shunt regulator with an incremental resistance of 5 kΩ. Design a voltage regulator using a 5-kΩ device and a 10-kΩ resistor. For the two major choices possible, find the load regulation. In this calculation neglect the effect of the regulator resistance R.

- **3.65** A shunt regulator utilizing a zener diode with an incremental resistance of 5 kΩ is fed through an 82-Ω resistor. If the raw supply changes by 1.3 V, what is the corresponding change in the regulated output voltage? A designer requires a shunt regulator of approximately 20 V. Two kinds of zener diodes are available: 8.6-V devices with r of 10 kΩ and 5.1-V devices with r of 30 kΩ. For the two major choices possible, find the load regulation. In this calculation neglect the effect of the regulator resistance R.

- **3.66** A shunt regulator utilizing a zener diode with an incremental resistance of 5 kΩ is fed through an 82-Ω resistor. If the raw supply changes by 1.3 V, what is the corresponding change in the regulated output voltage? A designer requires a shunt regulator of approximately 20 V. Two kinds of zener diodes are available: 8.6-V devices with r of 10 kΩ and 5.1-V devices with r of 30 kΩ. For the two major choices possible, find the load regulation. In this calculation neglect the effect of the regulator resistance R.

- **3.67** A 9.1-V zener diode exhibits its nominal voltage at a test current of 28 mA. At this current the incremental resistance is specified as 5 kΩ. Find V_o of the zener diode. Find the zener voltage at a current of 10 mA and 100 mA.

- **3.68** Design a 7.5-V zener regulator circuit using a 7.5-V zener specified at 12 mA. The zener has an incremental resistance of 10 kΩ and a knee current of 0.5 mA. The regulator operates from a 20-V supply and has a 12-Ω load. Determine the load current and the output voltage if the zener diode is to be used with the zener operating at a current no lower than the knee current while the supply is 10% low.

- **3.69** Provide two designs of shunt regulators utilizing the 1N5225 zener diode, which is specified as follows: $V_Z = 6.8$ V and $r = 5.4$ for $I_z = 20$ mA, and $l_z = 0.25$ mA. For both designs, the zener's supply voltage is nominally 9 V and varies by ±1 V. For the first design, assume that the zener operates at a current no lower than the knee current while the supply is 10% low.
3.74 Consider a half-wave rectifier circuit with a triangular-wave input of 5 V peak-to-peak amplitude and zero average potential and with \(V = 1 \) kΩ. Assume that the diode can be represented by the piecewise-linear model with \(V_R = 0.05 \) V and \(R_0 = 20 \) Ω. Find the average value of \(V_R \).

3.75 For a half-wave rectifier circuit with \(R = 1 \) kΩ, utiliz­ing a diode whose voltage drop is 0.7 V at a current of 1 mA and exhibiting a 0.1-V change per decade of current variation, find the values of the input voltage to the rectifier corresponding to \(V_R = 0.1 \) V, 0.5 V, 1 V, 2 V, 5 V, and 10 V. Plot the rectifier transfer characteristic.

3.76 A half-wave rectifier circuit with a 1-kΩ load operates from a 120-Vrms 60-Hz household supply through a 10:1 step-down transformer. It uses a silicon diode that can be modeled to have a 0.7-V drop for any current. What is the peak voltage of the rectified output? For what fraction of the cycle does the diode conduct? What is the average output voltage? What is the average current in the load?

3.77 A full-wave rectifier circuit with a 1-kΩ load operates from a 120-Vrms 60-Hz household supply through a 1:1 step-down transformer having a center-tapped secondary winding. It uses two silicon diodes that can be modeled to have a 0.7-V drop for all currents. What is the peak voltage of the rectified output? For what fraction of the cycle does each diode conduct? What is the average output voltage? What is the average current in the load?

3.78 A full-wave bridge rectifier circuit with a 1-kΩ load operates from a 120-Vrms 60-Hz household supply through a 10:1 step-down transformer having a single secondary winding. It uses four silicon diodes, each of which can be modeled to have a 0.7-V drop for all currents. What is the peak voltage of the rectified output? For what fraction of a cycle does each diode conduct? What is the average output voltage across the load? What is the average current through the load?

3.80 Repeat Problem 3.79 for the rectifier in Fig. 3.26b, using the circuit of Fig. 3.26b to provide an average output voltage of 10 V. Find the average diode current for which the diode conducts, the average diode current during conduction, and the maximum diode current.

3.82 Consider the circuit in Fig. 3.82, which is a zener shunt regulator employing a 9.1-V zener diode. A zener shunt regulator employs a zener diode whose voltage drop is constant for all currents. What is the value of the zener diode in the circuit of Fig. 3.82?

3.83 Augment the rectifier circuit of Problem 3.76 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% of the peak output and (ii) 1% of the peak output. In each case:
 (a) What is the average output voltage?
 (b) What is the fraction of the cycle when the diode conducts?
 (c) What is the average diode current?
 (d) What is the peak diode current?

3.84 Repeat Problem 3.83 for the rectifier in Fig. 3.77.

3.85 Repeat Problem 3.84 for the rectifier in Fig. 3.78.

3.86 It is required to use a peak-to-peak ripple voltage of 0.7 V on which a maximum of 21-V ripple is allowed. The regulator feeds a load of 150 Ω. The regulator is required to be capable of providing 200 mA dc current to its load. The diodes available exhibit a 0.7-V drop when conducting. What is the peak diode current when conducting? Assume that the diodes have a 0.7-V drop when conducting. Let the load resistance be 10 Ω and the filter capacitor 1 μF. Find the average dc output voltage, the time interval during which the diode conducts, the average diode current during conduction, and the maximum diode current.

3.87 Consider a half-wave peak rectifier circuit with a triangular waveform with 20 V peak-to-peak amplitude, zero average, and 1-kHz frequency. Assume that the diode has a 0.7-V drop when conducting. Let the load resistance be 10 Ω and the filter capacitor 1 μF. Find the average dc output voltage, the time interval during which the diode conducts, the average diode current during conduction, and the maximum diode current.

3.88 A 15 V dc source is provided to a half-wave bridge rectifier circuit. Assume that the diodes have a 0.7-V drop when conducting. Let the load resistance be 10 Ω and the filter capacitor 1 μF. Find the average dc output voltage, the time interval during which the diode conducts, the average diode current during conduction, and the maximum diode current.

3.89 A 15 V dc source is provided to a half-wave rectifier circuit. Assume that the diodes have a 0.7-V drop when conducting. Let the load resistance be 10 Ω and the filter capacitor 1 μF. Find the average dc output voltage, the time interval during which the diode conducts, the average diode current during conduction, and the maximum diode current.

3.90 Consider the circuit in Fig. 3.82, which is a zener shunt regulator employing a 9.1-V zener diode. Assume that the diodes available exhibit a 0.7-V drop when conducting. The designer opts for a full-wave bridge rectifier circuit. What is the peak diode current when conducting? Assume that the diodes have a 0.7-V drop when conducting. Let the load resistance be 10 Ω and the filter capacitor 1 μF. Find the average dc output voltage, the time interval during which the diode conducts, the average diode current during conduction, and the maximum diode current.

3.91 The op-amp in the precision rectifier circuit of Fig. 3.91 is ideal with output saturation levels of ±12 V. Assume that when conducting the diode exhibits a constant voltage drop of 0.7 V. Find \(V_R \), \(R_0 \), and \(V_R \) for:
 (a) \(\eta = +1 \) V
 (b) \(\eta = +2 \) V
 (c) \(\eta = -1 \) V
 (d) \(\eta = -2 \) V

3.92 Augment the rectifier circuit of Problem 3.76 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% of the peak output and (ii) 1% of the peak output. In each case:
 (a) What is the average output voltage?
 (b) What is the fraction of the cycle when the diode conducts?
 (c) What is the average diode current?
 (d) What is the peak diode current?
Also, find the average output voltage obtained when v_i is a symmetrical square wave of 1-kHz frequency, 5-V amplitude, and zero average.

FIGURE P3.91

3.92 The op amp in the circuit of Fig. P3.92 is ideal with output saturation levels of ±12 V. The diodes exhibit a constant 0.7-V drop when conducting. Find v_o, v_A, and v_0 for:

(a) $v_i = +1$ V
(b) $v_i = +2$ V
(c) $v_i = -1$ V
(d) $v_i = -2$ V

FIGURE P3.92

3.93 Sketch the transfer characteristic v_o versus v_i for the limiter circuits shown in Fig. P3.93. All diodes begin conducting at a forward voltage drop of 0.5 V and have voltage drops of 0.7 V when fully conducting.

3.94 Repeat Problem 3.93 assuming that the diodes are modeled with a piecewise-linear model with $V_D = 0.65$ V and $r_D = 20$ Ω.

3.95 The circuits in Fig. P3.93(a) and (d) are connected as follows: The two input terminals are tied together, and the two output terminals are tied together. Sketch the transfer characteristic of the circuit resulting, assuming that the cut-in voltage of the diodes is 0.5 V and their voltage drop when fully conducting is 0.7 V.

3.96 Repeat Problem 3.95 for the two circuits in Fig. P3.93(a) and (b) connected together as follows: The two input terminals are tied together, and the two output terminals are tied together. Sketch and clearly label the transfer characteristic of the circuit shown in Fig. P3.102.

3.97 Plot the transfer characteristic of the circuit in Fig. P3.97 by evaluating v_o corresponding to $v_i = 0.5$ V, 0.6 V, 0.7 V, 0.8 V, 0.9 V, 0.95 V, 0.96 V, 0.97 V, and 0.98 V. Assume that the diodes are 1-mA units (i.e., have 0.7-V drops at 1-mA currents) having a 0.1-V/decade logarithmic characteristic. Characterize the circuit as a hard or soft limiter. What is the value of k^*? Estimate L_+ and L_-. For inputs over the range of ±5 V, provide a calibrated sketch of the voltages at outputs B and C. For a 5-V peak, 100-Hz sinusoid applied at A, sketch the signals at nodes B and C.

3.98 Plot the transfer characteristic of the circuit in Fig. P3.98 by evaluating v_o corresponding to $v_i = 0.5$ V, 0.6 V, 0.7 V, 0.8 V, 0.9 V, 0.95 V, 0.96 V, 0.97 V, and 0.98 V. Assume that the diodes are 1-mA units (i.e., have 0.7-V drops at 1-mA currents) having a 0.1-V/decade logarithmic characteristic. Characterize the circuit as a hard or soft limiter. What is the value of k^*? Estimate L_+ and L_-. Sketch and quantify the output voltage for inputs of ±10 V.

3.99 Design limiter circuits using only diodes and 10-kΩ resistors to provide an output signal limited to the range:

(a) -0.7 V and above
(b) -2.1 V and above
(c) ±1.4 V

Assume that each diode has a 0.7-V drop when conducting.

3.100 Design a two-sided limiting circuit using a resistor, two diodes, and two power supplies to feed a 1-kΩ load with nominal limiting levels of ±3 V. Use diodes modeled by a constant 0.7 V. In the nonlimiting region, the circuit voltage gain should be at least 0.95 V/V.

3.101 Recompute Problem 3.100 with diodes modeled by a 0.5-V offset and a resistor consistent with 10-mA conduction at 0.7 V. Sketch and quantify the output voltage for inputs of ±1 V.

3.102 A clamped capacitor using an ideal diode with cathode grounded is supplied with a sine wave of 10-V rms. What is the average (dc) value of the resulting output?

3.103 For the circuits in Fig. P3.103, each utilizing an ideal diode (or diodes), sketch the output for the input shown. Label the most positive and most negative output levels. Assume $C << R$.
3.110 Find the current flow in a silicon bar of 10 mm length having a 3-µm x 4-µm cross-section and having free-electron and hole densities of \(10^{17} \text{cm}^{-3}\) and \(10^{15} \text{cm}^{-3}\), respectively, with 3 V applied end-to-end. Use \(\mu_n = 1200 \text{ cm}^2/\text{V s}\) and \(\mu_p = 500 \text{ cm}^2/\text{V s}\).

3.111 In a 10-µm long bar of doped-silicon, what doping concentration is needed to realize a current density of 1 mA/µm² in response to an applied voltage of 1 V? (Note: Although the carrier mobilities change with doping concentration, see the table associated with Problem 3.113, as a first approximation you may assume \(\mu_n\) to be constant and use the value for intrinsic silicon, 1350 cm²/V s.)

3.112 In a phosphorus-doped silicon layer with impurity concentration of \(10^{15} \text{cm}^{-3}\), find the hole and electron concentration at 25°C and 125°C.

3.113 Both the carrier mobility and diffusivity decrease as the doping concentration of silicon is increased. The following table provides a few data points for \(\mu_n\) and \(\mu_p\) versus doping concentration. Use the Einstein relationship to obtain the corresponding value for \(D_n\) and \(D_p\).

<table>
<thead>
<tr>
<th>Doping Concentration</th>
<th>(\mu_n)</th>
<th>(\mu_p)</th>
<th>(D_n)</th>
<th>(D_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic</td>
<td>1350</td>
<td>480</td>
<td>10³</td>
<td>10³</td>
</tr>
<tr>
<td>(10^{15})</td>
<td>1000</td>
<td>400</td>
<td>10³</td>
<td>10³</td>
</tr>
<tr>
<td>(10^{17})</td>
<td>700</td>
<td>200</td>
<td>10³</td>
<td>10³</td>
</tr>
<tr>
<td>(10^{18})</td>
<td>350</td>
<td>150</td>
<td>10³</td>
<td>10³</td>
</tr>
</tbody>
</table>

3.114 Calculate the built-in voltage of a junction in which the p and n regions are doped equally with \(10^{15} \text{atoms/cm}^3\). Assume \(\mu_n = 10^3 \text{cm}^2/\text{V s}\). With an external voltage applied, what is the width of the depletion region, and how far does it extend into the p and n regions? If the cross-sectional area of the junction is 100 µm², find the magnitude of the charge stored on either side of the junction, and calculate the junction capacitance \(C_j\).

3.115 If, for a particular junction, the acceptor concentration is \(10^{19} \text{cm}^{-3}\) and the donor concentration is \(10^{18} \text{cm}^{-3}\), find the junction built-in voltage. Assume \(\mu_n = 10^3 \text{cm}^2/\text{V s}\). Also, find the width of the depletion region (B_p) and its extent in each of the p and n regions when the junction is reverse biased with \(V_j = 5 \text{ V}\). At this value of reverse bias, calculate the magnitude of the charge stored on either side of the junction. Assume the junction area is \(400 \text{ µm}^2\). Also, calculate \(C_j\).

3.116 Estimate the total charge stored in a 3-µm depletion layer on one side of a 100 µm x 100 µm junction. The doping concentration on that side of the junction is \(10^{16} \text{cm}^{-3}\).

3.117 Combine Eqs. (3.51) and (3.22) to find \(q_j\) in terms of \(V_j\). Differentiate this expression to find an expression for the junction capacitance \(C_j\). Show that the expression you found is the same as the result obtained using Eq. (3.54) in conjunction with Eq. (3.52).

3.118 For a particular junction for which \(C_j = 0.6 \text{ pF}, V_j = 0.75 \text{ V}, \) and \(m = 1/3\), find the capacitance at reverse-bias voltages of 1 V and 10 V.

3.119 An avalanche-breakdown diode, for which the breakdown voltage is 12 V, has a peak power dissipation of 0.25 W. When continuous operating current will raise the dissipation to half the maximum value? If breakdown occurs for only 10 ms in every 20 ms, what average breakdown current is allowed?

3.120 In a forward-biased pn junction show that the ratio of the current component due to hole injection across the junction to the component due to electron injection is given by

\[I_p = \frac{D_p J_p}{D_n J_n} \text{ with } I = J_p + J_n\]

Evaluate this ratio for the case \(J_p = 10^{10} \text{ A/cm}^2\), \(J_n = 10^{10} \text{ A/cm}^2\), \(L_p = 10 \mu\text{m}, L_n = 10 \mu\text{m}, D_p = 20 \text{ cm}²/\text{s}\), and hence find \(I_p\) and \(I_n\) for the case in which the diode is conducting a forward current \(I = 1 \text{ mA}\).

3.121 A p-n diode is said to be in a state of reverse-bias if the voltage across the diode is greater than the reverse breakdown voltage. In a reverse-biased pn junction, the forward current is mostly due to hole injection across the junction. Show that

\[I = I_p + I_n = \frac{D_p J_p}{D_n J_n} \left(I^R_{max} - I \right) \]

For the specific case in which \(J_p = 5 \times 10^{10} \text{ A/cm}²\), \(D_p = 10 \text{ cm}²/\text{s}, \) \(n = 0.1 \mu\text{m}, \) and \(A = 10^{-4} \text{ cm}²\), find \(I_p\) and the voltage \(V\) obtained when \(I = 0.2 \text{ mA}\). Assume operation at 300 K where \(n = 1.5 \times 10^7 \text{ cm}³/\text{V s}\). Also, calculate the excess minority-carrier charge and the value of the diffusion capacitance at \(I = 0.2 \text{ mA}\).

3.122 A short-generation diode is one where the widths of the p and n regions are much smaller than \(L_p\) and \(L_n\), respectively. As a result, the excess minority-carrier distribution in each
region is a straight line rather than the exponentials shown in Fig. 3.50.

(a) For the short-base diode, sketch a figure corresponding to Fig. 3.50, and assume, as in Fig. 3.50, that $N_A > N_D$.

(b) Following a derivation similar to that given on page 205–206, show that if the widths of the p and n regions are denoted W_p and W_n, then

$$I = A q N_D x_n \left(\frac{W_p - x_n}{N_D} \right) \left(\frac{W_n - x_n}{N_D} \right) \left(e^{V_D} - 1 \right)$$

and

$$Q_p = \frac{1}{2} \left(\frac{W_p - x_n}{N_D} \right)^2 I_D$$

and

$$Q_n = \frac{1}{2} \frac{W_n - x_n}{N_D} I_D$$

for $W_p > x_n$.

(c) Also, assuming $Q = Q_p, I = I_p$ show that

$$C_q = \frac{\pi I}{V_T}$$

where

$$t_p = \frac{1}{2} \frac{W_p^2}{D_p}$$

(d) If a designer wishes to limit C_q to 8 pF at $I = 1$ mA, what should W_p be? Assume $D_p = 10 \text{ cm}^2/\text{s}$.
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

learned in Chapter 1, the switch is the basis for the realization of the logic inverter, the basic element of digital circuits.

There are two major types of three-terminal semiconductor device: the metal-oxide-semiconductor field-effect transistor (MOSFET), which is studied in this chapter, and the bipolar junction transistor (BJT), which we shall study in Chapter 5. Although each of the two transistor types offers unique features and areas of application, the MOSFET has become by far the most widely used electronic device, especially in the design of integrated circuits (ICs), which are circuits fabricated on a single silicon chip.

Compared to BJTs, MOSFETs can be made quite small (i.e., requiring a small area on the silicon IC chip), and their manufacturing process is relatively simple (see Appendix A). Also, their operation requires comparatively little power. Furthermore, circuit designers have found ingenious ways to implement digital and analog functions utilizing MOSFETs almost exclusively (i.e., with very few or no resistors). All of these properties have made it possible to pack large numbers of MOSFETs (>200 million!) onto a single IC chip to implement very sophisticated, very-large-scale-integrated (VLSI) circuits such as those for memory and microprocessors.

The objective of this chapter is to develop in the reader a high degree of familiarity with the MOSFET: its physical structure and operation, terminal characteristics, circuit models, and basic circuit applications, both as an amplifier and a digital logic inverter. Although discrete MOS transistors exist, and the material studied in this chapter will enable the reader to design discrete MOS circuits, our study of the MOSFET is strongly influenced by the fact that most of its applications are in integrated-circuit design. The design of IC analog and digital MOS circuits occupies a large proportion of the remainder of this book.

4.1 DEVICE STRUCTURE AND PHYSICAL OPERATION

The enhancement-type MOSFET is the most widely used field-effect transistor. In this section, we shall study its structure and physical operation. This will lead to the current-voltage characteristics of the device, studied in the next section.

4.1.1 Device Structure

Figure 4.1 shows the physical structure of the n-channel enhancement-type MOSFET. The meaning of the names "enhancement" and "n-channel" will become apparent shortly. The transistor is fabricated on a p-type substrate, which is a single-crystal silicon wafer that provides physical support for the device (and for the entire circuit in the case of an integrated circuit). Two heavily doped n-type regions, indicated in the figure as the n+ source and the n+ drain regions, are created in the substrate. A thin layer of silicon dioxide (SiO2) of thickness t, typically 2–50 nm, which is an excellent electrical insulator, is grown on the surface of the substrate, covering the area between the source and drain regions. Metal is deposited on top of the oxide layer to form the gate electrode of the device. Metal contacts are also made to the source region, the drain region, and the substrate, also known as the

1 The notation n+ indicates heavily doped n-type silicon. Conversely, n is used to denote lightly doped n-type silicon. Similar notation applies for p-type silicon.

2 A nanometer (nm) is 10^-9 m or 0.001 μm. A micrometer (μm), or micron, is 10^-6 m. Sometimes the oxide thickness is expressed in angstroms. An angstrom (Å) is 10^-10 m.

3 In Fig. 4.1, the contact to the body is shown on the bottom of the device. This will prove helpful later in explaining a phenomenon known as the body effect. It is important to note, however, that in actual ICs, contact to the body is made at a location on the top of the device.
used also for FETs that do not use metal for the gate electrode. In fact, most modern MOSFETs are fabricated using a process known as silicon-gate technology, in which a certain type of silicon, called polysilicon, is used to form the gate electrode (see Appendix A). Our description of MOSFET operation and characteristics applies irrespective of the type of gate electrode.

Another name for the MOSFET is the insulated-gate FET or IGFET. This name also arises from the physical structure of the device, emphasizing the fact that the gate electrode is electrically isolated from the device body (by the oxide layer). It is this insulation that causes the current in the gate terminal to be extremely small (of the order of 10^{-15} A).

Observe that the substrate forms p-n junctions with the source and drain regions. In normal operation these p-n junctions are kept reverse-biased at all times. Since the drain will be at a positive voltage relative to the source, the two p-n junctions can be effectively cut off by simply connecting the substrate terminal to the source terminal. We shall assume this to be the case in the following description of MOSFET operation. Thus, here, the substrate will be considered as having no effect on device operation, and the MOSFET will be treated as a three-terminal device, with the terminals being the gate (G), the source (S), and the drain (D).

It will be shown that a voltage applied to the gate controls current flow between source and drain. This current will flow in the longitudinal direction from drain to source in the region labeled "channel region." Note that this region has a length L and a width W; two important parameters of the MOSFET. Typically, L is in the range of 0.1 μm to 3 μm, and W is in the range of 0.2 μm to 100 μm. Finally, note that the MOSFET is a symmetrical device; thus its source and drain can be interchanged with no change in device characteristics.

4.1.2 Operation with No Gate Voltage

With no bias voltage applied to the gate, two back-to-back diodes exist in series between drain and source. One diode is formed by the p-n junction between the n-type drain region and the p-type substrate, and the other diode is formed by the p-n junction between the p-type substrate and the n-type source region. These back-to-back diodes prevent current conduction from drain to source when a voltage V_{th} is applied. In fact, the path between drain and source has a very high resistance (of the order of 10^6 Ω).

4.1.3 Creating a Channel for Current Flow

Consider next the situation depicted in Fig. 4.2. Here we have grounded the source and drain and applied a positive voltage to the gate. Since the source is grounded, the gate voltage appears in effect between gate and source and thus is denoted as V_{GS}. The positive voltage on the gate causes, in the first instance, the free holes (which are positively charged) to be repelled from the region of the substrate under the gate (the channel region). These holes are pushed downward into the substrate, leaving behind a channel-depletion region. The depletion region is populated by the bound negative charge associated with the acceptor atoms. These charges are "uncovered" because the neutralizing holes have been pushed downward into the substrate.

As well, the positive gate voltage attracts electrons from the n-type source and drain regions (where they are in abundance) into the channel region. When a sufficient number of electrons accumulate near the surface of the substrate under the gate, an n-region is in effect created, connecting the source and drain regions, as indicated in Fig. 4.2. Now if a voltage is applied between drain and source, current flows through the induced n region, carried by the mobile electrons. The induced n region thus forms a channel for current flow from drain to source and is aptly called so. Correspondingly, the MOSFET of Fig. 4.2 is called an n-channel MOSFET or, alternatively, an NMOS transistor. Note that an n-channel MOSFET is formed in a p-type substrate. The channel is created by inverting the substrate surface from p-type to n-type. Hence the induced channel is also called an inversion layer.

The value of V_{th} at which a sufficient number of mobile electrons accumulate in the channel region in order to form a conducting channel is called the threshold voltage and is denoted V_T. Obviously, V_T for an n-channel FET is positive. The value of V_T is determined during device fabrication and typically lies in the range of 0.5 V to 1.0 V.

The gate and the channel region of the MOSFET form a parallel-plate capacitor, with the oxide layer acting as the capacitor dielectric. The positive gate voltage causes positive charge to accumulate on the top plate of the capacitor (the gate electrode). The corresponding negative charge on the bottom plate is formed by the electrons in the induced channel. An electric field thus develops in the vertical direction. It is this field that controls the movement of charge in the channel, and thus it determines the channel conductivity and, in turn, the current that will flow through the channel when a voltage V_{DS} is applied.

4.1.4 Applying a Small V_{DS}

Having induced a channel, we now apply a positive voltage V_{DS} between drain and source, as shown in Fig. 4.3. We first consider the case where V_{DS} is small (i.e., $V_{DS} = 50$ mV or so). The voltage V_{DS} causes a current I_D to flow through the induced n channel. Current is carried by free electrons traveling from source to drain (hence the names source and drain). By convention, the direction of current flow is opposite to that of the flow of negative charge. Thus the current in the channel, I_D, will be from drain to source, as indicated in Fig. 4.3. The magnitude of I_D depends on the density of electrons in the channel, which in turn depends on the magnitude of V_{DS}. Specifically, for $V_{DS} = V_T$, the channel is just induced and the current conducted is still negligibly small. As V_{DS} exceeds V_T, more electrons are attracted into the channel. We may visualize the increase in charge carriers in the channel as an increase in the channel depth. The result is a channel of increased conductivity or, equivalently, reduced resistance. In fact, the conductance of the channel is proportional to the excess gate voltage $(V_{GS} - V_T)$, also

*Some texts use V_T to denote the threshold voltage. We use V_T to avoid confusion with the thermal voltage V_T.}
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETS)

240

4.1 DEVICE STRUCTURE AND PHYSICAL OPERATION

The description above indicates that for the MOSFET to conduct, a channel has to be induced. Then, increasing V_{DS} above the threshold voltage V_t enhances the channel, hence the names enhancement-mode operation and enhancement-type MOSFET. Finally, we note that the current that leaves the source terminal (I_S) is equal to the current that enters the drain terminal (I_D), and the gate current $I_G = 0$.

EXERCISE

4.1. From the description above of the operation of the MOSFET for small V_{DS} we note that I_D is proportional to $(V_{GS} - V_T)V_{DS}$. Find the constant of proportionality for the particular device whose characteristics are depicted in Fig. 4.4. Also, give the range of drain-to-source resistances corresponding to an overdrive voltage $V_O = V_T$ of 0.3 V to 2 V.

Ans. $\frac{I_D}{V_{DS}} = 2 \text{mA/V}$; 2 kΩ to 0.5 kΩ

4.1.5 Operation as V_{DS} is Increased

We next consider the situation as V_{DS} is increased. For this purpose let V_{GS} be held constant at a value greater than V_T. Refer to Fig. 4.5, and note that V_{DS} appears as a voltage drop across the length of the channel. That is, as we travel along the channel from source to drain, the voltage (measured relative to the source) increases from 0 to V_{DS}. Thus the voltage between the gate and points along the channel decreases from V_{GS} at the source end to $V_{GS} - V_{DS}$ at the drain end. Since the channel depth depends on this voltage, we find that the channel is no longer of uniform depth; rather, the channel will take the tapered form shown in Fig. 4.5, being deepest at the source end and shallowest at the drain end. As V_{DS} is increased, the channel becomes more tapered and its resistance increases correspondingly. Thus the I_D-V_{DS} curve does not continue as a straight line but bends as shown in Fig. 4.6. Eventually, when V_{DS} is increased to the value that reduces the voltage between gate and
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

Increasing \(v_{DS} \) causes the channel to acquire a tapered shape. Eventually, as \(v_{DS} \) reaches \(v_{DS} = V_t \), the channel is pinched off at the drain end. Increasing \(v_{DS} \) above \(v_{DS} = V_t \) has little effect (theoretically, no effect) on the channel’s shape.

No channel at the drain end to \(V_t \) — that is, \(v_{DS} = V_t \), or \(v_{GS} - V_t = V_t \) or \(v_{GS} = V_t \) — the channel depth at the drain end decreases to almost zero, and the channel is said to be pinched off. Increasing \(v_{DS} \) beyond this value has little effect (theoretically, no effect) on the channel shape, and the current through the channel remains constant at the value reached for \(v_{GS} = V_t \). The drain current thus saturates at this value, and the MOSFET is said to have entered the saturation region of operation. The voltage \(v_{DS} \) at which saturation occurs is denoted \(v_{DSsat} \).

\[v_{DSsat} = v_{DS} - V_t \]

(4.1)

Obviously, for every value of \(v_{GS} > V_t \), there is a corresponding value of \(v_{DSsat} \). The device operates in the saturation region if \(v_{GS} > v_{DSsat} \). The region of the \(i_D-v_{DS} \) characteristic obtained for \(v_{GS} < v_{DSsat} \) is called the triode region, a carryover from the days of vacuum-tube devices whose operation a FET resembles.

To help further in visualizing the effect of \(v_{DS} \), we show in Fig. 4.7 sketches of the channel as \(v_{DS} \) is increased while \(v_{GS} \) is kept constant. Theoretically, any increase in \(v_{DS} \) above

\[v_{DS} > V_t \]

produces (which is equal to \(v_{DS} - V_t \)) has no effect on the channel shape and simply appears across the depletion region surrounding the channel and the "n" drain region.

4.1.6 Derivation of the \(i_D-v_{GS} \) Relationship

The description of physical operation presented above can be used to derive an expression for the \(i_D-v_{GS} \) relationship depicted in Fig. 4.6. Toward that end, assume that a voltage \(v_{GS} \) is applied between gate and source with \(v_{GS} > V_t \) to induce a channel. Also, assume that a voltage \(v_{DS} \) is applied between drain and source. First, we shall consider operation in the triode region, for which the channel must be continuous and thus \(v_{DS} \) must be greater than \(V_t \) or, equivalently, \(v_{GS} < v_{DS} - V_t \). In this case the channel will have the tapered shape shown in Fig. 4.8.

The reader will recall that in the MOSFET, the gate and the channel region form a parallel-plate capacitor for which the oxide layer serves as a dielectric. If the capacitance per unit gate area is denoted \(C_{ox} \), and the thickness of the oxide layer is \(t_{ox} \), then

\[\frac{1}{C_{ox}} = \frac{\epsilon_0}{t_{ox}} \]

(4.2)

where \(\epsilon_0 \) is the permittivity of the silicon oxide,

\[\epsilon_0 = 3.9 \times 8.854 \times 10^{-12} = 3.45 \times 10^{-11} \text{ F/m} \]

The oxide thickness \(t_{ox} \) is determined by the process technology used to fabricate the MOSFET. As an example, for \(t_{ox} = 10 \text{ nm}, C_{ox} = 3.45 \times 10^{-11} \text{ F/m}^2 \), or 3.45 \(\text{nF/\mu m}^2 \). It is usually expressed.

Now refer to Figs. 4.8 and consider the infinitesimal strip of the gate at distance \(x \) from the source. The capacitance of this strip is \(C_{ox} W dx \). To find the charge stored on this infinitesimal strip of the gate capacitance, we multiply the capacitance by the effective voltage
between the gate and the channel at point \(x\), where the effective voltage is the voltage that is responsible for inducing the channel at point \(x\) and is thus \(V_{GS} - V(x) - V)\) where \(V(x)\) is the voltage in the channel at point \(x\). It follows that the electron charge \(dq\) in the infinitesimal portion of the channel at point \(x\) is

\[
dq = -\mu_e W(x) dx \left[V_{GS} - V(x) - V \right] \tag{4.3}
\]

where the leading negative sign accounts for the fact that \(dq\) is a negative charge.

The voltage \(V_{GS}\) produces an electric field along the channel in the negative \(x\) direction. At point \(x\) this field can be expressed as

\[
E(x) = -\frac{dV(x)}{dx}
\]

The electric field \(E(x)\) causes the electron charge \(dq\) to drift toward the drain with a velocity \(\frac{dq}{dt}\),

\[
\frac{dq}{dt} = -\mu_e E(x) = \mu_e \frac{dV(x)}{dx} \tag{4.4}
\]

where \(\mu_e\) is the mobility of electrons in the channel (called surface mobility). It is a physical parameter whose value depends on the fabrication process technology. The resulting drift current \(i\) can be obtained as follows:

\[
i = \frac{dq}{dt} = \frac{dq}{dx} \frac{dx}{dt}
\]

Substituting for the charge-per-unit-length \(dq/dx\) from Eq. (4.3), and for the electron drift velocity \(dx/dt\) from Eq. (4.4), results in

\[
i = -\mu_e C_o x W [V_{GS} - V(x) - V] \frac{dV(x)}{dx}
\]

Although evaluated at a particular point in the channel, the current \(i\) must be constant at all points along the channel. Thus \(i\) must be equal to the source-to-drain current. Since we are interested in the drain-to-source current \(i_D\), we can find it as

\[
i_D = -\mu_e C_o x W [V_{GS} - V(x) - V] \frac{dV(x)}{dx}
\]

which can be rearranged in the form

\[
i_D dx = -\mu_e C_o x W (V_{GS} - V(x) - V) \frac{dV(x)}{dx}
\]

Integrating both sides of this equation from \(x = 0\) to \(x = L\) and, correspondingly, for \(x = 0\) to \(V(L) = V_{DS}\), gives

\[
i_D = \mu_e C_o x W (V_{GS} - V(x)) \left[V_{DS} - \frac{1}{2} V_{DS}^2 \right] \tag{4.5}
\]

This is the expression for the \(i_D-V_{DS}\) characteristic in the triode region. The value of the current at the edge of the triode region or, equivalently, at the beginning of the saturation region can be obtained by substituting \(V(x) = V_{DS} - V \sim V_{GS}\) resulting in

\[
i_D = \frac{1}{2} \mu_e C_o x W (V_{GS} - V(x)) \frac{1}{2} V_{GS} \tag{4.6}
\]

This is the expression for the \(i_D-V_{DS}\) characteristic in the saturation region: it simply gives the saturation value of \(i_D\) corresponding to the given \(V_{GS}\). (Recall that in saturation \(V_{DS}\) remains constant for a given \(V_{GS}\) as \(V_{DS}\) is varied.)

In the expressions in Eqs. (4.5) and (4.6), \(\mu_e C_o x\) is a constant determined by the process technology used to fabricate the n-channel MOSFET. It is known as the process transconductance parameter, for as we shall see shortly, it determines the value of the MOSFET transconductance, denoted \(k'_n\), and has the dimensions of \(\text{A/V}^2\):

\[
k'_n = \mu_e C_o x
\]

Of course, the \(i_D-V_{DS}\) expressions in Eqs. (4.5) and (4.6) can be written in terms of \(k'_n\) as follows:

\[
i_D = k'_n C_o x W (V_{GS} - V(x) - V) \frac{1}{2} V_{GS} \tag{Triode region} \tag{4.5a}
\]

\[
i_D = \frac{1}{2} \mu_e C_o x W (V_{GS} - V(x)) \frac{1}{2} V_{GS} \tag{Saturation region} \tag{4.6a}
\]

In this book we will use the forms with \((\mu_e C_o x)\) and with \(k'_n\) interchangeably.

From Eqs. (4.5) and (4.6) we see that the drain current is proportional to the ratio of the channel width \(W\) to the channel length \(L\), known as the aspect ratio of the MOSFET. The values of \(W\) and \(L\) can be selected by the circuit designer to obtain the desired \(i_D-V_{DS}\) characteristics. For a given fabrication process, however, there is a minimum channel length \(L_{min}\). In fact, the minimum channel length that is possible with a given fabrication process is used to characterize the process and is being continually reduced as technology advances. For instance, at the time of this writing (2003) the state-of-the-art in MOS technology is a 0.13-\(\mu\m\) process.

There also is a minimum value for the channel width \(W\). For instance, for the 0.13-\(\mu\m\) process just mentioned, \(W_{min}\) is 0.16 \(\mu\m\). Finally, we should note that the oxide thickness \(t_o\) scales down with \(L_{min}\). Thus, for a 1.5-\(\mu\m\) technology, \(t_o\) is 25 nm, but the modern 0.13-\(\mu\m\) technology mentioned above has \(t_o = 2\) nm.

EXAMPLE 4.1.

Consider a process technology for which \(L_{min} = 0.4 \mu\m\), \(t_o = 8 \mu\m\), \(\mu_e = 450 \text{ cm}^2/\text{V-s}\), and \(V_t = 0.7 \text{ V}\). For the transistors with \(W/L = 8 \mu\m/0.8 \mu\m\), calculate the values of \(V_{Sat}\) and \(V_{Min}\) needed to operate the transistor in the saturation region with a dc current \(i_D = 100 \mu\A\).

(a) Find \(C_o x\) and \(k'_n\).

(b) For a MOSFET with \(W/L = 8 \mu\m/0.8 \mu\m\), calculate the values of \(V_{Sat}\) and \(V_{Min}\) needed to operate the transistor in the saturation region with a dc current \(i_D = 100 \mu\A\).

(c) For the device in (b), find the value of \(V_{GS}\) required to cause the device to operate as a 1000-\(\Omega\) resistor for very small \(i_D\).
Solution

(a)
\[C_{ox} = \frac{\phi_n}{\varepsilon_{ox}} = \frac{3.45 \times 10^{-11}}{8 \times 10^{-6}} = 4.32 \times 10^{-3} \text{F/m}^2 \]
\[k' = \frac{\mu_n C_{ox}}{2} = \frac{450 \text{cm}^2/\text{V} \cdot \text{s}}{2} \times 4.32 \times 10^{-3} \text{F/}\mu\text{m}^2 \]
\[= 194 \times 10^{-3} \text{F/}\mu\text{m}^2 \]

(b) For operation in the saturation region,
\[I_D = \frac{k' W}{2L} (V_{GS} - V_t)^2 \]
\[V_{GS} - V_t = 0.32 \text{ V} \]
\[V_{GS} = 1.02 \text{ V} \]
\[V_{DS_{min}} = V_{GS} - V_t = 0.32 \text{ V} \]

(c) For the MOSFET in the triode region with very small,
\[I_D = k' W \frac{V_{GS} - V_t}{2} \]
\[V_{GS} - V_t = 0.52 \text{ V} \]
\[V_{GS} = 1.22 \text{ V} \]

4.1 DEVICE STRUCTURE AND PHYSICAL OPERATION

4.1.7 The p-Channel MOSFET

A p-channel enhancement-type MOSFET (PMOS transistor), fabricated on an n-type substrate with p+ regions for the drain and source, has holes as charge carriers. The device operates in the same manner as the n-channel device except that \(V_{GS} \) and \(V_{DS} \) are negative and the threshold voltage \(V_t \) is negative. Also, the current \(I_D \) enters the source terminal and leaves through the drain terminal.

PMOS technology originally dominated MOS manufacturing. However, because NMOS devices can be made smaller and thus operate faster, and because NMOS historically required lower supply voltages than PMOS, NMOS technology has virtually replaced PMOS. Nevertheless, it is important to be familiar with the PMOS transistor for two reasons: PMOS devices are still available for discrete-circuit design, and more importantly, both PMOS and NMOS transistors are utilized in complementary MOS or CMOS circuits, which is currently the dominant MOS technology.

4.1.8 Complementary MOS or CMOS

As the name implies, complementary MOS technology employs MOS transistors of both polarities. Although CMOS circuits are somewhat more difficult to fabricate than NMOS, the availability of complementary devices makes possible many powerful circuit-design possibilities. Indeed, at the present time CMOS is the most widely used of all the IC technologies. This statement applies to both analog and digital circuits. CMOS technology has virtually replaced designs built on NMOS transistors alone. Furthermore, at the time of this writing (2003), CMOS technology has taken over many applications that just a few years ago were possible only with bipolar devices. Throughout this book, we will study many CMOS circuit techniques.

Figure 4.9 shows a cross-section of a CMOS chip illustrating how the PMOS and NMOS transistors are fabricated. Observe that while the NMOS transistor is implemented directly in the p-type substrate, the PMOS transistor is fabricated in a specially created n region, known as an n well. The two devices are isolated from each other by a thick region of oxide that functions as an insulator. Not shown on the diagram are the connections made to the p-type body and to the n well. The latter connection serves as the body terminal for the PMOS transistor.
4.1.9 Operating the MOS Transistor in the Subthreshold Region

The above description of the n-channel MOSFET operation implies that for \(V_{GS} < V_T \), no current flows and the device is cut off. This is not entirely true, for it has been found that for values of \(V_{GS} \) smaller than but close to \(V_T \), a small drain current flows. In this subthreshold region of operation the drain current is exponentially related to \(V_{GS} \), much like the \(I_C vs V_C \) relationship of a BJT, as will be shown in the next chapter.

Although in most applications the MOS transistor is operated with \(V_{GS} > V_T \), there are special, but a growing number of, applications that make use of subthreshold operation. In this book, we will not consider subthreshold operation any further and refer the reader to the references listed in Appendix F.

4.2 CURRENT-VOLTAGE CHARACTERISTICS

Building on the physical foundation established in the previous section for the operation of the enhancement MOS transistor, we present in this section its complete current-voltage characteristics. These characteristics can be measured at dc or at low frequencies and thus are called static characteristics. The dynamic effects that limit the operation of the MOSFET at high frequencies and high switching speeds will be discussed in Section 4.8.

4.2.1 Circuit Symbol

Figure 4.10(a) shows the circuit symbol for the n-channel enhancement-type MOSFET. Observe that the spacing between the two vertical lines that represent the gate and the channel indicates the fact that the gate electrode is insulated from the body of the device. The polarity of the p-type substrate (body) and the channel is indicated by the arrowhead on the gate line. This symbol with an arrowhead on the source terminal to distinguish it from the drain terminal. The arrowhead points in the normal direction of current flow and thus indicates the polarity of the device (i.e., n-channel). Observe that in the modified symbol, there is no need to show the arrowhead on the body line. Although the circuit symbol of Fig. 4.10(b) clearly distinguishes the source from the drain, in practice it is the polarity of the voltage impressed across the device that determines source and drain; the drain is always positive relative to the source in an n-channel FET.

In applications where the source is connected to the body of the device, a further simplification of the circuit symbol is possible, as indicated in Fig. 4.10(c). This symbol is also used in applications when the effect of the body on circuit operation is not important, as will be seen later.

4.2.2 The \(I_D - V_{DS} \) Characteristics

Figure 4.11(a) shows an n-channel enhancement-type MOSFET with voltages \(V_D \) and \(V_S \) applied and with the normal directions of current flow indicated. This conceptual circuit can be used to measure the \(I_D - V_{DS} \) characteristics, which are a family of curves, each measured at a constant \(V_{GS} \). From the study of physical operation in the previous section, we expect each of the \(I_D - V_{DS} \) curves to have the shape shown in Fig. 4.6. This indeed is the case, as is evident from Fig. 4.11(b), which shows a typical set of \(I_D - V_{DS} \) characteristics. A thorough understanding of the MOSFET terminal characteristics is essential for the reader who intends to design MOS circuits.

The characteristic curves in Fig. 4.11(b) indicate that there are three distinct regions of operation: the cutoff region, the triode region, and the saturation region. The saturation region is used if the FET is to operate as an amplifier. For operation as a switch, the cutoff and triode regions are utilized. The device is cut off when \(V_{GS} < V_T \). To operate the MOSFET in the triode region we must first induce a channel,

\[
V_{GS} \geq V_T \quad \text{(Induced channel)}
\]

and then keep \(V_{GS} \) small enough so that the channel remains continuous. This is achieved by ensuring that the gate-to-drain voltage is

\[
V_{GD} > V_T \quad \text{(Continuous channel)}
\]

This condition can be stated explicitly in terms of \(V_{GS} \) by writing \(V_{GD} = V_{GS} - V_D = V_{GS} - V_{DS} \) and thus,

\[
V_{GS} = V_{DS} > V_T
\]
which can be rearranged to yield

$$V_{GS} < V_{TH} - V_t$$ \quad \text{(Continuous channel)} \quad (4.10)$$

Either Eq. (4.9) or Eq. (4.10) can be used to ascertain triode-region operation. In words, the n-channel enhancement-type MOSFET operates in the triode region when V_{GS} is greater than V_t and the drain voltage is lower than the gate voltage by at least V_t volts.

In the triode region, the V_{DS}-I_D characteristics can be described by the relationship of Eq. (4.5), which we repeat here,

$$I_D = k_D W \left[\frac{V_{GS} - V_t}{2} \right] \left(\frac{V_{DS} - V_t}{2} \right)$$

where $k_D = \mu_C W/L$ is the process transconductance parameter; its value is determined by the fabrication technology. If V_{GS} is sufficiently small so that we can neglect the V_{DS}^2 term in Eq. (4.11), we obtain for the I_D-V_{DS} characteristics near the origin the relationship

$$I_D = k_D W \left(V_{GS} - V_t \right) V_{DS}$$

This linear relationship represents the operation of the MOS transistor as a linear resistance r_{DS} whose value is controlled by V_{GS}. Specifically, for V_{GS} set to a value V_{GS0}, r_{DS} is given by

$$r_{DS} = \frac{V_{DS0}}{I_D} = \left(k_D W \frac{V_{GS0} - V_t}{V_{DS0}} \right)$$

We discussed this region of operation in the previous section (refer to Fig. 4.4). It is also useful to express r_{DS} in terms of the gate-to-source overdrive voltage,

$$V_{OS} = V_{GS} - V_t$$

FIGURE 4.11 (a) An n-channel enhancement-type MOSFET with V_{GS} and V_{DS} applied and with the normal directions of current flow indicated. (b) The $V_{DS}-I_D$ characteristics for a device with $k_D (W/L) = 1.0 \text{mA/V}$.

Finally, the reader should show that the approximation involved in writing Eq. (4.12) is based on the assumption that $V_{GS} \approx 2V_t$

To operate the MOSFET in the saturation region, a channel must be induced,

$$V_{GS} > V_t$$ \quad \text{(Induced channel)} \quad (4.16)$$

and pinched off at the drain end by raising V_{DS} to a value that results in the gate-to-drain voltage falling below V_t.

$$V_{GS} \leq V_t$$ \quad \text{(Pinched-off channel)} \quad (4.17)$$

This condition can be expressed explicitly in terms of V_{GS0} as

$$V_{GS0} = V_{TH} - V_t$$ \quad \text{(Boundary)} \quad (4.19)$$

Substituting this value of V_{GS0} into Eq. (4.11) gives the saturation value of the current I_D as

$$I_D = \frac{1}{2} k_D W \left(V_{GS0} - V_t \right)^2$$

Thus in saturation the MOSFET provides a drain current whose value is independent of the drain voltage V_{DS} and is determined by the gate voltage V_{GS0} according to the square-law relationship in Eq. (4.20), a sketch of which is shown in Fig. 4.12. Since the drain current is independent of the drain voltage, the saturated MOSFET behaves as an ideal current source whose value is controlled by V_{GS0} according to the nonlinear relationship in Eq. (4.20). Figure 4.13 shows a circuit representation of this view of MOSFET operation in the saturation region. Note that this is a large-signal equivalent-circuit model.

Referring back to the I_D-V_{GS} characteristics in Fig. 4.11(b), we note that the boundary between the triode and the saturation regions is shown as a broken-line curve. Since this curve is characterized by $V_{GS} = V_{TH} - V_t$, its equation can be found by substituting for $V_{GS0} - V_t$ by V_{GS} in either the triode-region equation (Eq. 4.11) or the saturation-region equation (Eq. 4.20). The result is

$$I_D = \frac{1}{2} k_D W \frac{V_{GS}}{V_{TH}}$$

It should be noted that the characteristics depicted in Figs. 4.4, 4.11, and 4.12 are for a MOSFET with $k_D (W/L) = 1.0 \text{mA/V}$ and $V_t = 1 \text{V}$.

Finally, the chart in Fig. 4.14 shows the relative levels of the terminal voltages of the enhancement-type NMOS transistor for operation, both in the triode region and the saturation region.
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETS)

MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

Km

Characteristics for an Enhancement-type NMOS Transistor in Saturation

\[I_D = K_m V_{DS} \]

Figure 4.1

Finite Output Resistance in Saturation

Equation (4.12) and the corresponding large-signal equivalent circuit in Fig. 4.13 indicate that in saturation, \(I_D \) is independent of \(V_{DS} \). Thus, a change \(\Delta V_{DS} \) in the drain-to-source voltage causes a zero change in \(I_D \), which implies that the incremental resistance looking into the drain of a saturated MOSFET is infinite. This, however, is an idealization based on the premise that once the channel is pinched off at the drain end, further increases in \(V_{DS} \) have no effect on the channel's shape. But, in practice, increasing \(V_{DS} \) beyond \(V_{DS_{Sat}} \) does affect the channel somewhat. Specifically, as \(V_{DS} \) is increased, the channel pinch-off point is moved slightly away from the drain, toward the source. This is illustrated in Fig. 4.15, from which we note that the voltage across the channel remains constant at \(V_{GS} - V_t = V_{DS_{Sat}} \), and the additional voltage applied to the drain appears as a voltage drop across the narrow depletion region between the end of the channel and the drain region. This voltage accelerates the electrons that reach the drain end of the channel and sweeps them across the depletion region into the drain. Note, however, that (with depletion—layer widening) the channel length is in effect reduced, from \(L \) to \(L - \Delta L \), a phenomenon known as channel-length modulation. Now, since \(I_D \) is inversely proportional to the channel length (Eq. 4.20), \(I_D \) increases with \(\Delta L \).

Exercise 4.4

An enhancement-type NMOS transistor with \(V_t = 0.7 \) V has its source terminal grounded and a 1.5-V dc applied to the gate. In what region does the device operate for (a) \(V_{DS} = 0.5 \) V? (b) \(V_{DS} = 0.9 \) V? (c) \(V_{DS} = 3 \) V?

Ans. (a) Triode; (b) Saturation; (c) Saturation

Exercise 4.5

If the NMOS device in Exercise 4.4 has \(W = 10 \) μm, and \(L = 1 \) μm, find the value of drain current that results in each of the three cases (a), (b), and (c) specified in Exercise 4.4.

Ans. (a) 275 μA; (b) 320 μA; (c) 320 μA

Exercise 4.6

An enhancement-type NMOS transistor with \(V_t = 0.7 \) V conducts a current \(I_D = 100 \) pA when \(V_{GS} = V_{DS} = 1.2 \) V. Find the value of \(I_D \) for \(V_{GS} = 1.5 \) V and \(V_{DS} = 3 \) V. Also, calculate the value of the drain-to-source resistance \(r_{DS} \) for small \(V_{DS} \) and \(V_{GS} = 3.2 \) V.

Ans. 256 μA; 500 Ω

Figure 4.12

The \(I_D-V_{DS} \) characteristic for an enhancement-type NMOS transistor in saturation (\(V_t = 1 \) V).

Figure 4.13

Large-signal equivalent-circuit model of an enhancement MOSFET operating in the saturation region.

Figure 4.14

The relative levels of the terminal voltages of the enhancement NMOS transistor for operation in the triode region and in the saturation region.

Figure 4.15

Increasing \(V_{DS} \) beyond \(V_{DS_{Sat}} \) causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by \(\Delta L \)).
To account for the dependence of i_D on v_{DS} in saturation, we replace L in Eq. (4.20) with $L - \Delta L$ to obtain

$$i_D = \frac{1}{2} \frac{W}{L} (v_{GS} - V_f)^2$$

where we have assumed that $(\Delta L/L) \ll 1$. Now, if we assume that ΔL is proportional to v_{DS}, $\Delta L = \lambda' v_{DS}$ where λ' is a process-technology parameter with the dimensions of m/V.

It follows that λ is a process-technology parameter with the dimensions of V^{-1} and that, for a given process, λ is inversely proportional to the length selected for the channel. In terms of λ, the expression for i_D becomes

$$i_D = \frac{1}{2} \frac{W}{L} (v_{GS} - V_f)^2 (1 + \lambda v_{DS})$$

Equation (4.22) indicates that when channel-length modulation is taken into account, the saturation values of i_D depend on v_{DS}. Thus, for a given v_{GS}, a change Δv_{DS} yields a corresponding change Δi_D in the drain current i_D. It follows that the output resistance of the current source representing i_D in saturation is no longer infinite. Defining the output resistance r'_o as

$$r'_o = \frac{\partial i_D}{\partial v_{DS}}_{v_{GS} \text{ constant}}$$

and using Eq. (4.22) results in

$$r'_o = \frac{\partial i_D}{\partial v_{DS}}_{v_{GS} \text{ constant}}$$

or, equivalently,

$$r'_o = \frac{V_f}{I_D}$$

where I_D is the drain current without channel-length modulation taken into account; that is,

$$I_D = \frac{1}{2} \frac{W}{L} (v_{GS} - V_f)^2$$

Thus the output resistance is inversely proportional to the drain current. Finally, we show in Fig. 4.17 the large-signal equivalent circuit model incorporating r'_o.5
4.2.4 Characteristics of the p-Channel MOSFET

The circuit symbol for the p-channel enhancement-type MOSFET is shown in Fig. 4.18(a). Figure 4.18(b) shows a modified circuit symbol in which an arrowhead pointing in the normal direction of current flow is included on the source terminal. For the case where the source is connected to the substrate, the simplified symbol of Fig. 4.18(c) is usually used. The voltage and current polarities for normal operation are indicated in Fig. 4.18(d). Recall that for the p-channel device the threshold voltage \(V_T \) is negative. To induce a channel we apply a gate voltage that is more negative than \(V_T \).

\[
V_{GS} < V_T \quad \text{(Induced channel)} \quad (4.27)
\]

Finally, the chart in Fig. 4.19 provides a pictorial representation of these operating conditions.

![FIGURE 4.19](image-url)
4.2.7 Breakdown and Input Protection

As the voltage on the drain is increased, a value is reached at which the pn junction between the drain region and substrate suffers avalanche breakdown (see Section 3.7.4). This breakdown usually occurs at voltages of 20 V to 150 V and results in a somewhat rapid increase in current (known as a weak avalanche).

Another breakdown effect that occurs at lower voltages (about 20 V) in modern devices is called punch-through. It occurs in devices with relatively short channels when the drain voltage is increased to the point that the depletion region surrounding the drain region extends through the channel to the source. The drain current then increases rapidly. Normally, punch-through does not result in permanent damage to the device.

Yet another kind of breakdown occurs when the gate-to-source voltage exceeds about 30 V. This is the breakdown of the gate oxide and results in permanent damage to the device. Although 30 V may seem high, it must be remembered that the MOSFET has a very high input resistance, and thus small amounts of static charge accumulating on the gate capacitor can cause its breakdown voltage to be exceeded.
4.2.8 Summary
For easy reference we present in Table 4.1 a summary of the current-voltage relationships for enhancement-type MOSFETs.

<table>
<thead>
<tr>
<th>TABLE 4.1</th>
<th>Summary of the MOSFET Current-Voltage Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS Transistor</td>
<td>Symbol: D</td>
</tr>
<tr>
<td></td>
<td>G ——— O B</td>
</tr>
<tr>
<td>Overdrive voltage:</td>
<td>(V_{ov} = V_{GS} - V_t)</td>
</tr>
<tr>
<td>Operation in the triode region:</td>
<td></td>
</tr>
<tr>
<td>Conditions:</td>
<td>(1) (V_{GS} > V_t), (V_{DS} > V_{ov} > 0)</td>
</tr>
<tr>
<td>(i_{ds} = \frac{V_{GS} - V_t}{2V_{ov}})</td>
<td></td>
</tr>
<tr>
<td>Operation in the saturation region:</td>
<td></td>
</tr>
<tr>
<td>Conditions:</td>
<td>(1) (V_{GS} > V_t), (V_{DS} > V_{GS} - V_t)</td>
</tr>
<tr>
<td>(i_{ds} = \frac{1}{2} \left(\frac{V_{GS} - V_t}{V_{GS} - V_t} \right))</td>
<td></td>
</tr>
</tbody>
</table>

PMOS Transistor

Symbol:

| G ——— D | G ——— D |
| Overdrive voltage: | \(V_{ov} = V_{GD} \ |
| Operation in the triode region: |
| Conditions: | (1) \(V_{GD} > V_t \), \(V_{DS} > V_{GD} - V_t \) |
| \(i_{ds} = \frac{V_{GD} - V_t}{2V_{ov}} \) |

(Continued)
TABLE 4.1 (Continued)

- **i-v Characteristics:**
 - Same relationships as for NMOS transistors except:
 - Replace \(\mu_n \), \(k'_n \), and \(N_A \) with \(\mu_p \), \(k'_p \), and \(N_D \), respectively.
 - \(V^* \), \(V_{ov} \), \(V_A \), \(X \), and \(\gamma \) are negative.
 - Conditions for operation in the triode region:
 1. \(v_{as} < v_{ov} \) \(\Rightarrow v_{ov} > v_{gs} \) \(\Rightarrow v_{ds} > v_{gs} \)
 2. \(v_{dg} > v_{ts} \) \(\Rightarrow v_{ts} > v_{sd} \) \(\Rightarrow v_{sd} > v_{ov} \)
 - Conditions for operation in the saturation region:
 a) \(v_{gs} < v_{ov} \) \(\Rightarrow v_{ov} > v_{gs} \) \(\Rightarrow v_{ds} > v_{gs} \)
 b) \(v_{dg} < v_{ts} \) \(\Rightarrow v_{ts} > v_{sd} \)
 - Large-signal equivalent circuit model:

4.3 MOSFET CIRCUITS AT DC

Having studied the current-voltage characteristics of MOSFETs, we now consider circuits in which only dc voltages and currents are of concern. Specifically, we shall present a series of design and analysis examples of MOSFET circuits at dc. The objective is to instill in the reader a familiarity with the device and the ability to perform MOSFET circuit analysis both rapidly and effectively.

In the following examples, to keep matters simple and thus focus attention on the essence of MOSFET circuit operation, we will generally neglect channel-length modulation; that is, we will assume \(\lambda = 0 \). We will find it convenient to work in terms of the overdrive voltage; \(V_{ov} = V_{gs} - V_{th} \). Recall that for NMOS, \(V_S \), \(V_D \), and \(V_{ov} \) are positive while, for PMOS, \(V_S \), \(V_D \), and \(V_{ov} \) are negative. For PMOS the reader may prefer to write \(V_{gs} = |V_{ov}| = |V_S| + |V_{ov}| \).

EXAMPLE 4.2

![Circuit for Example 4.2.](image)

Design the circuit of Fig. 4.20 so that the transistor operates at \(I_D = 0.4 \) mA and \(V_D = +0.5 \) V. The NMOS transistor has \(V_T = 0.7 \) V, \(\mu_n C_{ox} = 100 \mu \text{A}/\text{V}^2 \), \(L = 1 \) \(\mu \text{m} \), and \(W = 32 \) \(\mu \text{m} \). Neglect the channel-length modification effect (i.e., assume that \(\lambda = 0 \)).

\[
V_{gs} = 2.5 \text{ V} \quad I_D \quad R_D \quad V_D
\]

\[
V_{sd} = -2.5 \text{ V}
\]

Solution

Since \(V_D = 0.5 \) V is greater than \(V_{th} \), this means the NMOS transistor is operating in the saturation region, and we use the saturation-region expression of \(I_D \) to determine the required value of \(V_{gs} \):

\[
I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{gs} - V_T)^2
\]

Substituting \(V_{gs} = V_{ov} \), \(I_D = 0.4 \) mA, \(\mu_n C_{ox} = 100 \mu \text{A}/\text{V}^2 \), and \(W/L = 32/1 \) gives

\[
400 = \frac{1}{2} \times 100 \times 32 \frac{V^2}{V^2}/V^2
\]

which results in

\[
V_{ov} = 0.5 \text{ V}
\]

Thus,

\[
V_{ov} = V_S + V_{ov} = 0.7 + 0.5 = 1.2 \text{ V}
\]

Returning to Fig. 4.20, we note that the gate is at ground potential. Thus the source must be at \(-1.2 \) V, and the required value of \(R_S \) can be determined from

\[
R_S = \frac{V_S - V_{ov}}{I_D}
\]

\[
= \frac{-12 - (-2.5)}{0.4} = 2.375 \text{ k}\Omega
\]

To establish a dc voltage of +0.5 V at the drain, we must select \(R_D \) as follows:

\[
R_D = \frac{V_{dv} - V_D}{I_D}
\]

\[
= \frac{2.5 - 0.5}{0.4} = 5 \text{ k}\Omega
\]
Redesigned the circuit of Fig. 4.20 for the following case:
\[V_{DD} = -2.5 \text{ V}, \quad V_f = 1 \text{ V}, \quad \mu_i C_{ox} = 60 \mu A/\text{V}^2, \quad \frac{W}{L} = 120 \mu m/3 \mu m, \quad I_D = 0.3 \text{ mA}, \quad V_D = +0.4 \text{ V}. \]

Ans. \(R_1 = 2.3 \text{ k}\Omega; \quad R_2 = 7 \text{ k}\Omega. \)

Design the circuit of Fig. 4.20 to obtain a current \(I_D \) of 80 \(\mu \text{A}. \) Find the value required for \(R \) and find the dc voltage \(V_D. \) Let the NMOS transistor have \(V_t = 0.6 \text{ V}, \quad \mu_i C_{ox} = 200 \mu A/\text{V}^2, \quad L = 0.8 \mu m, \quad W = 4 \mu m. \) Neglect the channel-length modulation effect (i.e., assume \(L = 0 \)).

\[\text{Ans.} \quad W/L = 10, \quad R = 20 \text{ k}\Omega; \quad V_D = +1.4 \text{ V}. \]

\[\text{FIGURE 4.21 Circuit for Example 4.3.} \]

Design the circuit in Fig. 4.22 to establish a drain voltage of 0.1 \text{ V.} What is the effective resistance between drain and source at this operating point? Let \(V_f = 1 \text{ V} \) and \(k'_n(W/L) = 1 \text{ mA/V}^2. \)

\[\text{Ans.} \quad 80 \mu \text{A}; \quad +1.4 \text{ V}. \]

\[\text{FIGURE 4.22 Circuit for Example 4.4.} \]

\[\text{FIGURE 4.12} \]

\[\text{FIGURE 4.21} \]

\[\text{FIGURE 4.22} \]

\[\text{FIGURE 4.20} \]

\[\text{FIGURE 4.21} \]

\[\text{FIGURE 4.22} \]
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

The required value for R_D can be found as follows:

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{5 - 0.1}{0.395} = 12.4 \Omega$$

In a practical discrete-circuit design problem one selects the closest standard value available for, say, 5% resistors—in this case, 12 kΩ; see Appendix G. Since the transistor is operating in the triode region with a small V_{DS}, the effective drain-to-source resistance can be determined as follows:

$$r_{DS} = \frac{V_{DS}}{I_D} = \frac{0.1}{0.395} = 253 \Omega$$

If in the circuit of Example 4.4 the value of R_u is doubled, find I_D. Ans. 0.2 mA; 0.05 V

Solution

Since the gate current is zero, the voltage at the gate is simply determined by the voltage divider formed by the two 10-MΩ resistors,

$$V_G = \frac{5 \times 10}{10 + 10} = 2.5 \text{ V}$$

With this positive voltage at the gate, the NMOS transistor will be turned on. We do not know, however, whether the transistor will be operating in the saturation region or in the triode region. We shall assume saturation-region operation, solve the problem, and then check the validity of our assumption. Obviously, if our assumption turns out not to be valid, we will have to solve the problem again for triode-region operation.

Refer to Fig. 4.23(b). Since the voltage at the gate is 5 V and the voltage at the source is $V_S = 0.5 \times I_D = 0.5 \times 0.05 = +3 \text{ V}$, we have

$$V_{GS} = 5 - 3 = 2 \text{ V}$$

$$V_D = 10 - 6 \times 0.5 = +7 \text{ V}$$

Since $V_D > V_G - V_t$, the transistor is operating in saturation, as initially assumed.

EXERCISE

4.13 If in the circuit of Example 4.4 the value of I_D is doubled, find approximate values for I_D and V_D.

Ans. 0.2 mA; 0.05 V

EXAMPLE 4.5

Analyze the circuit shown in Fig. 4.23(a) to determine the voltages at all nodal and the currents through all branches. Let $V_s = 1 \text{ V}$ and $k_s(W/L) = 1 \text{ mA/V}^2$. Neglect the channel-length modulation effect (i.e., assume $k_s = 0$).

Solution

Since the gate current is zero, the voltage at the gate is simply determined by the voltage divider formed by the two 10-MΩ resistors,

$$V_G = \frac{5 \times 10}{10 + 10} = 2.5 \text{ V}$$

With this positive voltage at the gate, the NMOS transistor will be turned on. We do not know, however, whether the transistor will be operating in the saturation region or in the triode region. We shall assume saturation-region operation, solve the problem, and then check the validity of our assumption. Obviously, if our assumption turns out not to be valid, we will have to solve the problem again for triode-region operation.

Refer to Fig. 4.23(b). Since the voltage at the gate is 5 V and the voltage at the source is $V_D = 0.5 \times I_D$, we have

$$V_G = 5 - 0.5 I_D$$

Thus I_D is given by

$$I_D = \frac{1}{2} k_s \left(\frac{2}{L} \left(V_{DS} - V_t \right) \right)$$

$$= \frac{1}{2} \times 1 \times (5 - 6 I_D - 0.5)$$

which results in the following quadratic equation in I_D:

$$187 I_D^2 - 25 \times 10^{-3} I_D + 8 = 0$$

This equation yields two values for I_D: 0.89 mA and 0.5 mA. The first value results in a source voltage of $6 \times 0.89 = 5.34$, which is greater than the gate voltage and does not make physical sense since it would imply that the NMOS transistor is cut off. Thus,

$$I_D = 0.5 \text{ mA}$$

$$V_s = 0.5 \times 6 = +3 \text{ V}$$

$$V_{GS} = 5 - 3 = 2 \text{ V}$$

$$V_D = 10 - 6 \times 0.5 = +7 \text{ V}$$

Since $V_D > V_G - V_t$, the transistor is operating in saturation, as initially assumed.

EXERCISES

4.14 For the circuit of Fig. 4.23, what is the largest value that R_u can have while the transistor remains in the saturation mode?

Ans. 12 kΩ

4.15 Redesign the circuit of Fig. 4.23 for the following requirements: $V_{DD} = +5 \text{ V}$, $I_D = 0.32 \text{ mA}$, $V_s = 3.6 \text{ V}$, $V_D = 3.4 \text{ V}$, with a 1 mA current through the voltage divider R_{G1} and R_{G2}. Assume the same MOSFET as in Example 4.5.

Ans. $R_{G1} = 1.6 \text{ MΩ}$, $R_{G2} = 3.4 \text{ MΩ}$, $R_u = R_D = 5 \text{ kΩ}$
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

Design the circuit of Fig. 4.24 so that the transistor operates in saturation with \(I_D = 0.5 \, \text{mA} \) and \(V_{DD} = +3 \, \text{V} \). Let the enhancement-type PMOS transistor have \(V_{th} = -1 \, \text{V} \) and
\[
(1/2)W/L = 1 \, \text{mA/V}^2 \]
Assume \(\lambda = 0 \). What is the largest value that \(R_D \) can have while maintaining saturation-region operation?

Solution

Since the MOSFET is to be in saturation, we can write
\[
I_D = \frac{1}{2} \frac{W}{L} (V_{GS} - V_t)^2 \]
Substituting \(I_D = 0.5 \, \text{mA} \) and \((1/2)W/L = 1 \, \text{mA/V}^2 \) and recalling that for a PMOS transistor \(V_{GS} \) is negative, we obtain
\[
V_{GS} = -1 \, \text{V} \]
and
\[
V_{DS} = V_s + V_{GW} = -1 - 1 = -2 \, \text{V} \]
Since the source is at +5 V, the gate voltage must be set to +3 V. This can be achieved by the appropriate selection of the values of \(R_1 \) and \(R_2 \). A possible selection is \(R_1 = 2 \, \text{M\Omega} \) and \(R_2 = 3 \, \text{M\Omega} \).

The value of \(R_D \) can be found from
\[
R_D = \frac{V_S}{I_D} = \frac{3}{0.5} = 6 \, \text{k\Omega} \]
Saturation-mode operation will be maintained up to the point that \(V_D \) exceeds \(V_S \) by \([V_t] \); that is, until
\[
V_{DS} = 3 + 1 = 4 \, \text{V} \]
This value of drain voltage is obtained with \(R_D \) given by
\[
R_D = \frac{4}{0.5} = 8 \, \text{k\Omega} \]

EXAMPLE 4.7

The NMOS and PMOS transistors in the circuit of Fig. 4.25 are matched with
\[
(1/2)W/L = 1 \, \text{mA/V}^2 \quad \text{and} \quad V_{th} = -1 \, \text{V} \]
Assuming \(\lambda = 0 \) for both devices, find the drain currents \(I_{DS} \) and \(I_{DS} \), as well as the voltage \(V_{GS} \), for \(V_{t} = 0 \, \text{V}, +2.5 \, \text{V}, \) and \(-2.5 \, \text{V}\).

Solution

Figure 4.25(b) shows the circuit for the case \(V_t = 0 \, \text{V} \). We note that since \(Q_N \) and \(Q_P \) are perfectly matched and are operating at equal \(|V_{GS}| \), the circuit is symmetrical, which dictates that \(V_{GS} = 0 \, \text{V} \). Thus both \(Q_N \) and \(Q_P \) are operating with \(|V_{GS}| = 0 \, \text{V} \) and, hence, in saturation. The drain currents can now be found from
\[
I_{DS} = I_{DS} = \frac{1}{2} \times 1 \times (2.5 - 1)^2 = 1.125 \, \text{mA} \]
Next, we consider the circuit with \(V_t = +2.5 \, \text{V} \). Transistor \(Q_P \) will have a \(V_{DS} \) of zero and thus will be cut off, reducing the circuit to that shown in Fig. 4.25. We note that \(V_{GS} \) will be
negative, and thus \(v_G \) will be greater than \(V_T \) causing \(Q_N \) to operate in the triode region. For simplicity we shall assume that \(v_{DS} \) is small and thus use

\[
I_{DN} = \frac{K(w/L_n)(V_{GS} - V_T)}{10(10)}
\]

From the circuit diagram shown in Fig. 4.25(c), we can also write

\[
I_{SW}(mA) = \frac{10 \text{kO}}{7}
\]

These two equations can be solved simultaneously to yield

\[
I_{DN} = 0.244 \text{ mA} \quad v_0 = -2.44 \text{ V}
\]

Note that \(V_{DS} = -2.44 - (-2.5) = 0.06 \text{ V} \), which is small as assumed.

Finally, the situation for the case \(v_l = -2.5 \text{ V} \) [Fig. 4.25(d)] will be the exact complement of the case \(v_i = +2.5 \text{ V} \). Transistor \(Q_P \) will be operating in the triode region with \(I_{DP} \) = 2.44 mA and \(v_0 = +2.44 \text{ V} \).

Exercise 4.16 The NMOS and PMOS transistors in the circuit of Fig. E4.16 are matched with \(L/g = 1 \text{ mA/V} \) and \(t = 1 \text{ V} \). Assuming \(A = 0 \) for both devices, find the drain currents \(i_D \) and \(i_{DS} \) and the voltage \(v_D \) for \(v_i = 0 \text{ V} \) and \(-2.5 \text{ V} \).

Figure 4.16

4.4 THE MOSFET AS AN AMPLIFIER AND AS A SWITCH

In this section we begin our study of the use of MOSFETs in the design of amplifier circuits. The basis for this important MOSFET application is that when operated in the saturation region, the MOSFET acts as a voltage-controlled current source: Changes in the gate-to-source voltage \(v_{GS} \) rise to changes in the drain current \(i_D \). Thus the saturated MOSFET can be used to implement a voltage-controlled amplifier (see Section 1.2). However, since we are interested in linear amplification—that is, in amplifiers whose output signal (in this case, the drain current \(i_D \)) is linearly related to their input signal (in this case, the gate-to-source voltage \(v_{GS} \))—we will have to find a way around the highly nonlinear (square-law) relationship of \(i_D \) to \(v_{GS} \).

The technique we will utilize to obtain linear amplification from a fundamentally nonlinear device is that of **dc biasing** the MOSFET to operate at a certain appropriate \(V_{GS} \) and a corresponding \(i_D \), and then superimposing the voltage signal to be amplified, \(v_{gs} \), on the dc bias voltage \(V_{GS} \). By keeping the signal \(v_{gs} \) "small," the resulting change in drain current, \(i_D \), can be made proportional to \(v_{gs} \). This technique was introduced in a general way in Section 1.4 and was applied in the case of the diode in Section 3.3.8. However, before considering the small-signal operation of the MOSFET amplifier, we will look at the "big picture": We will study the total or large-signal operation of a MOSFET amplifier. We will do this by deriving the voltage transfer characteristic of a commonly used MOSFET amplifier circuit. From the voltage transfer characteristic we will be able to clearly see the region over which the transistor can be biased to operate as a small-signal amplifier as well as those regions where it can be operated as a switch (i.e., being either fully "on" or fully "off"). MOS switches find application in both analog and digital circuits.

4.4.1 Large-Signal Operation—The Transfer Characteristic

Figure 4.26(a) shows the basic structure (skeleton) of the most commonly used MOSFET amplifier, the common-source (CS) circuit. The name common-source or grounded-source
4.4 THE MOSFET AS AN AMPLIFIER AND AS A SWITCH

4.4.2 Graphical Derivation of the Transfer Characteristic

The operation of the common-source circuit is governed by the MOSFET's I_D-V_{DS} characteristics and by the relationship between I_D and V_{DS} imposed by connecting the drain to the power supply V_{DD} via a resistor R_D, namely

$$V_{DS} = V_{DD} - R_D I_D$$ \hspace{1cm} (4.36)

or, equivalently,

$$I_D = \frac{V_{DD} - V_{DS}}{R_D}$$ \hspace{1cm} (4.37)

Figure 4.26(b) shows a sketch of the MOSFET's I_D-V_{DS} characteristic curves superimposed on which is a straight line representing the I_D-V_{DS} relationship of Eq. (4.37). Observe that the straight line intersects the V_{DS}-axis at V_{DD} (since from Eq. (4.36) $V_{DS} = V_{DD}$ at $I_D = 0$) and has a slope of $-1/R_D$. Since R_D is usually thought of as the load resistor of the amplifier (i.e., the resistor across which the amplifier provides its output voltage), the straight line in Fig. 4.26(b) is known as the load line.

The graphical construction of Fig. 4.26(b) can now be used to determine V_{DS} (equivalent to V_{DD}) for each given value of I_D ($V_{DS} = V_{DD}$). Specifically, for any given value of I_D, we locate the corresponding I_D-V_{DS} curve and find V_{DS} from the point of intersection of this curve with the load line.

Qualitatively, the circuit works as follows: Since $I_D = I_D$, we see that for $V_{DS} < V_D$, the transistor will be off, I_D will be zero, and $V_{DS} = V_{DD}$. Operation will be at the point labeled A. As V_{DS} exceeds V_D, the transistor turns on, I_D increases, and V_{DS} decreases. Since V_{DS} will initially be high, the transistor will be operating in the saturation region. This corresponds to points along the segment of the load line from A to B. We have identified a particular point in this region of operation and labeled it Q. It is obtained for $V_{DS} = V_{DD}$ and has the coordinates $V_{DS} = V_{DD}$ and $I_D = I_D$.

Saturation-region operation continues until V_{DS} decreases to the point that it is below V_D by V_T volts. At this point, $V_{DS} = V_D - V_T$ and the MOSFET enters its triode region of operation. This is indicated in Fig. 4.26(b) by point B, which is at the intersection of the load line and the broken-line curve that defines the boundary between the saturation and the triode regions. Point B is defined by

$$V_{DS} = V_D - V_T$$

For $V_{DS} > V_D$, the transistor is driven deeper into the triode region. Note that because the characteristic curves in the triode region are bunched together, the output voltage decreases slowly towards zero. Here we have identified a particular operating point C obtained for $V_{DS} = V_D$. The corresponding output voltage V_{DD} will usually be very small. This point-by-point determination of the transfer characteristic results in the transfer curve shown in Fig. 4.26(c). Observe that we have delineated its three distinct segments, each corresponding to one of the three regions of operation of MOSFET Q_2. We have also labeled the critical points of the transfer curve in correspondence with the points in Fig. 4.26(b).

Circuit Diagram:

\[V_{DD} \quad Q \quad V_{GS} \quad V_{DS} \quad V_T \quad V_T \quad V_{DD} \]

1. **Cutoff Region (Point A):** $V_{DS} = V_{DD}$, $I_D = 0$
2. **Saturation Region (Point B):** $V_{DS} = V_D - V_T$, I_D increases
3. **Triode Region (Point C):** $V_{DS} > V_D$, I_D decreases

\[V_{GS} = V_{DD} - V_T \]

Figure 4.26 (Continued) Transfer characteristic showing operation as an amplifier based at point Q:

In this way the transconductance amplifier is converted into a voltage amplifier. Finally, note that of course a dc power supply is needed to turn the MOSFET on and to supply the necessary power for its operation.

We wish to analyze the circuit of Fig. 4.26(a) to determine its output voltage V_{DS} for various values of its input voltage V_{DD}, that is, to determine the **voltage transfer characteristic** of the MOSFET. For this purpose, we will assume V_T to be in the range of 0 to V_{DD}. To obtain greater insight into the operation of the circuit, we will derive its transfer characteristic in two ways: graphically and analytically.
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

4.4.3 Operation as a Switch

When the MOSFET is used as a switch, it is operated at the extreme points of the transfer curve. Specifically, the device is turned off by keeping \(v_D < V_D \), resulting in operation somewhere on the segment \(X_A \) with \(v_D = V_D \). The switch is turned on by applying a voltage close to \(V_D \), resulting in operation close to point \(C \) with \(v_D \) very small (at \(C, v_D = V_C \)). At this juncture we observe that the transfer curve of Fig. 4.26(c) is of the form presented in Section 1.7 for the digital logic inverter. Indeed, the common-source MOS circuit can be used as a logic inverter with the "low" voltage level close to 0 V and the "high" voltage level close to \(V_D \). More elaborate MOS logic inverters are studied in Section 4.10.

4.4.4 Operation as a Linear Amplifier

To operate the MOSFET as an amplifier, we make use of the saturation-mode segment of the transfer curve. The device is biased at a point located somewhere close to the middle of the curve; point \(Q \) is a good example of an appropriate bias point. The dc bias point is also called the quiescent point, which is the reason for labeling it \(Q \). The voltage signal to be amplified \(v_i \) is then superimposed on the dc voltage \(V_D \) as shown in Fig. 4.26(c). By keeping \(v_i \) sufficiently small to restrict operation to an almost linear segment of the transfer curve, the resulting output voltage signal \(v_o \) will be proportional to \(v_i \). That is, the amplifier will be very nearly linear, and \(v_i \) will have the same waveform as \(v_i \) except that it will be larger by a factor equal to the voltage gain of the amplifier at \(Q \), \(A \), where

\[
A = \left. \frac{dv_o}{dv_i} \right|_{v_i = v_o} \quad (4.38)
\]

Thus the voltage gain is equal to the slope of the transfer curve at the bias point \(Q \). Observe that the slope is negative, and thus the basic CS amplifier is inverting. This should also be evident from the waveforms of \(v_i \) and \(v_o \), shown in Fig. 4.26(c). It should be obvious that if the amplitude of the input signal \(v_i \) is increased, the output signal will become distorted since operation will no longer be restricted to an almost linear segment of the transfer curve.

We shall return to the small-signal operation of the MOSFET in Section 4.6. For the time being, however, we wish to make an important observation about selecting an appropriate location for the bias point \(Q \). Since the output signal will be superimposed on the dc voltage at the drain \(V_D \) or \(V_D \), it is important that \(V_D \) be of such value to allow for the required output signal swing. That is, \(V_D \) should be lower than \(V_D \) by a sufficient amount so that the slope is negative, and thus the basic CS amplifier is inverting. This should be also evident from the circuit not having sufficient headroom. Similarly, if \(V_D \) is too close to the boundary of the triode region, the MOSFET would enter the triode region for the part of the cycle near the negative peaks, resulting in a distorted output signal. We speak of this situation as the circuit not having sufficient "headroom." Similarly, if \(V_D \) is too close to the boundary of the triode region, the MOSFET would enter the triode region for the part of the cycle near the positive peaks, resulting in a distorted output signal. We speak of this situation as the circuit not having sufficient "headroom." Finally, it is important to note that although we made our remarks on the selection of bias-point location in the context of a given transfer curve, the circuit designer also has to decide on a value for \(R_o \), which of course determines the transfer curve. It is therefore more appropriate when considering the location of the bias point \(Q \) to do so with reference to the \(i_D = V_D \) plane. This point is further illustrated by the sketch in Fig. 4.27.

4.4.5 Analytical Expressions for the Transfer Characteristic

The \(i-v \) relationships that describe the MOSFET operation in the three regions—cutoff, saturation, and triode—can be easily used to derive analytical expressions for the three segments of the transfer characteristic in Fig. 4.26(a).

The Cutoff-Region Segment, \(X_A \) Here, \(v_D \leq V_D \), and \(v_o = V_D \).

The Saturation-Region Segment, \(AQB \) Here, \(v_D \geq V_D \), and \(v_o \leq v_D \). Neglecting channel-length modulation and substituting for \(i_D \) from

\[
i_D = \frac{1}{2} \left(\mu C_W \right) \left(\frac{W}{L} \right) (v_D - V_D^2)
\]

into

\[
v_D = V_D + R_o i_D
\]

gives

\[
v_D = V_D + \frac{1}{2} R_o \mu C_W \left(\frac{W}{L} \right) (v_D - V_D^2)
\]

(4.39)

We can use this relationship to derive an expression for the incremental voltage gain \(A \) at a bias point \(Q \) at which \(v_D = V_D \) as follows:

\[
A = \left. \frac{dv_o}{dv_i} \right|_{v_i = v_o}
\]

(4.39)
Thus,
\[A_v = -\frac{r_{ds}}{R_D} \frac{W}{L} (V_{dd} - V_t) \] (4.40)

Observe that the voltage gain is proportional to the values of \(R_D \), the transconductance parameter \(k' = \mu_C C_{ox} \), the transistor aspect ratio \(W/L \), and the overdrive voltage at the bias point \(V_{dd} = V_{ds} - V_t \).

Another simple and very useful expression for the voltage gain can be obtained by substituting \(v_j = V_{dd} \) and \(v_0 = V_0 \) in Eq. (4.39), utilizing Eq. (4.40), and substituting \(V_{dd} - V_t \) ~ \(V_{ov} \).

The result is
\[A_v = \frac{2(V_{dd} - V_0)}{V_{ov}} = 2 \frac{V_{dd} - V_0}{V_{ov}} \] (4.41)

where \(V_{ov} \) is the dc voltage across the drain resistor, that is, \(V_{ov} = V_{dd} - V_0 \).

The end point of the saturation-region segment is characterized by
\[V_{ib} - V_t \] (4.42)

Thus its coordinates can be determined by substituting \(v_0 = V_{ib} \) and \(v_0 = V_0 \) in Eq. (4.39) and solving the resulting equation simultaneously with Eq. (4.42).

The Triode-Region Segment, BC
Here, \(v_j \geq V_t \) and \(v_0 \leq V_0 - V_t \). Substituting for \(i_d \) by the triode-region expression
\[i_d = \mu_C C_{ox} \frac{W}{L} (V_j - V_t) \frac{v_0 - \frac{1}{2} V_0}{2} \]

into
\[v_0 = V_{dd} - R_D \mu_C C_{ox} \frac{W}{L} (V_j - V_t) \frac{v_0 - \frac{1}{2} V_0}{2} \]

gives
\[v_0 = V_{dd} - R_D \mu_C C_{ox} \frac{W}{L} (V_j - V_t) \frac{v_0 - \frac{1}{2} V_0}{2} \]

The portion of this segment for which \(v_0 \) is small is given approximately by
\[v_0 = V_{dd} - R_D \mu_C C_{ox} \frac{W}{L} (V_j - V_t) \frac{v_0}{2} \]

which reduces to
\[v_0 = V_{dd} \left[1 + R_D \mu_C C_{ox} \frac{W}{L} (V_j - V_t) \right] \] (4.43)

We can use the expression for \(r_{ds} \), the drain-to-source resistance near the origin of the \(V_j-V_{ds} \) plane (Eq. 4.13),
\[r_{ds} = 1 \left[\mu_C C_{ox} \frac{W}{L} (V_j - V_t) \right] \]

with Eq. (4.43) to obtain
\[v_0 = V_{dd} \left[\frac{r_{ds}}{R_D} + \frac{R_D}{R_D} \right] \] (4.44)

which reduces to
\[v_0 = V_{dd} \frac{r_{ds}}{R_D} \] (4.45)

To make the above analysis more concrete we consider a numerical example. Specifically, consider the CS circuit of Fig. 4.26(a) for the case \(k' = 1 \text{mA/V}^2, V_t = 1 \text{V}, R_D = 18 \text{k}\Omega, \text{and } V_{dd} = 10 \text{V} \).

Solution
First, we determine the coordinates of important points on the transfer curve.

(a) Point N:
\[v_0 = 0 \text{V}, \quad v_0 = 10 \text{V} \]

(b) Point A:
\[v_0 = 1 \text{V}, \quad v_0 = 10 \text{V} \]

(c) Point B: Substituting
\[v_0 = V_{td} = V_{oa} + V_t, \quad v_0 = V_{oa} + 1 \]

and \(v_0 = V_{oa} \) in Eq. (4.39) results in
\[9V_{oa} + V_{oa} - 10 = 0 \]

which has two roots, only one of which makes physical sense, namely,
\[V_{oa} = 1 \text{V} \]

Correspondingly,
\[V_0 = 1 + 1 = 2 \text{V} \]

(d) Point C: From Eq. (4.43) we find
\[V_{oa} = \frac{10}{1 + 18 \times 1 \times (10 - 1)} = 0.001 \text{V} \]

which is very small, justifying our use of the approximate expression in Eq. (4.43).

Next, we bias the amplifier to operate at an appropriate point on the saturation-region segment. Since this segment extends from \(v_0 = 1 \text{V} \) to \(10 \text{V} \), we choose to operate at \(V_{oa} = 4 \text{V} \). This point allows for reasonable signal swing in both directions and provides a higher voltage gain than available at the middle of the range (i.e., at \(V_{oa} = 5.5 \text{V} \)). To operate at an output dc voltage
At \(v_{GS} = 1.816 \) V, the dc drain current must be

\[
I_D = \frac{V_{DD} - V_{GB}}{R_D} = \frac{10 - 4}{18} = 0.333 \text{ mA}
\]

We can find the required overdrive voltage \(V_{ov} \) from

\[
I_D = \frac{1}{2} \frac{W}{L} \frac{V_{ov}}{V_{TH}}
\]

\[
V_{ov} = \frac{2 \times 0.333}{3} = 0.816 \text{ V}
\]

Thus, we must operate the MOSFET at a dc gate-to-source voltage

\[
V_{GSQ} = V_g + V_{ov} = 1.816 \text{ V}
\]

The voltage-gain of the amplifier at this bias point can be found from Eq. (4.40) as

\[
A_v = -18 \times \frac{1}{1.816 - 1} = -14.7 \text{ V/V}
\]

To gain insight into the operation of the amplifier we apply an input signal \(v_i \) of, say, 150 mV peak-to-peak amplitude, of, say, triangular waveform. Figure 4.28(a) shows such a signal superimposed on the dc bias voltage \(V_{GB} = 1.816 \) V. As shown, \(v_{GS} \) varies linearly between 1.741 V and 1.891 V around the bias value of 1.816 V. Correspondingly,

\[
\begin{align*}
&v_{GS} = 1.741 \text{ V}, &i_D &= 0.275 \text{ mA, and } v_o = 10 - 0.275 \times 18 = 5.05 \text{ V} \\
&v_{GS} = 1.816 \text{ V}, &i_D &= 0.333 \text{ mA, and } v_o = 10 - 0.333 \times 18 = 2.85 \text{ V}
\end{align*}
\]

Thus, while the positive increment is 1.05 V, the negative excursion is slightly larger at 1.15 V, again a result of the nonlinear transfer characteristic. The nonlinear distortion of \(v_o \) can be reduced by reducing the amplitude of the input signal.

Further insight into the operation of this amplifier can be gained by considering its graphical analysis shown in Fig. 4.28(b). Observe that as \(v_{GS} \) varies, because of \(v_i \), the instantaneous operating point moves along the load line, being at the intersection of the load line and the \(i_D-v_{DS} \) curve corresponding to the instantaneous value of \(v_{GS} \).

We note that by biasing the transistor at a quiescent point in the middle of the saturation region, we ensure that the instantaneous operating point always remains in the saturation region, and thus nonlinear distortion is minimized. Finally, we note that in this example we carried out our calculations to three decimal digits, simply to illustrate the concepts involved. In practice, this degree of precision is not justified for approximate manual analysis.
4.5 BIASING IN MOS AMPLIFIER CIRCUITS

As mentioned in the previous section, an essential step in the design of a MOSFET amplifier circuit is the establishment of an appropriate dc operating point for the transistor. This is known as biasing or bias design. An appropriate dc operating point or bias point is characterized by a stable and predictable dc drain current that ensures operation in the saturation region for all expected input-signal levels.

4.5.1 Biasing by Fixing \(V_{GS} \)

The most straightforward approach to biasing a MOSFET is to fix its gate-to-source voltage \(V_{GS} \) to the value required to provide the desired \(I_D \). This voltage value can be derived from the power supply voltage \(V_{DS} \) through the use of an appropriate voltage divider. Alternatively, it can be derived from another suitable reference voltage that might be available in the system. Independent of how the voltage \(V_{GS} \) may be generated, this is not a good approach to biasing a MOSFET. To understand the reason for this statement, recall that

\[
I_D = \frac{1}{2} \mu_C W \left(V_{GS} - V_T \right) \]

and note that the values of the threshold voltage \(V_T \), the oxide-capacitance \(C_{ox} \), and (to a lesser extent) the transistor aspect ratio \(W/L \) vary widely among devices of supposedly the same size and type. This is certainly the case for discrete devices, in which large spreads in the values of these parameters occur among devices of the same manufacturer's part number. The spread is also large in integrated circuits, especially among devices fabricated on different wafers and to a lesser extent between different batches of wafers. Furthermore, both \(V_T \) and \(\mu_C \) depend on temperature, with the result that if \(V_{GS} \) is fixed, the drain current \(I_D \) becomes very much temperature dependent.

4.5.2 Biasing by Fixing \(V_C \) and Connecting a Resistance in the Source

An excellent biasing technique for discrete MOSFET circuits consists of fixing the dc voltage at the gate, \(V_C \), and connecting a resistance in the source lead, as shown in Fig. 4.30(a). For this circuit we can write

\[
V_C = V_G + R_I I_D \quad (4.46)
\]

Now, if \(V_C \) is much greater than \(V_{GS} \), \(I_D \) will be mostly determined by the values of \(V_C \) and \(R_I \). However, even if \(V_C \) is not much larger than \(V_{GS} \), resistor \(R_I \) provides negative feedback, which acts to stabilize the value of the bias current \(I_D \). To see how this comes about consider the case when \(I_D \) increases for whatever reason. Equation (4.46) indicates that since \(V_C \) is constant, \(V_{GS} \) will have to decrease. This in turn results in a decrease in \(I_D \), a change that is opposite to that initially assumed. Thus the action of \(R_I \) works to keep \(I_D \) as constant as possible. This negative feedback action of \(R_I \) gives it the same degenaration resistance, a name that we will appreciate much better at a later point in this text.

Figure 4.30(b) provides a graphical illustration of the effectiveness of this biasing scheme. Here we show the \(I_{DS} - V_{GS} \) characteristics for two devices that represent the extremes of a batch of MOSFETs. Superimposed on the device characteristics is a straight line that represents the constraint imposed by the bias circuit—namely, Eq. (4.46). The intersection of this straight line with the \(I_{DS} - V_{GS} \) characteristic curve provides the coordinates \((I_D, V_{GS}) \) of the bias point. Observe that compared to the case of fixed \(V_{GS} \), here the variability obtained in \(I_D \) is much smaller. Also, note that the variability decreases as \(V_C \) and \(R_I \) are made larger (providing a bias line that is less steep).
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

282

CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

When two power supplies are available, as is often the case, the somewhat simpler bias arrangement of Fig. 4.30(c) can be utilized. This circuit is an implementation of Eq. (4.46), with V_G replaced by V_D. Resistor R_G establishes a dc ground at the gate and presents a high input resistance to a signal source that may be connected to the gate through a coupling capacitor, as shown in Fig. 4.30(b). Here capacitor C_{CG} blocks dc and thus allows us to couple the signal source to the amplifier input without disturbing the MOSFET dc bias point. The value of C_{CG} should be selected sufficiently large so that it approximates a short circuit at all signal frequencies of interest. We shall study capacitively coupled MOSFET amplifiers, which are suitable only in discrete circuit design, in Section 4.7. Finally, note that in the circuit of Fig. 4.30(c), R_{DG} is selected to be as large as possible to obtain high gain but small enough to allow for the desired signal swing at the drain while keeping the MOSFET in saturation at all times.

Two possible practical discrete implementations of this bias scheme are shown in Fig. 4.30(d) and (e). The circuit in Fig. 4.30(d) utilizes one power-supply V_{DD} and derives V_G through a voltage divider (R_{G1}, R_{G2}). Since $I_D = 0$, R_{G1} and R_{G2} can be selected to be very large (in the MQ range), allowing the MOSFET to present a large input resistance to a signal source that may be connected to the gate through a coupling capacitor, as shown in Fig. 4.30(b). Here capacitor C_{CG} blocks dc and thus allows us to couple the signal source to the amplifier input without disturbing the MOSFET dc bias point. The value of C_{CG} should be selected sufficiently large so that it approximates a short circuit at all signal frequencies of interest. We shall study capacitively coupled MOSFET amplifiers, which are suitable only in discrete circuit design, in Section 4.7. Finally, note that in the circuit of Fig. 4.30(c), R_{DD} is selected to be as large as possible to obtain high gain but small enough to allow for the desired signal swing at the drain while keeping the MOSFET in saturation at all times.

When two power supplies are available, as is often the case, the somewhat simpler bias arrangement of Fig. 4.30(c) can be utilized. This circuit is an implementation of Eq. (4.46), with V_G replaced by V_D. Resistor R_G establishes a dc ground at the gate and presents a high input resistance to a signal source that may be connected to the gate through a coupling capacitor.
If the NMOS transistor is replaced with another having $V_D = 1.5$ V, the new value of I_D can be found as follows:

$$I_D = \frac{1}{2} \times 1 \times (V_{GS} - 1.5)$$

(4.47)

$$V_D = V_{GS} + I_D R_G$$

(4.48)

Solving Eqs. (4.47) and (4.48) together yields

$$I_D = 0.455 \text{ mA}$$

Thus the change in I_D is

$$\Delta I_D = 0.455 - 0.5 = -0.045 \text{ mA}$$

which is $-0.045 \times 100 = -9\%$ change.

4.5.3 Biasing Using a Drain-to-Gate Feedback Resistor

A simple and effective discrete-circuit biasing arrangement utilizing a feedback resistor connected between the drain and the gate is shown in Fig. 4.32. Here the large feedback resistance R_D (usually in the MV range) forces the dc voltage at the gate to be equal to that at the drain (because $I_D = 0$). Thus we can write

$$V_{GS} = V_{DS} = V_D - R_D I_D$$

which can be rewritten in the form

$$V_{GS} = V_D - R_D I_D$$

(4.49)

which is identical in form to Eq. (4.46), which describes the operation of the bias scheme discussed above (that in Fig. 4.30(a)). Thus, here too, if I_D for some reason changes, say increases, then Eq. (4.49) indicates that V_{GS} must decrease. The decrease in V_{GS} in turn causes a decrease in I_D, a change that is opposite in direction to the one originally assumed. Thus the negative feedback or degeneration provided by R_D works to keep the value of I_D as constant as possible.

4.5.4 Biasing Using a Constant-Current Source

The most effective scheme for biasing a MOSFET amplifier is that using a constant-current source. Figure 4.33(a) shows such an arrangement applied to a discrete MOSFET. Here R_C (usually in the MQ range) establishes a dc ground at the gate and presents a large resistance to an input signal source that can be capacitively coupled to the gate. Resistor R_D establishes an appropriate dc voltage at the drain to allow for the required output signal swing while ensuring that the transistor always remains in the saturation region. A circuit for implementing the constant-current source I is shown in Fig. 4.33(b). The heart of the circuit is transistor Q_1, whose drain is shorted to its gate and thus is operating in the saturation region, such that

$$I_{DS} = \frac{1}{2} \left(\frac{W}{L} \right) (V_{GS} - V_T)^2$$

(4.50)

where we have neglected channel-length modulation (i.e., assumed $\lambda = 0$). The drain current of Q_1 is supplied by V_{DD} through resistor R. Since the gate currents are zero,

$$I_D = I_{DR} = \frac{V_{DD} - V_{DS}}{R}$$

(4.51)
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETS)

FIGURE 4.33 (a) Biasing the MOSFET using a constant-current source. (b) Implementation of the constant-current source using a constant-current source.

where the current through R is considered to be the reference current of the constant source and is denoted \(I_{D0} \). Given the parameter values of \(Q_1 \) and a desired value for \(I_{D0} \), and (4.51) can be used to determine the value of \(R \). Now consider transistor \(Q_2 \); it has the same \(V_{GS0} \) as \(Q_1 \); thus, if we assume that it is operating in saturation, its drain current, which is the desired current \(I \) of the constant source, will be

\[
I = I_{D0} = \frac{1}{2} \frac{W}{L} \left(V_{GS0} - V_t \right)^2
\]

where we have neglected channel-length modulation. Equations (4.51) and (4.52) enable us to relate the current \(I \) to the reference current \(I_{D0} \):

\[
I = I_{D0} \frac{W}{L} \frac{V_{GS0}}{V_{D0}}
\]

Thus \(I \) is related to \(I_{D0} \) by the ratio of the aspect ratios of \(Q_1 \) and \(Q_2 \). This circuit, known as a current mirror, is very popular in the design of IC MOS amplifiers and will be studied in great detail in Chapter 6.

EXERCISE

4.6.2 Using two transistors \(Q_1 \) and \(Q_2 \) having equal lengths but widths related by \(W_2 = W_1 = 5 \), design the circuit of Fig. 4.33(b) to obtain \(I = 0.5 \) mA. Let \(V_{GS0} = 5 \) V, \(V_t = 0.4 \) V, \(V_{D0} = 5 \) V, \(V_{DD} = 10 \) V, and \(n = 0 \). Find the required values for \(R \). What is the voltage at the gates of \(Q_1 \) and \(Q_2 \)? What is the lowest voltage allowed at the drain of \(Q_2 \) while \(Q_2 \) remains in the saturation region?

Ans. \(R = 3.5 \) kΩ \(V_{DD} = 4.5 \) V

FIGURE 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.
4.6.2 The Signal Current in the Drain Terminal

Next, consider the situation with the input signal v_{gs} applied. The total instantaneous gate-to-source voltage will be

$$v_{gs} = V_{gs} + v_{ns}$$

resulting in the total instantaneous drain current i_D:

$$i_D = I_D + i_d = \frac{1}{2} \frac{k_n W}{L} (V_{gs} - V_t)^2 + \frac{k_n W}{L} (V_{gs} - V_t) i_{gs} + \frac{1}{2} \frac{k_n W}{L} v_{ns}^2$$

(4.57)

The first term on the right-hand side of Eq. (4.57) can be recognized as the dc bias current I_D (Eq. 4.54). The second term represents a current component that is directly proportional to the input signal v_{gs}. The third term is a current component that is proportional to the square of the input signal. This last component is undesirable because it represents nonlinear distortion. To reduce the nonlinear distortion introduced by the MOSFET, the input signal should be kept small so that

$$(2k_n n_j v_{gs} < k_n n_j (V_{cs} - V_t) v_{gs})$$

resulting in

$$v_{gs} < 2(V_{cs} - V_t)$$

(4.58)

or, equivalently,

$$v_{gs} < 2V_{ov}$$

(4.59)

where V_{ov} is the overdrive voltage at which the transistor is operating. If this small-signal condition is satisfied, we may neglect the last term in Eq. (4.57) and express i_D as

$$i_D = I_D + i_d = \frac{1}{2} \frac{k_n W}{L} (V_{gs} - V_t)^2 + \frac{k_n W}{L} (V_{gs} - V_t) v_{gs}$$

(4.60)

The parameter that relates i_d and v_{gs} is the MOSFET transconductance g_m:

$$g_m = \frac{i_d}{v_{gs}} = \frac{k_n W}{L} (V_{gs} - V_t)$$

(4.61)

or in terms of the overdrive voltage V_{ov},

$$g_m = \frac{k_n W}{L} v_{ov}$$

(4.62)

Figure 4.35 presents a graphical interpretation of the small-signal operation of the enhancement MOSFET amplifier. Note that g_m is equal to the slope of the i_d-v_{gs} characteristic at the bias point,

$$g_m = \frac{\partial i_d}{\partial (V_{gs} - V_t)}$$

(4.63)

4.6.3 The Voltage Gain

Returning to the circuit of Fig. 4.34, we can express the total instantaneous drain voltage v_D as follows:

$$v_D = V_{dd} - R_D i_D$$

Under the small-signal condition, we have

$$v_D = V_{dd} - R_D (I_D + i_d)$$

which can be rewritten as

$$v_D = V_{dd} - R_D i_d$$

Thus the signal component of the drain voltage is

$$v_D = -g_m v_{gs} R_D$$

(4.64)

which indicates that the voltage gain is given by

$$A_v = \frac{V_D}{V_{gs}} = -g_m R_D$$

(4.65)

The minus sign in Eq. (4.65) indicates that the output signal v_D is 180° out of phase with respect to the input signal v_{gs}. This is illustrated in Fig. 4.36, which shows v_{gs} and v_D. The input signal is assumed to have a triangular waveform with an amplitude much smaller than $2(V_{cs} - V_t)$, the small-signal condition in Eq. (4.58), to ensure linear operation. For operation in the saturation region at all times, the minimum value of v_{gs} should not fall below the corresponding value of v_D by more than V_t. Also, the maximum value of v_{gs} should
smaller than \(V_{DD} \); otherwise the FET will enter the cutoff region and the peaks of the output signal waveform will be clipped off.

Finally, we note that by substituting for \(g_m \) from Eq. (4.61) the voltage gain expression in Eq. (4.65) becomes identical to that derived in Section 4.4—namely, Eq. (4.40).

4.6.4 Separating the DC Analysis and the Signal Analysis

From the preceding analysis, we see that under the small-signal approximation, signal quantities are superimposed on dc quantities. For instance, the total drain current \(i_D \) equals the dc current \(I_D \) plus the signal current \(i_d \), the total drain voltage \(v_D \) equals \(V_D \) plus the signal voltage \(v_d \), and so on. It follows that the analysis and design can be greatly simplified by separating dc or bias calculations from small-signal calculations. That is, once a stable dc operating point has been established and all dc quantities calculated, we may then perform signal analysis ignoring dc quantities.

4.6.5 Small-Signal Equivalent-Circuit Models

From a signal point of view the FET behaves as a voltage-controlled current source. It accepts a signal \(v_{gs} \) between gate and source and provides a current \(g_m v_{gs} \) at the drain terminal. The input resistance of this controlled source is very high—ideally, infinite. The output resistance—that is, the resistance looking into the drain—also is high, and we have assumed it to be infinite thus far. Putting all of this together, we arrive at the circuit in Fig. 4.37(a), which represents the small-signal operation of the MOSFET and is thus a small-signal model or a small-signal equivalent circuit.

In the analysis of a MOSFET amplifier circuit, the transistor can be replaced by the equivalent circuit model shown in Fig. 4.37(a). The rest of the circuit remains unchanged except that ideal constant dc voltage sources are replaced by short circuits. This is a result of the fact that the voltage across an ideal constant dc voltage source does not change, and thus there will always be a three voltage signal across a constant dc voltage source. A dual statement applies for constant dc current sources; namely, the signal current of an ideal constant dc current source will always be zero, and thus an ideal constant dc current source can be replaced by an open circuit in the small-signal equivalent circuit of the amplifier. The circuit resulting can then be used to perform any required signal analysis, such as calculating voltage gain.

The most serious shortcoming of the small-signal model of Fig. 4.37(a) is that it assumes the drain current in saturation is independent of the drain voltage. From our study of the MOSFET characteristics in saturation, we know that the drain current does in fact depend on \(V_{DS} \), but not linearly. Such dependence was modeled by a finite resistance \(r_0 \) between drain and source, whose value was given by Eq. (4.26) in Section 4.2.3, which we repeat here as

\[
r_0 = \frac{V_A}{I_D} \quad (4.66)
\]

where \(V_A = 1/A \) is a MOSFET parameter that either is specified or can be measured. It should be recalled that for a given process technology, \(V_A \) is proportional to the MOSFET channel length. The current \(I_D \) is the value of the dc drain current without the channel-length modulation taken into account; that is,

\[
I_D = \frac{1}{2} \mu C \frac{W}{L} V_D^2 \quad (4.67)
\]

Typically, \(r_0 \) is in the range of 10 k\(\Omega \) to 1000 k\(\Omega \). It follows that the accuracy of the small-signal model can be improved by including \(r_0 \) in parallel with the controlled source, as shown in Fig. 4.37(b).

It is important to note that the small-signal model parameters \(g_m \) and \(r_0 \) depend on the dc bias point of the MOSFET.
Returning to the amplifier of Fig. 4.34, we find that replacing the MOSFET with the small-signal model of Fig. 4.37(b) results in the voltage-gain expression

$$A_v = \frac{V_{out}}{V_{in}} = -g_m(R_D/r_c)$$ \hspace{1cm} (4.68)

Thus the finite output resistance r_c results in a reduction in the magnitude of the voltage gain.

Although the analysis above is performed on an NMOS transistor, the results, and the equivalent circuit models of Fig. 4.37, apply equally well to PMOS devices, except for using $[V_{GS} - V_I, V_{DS}]$, and $[V_A]$ and replacing k'_c with k'_v.

4.6.6 The Transconductance g_m

We shall now take a closer look at the MOSFET transconductance given by Eq. (4.61), which we repeat here as

$$g_m = k'_c(W/L)(V_{GS} - V_I) = k'_v(W/L)V_{OV}$$ \hspace{1cm} (4.69)

This relationship indicates that g_m is proportional to the process transconductance parameter $k'_c = \mu C_w$ and to the W/L ratio of the MOSFET; hence to obtain relatively large transconductance the device must be short and wide. We also observe that for a given device the transconductance is proportional to the overdrive voltage, $V_{OV} = V_{GS} - V_I$, the amount by which the bias voltage V_{GS} exceeds the threshold voltage V_I. Note, however, that increasing g_m by biasing the device at a larger V_{GS} has the disadvantage of reducing the allowable voltage signal swing at the drain.

Another useful expression for g_m can be obtained by substituting for $(V_{GS} - V_I)$ in Eq. (4.69) by $\sqrt{2I_D/k'_c(W/L)}$ [from Eq. (4.53)]:

$$g_m = \frac{2I_D}{\sqrt{2k'_c(W/L)V_{OV}}}$$ \hspace{1cm} (4.70)

This expression shows that:

1. For a given MOSFET, g_m is proportional to the square root of the dc bias current.
2. At a given bias current, g_m is proportional to $\sqrt{W/L}$.

In contrast, the transconductance of the bipolar junction transistor (BJT) studied in Chapter 5 is proportional to the bias current and independent of the physical size and geometry of the device.

To gain some insight into the values of g_m obtained in MOSFETs consider an integrated-circuit device operating at $I_D = 0.5$ mA and having $k'_c = 120 \mu A/V^2$. Equation (4.70) shows that for $W/L = 1$, $g_m = 0.25$ mS, whereas a device for which $W/L = 100$ has $g_m = 0.25$ mS. In contrast, a BJT operating at a collector current of 0.5 mA has $g_m = 20$ mS.

Yet another useful expression for g_m of the MOSFET can be obtained by substituting for $k'_v(W/L)$ in Eq. (4.69) by $2I_D/(V_{GS} - V_I)$:

$$g_m = \frac{2I_D}{V_{GS} - V_I} \frac{2I_D}{V_{OV}}$$ \hspace{1cm} (4.71)

In summary, there are three different relationships for determining g_m—Eqs. (4.69), (4.70), and (4.71)—and there are three design parameters—W/L, V_{GS}, and I_D. Any two of which can be chosen independently. That is, the designer may choose to operate the MOSFET with a certain overdrive voltage V_{OV} and at a particular current I_D; the required W/L ratio can then be found and the resulting g_m determined.

Solution

We first evaluate the dc operating point as follows:

$$I_D = \frac{1}{2} \times 0.25(V_{GS} - 1.5)^2$$ \hspace{1cm} (4.72)

where, for simplicity, we have neglected the channel-length modulation effect. Since the dc gate current is zero, there will be no dc voltage drop across R_C, thus $V_{GS} = V_I$, which, when substituted in Eq. (4.72), yields

$$I_D = 0.125(V_{GS} - 1.5)^2$$ \hspace{1cm} (4.73)
Solving Eqs. (4.73) and (4.74) together gives

\[I_D = 1.06 \text{ mA} \quad \text{and} \quad V_D = 4.4 \text{ V} \]

(Note that the other solution to the quadratic equation is not physically meaningful.)

The value of \(g_m \) is given by

\[g_m = \frac{0.25(4.4 - 1.5)}{1000} = 0.725 \text{ mA/V} \]

The output resistance \(r_a \) is given by

\[r_a = \frac{V_D}{I_D} = \frac{4}{1.06} = 3.8 \text{ k}\Omega \]

Figure 4.38(b) shows the small-signal equivalent circuit of the amplifier, where we observe that the coupling capacitors have been replaced with short circuits and the dc supply has been replaced with a short circuit to ground. Since \(R_G \) is very large (10 M\(\Omega \)), the current through it can be neglected compared to that of the controlled source \(g_m v_{gs} \), enabling us to write for the output voltage

\[v_0 = -g_m v_{es} \left(R_D \frac{I_{II}}{R_I} \right) \]

Since \(v_{gs} = v_t \), the voltage gain is

\[A_v = \frac{v_o}{v_i} = -g_m \left(R_D \frac{I_{II}}{R_I} \right) \]

To evaluate the input resistance \(R_{in} \), we note that the input current \(i_i \) is given by

\[i_i = \frac{v_i - v_o}{R_G} = \frac{v_i - v_o}{R_D} \left(1 - \frac{v_o}{v_t} \right) = \frac{v_i - v_o}{R_D} \left[1 - \left(\frac{v_o}{v_t} \right) \right] \]

Thus,

\[R_{in} = \frac{v_i}{i_i} = \frac{R_D}{R_D} = \frac{10}{4.3} = 2.33 \text{ M}\Omega \]

The largest allowable input signal \(\Delta v_i \) is determined by the need to keep the MOSFET in saturation at all times; that is,

\[v_{th} \leq v_{GS} \leq V \]

Enforcing this condition, with equality, at the point \(v_{GS} \) is maximum and \(v_{th} \) is correspondingly minimum, we write

\[v_{GS} = v_{GS_{max}} = 4.4 - 3.35 \]

\[V_{DS} = V_{GS} + \Delta v_i - 1.5 \]

FIGURE 4.39 Development of the T equivalent-circuit model for the MOSFET. For simplicity, \(r_I \) has been omitted but can be added between \(D \) and \(S \) in the T model of (d).
we have a controlled current source $g_{bs}v_B$ connected across its control voltage v_B. We can replace this controlled source by a resistance as long as this resistance draws an equal current as the source. (See the source-sink theorem in Appendix C.) Thus the value of the resistance is $v_B/g_{bs} = 1/g_{mb}$. This replacement is shown in Fig. 4.39(d), which depicts the alternative model. Observe that i_D is still zero, $i_D = g_{mv}s - i_S = v_S/(1/g_m) = g_{bs}v_B$ all the same as in the original model in Fig. 4.39(a).

The model of Fig. 4.39(d) shows that the resistance between gate and source looking into the source is $1/g_m$. This observation and the T model prove useful in many applications. Note that the resistance between gate and source, looking into the gate, is infinite.

In developing the T model we did not include r_s. If desired, this can be done by incorporating in the circuit of Fig. 4.39(d) a resistance r_s between drain and source, as shown in Fig. 4.40(a). An alternative representation of the T model in which the voltage-controlled current source is replaced with a current-controlled current source is shown in Fig. 4.40(b).

Finally, we should note that in order to distinguish the model of Fig. 4.37(b) from the equivalent T model, the former is sometimes referred to as the hybrid-π model, a carryover from the bipolar transistor literature. The origin of this name will be explained in the next chapter.

4.6.8 Modeling the Body Effect

As mentioned in Section 4.2, the body effect occurs in a MOSFET when the source is not tied to the substrate (which is always connected to the most-negative power supply in the integrated circuit for n-channel devices and to the most-positive for p-channel devices). Thus the substrate (body) will be at signal ground, but since the source is not, a signal voltage develops between the body (B) and the source (S). In Section 4.2, it was mentioned that the substrate acts as a "second gate" or a backgate for the MOSFET. Thus the signal v_B gives rise to a drain-current component, which we shall write as $g_{bs}v_B$ where g_{bs} is the body transconductance, defined as

$$g_{bs} = \frac{\partial i_D}{\partial v_B} \bigg|_{v_S = v_D = 0}$$

(4.75)

Recalling that i_D depends on v_B through the dependence of V_D on V_{gs}, Eqs. (4.20), (4.33), and (4.61) can be used to obtain

$$g_{bs} = X_{mb}$$

(4.76)

Typically the value of X lies in the range 0.1 to 0.3.

Figure 4.41 shows the MOSFET model augmented to include the controlled source $g_{bs}v_B$ that models the body effect. This is the model to be used whenever the source is not connected to the substrate.

Finally, although the analysis above was performed on a NMOS transistor, the results and the equivalent circuit of Fig. 4.41 apply equally well to PMOS transistors, except for using $v_S, V_D, V_{gs}, V_{th}, \mu_p, \lambda_p$, and replacing X_{mb} with X_{bs}.

4.6.9 Summary

We conclude this section by presenting in Table 4.2 a summary of the formulas for calculating the values of the small-signal MOSFET parameters. Observe that for g_{mb}, we have three different formulas, each providing the circuit designer with insight regarding design choices. We shall make frequent comments on these in later sections and chapters.

| Table 4.2 Small-Signal Equivalent-Circuit Models for the MOSFET |
|------------------|------------------|
| **Small-Signal Parameters** | **NMOS transistors:** |
| Transconductance: g_{mb} | $X_{mb} = \frac{w}{2L} \cdot \frac{1}{f_T} \cdot \frac{1}{V_{th}}$ |
| Output resistance: r_s | $R_s = \frac{V_{th}}{I_s}$ |
| Body transconductance: g_{bs} | $g_{bs} = X_{mb} = \frac{1}{2L} \cdot \frac{1}{f_T} \cdot \frac{1}{V_{th}}$ |

PMOS transistors:

Same formulas as for NMOS except using V_{th}, $|\lambda|$, $|\mu|$, $|V_{th}|$, and $|X|$ and replacing μ_n with μ_p.

(Continued)
second harmonic component, a component with frequency 2\omega.

Express the amplitude of the second-harmonic component. Find the minimum and maximum values of \(V_t \) for which \(g_m = 0.4 \mu A/V \). Find the ratio of the width of a PMOS transistor to the width of an NMOS transistor so that the two devices have equal \(g_m \) for the same bias conditions. The two devices have equal channel lengths.

For a NMOS transistor with \(V_D = 0 \), \(g_m = 0.5 \mu A/V \), and \(V_T = 1 \), find \(V_T \) when (a) the bias voltage \(V_G = 1.5 \) V, and when (b) the bias current \(I_D = 0.3 \) mA.

A MOSFET is to operate at \(I_D = 0.1 \) mA and is to have \(g_m = 1 \) mA/V. If \(W/L = 50 \) \mu m, find the required \(W/L \) ratio and the overdrive voltage.

Use the formulas in Table 4.2 to derive an expression for \(V_T \). As we shall see in Chapter 6, this is an important transistor parameter and is known as the intrinsic gain. Evaluate the value for \(V_T \) for an NMOS transistor fabricated in a 0.8-\mu m CMOS process for which \(V_D = 12.5 \) V/\mu m of channel length. Let the device have aluminium channel length and be operated on an overdrive voltage of 0.2 V.

EXERCISES

4.2 For the amplifier in Fig. 4.34, let \(V_G = 5 \) V, \(V_B = 10 \) V, \(V_C = 1 \) V, \(V_S = 20 \) mA/V, \(W/L = 20 \), \(V_D = 2 \) V, and \(K = 0 \). (a) Find the dc current \(I_D \) and the dc voltage \(V_{GS} \). (b) Find \(I_C \). (c) Find the voltage gain for \(V_{GS} = 0.2 \) V, assuming that the small-signal approximation holds. What are the minimum and maximum values of \(f_2 \) (d) Use Eq. (4.57) to determine the various components of \(f_2 \). Using the identity \(\sin \pi \omega = -\cos 2\pi \omega \), show that there is a slight shift in \(f_2 \) (by how much?) and that this is a second-harmonic component (i.e., a component with frequency 2\omega). Express the amplitude of the second-harmonic component as a percentage of the amplitude of the fundamental. (This value is known in the second-harmonic distortion.)

Chapter 4

MOS FIELD-EFFECT TRANSISTORS (MOSFETS)

4.7 SINGLE-STAGE MOS AMPLIFIERS

Having studied MOS amplifier biasing (Section 4.5) and the small-signal operation and models of the MOSFET amplifier (Section 4.6), we are now ready to consider the various configurations utilized in the design of MOS amplifiers. In this section we shall do this for the case of discrete MOS amplifiers, leaving the study of integrated-circuit (IC) MOS amplifiers to Chapter 6. Beside being useful in their own right, discrete MOS amplifiers are somewhat easier to understand than their IC counterparts for two main reasons: The separation between dc and signal quantities is more obvious in discrete circuits, and discrete circuits utilize resistors as amplifier loads. In contrast, as we shall see in Chapter 6, IC MOS amplifiers employ constant-current sources as amplifier loads, with these being implemented using additional MOSFETs and resulting in more complicated circuits. Thus the circuits studied in this section should provide us with both an introduction to the subject of MOS amplifier configurations and a solid base on which to build during our study of IC MOS amplifiers in Chapter 6.

Since in discrete circuits the MOSFET source is usually tied to the substrate, the body effect will be absent. Therefore in this section we shall not take the body effect into account. Also, in some circuits we will neglect \(r_i \), in order to keep the analysis simple and focus on the salient features of the amplifier configurations studied.

4.7.1 The Basic Structure

Figure 4.42 shows the basic circuit we shall utilize to implement the various configurations of discrete-circuit MOS amplifiers. Among the various schemes for biasing discrete MOS
amplifiers (Section 4.5) we have selected, for both its effectiveness and its simplicity, the one employing constant-current biasing. Figure 4.42 indicates the dc current and the dc voltages resulting at various nodes.

EXERCISE

4.30 Consider the circuit of Fig. 4.42 for the case $V_{DD} = V_{SS} = 10 \text{ V}$, $I = 0.5 \text{ mA}$, $R = 4.7 \text{ M}\Omega$, $r = 15 \text{ k}\Omega$, and $V_{GS} = 2.5 \text{ V}$. What is the maximum possible signal swing at the input for which the amplifier remains in saturation? (Ans: $V = 1.5 \text{ V}$.)

FIGURE 4.42 Basic structure of the circuit used to realize single-stage discrete-circuit MOS amplifier configurations.

4.7.2 Characterizing Amplifiers

As we begin our study of MOS amplifier circuits, it is important to know how to characterize the performance of amplifiers as circuit building blocks. An introduction to this subject was presented in Section 1.5. However, the material of Section 1.5 was limited to unilateral amplifiers. A number of the amplifier circuits we shall study in this book, though none in this chapter, are not unilateral; that is, they have internal feedback that may cause their input resistance to depend on the load resistance. Similarly, internal feedback may cause the output resistance to depend on the value of the resistance of the signal source feeding the amplifier. To accommodate nonunilateral amplifiers, we present, in Table 4.3, a general set of parameters and equivalent circuits that we will employ in characterizing and comparing transistor amplifiers. A number of remarks are in order:

1. The amplifier is shown fed with a signal source having an open-circuit voltage v_{sig} and an internal resistance R_{sig}. These can be the parameters of an actual signal source or the Thévenin equivalent of the output circuit of another amplifier stage preceding the one under study in a cascade amplifier. Similarly, R_L can be an actual load resistance or the input resistance of a succeeding amplifier stage in a cascade amplifier.

2. Parameters R_i, R_o, A_v, A_i, and G_m pertain to the amplifier proper; that is, they do not depend on the values of R_{sig} and R_L. By contrast, R_{sig}, R_{in}, A_{in}, G_{in}, and G_m may depend on one or both of R_{sig} and R_L. Also, observe the relationships of related pairs of these parameters; for instance, $R_i = R_{in}/A_{in}$, and $R_o = R_{out}/A_{out}$.

3. As mentioned above, for nonunilateral amplifiers, R_i may depend on R_L, and R_{in} may depend on R_{sig}. Although none of the amplifiers studied in this chapter are of this type, we shall encounter nonunilateral MOSFET amplifiers in Chapter 6 and beyond. No such dependencies exist for unilateral amplifiers, for which $R_i = R_i$, and $R_{in} = R_{in}$.

4. The loading of the amplifier on the signal source is determined by the input resistance R_i. The value of R_i determines the current i that the amplifier draws from the signal source. It also determines the proportion of the signal v_{sig} that appears at the input of the amplifier proper (i.e., v_{in}).
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETS)

4.7 SINGLE-STAGE MOS AMPLIFIERS

TABLE 4.3 Characteristic Parameters of Amplifiers

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Equivalent Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions
- **Input resistance with no load:**
 \[R_i = \left| \frac{v_i}{i} \right| \]
- **Input resistance:**
 \[R_i = \left| \frac{v_i}{i} \right| \]
- **Open-circuit voltage gain:**
 \[A_v = \left| \frac{v_o}{v_{in}} \right| \]
- **Voltage gain:**
 \[A_v = \left| \frac{v_o}{v_{in}} \right| \]
- **Short-circuit current gain:**
 \[A_i = \left| \frac{i_o}{i_{in}} \right| \]
- **Current gain:**
 \[A_i = \left| \frac{i_o}{i_{in}} \right| \]
- **Short-circuit transconductance:**
 \[G_m = \left| \frac{v_i}{i} \right| \]
- **Output resistance of amplifier proper:**
 \[R_o = \left| \frac{v_o}{i} \right| \]
- **Output resistance:**
 \[R_o = \left| \frac{v_o}{i} \right| \]
- **Open-circuit overall voltage gain:**
 \[G = \left| \frac{v_o}{v_{sig}} \right| \]
- **Overall voltage gain:**
 \[G = \left| \frac{v_o}{v_{sig}} \right| \]

Relationships
- \[\frac{v_i}{i} = \frac{R_o}{R_o + R_{in}} \]
- \[A_v = A_v \cdot \frac{R_o}{R_o + R_{in}} \]
- \[A_i = G_m \cdot R_{in} \]
- \[G_v = G_v \cdot R_{in} \]
- \[G_s = G_s \cdot R_{in} \]
- \[G_{out} = G_{out} \cdot R_{in} \]

5. When evaluating the gain \(A_v \) from the open-circuit value \(A_{v_{oc}} \), \(R_o \) is the output resistance to use. This is because \(A_v \) is based on feeding the amplifier with an ideal voltage signal \(v_i \). This should be evident from Equivalent Circuit A in Table 4.3. On the other hand, if we are evaluating the overall voltage gain \(G_v \) from its open-circuit value \(G_{v_{oc}} \), the output resistance to use is \(R_{out} \). This is because \(G_v \) is based on feeding the amplifier with \(v_{sig} \), which has an internal resistance \(R_{in} \). This should be evident from Equivalent Circuit C in Table 4.3.

6. We urge the reader to carefully examine and reflect on the definitions and the six relationships presented in Table 4.3. Example 4.11 should help in this regard.
A transistor amplifier is fed with a signal source having an open-circuit voltage \(v_{\text{sig}} \) of 10 mV and an internal resistance \(i_{\text{sig}} \) of 100 kΩ. The voltage \(v_t \) at the amplifier input and the output voltage \(v_0 \) are measured both without and with a load resistance \(R_L = 10 \text{ kΩ} \) connected to the amplifier output. The measured results are as follows:

<table>
<thead>
<tr>
<th>Without (R_L)</th>
<th>With (R_L) connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_t) (mV)</td>
<td>(v_0) (mV)</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
</tr>
</tbody>
</table>

Find all the amplifier parameters.

Solution

First, we use the data obtained for \(R_L = \infty \) to determine

\[
K_0 = \frac{v_t}{v_{\text{sig}}} = 10 \text{ V/V}
\]

and

\[
G_{\text{os}} = \frac{v_0}{i_{\text{os}} v_{\text{sig}}} = 9 \text{ V/V}
\]

Now, since

\[
G_{\text{os}} = \frac{R_t}{R_t + R_{\text{in}} A_{\text{os}}}
\]

we have

\[
9 = \frac{R_t}{R_t + 100 \times 10}
\]

which gives

\[
R_t = 900 \text{ kΩ}
\]

Next, we use the data obtained when \(R_L = 10 \text{ kΩ} \) is connected to the amplifier output to determine

\[
A_{\text{os}} = \frac{70}{8} = 8.75 \text{ V/V}
\]

and

\[
G_{\text{os}} = \frac{70}{7.75 \times 10} = 9 \text{ V/V}
\]

The values of \(A_{\text{os}} \) and \(A_{\text{in}} \) can be used to determine \(R_t \) as follows:

\[
A_{\text{os}} = A_{\text{in}} \frac{R_t}{R_t + R_{\text{in}}}
\]

which gives

\[
R_t = 1.43 \text{ kΩ}
\]

Similarly, we use the values of \(G_{\text{os}} \) and \(G_{\text{in}} \) to determine \(R_{\text{in}} \) from

\[
G_{\text{os}} = \frac{G_{\text{in}} R_t}{R_t + R_{\text{in}}}
\]

\[
7 = \frac{9}{10 \times 10 + R_{\text{in}}}
\]

resulting in

\[
R_{\text{in}} = 2.86 \text{ kΩ}
\]

The value of \(R_{\text{os}} \) can be determined from

\[
\frac{v_t}{R_{\text{os}}} = \frac{R_t}{R_{\text{os}} + R_{\text{in}}}
\]

That is,

\[
\frac{8}{10} = \frac{R_t}{R_{\text{os}} + 100}
\]

which yields

\[
R_{\text{os}} = 400 \text{ kΩ}
\]

The short-circuit transconductance \(G_m \) can be found as follows:

\[
G_m = \frac{A_{\text{os}}}{R_t} = \frac{10}{1.43} = 7 \text{ mA/V}
\]

and the current gain \(A \) can be determined as follows:

\[
A = \frac{v_t/v_{\text{sig}}}{v_t/v_{\text{sig}}} - \frac{v_0/v_{\text{sig}}}{v_t/v_{\text{sig}}} = \frac{R_{\text{os}}}{R_t} = 8.75 \times 400 = 350 \text{ A/A}
\]

Finally, we determine the short-circuit current gain \(A_{\text{in}} \) as follows. From Equivalent Circuit A in Table 4.3, the short-circuit output current is

\[
i_{\text{os}} = A_{\text{in}} v_{\text{sig}}/R_{\text{in}}
\]

However, to determine \(i_{\text{os}} \) we need to know the value of \(R_{\text{in}} \) obtained with \(R_L = 0 \). Toward that end, note that from Equivalent Circuit C, the output short-circuit current can be found as

\[
i_{\text{os}} = G_{\text{os}} v_{\text{sig}}/R_{\text{os}}
\]

Now, equating the two expressions for \(i_{\text{os}} \) and substituting for \(G_{\text{os}} \) by

\[
G_{\text{os}} = \frac{R_t}{R_t + R_{\text{in}}}
\]

and for \(v_t \) from

\[
v_t = v_{\text{sig}} \frac{R_{\text{os}}}{R_{\text{os}} + R_{\text{in}}}
\]

results in

\[
R_{\text{in}} = R_{\text{os}} \left[\left(\frac{1}{1 + \frac{R_{\text{os}}}{R_t}} \right) \left(\frac{1}{R_{\text{in}} + R_{\text{os}}} \right) - 1 \right]
\]

\[
= 81.8 \text{ kΩ}
\]

We now can use

\[
i_{\text{os}} = A_{\text{in}} (v_{\text{sig}}/R_{\text{in}})/R_{\text{in}}
\]

to obtain

\[
A_{\text{in}} = 10 \times 81.8/1.43 = 572 \text{ A/A}
\]
EXERCISE

4.31 (a) If in the amplifier of Example 4.11, \(R_\text{g} \) is doubled, find the values for \(A'_\text{n} \), \(g_m \), and \(R_{\text{out}} \).
(b) Repeat for \(R_\text{c} \) doubled (but \(R_\text{g} \) unchanged; i.e., 100 kΩ).
(c) Repeat for both \(R_\text{g} \) and \(R_\text{c} \) doubled.

Ans. (a) 400 kΩ, 5.83 V/V, 4.03 kΩ; (b) 538 kΩ, 7.87 V/V, 2.86 kΩ; (c) 538 kΩ, 6.8 V/V, 4.03 kΩ

4.7 SINGLE-STAGE MOS AMPLIFIERS

4.7.3 The Common-Source (CS) Amplifier

The common-source (CS) or grounded-source configuration is the most widely used of all MOSFET amplifier circuits. A common-source amplifier realized using the circuit of Fig. 4.42 is shown in Fig. 4.43(a). Observe that to establish a signal ground, or an ac ground as it is sometimes called, at the source, we have connected a large capacitor, \(C_\text{c} \), between the source and ground. This capacitor, usually in the \(\mu \text{F} \) range, is required to provide a very small impedance (ideally, zero impedance; i.e., in effect, a short circuit) at all signal frequencies of interest. In this way, the signal current passes through \(C_\text{c} \) to ground and thus bypasses the output resistance of current-source \(I \) and any other circuit component that might be connected to the MOSFET source; hence, \(C_\text{c} \) is called a bypass capacitor. Obviously, the lower the signal frequency, the less effective the bypass capacitor becomes. This issue will be studied in Section 4.9. For our purposes here we shall assume that \(C_\text{c} \) is acting as a perfect short circuit and thus is establishing a zero signal voltage at the MOSFET source.

In order not to disturb the dc bias current and voltages, the signal to be amplified, shown as voltage source \(v_s \) with an internal resistance \(R_\text{in} \), is connected to the gate through a large capacitor \(C_\text{g} \). Capacitor \(C_\text{g} \), known as a coupling capacitor, is required to act as a perfect short circuit at all signal frequencies of interest while blocking dc. Here again, we note that as the signal frequency is lowered, the impedance of \(C_\text{g} \) (i.e., \(1/(sC_\text{g}) \)) will increase and its effectiveness as a coupling capacitor will be correspondingly reduced. This problem too will be considered in Section 4.9 when the dependence of the amplifier operation on frequency is studied. For our purposes here we shall assume \(C_\text{g} \) is acting as a perfect short circuit as far as the signal is concerned. Before leaving \(C_\text{c} \) and \(C_\text{g} \), we should point out that in situations where the signal source can provide an appropriate dc path to ground, the gate can be connected directly to the signal source and both \(R_\text{g} \) and \(C_\text{g} \) can be dispensed with.

The voltage signal resulting at the drain is coupled to the load resistance \(R_\text{l} \) via another coupling capacitor \(C_\text{C} \). We shall assume that \(C_\text{C} \) acts as a perfect short circuit at all signal frequencies of interest and thus that the output voltage \(v_s \) is \(v_s \). Note that \(R_\text{l} \) can be either an actual load resistor, to which the amplifier is required to provide its output voltage signal, or it can be the input resistance of another amplifier stage in cases where more than one stage of amplification is needed. (We will study multistage amplifiers in Chapter 7.)

To determine the terminal characteristics of the CS amplifier—that is, its input resistance, voltage gain, and output resistance—we replace the MOSFET with its small-signal model. The resulting circuit is shown in Fig. 4.43(b). At the outset we observe that this amplifier is unilateral. Therefore \(R_\text{g} \) does not depend on \(R_\text{g} \), and thus \(R_\text{g} = R_\text{g} \). Also, \(R_\text{g} \) and \(R_\text{C} \) do not depend on \(R_\text{C} \) and thus \(R_\text{g} = R_\text{C} \). Analysis of this circuit is straightforward and proceeds in a step-by-step manner, from the signal source to the amplifier load. At the input

\[
I_g = 0
\]

\[
R_\text{g} = R_g
\]

\[
v_i = v_s = R_g \frac{R_g + R_\text{g}}{R_g + R_\text{c}}
\]

\[
v_L = v_i = \frac{v_s}{R_g + R_\text{C}}
\]

\[
V_D = V_G = \frac{v_s}{R_g + R_\text{C}}
\]

\[
V_L = V_s = \frac{v_s}{R_g + R_\text{C}}
\]

FIGURE 4.43 (a) Common-source amplifier based on the circuit of Fig. 4.42. (b) Equivalent circuit of the amplifier for small-signal analysis. (c) Small-signal analysis performed directly on the amplifier circuit with the MOSFET model implicitly unrolled.
Usually \(R_G \) is selected very large (e.g., in the \(\text{MQ} \) range) with the result that in many applications \(R_c > R_{\text{sig}} \) and

Now

\[v_i = v_{\text{sig}} \]

and

\[v_i = -v_{\text{sig}}(r_0 || R_D || R_L) \]

Thus the voltage gain \(A_v \) is

\[A_v = -g_m(r_0 || R_D || R_L) \]

(4.80)

and the open-circuit voltage gain \(A_{v0} \) is

\[A_{v0} = -g_m(r_0 || R_D || R_L) \]

(4.81)

The overall voltage gain from the signal-source to the load will be

\[G_s = \frac{R_o}{R_{\text{out}} + R_o} A_s \]

(4.82)

Finally, to determine the amplifier output resistance \(R_{\text{out}} \), we set \(v_{\text{sig}} = 0 \); that is, we replace the signal generator \(v_{\text{sig}} \) with a short circuit and look back into the output terminal, as indicated in Fig. 4.43. The result can be found by inspection as

\[R_{\text{out}} = r_o || R_D \]

(4.83)

As we have seen, including the output resistance \(r_o \) in the analysis of the CS amplifier is straightforward. Since \(r_o \) appears between drain and source, it in effect appears in parallel with \(R_D \). Since it is usually the case that \(r_o > R_D \), the effect of \(r_o \) will be a slight decrease in the voltage gain and a decrease in \(R_{\text{out}} \)—the latter being a beneficial effect!

Although small-signal equivalent circuit models provide a systematic process for the analysis of any amplifier circuit, the effort involved in drawing the equivalent circuit is sometimes not justified. That is, in simple situations and after a lot of practice, one can perform the small-signal analysis directly on the original circuit. In such a situation, the small-signal MOSFET model is employed implicitly rather than explicitly. In order to get the reader started in this direction, we show in Fig. 4.43(c) the small-signal analysis of the CS amplifier performed on a somewhat simplified version of the circuit. We urge the reader to examine this analysis and to correlate it with the analysis using the equivalent circuit of Fig. 4.43(b).

EXERCISE

4.30 Consider a CS amplifier based on the circuit analyzed in Exercise 4.30. Specifically, refer to the results of that exercise shown in Fig. 4.43, with \(R_{\text{in}}, R_{\text{in}}^*, \text{and} R_L \), both without and with \(r_o \) taken into account. Then calculate the overall voltage gain \(G_s \) with \(r_o \) taken into account, for \(\text{DC} \) biasing, \(R_D = 100 \text{k}\Omega \) and \(R_L = 15 \text{k}\Omega \). If \(v_{\text{sig}} \) is a 0.4-V peak-to-peak sinusoid, what output signal \(v_o \) results?

Ans. Without \(r_o \), \(R_{\text{in}} = 4.7 \text{M}\Omega, A_v = 15 \text{V/V}, \) and \(R_{\text{out}} = 15 \text{k}\Omega \); with \(r_o \), \(R_{\text{in}} = 4.7 \text{M}\Omega, A_v = 15 \text{V/V}, \) and \(R_{\text{out}} = 13.6 \text{k}\Omega \). \(v_o = 7 \text{V/V} \); \(v_o \) is a 2.8-V peak-to-peak sinusoid superimposed on a dc drain voltage of 0.5 V.

4.7.4 The Common-Source Amplifier with a Source Resistance

It is often beneficial to insert a resistance \(R_s \) in the source lead of the common-source amplifier, as shown in Fig. 4.44(a). The corresponding small-signal equivalent circuit is shown in

Figure 4.44 (a) Common-source amplifier with a resistance \(R_s \) in the source lead. (b) Small-signal equivalent circuit with \(r_o \) neglected.

We conclude our study of the CS amplifier by noting that it has a very high input resistance, a moderately high voltage gain, and a relatively high output resistance.
Fig. 4.44(b) where we note that the transistor has been replaced by its T equivalent-circuit model. The T model is used in preference to the z model because it makes the analysis in this case somewhat simpler. In general, whenever a resistance is connected in the source lead, as for instance in the source-follower circuit we shall consider shortly, the T model is preferred. The source resistance then simply appears in series with the resistance $1/g_s$, which represents the resistance between source and gate, looking into the source.

It should be noted that we have not included r_s in the equivalent-circuit model. Including r_s would complicate the analysis considerably; r_s would connect the output node of the amplifier to the input side and thus would make the amplifier nonlinear. Fortunately, it turns out that the effect of r_s on the operation of this discrete-circuit amplifier is not important. This can be verified using SPICE simulation (Section 4.12). This is not the case, however, for the integrated-circuit version of the circuit where r_s plays a major role and must be taken into account in the analysis and design of the circuit, which we shall do in Chapter 6.

From Fig. 4.44(b) we see that in the case of the CS amplifier,

$$ R_s = R_L = R_t, \quad (4.84) $$

and thus,

$$ v_i = v_o \frac{R_L}{R_t + R_s} \quad (4.85) $$

Unlike the CS circuit, however, here v_o is only a fraction of v_i. It can be determined from the voltage divider composed of $1/g_s$ and R_t that appears across the amplifier input as follows:

$$ v_o = \frac{1}{g_s} \frac{v_i}{1 + g_s R_t} \quad (4.86) $$

Thus we can use the value of R_t to control the magnitude of the signal v_o, and thus ensure that v_o does not become too large and cause unacceptably high nonlinear distortion. (Recall the constraint on v_o given by Eq. 4.59). This is the first benefit of including resistor R_t. Other benefits will be encountered in later sections and chapters. For instance, we will show in drawing a complete equivalent circuit model and use the MOSFET model implicitly. The overall voltage gain is

$$ A_o = \frac{g_s (R_t || R_s)}{1 + g_s R_t} \quad (4.88) $$

and setting $R_t = R_s$ gives

$$ A_o = \frac{g_s (R_t || R_s)}{1 + g_s R_t} \quad (4.89) $$

The overall voltage gain G_v is

$$ G_v = \frac{R_L}{R_s} \frac{g_s (R_t || R_s)}{1 + g_s R_t} \quad (4.90) $$

Comparing Eqs. (4.88), (4.89), and (4.90) with their counterparts without R_t indicates that including R_t results in a gain reduction by the factor $1 + g_s R_t$. In Chapter 5 we shall study negative feedback in some detail. There we will learn that this factor is called the amount of feedback and that it determines both the magnitude of performance improvements and, as a trade-off, the reduction in gain. At this point, we should recall that in Section 4.5 we saw that a resistance R_t in the source lead increases dc bias stability; that is, R_t reduces the variability in I_o. The action of R_t that reduces the variability of I_o is exactly the same action we are observing here: R_t in the circuit of Fig. 4.44 is reducing I_o, which is, after all, just a variation in I_o. Because of its action in reducing the gain, R_t is called source degeneration resistance.

Another useful interpretation of the gain expression in Eq. (4.88) is that the gain from gate to drain is simply the ratio of the total resistance in the drain, $(R_L || R_t)$, to the total resistance in the source, $(1/g_s + R_s)$.

Finally, we wish to direct the reader’s attention to the small-signal analysis that is performed and indicated directly on the circuit in Fig. 4.44(a). Again, with some practice, the reader should be able to dispense, in simple situations, with the extra work involved in drawing a complete equivalent circuit model and use the MOSFET model implicitly. This also has the added advantage of providing greater insight regarding circuit operation and, furthermore, reduces the probability of making manipulation errors in circuit analysis.

EXERCISE

4.3B In Exercise 4.3B we applied an input signal of 0.4 V peak-to-peak, which resulted in an output signal of 2.8 V peak-to-peak. Assume that for some reason we now have an input signal three times as large as before (i.e., 1.2 V peak-to-peak) and that we wish to modify the circuit to keep the output signal level unchanged. What value should we use for R_o?

Ans. 2.15 kΩ

4.7.5 The Common-Gate (CG) Amplifier

By establishing a signal ground on the MOSFET gate terminal, a circuit configuration aptly named common-gate (CG) or grounded-gate amplifier is obtained. The input signal is applied to the source, and the output is taken at the drain, with the gate forming a
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

Common terminal between the input and output ports. Figure 4.45(a) shows a CG amplifier obtained from the circuit of Fig. 4.42. Observe that since both the dc and ac voltages at the gate are to be zero, we have connected the gate directly to ground, thus eliminating resistor \(R_c \) altogether. Coupling capacitors \(C_{cl} \) and \(C_{c2} \) perform similar functions to those in the CS circuit.

The small-signal equivalent circuit model of the CG amplifier is shown in Fig. 4.45(b). Since resistor \(R_{sig} \) appears directly in series with the MOSFET source lead we have selected the T model for the transistor. Either model, of course, can be used and yields identical results; however, the T model is more convenient in this case. Observe also that we have not included \(r_o \). Including \(r_o \) here would complicate the analysis considerably, for it would appear between the output and input of the amplifier. We will consider the effect of \(r_o \) when we study the IC form of the CG amplifier in Chapter 6.

From inspection of the equivalent-circuit model in Fig. 4.45(b) we see that the input resistance is

\[
R_i = \frac{1}{g_m} \quad (4.91)
\]

This should have been expected since we are looking into the source terminal of the MOSFET and the gate is grounded. Furthermore, since the circuit is unilateral, \(R_i \) is independent of \(R_L \) and \(R_{sig} \). Since \(g_m \) is of the order of 1 mA/V, the input resistance of the CG amplifier can be relatively low (of the order of 1 k\(\Omega \)) and certainly much lower than in the case of the CS amplifier. It follows that significant loss of signal strength can occur in coupling the signal to the input of the CG amplifier, since

\[
v_i = \frac{v_{sig}}{R_{sig} + R_o}
\]

Thus,

\[
v_i = \frac{1}{R_{sig} + R_o} \left(\frac{\beta R_k}{R_{sig} + R_o} - \frac{1}{1 + \beta R_L} \right)
\]

\[
R_i = \frac{1}{g_m R_{sig} + R_o}
\]

As we will see in Chapter 6, when \(r_o \) is taken into account, \(R_i \) depends on \(R_o \) and \(R_L \) and can be quite different from \(1/g_m \).
from which we see that to keep the loss in signal strength small, the source resistance R_{s1} should be small,

$$R_{s1} \ll \frac{1}{g_m}$$

The current i_i is given by

$$i_i = \frac{v_i}{R_{s1}} = \frac{v_i}{V/g_m} = \frac{g_m v_i}{v_i}$$

and the drain current i_d is

$$i_d = i = -i_i = -\frac{g_m v_i}{v_i}$$

Thus the output voltage can be found as

$$v_o = v_d = -i_d(R_D + R_2) = g_m(R_D + R_2)v_i$$

resulting in the open-circuit gain

$$A_s = g_m(R_D + R_2)$$

from which the open-circuit voltage gain can be found as

$$A_s = g_m R_D$$

The overall voltage gain can be obtained as follows:

$$G_m = \frac{R_{s1} A_s}{R_{s1} + R_{s2}} \approx \frac{1}{g_m} \frac{A_s}{1 + g_m R_{s2}}$$

resulting in

$$G_m = \frac{g_m(R_D + R_2)}{1 + g_m R_{s2}}$$

Finally, the output resistance is found by inspection to be

$$R_{out} = R_D = R_D$$

Comparing these expressions with those for the common-source amplifier we make the following observations:

1. Unlike the CS amplifier, which is inverting, the CG amplifier is noninverting. This, however, is seldom a significant consideration.
2. While the CS amplifier has a very high input resistance, the input resistance of the CG amplifier is low.
3. While the A_s values of both CS and CG amplifiers are nearly identical, the overall voltage gain of the CG amplifier is smaller by the factor $1 + g_m R_{s2}$ (Eq. 4.96b), which is due to the low input resistance of the CG circuit.

The observations above do not show any particular advantage for the CG circuit; to explore this circuit further we take a closer look at its operation. Figure 4.45(c) shows the circuit thus acts in effect as a unity-gain current amplifier or a current source. This view of the operation of the common-gate amplifier has resulted in its most popular application, in a configuration known as the cascode circuit, which we shall study in Chapter 6.

Another area of application of the CG amplifier makes use of its superior high-frequency performance, as compared to that of the CS stage (Section 4.9). We shall study wideband amplifier circuits in Chapter 6. Here we should note that the low input-resistance of the CG amplifier can be an advantage in some very-high-frequency applications where the input signal connection can be thought of as a transmission line and the $1/g_m$ input resistance of the CG amplifier can be made to function as the termination resistance of the transmission line (see Problem 4.86).

EXERCISE

4.33 Consider a CG amplifier designed using the circuit of Fig. 4.42, which is analyzed in Exercise 4.30 with the analysis results displayed in Fig. E4.30. Note that $g_m = 1 \text{ mS/V}$ and $R_D = 15 \text{ kOhm}$. Find R_{s1}, R_{s2}, R_D, A_s, and G_m for $R_C = 15 \text{ kOhm}$ and $R_{load} = 50 \text{ Ohm}$. What will the overall voltage gain become for $R_{s1} = 1 \text{ kOhm}$?

Ans.: $R_{s1} = 1 \text{ kOhm}$, $R_{s2} = 10 \text{ kOhm}$, $R_D = 10 \text{ kOhm}$, $A_s = 4$, and $G_m = 400$.

4.7 Single-Stage MOS Amplifiers

The last single-stage MOSFET amplifier configuration we shall study is that obtained by establishing a signal ground at the drain and using it as a terminal common to the input port, between gate and drain, and the output port, between source and drain. By analogy to the CS and CG amplifier configurations, this circuit is called common-drain or grounded-drain amplifier. However, it is known more popularly as the source follower, for a reason that will become apparent shortly.

Figure 4.46(a) shows a common-drain amplifier based on the circuit of Fig. 4.42. Since the drain is at signal ground, there is no need for resistance R_C, and it has therefore been eliminated. The input signal is coupled via capacitor C_G to the MOSFET gate, and the output signal at the MOSFET source is coupled via capacitor C_S to a load resistor R_L.

Since R_L is in effect connected in series with the source terminal of the transistor (current source I_d acts as an open circuit as far as signals are concerned), it is more convenient to use the MOSFET's T model. The resulting small-signal equivalent circuit of the common-drain
4.7 SINGLE-STAGE MOS AMPLIFIERS

A single-stage MOS amplifier is shown in Fig. 4.46(b). Analysis of this circuit is straightforward and proceeds as follows: The input resistance \(R_{in} \) is given by

\[R_{in} = R_G \]

(4.99)

Thus,

\[v_i = v_{in} \frac{R_G}{R_G + R_{in}} = v_{in} \frac{R_G}{R_G + R_{in}} \]

(4.100)

Usually \(R_G \) is selected to be much larger than \(R_{in} \), with the result that

\[v_i = v_{in} \]

To proceed with the analysis, it is important to note that \(r_0 \) appears in effect in parallel with \(R_L \), with the result that between the gate and ground we have a resistance \((1/g_m)\) in series with \((R_G \parallel r_0)\). The signal \(v_0 \) appears across this total resistance. Thus we may use the voltage-divider rule to determine \(v_o \) as

\[v_o = v_{in} \frac{R_G \parallel r_0}{(R_G \parallel r_0) + \frac{1}{g_m}} \]

(4.101)

from which the voltage gain \(A_v \) is obtained as

\[A_v = \frac{R_G \parallel r_0}{(R_G \parallel r_0) + \frac{1}{g_m}} \]

(4.102)

and the open-circuit voltage gain \(A_{vo} \) as

\[A_{vo} = \frac{r_0}{r_0 + \frac{1}{g_m}} \]

(4.103)

Normally \(r_0 \gg \frac{1}{g_m} \), causing the open-circuit voltage gain from gate to source, \(A_{vo} \), in Eq. (4.103), to become nearly unity. Thus the voltage at the source follows that at the gate, giving the circuit its popular name of source follower. Also, in many discrete-circuit applications, \(r_s \gg R_G \), which enables Eq. (4.102) to be approximated by

\[A_v = \frac{R_G}{R_G + \frac{1}{g_m}} \]

(4.102a)

The overall voltage gain \(G_v \) can be found by combining Eqs. (4.100) and (4.102), with the result that

\[G_v = \frac{R_G}{R_G + R_{in} + \frac{R_G \parallel r_0}{(R_G \parallel r_0) + \frac{1}{g_m}}} \]

(4.104)

which approaches unity for \(R_G \gg R_{in} \) and \(r_s \gg R_G \).

To emphasize the fact that it is usually faster to perform the small-signal analysis directly on the circuit diagram with the MOSFET small-signal model utilized only implicitly, we show such analysis in Fig. 4.46(c). Once again, observe that to separate the intrinsic action of the MOSFET from the Early effect, we have extracted the output resistance \(r_o \) and shown it separately.
EXERCISE

4.28 Consider a source follower such as that in Fig. 4.46(a) designed on the basis of the circuits of Fig. 4.41; the results of whose analysis are displayed in Fig. 4.50. Specifically, note that \(g_m = 1 \text{ mA/V} \) and \(r_v = 150 \Omega \). Let \(R_s = 1 \text{ k}\Omega \) and \(R_L = 15 \text{ k}\Omega \). (a) Find \(R_G \), \(A_v \), and \(R_{in} \) without and with \(r_v \) taken into account. (b) Find the overall small-signal voltage gain \(A_v \), with \(r_v \) taken into account.

\[R_G = \frac{1}{g_m} \]
\[A_v = \frac{1}{1 + \frac{R_L}{r_v}} \]

Neglecting \(r_v \):
\[A_v = \frac{1}{1 + \frac{R_L}{R_s}} \]

4.7.7 Summary and Comparisons

For easy reference we present in Table 4.4 a summary of the characteristics of the various configurations of discrete single-stage MOSFET amplifiers. In addition to the remarks already made throughout this section on the relative merits of the various configurations, the results displayed in Table 4.4 enable us to make the following concluding points:

1. The CS configuration is the best suited for obtaining the bulk of the gain required in an amplifier. Depending on the magnitude of the gain required, either a single CS stage or a cascade of two or three CS stages can be used.

2. Including a resistor \(R_b \) in the source lead of the CS stage provides a number of improvements in its performance, as will be seen in later chapters, at the expense of reduced gain.

Table 4.4: Characteristics of Single-Stage Discrete MOS Amplifiers

<table>
<thead>
<tr>
<th>Configuration</th>
<th>(R_G) ((\Omega))</th>
<th>(A_v)</th>
<th>(R_{out}) ((\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Source</td>
<td>(\frac{R_s}{R_D})</td>
<td>(\frac{R_D}{R_L})</td>
<td>(\frac{R_D}{R_L})</td>
</tr>
<tr>
<td>Common-Source with Source Resistance</td>
<td>(\frac{R_s}{R_D})</td>
<td>(\frac{R_D}{R_L})</td>
<td>(\frac{R_D}{R_L})</td>
</tr>
<tr>
<td>Common-Gate</td>
<td>(\frac{R_s}{R_D})</td>
<td>(\frac{R_D}{R_L})</td>
<td>(\frac{R_D}{R_L})</td>
</tr>
</tbody>
</table>

(Continued)
TABLE 4.4 (Continued)

<table>
<thead>
<tr>
<th>Common-Drain or Source Follower</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R_a = R_d]</td>
</tr>
<tr>
<td>[A = \frac{1}{R_a} + \frac{1}{R_b}]</td>
</tr>
<tr>
<td>[R_m = \frac{r_s \cdot R_b}{r_d \cdot R_s}]</td>
</tr>
<tr>
<td>[G = \frac{R_m}{R_m + r_s \cdot R_b}]</td>
</tr>
</tbody>
</table>

2. The source-body and drain-body depletion-layer capacitances: These are the capacitances of the reverse-biased pn junctions formed by the n⁺ source region (also called the source diffusion) and the p-type substrate and by the n⁺ drain region (the drain diffusion) and the substrate. Evaluation of these capacitances will utilize the material studied in Chapter 3.

These two capacitive effects can be modeled by including capacitances in the MOSFET model between its four terminals, G, D, S, and B. There will be five capacitances in total: \(C_{gs}, C_{gb}, C_{ds}, C_{gd}, \) and \(C_{db} \), where the subscripts indicate the location of the capacitances in the model. In the following, we show how the values of the five model capacitances can be determined. We will do so by considering each of the two capacitive effects separately.

4.8.1 The Gate Capacitive Effect

The gate capacitive effect can be modeled by the three capacitances \(C_{gs}, C_{gb}, \) and \(C_{gd} \). The values of these capacitances can be determined as follows:

1. When the MOSFET is operating in the triode region at small \(v_{ds} \), the channel will be of uniform depth. The gate-channel capacitance will be \(L W C_{ox} \) and can be modeled by dividing it equally between the source and drain ends; thus,

 \[C_{gs} = C_{gd} = \frac{1}{2} L W C_{ox} \] \(\text{(triode region)} \) \((4.107) \)

 This is obviously an approximation (as all modeling is) but works well for triode-region operation even when \(v_{ds} \) is not small.

2. When the MOSFET operates in saturation, the channel has a tapered shape and is pinched off at or near the drain end. It can be shown that the gate-to-channel capacitance in this case is approximately \(\frac{1}{2} L W C_{ox} \) and can be modeled by assigning this entire amount to \(C_{gs} \) and a zero amount to \(C_{gd} \) (because the channel is pinched off at the drain); thus,

 \[C_{gs} = \frac{1}{2} L W C_{ox} \] \(\text{(saturation region)} \) \((4.108) \)

 \[C_{gd} = 0 \] \((4.109) \)

3. When the MOSFET is cut off, the channel disappears, and thus \(C_{gs} = C_{gd} = 0 \). However, we have (after some rather complex reasoning) the gate capacitive effect by assigning a capacitance \(L W C_{ox} \) to the gate-body model capacitance; thus,

 \[C_{gs} = C_{gd} = 0 \] \(\text{(cutoff)} \) \((4.110) \)

 \[C_{gb} = L W C_{ox} \] \((4.111) \)

4. There is an additional small capacitive component that should be added to \(C_{gs} \) and \(C_{gd} \) in all the preceding formulas. This is the capacitance that results from the fact that the source and drain diffusions extend slightly under the gate oxide (refer to Fig. 4.1). If the overlap length is denoted \(L_{ov} \), we see that the overlap capacitance component is

 \[C_{ov} = \frac{1}{2} L W C_{ov} \] \((4.112) \)

 Typically, \(L_{ov} = 0.05 \text{ to } 0.1 L \).
4.8.2 The Junction Capacitances

The depletion-layer capacitances of the two reverse-biased pn junctions formed between each of the source and the drain diffusions and the body can be determined using the formula developed in Section 3.7.3 (Eq. 3.56). Thus, for the source diffusion, we have the source-body capacitance, C_{sb}:

$$C_{sb} = C_{sb0} \frac{1}{1 + \frac{V_{SB}}{V_0}}$$

where C_{sb0} is the value of C_{sb} at zero body-source bias, V_{SB} is the magnitude of the reverse-bias voltage, and V_0 is the junction built-in voltage (0.6 V to 0.8 V). Similarly, for the drain diffusion, we have the drain-body capacitance C_{db}:

$$C_{db} = C_{db0} \frac{1}{1 + \frac{V_{DB}}{V_0}}$$

where C_{db0} is the capacitance value at zero reverse-bias voltage and V_{DB} is the magnitude of the reverse-bias voltage. Note that we have assumed that for both junctions, the grading coefficient $m = 1$.

It should be noted also that each of these junction capacitances includes a component arising from the bottom side of the diffusion and a component arising from the side walls of the diffusion. In this regard, observe that each diffusion has three side walls that are in contact with the substrate and thus contribute to the junction capacitance (the fourth wall is in contact with the channel). In more advanced MOSFET modeling, the two components of each of the junction capacitances are calculated separately.

The formulas for the junction capacitances in Eqs. (4.113) and (4.114) assume small-signal operation. These formulas, however, can be modified to obtain approximate average values for the capacitances when the transistor is operating under large-signal conditions such as in logic circuits. Finally, typical values for the various capacitances exhibited by an n-channel MOSFET in a relatively modern (0.5 μm) CMOS process are given in the following exercise.

EXERCISE

For a p-channel MOSFET with $L = 10$ nm, $W = 10$ μm, $W_m = 0.05$ μm, $C_{sb0} = 0.06$ fF, $V_{SB} = 1$ V, $V_{DS} = 2$ V, calculate the following capacitances when the transistor is operating in saturation: C_{gs}, C_{gd}, C_{sb}, C_{db}, and C_{dp}. (Note: You may consult Table 4.1 for values of physical constants.)

- C_{gs}: 1.72 fF; 0.72 fF; 4.1 fF
- C_{gd}: 2.4 fF; 4.7 fF; 6.1 fF
- C_{sb}: 1.72 fF; 4.1 fF
- C_{db}: 1.72 fF; 4.1 fF
- C_{dp}: 1.72 fF; 4.1 fF

4.8.3 The High-Frequency MOSFET Model

Figure 4.47(a) shows the small-signal model of the MOSFET, including the four capacitances C_{gs}, C_{gd}, C_{sb}, and C_{db}. This model can be used to predict the high-frequency response of MOSFET amplifiers. It is, however, quite complex for manual analysis, and its use is limited to computer simulation using, for example, SPICE. Fortunately, for the case when the source is connected to the body, the model simplifies considerably, as shown in Fig. 4.47(b). In this model, C_{db}, although small, plays a significant role in determining the high-frequency response of amplifiers (Section 4.9) and thus must be kept in the model. Capacitance C_{gs}, on the other hand, can usually be neglected, resulting in significant simplification of manual analysis. The resulting circuit is shown in Fig. 4.47(c).

FIGURE 4.47 (a) High-frequency equivalent circuit model for the MOSFET. (b) The equivalent circuit for the case in which the source is connected to the substrate (body). (c) The equivalent circuit model of (b) with C_{db} neglected (to simplify analysis).
4.8.4 The MOSFET Unity-Gain Frequency \(f_T \)

A figure of merit for the high-frequency operation of the MOSFET as an amplifier is the unity-gain frequency, \(f_T \). This is defined as the frequency at which the short-circuit current-gain of the common-source configuration becomes unity. Figure 4.48 shows the MOSFET hybrid-\(\pi \) model with the source as the common terminal between the input and output ports.

To determine the short-circuit current gain, the input is fed with a current-source signal \(I_i \) and the output terminals are short-circuited. It is easy to see that the current in the short circuit is given by

\[
I_s = g_m V_i - s C_{gs} V_{gs} + s C_{gd} V_{gs}
\]

Recalling that \(C_{GD} \) is small, at the frequencies of interest, the second term in this equation can be neglected,

\[
I_s = g_m V_i - s C_{gs} V_{gs}
\]

From Eq. 4.115, we can express \(V_{gs} \) in terms of the input current \(I_i \) as

\[
V_{gs} = \frac{I_i}{s(C_{gs} + C_{gd})}
\]

Equations (4.115) and (4.116) can be combined to obtain the short-circuit current gain,

\[
\frac{I_s}{I_i} = g_m (C_{gs} + C_{gd})
\]

For physical frequencies \(s = j \omega \), it can be seen that the magnitude of the current gain becomes unity at the frequency

\[
\omega_T = g_m / (C_{gs} + C_{gd})
\]

Thus the unity-gain frequency \(f_T \) is \(\omega_T / 2\pi \) is

\[
f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}
\]

Since \(f_T \) is proportional to \(g_m \) and inversely proportional to the FET internal capacitances, the higher the value of \(f_T \), the more effective the FET becomes as an amplifier. Substituting for \(g_m \) using Eq. (4.69), we can express \(f_T \) in terms of the bias current \(I_D \) (see Problem 4.92).

\[\text{Note that since we are now dealing with quantities (currents, in this case) that are functions of frequency, or, equivalently, the Laplace variable } s, \text{ we are using capital letters with lowercase subscripts for our symbols. This conforms to the symbol notation introduced in Chapter 1.}

Alternatively, we can substitute for \(g_m \), from Eq. (4.69) to express \(f_T \) in terms of the overdrive voltage \(V_OV \) (see Problem 4.93). Both expressions yield additional insight into the high-frequency operation of the MOSFET.

Typically, \(f_T \) ranges from about 100 MHz for the older technologies (e.g., a 5-\(\mu \)m CMOS process) to many GHz for newer high-speed technologies (e.g., a 0.13-\(\mu \)m CMOS process).

4.8.5 Summary

We conclude this section by presenting a summary in Table 4.5.

TABLE 4.5 The MOSFET High-Frequency Model

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_m) = (\mu C_{w} W / L)</td>
<td>(V_{OV} / \sqrt{2})</td>
</tr>
<tr>
<td>(s_{m}) = (\sqrt{2})</td>
<td>(2 / V_{OL})</td>
</tr>
<tr>
<td>(r_s) = (V_{GS} / I_D)</td>
<td>(\sqrt{2} \omega_T V_{GS} / V_{OL})</td>
</tr>
<tr>
<td>(C_{gs}) = (g_m)</td>
<td>(\omega_T)</td>
</tr>
<tr>
<td>(C_{gd}) = (W L C_{w} + W L C_{n})</td>
<td>(\omega_T)</td>
</tr>
<tr>
<td>(C_{ov} = W L C_{w} C_{ov})</td>
<td>(\omega_T)</td>
</tr>
<tr>
<td>(C_{ot} = W L C_{w} C_{ot})</td>
<td>(\omega_T)</td>
</tr>
<tr>
<td>(f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})})</td>
<td>(\omega_T)</td>
</tr>
</tbody>
</table>

Alternatively, we can substitute for \(g_m \), from Eq. (4.69) to express \(f_T \) in terms of the overdrive voltage \(V_OV \) (see Problem 4.93). Both expressions yield additional insight into the high-frequency operation of the MOSFET.

Typically, \(f_T \) ranges from about 100 MHz for the older technologies (e.g., a 5-\(\mu \)m CMOS process) to many GHz for newer high-speed technologies (e.g., a 0.13-\(\mu \)m CMOS process).
4.9 FREQUENCY RESPONSE OF THE CS AMPLIFIER

In this section we study the dependence of the gain of the MOSFET common-source amplifier of Fig. 4.49(a) on the frequency of the input signal. Before we begin, however, a note on terminology is in order: Since we will be dealing with voltages and currents that are functions of frequency or, more generally, the complex-frequency variable \(s \), we will use uppercase letters with lowercase subscripts to represent them (e.g., \(V_s, I_s \)).

4.9.1 The Three Frequency Bands

When the circuit of Fig. 4.49(a) was studied in Section 4.7.3, it was assumed that the coupling capacitors \(C_1 \) and \(C_2 \) and the bypass capacitor \(C_s \) were acting as perfect short circuits at all signal frequencies of interest. We also neglected the internal capacitances of the MOSFET; that is, \(C_o, C_d, \) and \(C_g, \) of the MOSFET high-frequency model shown in Fig. 4.47(c) were assumed to be sufficiently small to act as open circuits at all signal frequencies of interest.

As a result of ignoring all capacitive effects, the gain expressions derived in Section 4.7.3 were independent of frequency. In reality, however, this situation applies over only a limited, though normally wide, band of frequencies. This is illustrated in Fig. 4.49(b), which shows a sketch of the magnitude of the overall voltage gain, \(|G| \), of the CS amplifier versus frequency. We observe that the gain is almost constant over a wide frequency band, called the midband. The value of the midband gain \(A_M \) corresponds to the overall voltage gain \(G \), that we derived in Section 4.7.2, namely,

\[
A_M = \frac{V_e}{V_{gs}} = \frac{R_g}{R_{in}+R_o} \quad (4.119)
\]

Figure 4.49(b) shows that the gain falls off at signal frequencies below and above the midband. The gain falloff in the low-frequency band is due to the fact that even though \(C_1, C_2, \) and \(C_s \) are large capacitors (in the \(\mu \)F range), as the signal frequency is reduced, their impedances increase, and they no longer behave as short circuits. On the other hand, the gain falls off in the high-frequency band as a result of \(C_o, C_g, \) and \(C_d, \) which though very small (in the pF or fraction of pF range for discrete devices and much lower for IC devices), their impedances at high frequencies decrease and thus can no longer be considered as open circuits. It is our objective in this section to study the mechanisms by which these two sets of capacitances affect the amplifier gain in the low-frequency and the high-frequency bands. In this way, we will be able to determine the frequencies \(f_L \) and \(f_H \), which define the extent of the midband, as shown in Fig. 4.49(b).

The midband is obviously the useful frequency band of the amplifier. Usually, \(f_L \) and \(f_H \) are the frequencies at which the gain drops by 3 dB below its value at midband. The amplifier bandwidth or 3-dB bandwidth is defined as the difference between the lower \((f_L) \) and the upper \((f_H) \) 3-dB frequencies.

\[
BW = f_H - f_L \quad (4.120)
\]

and since, usually, \(f_L < f_H \),

\[
BW \approx f_H \quad (4.121)
\]

A figure-of-merit for the amplifier is its gain–bandwidth product, which is defined as

\[
GB = |A_M|BW \quad (4.122)
\]

It will be shown at a later stage that in amplifier design it is usually possible to trade-off gain for bandwidth. One way to accomplish this, for instance, is by adding a source degeneration resistance \(R_s \), as we have done in Section 4.7.4.
4.9.2 The High-Frequency Response

To determine the gain, or the transfer function, of the amplifier of Fig. 4.49(a) at high frequencies, and particularly the upper 3-dB frequency \(f_H \), we replace the MOSFET with its high-frequency model of Fig. 4.47(c). At these frequencies, \(C_{C_1}, C_{C_2}, \) and \(C_s \) will be behaving as perfect short circuits. The result is the high-frequency amplifier equivalent circuit shown in Fig. 4.50(a).

The equivalent circuit of Fig. 4.50(a) can be simplified by utilizing the Thévenin theorem at the input side and by combining the three parallel resistances at the output side. The resulting simplified circuit is shown in Fig. 4.50(b). This circuit can be further simplified if we can find a way to deal with the bridging capacitor \(C_{gd} \) that connects the output node to the input side. Toward that end, consider first the output node. It can be seen that the load current is \((g_m V_{gs} - I_{gd})\), where \((g_m V_{gs})\) is the output current of the transistor and \(I_{gd}\) is the current supplied through the very small capacitance \(C_{gd}\). At frequencies in the vicinity of \(f_H\), which defines the edge of the midband, it is reasonable to assume that \(I_{gd}\) is still much smaller than \((g_m V_{gs})\), with the result that \(V_o\) can be given approximately by

\[
V_o = -(g_m V_{gs})R'_L = -g_m R'_L V_{gs}
\]

where \(R'_L = r_o || R_D || R_L\).

Since \(V_o = V_{ds}\), Eq. (4.123) indicates that the gain from gate to drain is \(-g_m R'_L\), the same value as in the midband. The current \(I_{gd}\) can now be found as

\[
I_{gd} = sC_{gd}(V_{gs} - V_t) = sC_{gd}(V_{gs} - (-g_m R'_L V_{gs})) = sC_{gd}(1 + g_m R'_L)V_{gs}
\]
Now, the left-hand side of the circuit in Fig. 4.50(b), at XX, knows of the existence of C_{eq} only through the current I_{ds}. Therefore, we can replace C_{eq} by an equivalent capacitance C_{eq} between the gate and ground as long as C_{eq} draws a current equal to I_{ds}. That is,

$$sC_{eq}V_{gs} = sC_{eq}(1 + g_{m}R_{L})V_{gs},$$

which results in

$$V_{gs} = C_{eq}(1 + g_{m}R_{L})V_{gs}$$

(4.124)

Using C_{eq} enables us to simplify the equivalent circuit at the input side to that shown in Fig. 4.50(c). We recognize the circuit of Fig. 4.50(c) as a single-time-constant (STC) circuit of the low-pass type (Section 1.6 and Appendix D). Reference to Table 1.2 enables us to express the output voltage V_{o} of the STC circuit in the form

$$V_{o} = \left(\frac{R_{L} + R_{eq}}{R_{eq}}\right)sC_{eq}V_{gs} = \left(\frac{R_{L} + R_{eq}}{R_{eq}}\right)C_{eq}(1 + g_{m}R_{L})V_{gs}$$

(4.125)

where ω_{0} is the corner frequency or the break frequency of the STC circuit,

$$\omega_{0} = \frac{1}{C_{eq}R_{eq}}$$

(4.126)

with

$$C_{eq} = C_{g} + C_{eq} = C_{g} + C_{eq}(1 + g_{m}R_{L})$$

(4.127)

and

$$R_{eq} = R_{eq} \parallel R_{L}$$

(4.128)

Combining Eqs. (4.123) and (4.125) results in the following expression for the high-frequency gain of the CS amplifier,

$$\frac{V_{o}}{V_{gs}} = \left(\frac{R_{L} + R_{eq}}{R_{eq}}\right)sC_{eq}V_{gs} = \left(\frac{R_{L} + R_{eq}}{R_{eq}}\right)C_{eq}(1 + g_{m}R_{L})V_{gs}$$

(4.129)

which can be expressed in the form

$$\frac{V_{o}}{V_{gs}} = A_{m} = \frac{\omega_{0}}{1 + \frac{\omega_{0}}{\omega_{0}}}$$

(4.130)

where the midband gain A_{m} is given by Eq. (4.119) and ω_{0} is the upper 3-dB frequency,

$$\omega_{0} = \omega_{L} = \frac{1}{C_{g}R_{eq}}$$

(4.131)

and

$$f_{3} = \frac{\omega_{0}}{2\pi} = \frac{1}{2\pi C_{g}R_{eq}}$$

(4.132)

We thus see that the high-frequency response will be that of a low-pass STC network with a 3-dB frequency f_{3} determined by the time constant $C_{eq}R_{eq}$. Figure 4.50(d) shows a sketch of the magnitude of the high-frequency gain.

Before leaving this section we wish to make a number of observations:

1. The upper 3-dB frequency is determined by the interaction of $R_{eq} = R_{eq} \parallel R_{L}$ and $C_{eq} = C_{g} + C_{eq}(1 + g_{m}R_{L})$. Since the bias resistance R_{B} is usually very large, it can be neglected, resulting in $R_{eq} \approx R_{eq}$, the resistance of the signal source. It follows that a large value of R_{eq} will cause f_{3} to be lowered.

2. The total input capacitance C_{in} is usually dominated by C_{eq}, which in turn is made large by the multiplication effect that C_{eq} undergoes. Thus, although C_{eq} is usually a very small capacitance, its effect on the amplifier frequency response can be very significant as a result of its multiplication by the factor $(1 + g_{m}R_{L})$, which is approximately equal to the midband gain of the amplifier.

3. The multiplication effect that C_{eq} undergoes comes about because it is connected between two nodes whose voltages are related by a large negative gain $(-g_{m}R_{L})$. This effect is known as the Miller effect, and $(1 + g_{m}R_{L})$ is known as the Miller multiplier. It is the Miller effect that causes the CS amplifier to have a large total input capacitance C_{in} and hence a low f_{3}.

4. To extend the high-frequency response of a MOSFET amplifier, we have to find configurations in which the Miller effect is absent or at least reduced. We shall return to this subject at great length in Chapter 6.

5. The above analysis, resulting in an STC or a single-pole response, is a simplified one. Specifically, it is based on neglecting g_{ds} relative to g_{m}, an assumption that applies at frequencies not too much higher than f_{0}. A more exact analysis of the circuit in Fig. 4.50(a) will be carried out in Chapter 6. The results above, however, are more than sufficient for our current needs.

EXAMPLE 4.12

Find the midband gain A_{m} and the upper 3-dB frequency f_{3} of a CS amplifier fed with a signal source having an internal resistance $R_{in} = 100$ kΩ. The amplifier has $R_{L} = 4.7$ MΩ, $R_{eq} = R_{L} = 15$ kΩ, $g_{m} = 0.1$ mA/V, $r_{s} = 150$ kΩ, $C_{g} = 1$ pF, and $C_{eq} = 0.4$ pF.

Solution

$$A_{m} = -\frac{R_{L} + R_{eq}}{R_{eq} + R_{in}}g_{m}R_{L}$$

(4.133)

where

$$R_{eq} = R_{eq} \parallel R_{L} = 150 \parallel 15 = 7.14 \text{ kΩ}$$

$$g_{m}R_{L} = 0.1 \times 7.14 = 0.714 \text{ V/V}$$

Thus,

$$A_{m} = -\frac{4.7 \times 0.1}{4.7 \times 0.1} = -7 \text{ V/V}$$
The equivalent capacitance, \(C_{eq} \), is found as
\[
C_{eq} = (1 + \frac{g_m R_s}{})(C_{gd}) = (1 + 7.14) \times 0.4 = 3.26 \text{ pF}
\]
The total input capacitance \(C_{in} \) can be now obtained as
\[
C_{in} = C_{gs} + C_{eq} = 1 + 3.26 = 4.26 \text{ pF}
\]
The upper 3-dB frequency \(f_H \) is found from
\[
f_H = f = \frac{1}{2\pi C_{in}(R_s R_G)}
\]
\[
= \frac{1}{2\pi \times 4.26 \times 10^{-12} \times (0.1 \times 4.7) \times 10^6}
\]
\[
= 382 \text{ kHz}
\]
For the CS amplifier specified in Example 4.12, find the values of \(a \) and \(\omega_0 \) that result when the signal-source resistance is reduced to 10 k\(\Omega \).
\[
\text{Ans.} \quad a = 7.14, \quad \omega_0 = 382 \text{ kHz}
\]
If it is possible to replace the MOSFET used in the amplifier in Example 4.12 with another having the same \(C_{in} \) but a smaller \(C_s \), what is the maximum value that its \(C_{eq} \) can be in order to obtain an \(f_H \) of at least 1 MHz?
\[
\text{Ans.} \quad 0.08 \text{ pF}
\]

4.9.3 The Low-Frequency Response
To determine the low-frequency gain or transfer function of the common-source amplifier, we show in Fig. 4.51(a) the circuit with the dc sources eliminated (current source \(I_s \) open-circuited and voltage source \(V_{DD} \) short-circuited). We shall perform the small-signal analysis directly on this circuit. However, we will ignore \(r_o \). This is done in order to keep the analysis simple and thus focus attention on significant issues. The effect of \(r_o \) on the low-frequency operation of this amplifier is minor, as can be verified by a SPICE simulation (Section 4.12).

The analysis begins at the signal generator by finding the fraction of \(V_{sg} \) that appears at the transistor gate,
\[
V_s = V_{sg} \frac{R_s}{R_s + \frac{1}{C_{gs}(R_s + R_{eq})}}
\]
which can be written in the alternate form
\[
V_s = V_{sg} \frac{R_s}{R_s + \frac{1}{C_{gs}(R_s + R_{eq})}} = \frac{sC_s}{s + \frac{R_s}{C_s} + \frac{1}{C_{eq}(R_s + R_{eq})}}
\]
(4.133)

Thus we see that the expression for the signal transmission from signal generator to amplifier input has acquired a frequency-dependent factor. From our study of frequency response
and then multiplying \(I \) by \(R_2 \) to obtain

\[
V_c = I R_2 = -\frac{R_2 R_C}{R_2 + R_C} \frac{s}{s + \frac{1}{C_2(R_0 + R_1)}}
\]

(4.137)

from which we see that \(C_2 \) introduces a third STC high-pass factor, giving the amplifier a third break frequency at

\[
\omega_{B} = \frac{1}{C_2(R_0 + R_1)}
\]

(4.138)

The overall low-frequency transfer function of the amplifier can be found by combining Eqs. (4.133), (4.135), and (4.137) and replacing the break frequencies by their symbols from Eqs. (4.134), (4.136), and (4.138).

\[
\frac{V_o}{V_{in}} = \left(\frac{R_2}{R_2 + R_{in}} \right) \left(\frac{1}{1 + s \omega_{B}} \right)
\]

(4.139)

The low-frequency magnitude response can be obtained from Eq. (4.139) by replacing \(s \) by \(j\omega \) and finding \(|V_o/V_{in}| \). In many cases, however, one of the three break frequencies can be much higher than the other two, say by a factor greater than 4. In such a case, it is this highest-frequency break point that will determine the lower 3-dB frequency, \(f_c \), and we do not have to do any additional hand analysis. For instance, because the expression for \(\omega_{B} \) includes \(R_2 \) (Eq. 4.136), \(\omega_{B} \) is usually higher than \(\omega_{B1} \) and \(\omega_{B2} \). If \(\omega_{B3} \) is sufficiently separated from \(\omega_{B1} \) and \(\omega_{B2} \), then

\[
f_c \approx f_{B3}
\]

which means that in such a case, the bypass capacitor determines the low end of the mid-band.

Figure 4.52 shows a sketch of the low-frequency magnitude response of a CS amplifier in which the three break frequencies are sufficiently separated so that their effects appear distinct. Observe that at each break frequency, the slope of the asymptotes to the gain function increases by 20 dB/decade. Readers familiar with poles and zeros will recognize \(f_{P1}, f_{P2}, \) and \(f_{P3} \) as the frequencies of the three real low-frequency poles of the amplifier. We will use poles and zeros and related s-plane concepts later on in Chapter 6 and beyond.

Before leaving this section, it is essential that the reader be able to quickly find the time-constant and hence the break frequency associated with each of the three capacitors. The procedure is simple:

1. Reduce \(V_{oc} \) to zero.
2. Consider each capacitor separately; that is, assume that the other two capacitors are acting as perfect short circuits.
3. For each capacitor, find the total resistance seen between its terminals. This is the resistance that determines the time constant associated with this capacitor.

The reader is encouraged to apply this procedure to \(C_{B1}, C_{B2}, \) and \(C_{B3} \) and thus see that Eqs. (4.134), (4.136), and (4.138) can be written by inspection.

Selecting Values for the Coupling and Bypass Capacitors

We now address the design issue of selecting appropriate values for \(C_{B1}, C_{B2}, \) and \(C_{B3} \). The design objective is to place the lower 3-dB frequency \(f_1 \) at a specified value while minimizing the capacitor values.

Since as mentioned above \(C_2 \) results in the highest of the three break frequencies, the total capacitance is minimized by selecting \(C_2 \) so that its break frequency \(f_{B2} = f_r \). We then decide on the location of the other two break frequencies, say 5 to 10 times lower than the frequency of the dominant one, \(f_{B2} \). However, the values selected for \(f_{B1} \) and \(f_{B2} \) should not be too low, for that would require larger values for \(C_{B1} \) and \(C_{B2} \) than may be necessary. The design procedure will be illustrated by an example.

EXAMPLE 4.13

We wish to select appropriate values for the coupling capacitors \(C_{B1} \) and \(C_{B2} \) and the bypass capacitor \(C_{B3} \) for the CS amplifier whose high-frequency response was analyzed in Example 4.12.

The amplifier has \(R_2 = 4.7 \, \text{k\Omega}, R_0 = 15 \, \text{k\Omega}, R_{in} = 100 \, \text{k\Omega}, \) and \(g_m = 1 \, \text{mA/V} \). It is required to have \(f_1 \) at 100 Hz and that the nearest break frequency be at least a decade lower.

Solution

We select \(C_3 \) so that

\[
f_{B3} = \frac{1}{2\pi(C_3/g_m)} = f_r
\]

Thus,

\[
C_3 = \frac{g_m}{2\pi f_r} = \frac{1 \times 10^{-3}}{2\pi \times 100} = 1.6 \, \mu\text{F}
\]
MOS FIELD-EFFECT TRANSISTORS (MOSFETS)

For \(f_1 = f_2 = 10 \) Hz, we obtain

\[
10 = \frac{1}{2 \pi C_1 (0.1 + 4.7) \times 10^5}
\]

which yields

\[
C_1 = 3.3 \text{ mF}
\]

and

\[
10 = \frac{1}{2 \pi C_2 (15 + 15) \times 10^5}
\]

which results in

\[
C_2 = 0.53 \text{ pF}
\]

EXERCISE

4.60 A CS amplifier has \(C_1 = C_2 = 1 \text{ pF}, R_0 = 10 \text{ M\Omega}, R_{DS} = 100 \text{ k\Omega}, g_m = 2 \text{ mS}\), \(R_2 = R_1 = 10 \text{ k\Omega}\). Find \(V_{in}, v_{C}, v_{DS}, i_{DS}, v_{DS}, v_{DSN}, \) and \(R_{DSN} \)

Ans. \(-9.9 \text{ V}, 0.016 \text{ Hz}, 318.3 \text{ Hz}, 8 \text{ Hz}, 318.3 \text{ Hz}\)

4.9.4 A Final Remark

The frequency response of the other amplifier configurations will be studied in Chapter 6.

4.10 THE CMOS DIGITAL LOGIC INVERTER

Complementary MOS or CMOS logic circuits have been available as standard packages for use in conventional digital system design since the early 1970s. Such packages contain logic gates and other digital system building blocks with the number of gates per package ranging from a few (small-scale integrated or SSI circuits) to few tens (medium-scale integrated or MSI circuits).

In the late 1970s, as the era of large- and very-large-scale integration (LSI and VLSI; hundreds to hundreds of thousands of gates per chip) began, circuits using only n-channel MOSFETs: one, with a n-channel device \(Q_N \) to be the driving transistor and the other, \(Q_P \), with a p-channel device \(Q_P \), to be the load. However, since the circuit is completely symmetric, this assumption is obviously arbitrary, and the reverse would lead to identical results.

The basic CMOS inverter circuit realizes the conceptual inverter implementation studied in Chapter 1 (Fig. 1.32), where a pair of switches are operated in a complementary fashion by the input voltage to

\[v \]

understood, the results can be extended to the design of logic gates and other more complex circuits. In this section we provide such a study for the CMOS inverter. Our study of the CMOS inverter and logic circuits will continue in Chapter 10.

The basic CMOS inverter is shown in Fig. 4.53. It utilizes two matched enhancement-type MOSFETs: one, \(Q_N \), with an n-channel and the other, \(Q_P \), with a p-channel. The body of each device is connected to its source and thus no body effect arises. As will be seen shortly, the CMOS circuit realizes the conceptual inverter implementation studied in Chapter 1 (Fig. 1.32), where a pair of switches are operated in a complementary fashion by the input voltage to

\[v \]

4.10.1 Circuit Operation

We first consider the two extreme cases: when \(v \) is at logic-0 level, which is approximately 0 V; and when \(v \) is at logic-1 level, which is approximately \(V_{DD} \) volts. In both cases, for ease of exposition we shall consider the n-channel device \(Q_N \) to be the driving transistor and the p-channel device \(Q_P \) to be the load. However, since the circuit is completely symmetric, this assumption is obviously arbitrary, and the reverse would lead to identical results.

Figure 4.54 illustrates the case when \(v = V_{DD} \) showing the \(i_{DSN} \) characteristic curve for \(Q_N \) with \(x_{DSN} = V_{DD} \). (Note that \(i_{DSN} = i \) and \(v_{DSN} = v \).) Superimposed on the \(Q_N \) characteristic is the load curve, which is the \(i_{DS} \) characteristic curve for \(Q_P \) for the case \(v_{DS} = 0 \). Since \(v_{DS} < V_{DD} \), the load curve will be a horizontal straight line at almost zero current level. The operating point will be at the intersection of the two curves, where we note that the output voltage is nearly zero (typically less than 10 mV) and the current through the two devices is also nearly zero. This means that the power dissipation in the circuit is very small (typically a fraction of a microwatt). Note, however, that although \(Q_P \) is operating at nearly zero current and zero drain-source voltage (i.e., near the origin of the \(i_{DSN} \)-\(v_{DSN} \) plane), the operating point is on a steep segment of the \(i_{DS} \)-\(v_{DS} \) characteristic curve. This curve provides a low-resistance path between the output terminal and ground, with the resistance obtained using Eq. (4.13) as

\[
r_{DS} = \frac{1}{\left(\frac{2 \pi C_2}{L} \right)} \left(V_{DD} - V_o \right)
\]

(4.140)

Figure 4.54(c) shows the equivalent circuit of the inverter when the input is high. This circuit confirms that \(v = V_{DD} = 0 \) V and that the power dissipation in the inverter is zero.
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

4.10 THE CMOS DIGITAL LOGIC INVERTER

It should be noted, however, that in spite of the fact that the quiescent current is zero, the load-driving capability of the CMOS inverter is high. For instance, with the input high, as in the circuit of Fig. 4.54, transistor Q1 can sink a relatively large load current. This current can quickly discharge the load capacitance, as will be seen shortly. Because of its action in sinking load current and thus pulling the output voltage down toward ground, transistor Q1 is known as the "pull-down" device. Similarly, with the input low, as in the circuit of Fig. 4.55, transistor Q2 can source a relatively large load current. This current can quickly charge up a load capacitance, thus pulling the output voltage up toward VDD. Hence, Q2 is known as the "pull-up" device. The reader will recall that we used this terminology in connection with the conceptual inverter circuit of Fig. 1.32.

From the above, we conclude that the basic CMOS logic inverter behaves as an ideal inverter. In summary:

1. The output voltage levels are 0 and VDD, and thus the signal swing is the maximum possible. This, coupled with the fact that the inverter can be designed to provide a symmetrical voltage-transfer characteristic, results in wide noise margins.
2. The static power dissipation in the inverter is zero (neglecting the dissipation due to leakage currents) in both of its states. (Recall that the static power dissipation is so named so as to distinguish it from the dynamic power dissipation arising from the repeated switching of the inverter, as will be discussed shortly.)
3. A low-resistance path exists between the output terminal and ground (in the low-output state) or VDD (in the high-output state). These low-resistance paths ensure that the output voltage is 0 or VDD independent of the exact values of the (W/L) ratios or other device parameters. Furthermore, the low output resistance makes the inverter less sensitive to the effects of noise and other disturbances.
4. The active pull-up and pull-down devices provide the inverter with high output-driving capability in both directions. As will be seen, this speeds up the operation considerably.
5. The input resistance of the inverter is infinite (because IC = 0). Thus the inverter can drive an arbitrarily large number of similar inverters with no loss in signal level. Of course, each additional inverter increases the load capacitance on the driving inverter and slows down the operation. Shortly, we will consider the inverter switching times.

4.10.2 The Voltage Transfer Characteristic

The complete voltage-transfer characteristic (VTC) of the CMOS inverter can be obtained by repeating the graphical procedure, used above in the two extreme cases, for all intermediate values of v0. In the following, we shall calculate the critical points of the resulting voltage transfer curve. For this we need the i-v relationships of Q1 and Q2. For Q1,

\[i_{DS1} = k_c \left(\frac{W}{L} \right)^{\frac{1}{2}} (vT - Vt) \left(vT - \frac{1}{2} Vt \right) \]

for \(vT \leq vT - Vt \)

and

\[i_{DS2} = k_c \left(\frac{W}{L} \right)^{\frac{1}{2}} (vT - Vt) \]

for \(vT \geq vT - Vt \)

where

\[k_c = \frac{1}{2} \left(\frac{W}{L} \right)^{\frac{1}{2}} \]

Recall the following:

- The complete voltage-transfer characteristic (VTC) of the CMOS inverter can be obtained by repeating the graphical procedure, used above in the two extreme cases, for all intermediate values of v0. In the following, we shall calculate the critical points of the resulting voltage transfer curve. For this we need the i-v relationships of Q1 and Q2. For Q1,

\[i_{DS1} = k_c \left(\frac{W}{L} \right)^{\frac{1}{2}} (vT - Vt) \left(vT - \frac{1}{2} Vt \right) \]

for \(vT \leq vT - Vt \)

and

\[i_{DS2} = k_c \left(\frac{W}{L} \right)^{\frac{1}{2}} (vT - Vt) \]

for \(vT \geq vT - Vt \)

where

\[k_c = \frac{1}{2} \left(\frac{W}{L} \right)^{\frac{1}{2}} \]

Recall the following:

- The complete voltage-transfer characteristic (VTC) of the CMOS inverter can be obtained by repeating the graphical procedure, used above in the two extreme cases, for all intermediate values of v0. In the following, we shall calculate the critical points of the resulting voltage transfer curve. For this we need the i-v relationships of Q1 and Q2. For Q1,
For Q_p,
\[i_{op} = k_p^* \frac{W}{L} \left[(V_D - V_t) - |V_o| (V_{DD} - V_t) - \frac{1}{2}(V_D - V_t)^2 \right] \]
for $v_D \geq V_t + |V_o|$ \hspace{1cm} (4.144)

and
\[i_{op} = \frac{k_n^*}{2} \frac{W}{L} \left(V_D - V_t \right)^2 \]
for $v_D \leq V_t + |V_o|$ \hspace{1cm} (4.145)

The CMOS inverter is usually designed to have $V_{oc} = |V_o| = V_c$, and $k_p^* (W/L)_p = k_n^* (W/L)_n$. It should be noted that since p is 0.3 to 0.5 times the value of n, to make $k_n^* (W/L)$ of the two devices equal, the width of the n-channel device is made two to three times that of the p-channel device. More specifically, the two devices are designed to have equal lengths, with widths related by
\[\frac{W_n}{W_p} = \frac{1}{k_p} \]

This will result in $k_p^* (W/L)_p = k_n^* (W/L)_n$, and the inverter will have a symmetric transfer characteristic and equal current-driving capability in both directions (pull-up and pull-down).

With Q_p and Q_n matched, the CMOS inverter has the voltage transfer characteristic shown in Fig. 4.56. As indicated, the transfer characteristic has five distinct segments corresponding to different combinations of modes of operation of Q_p and Q_n. The vertical segment BC is obtained when both Q_p and Q_n are operating in the saturation region. Because we are neglecting the finite output resistance in saturation, the inverter gain in this region is infinite. From symmetry, this vertical segment occurs at $v_D = V_{DD}/2$ and is bounded by $v_D(B) = V_{DD}/2 + V_c$, and $v_D(C) = V_{DD}/2 - V_c$. The reader will recall from Section 1.7 that in addition to V_{oc} and V_{oi}, two other points on the transfer curve determine the noise margins of the inverter. These are the maximum permitted logic-0 or “low” level at the input, V_{in}, and the minimum permitted logic-1 or “high” level at the input, V_{ih}. These are formally defined as the two points on the transfer curve at which the incremental gain is unity (i.e., the slope is -1 V/V).

To determine V_{oc}, we note that Q_p is in the triode region, and thus its current is given by Eq. (4.142), while Q_n is in saturation and its current is given by Eq. (4.145). Equating i_{op} and i_{on}, and assuming matched devices, gives
\[(v_D - V_D)_{10} - \frac{1}{2} V_D = \frac{1}{2} (V_{DD} - v_D - V_c)^2 \]

Differentiating both sides relative to v_D results in
\[\frac{d}{dv_D} (v_D - V_D)_{10} - v_D - V_D \frac{d}{dv_D} = -(V_{DD} - v_D - V_c) \]

in which we substitute $v_D = V_{im}$ and $d v_D = d v_D$ to obtain
\[v_D = V_{im} - V_{DD} \]

Substituting $v_D = V_{im}$ and for v_D from Eq. (4.147) in Eq. (4.146) gives
\[V_{im} = \frac{1}{2} (5 V_{DD} - 2 V_c) \]

V_{im} can be determined in a manner similar to that used to find V_{oc}. Alternatively, we can use the symmetry relationship
\[V_{im} - V_{DD} = V_{DD} - V_{il} \]

together with V_{oi} from Eq. (4.148) to obtain
\[V_{il} = \frac{1}{3} (3 V_{DD} + 2 V_c) \]

The noise margins can now be determined as follows:
\[NM_H = V_{oc} - V_{ih} = V_{DD} - \frac{1}{2} (5 V_{DD} - 2 V_c) = \frac{1}{2} (3 V_{DD} + 2 V_c) \]

\[NM_L = V_{il} - V_{oi} = \frac{1}{3} (3 V_{DD} + 2 V_c) - 0 = (3 V_{DD} + 2 V_c) \]

As expected, the symmetry of the voltage transfer characteristic results in equal noise margins. Of course, if Q_p and Q_n are not matched, the voltage transfer characteristic will no longer be symmetric, and the noise margins will not be equal (see Problem 4.107).
EXERCISES

4.41 For a CMOS inverter with matched MOSFETs having \(V_D = 1\, \text{V}, \) and \(V_N, V_P, \) and the noise margins of \(V_{OS} = 5\, \text{V}. \)

Ans. 2.1 V, 2.0 V, 2.1 V

4.42 Consider a CMOS inverter with \(V_P = 2\, \text{V}, (W/L)_P = 20, (W/L)_N = 80, \) \(\mu C_{ox} = 24\, \mu \text{A/V}^2, \) and \(V_{DD} = 10\, \text{V}. \) For \(V_N = V_{DD}, \) find the maximum current that the inverter can sink, while \(\eta _{ij} \) remains \(\leq 0.5\, \text{V}. \)

Ans. 1.55 mA

4.43 An inverter fabricated in a 1.2-\(\mu \text{m} \) CMOS technology uses the minimum possible channel lengths (i.e., \(L = -L = 1.2\, \mu \text{m} \)). If \(W_P = 3.8\, \mu \text{m}, \) find the value of \(W_N \) that would result in \(Q_P \) and \(Q_N \) being switched. For this technology, \(\mu C_{ox} = 80\, \mu \text{A/V}^2, \) \(\mu C_{ox} = 27\, \mu \text{A/V}^2, \) \(V_D = 0.8\, \text{V}, \) and \(V_{DD} = 5\, \text{V}. \) Also, calculate the value of the output resistance of the inverter when \(V_N = V_{DD}. \)

Ans. \(5.46/\mu \text{A/V}, \) \(89/\mu \text{A/V} \)

4.44 Show that the threshold voltage \(V_T \) of a CMOS inverter (see Fig. 4.56) is given by

\[
V_T = \frac{V_D + (V_D + V_N) + V_D}{2}
\]

where

\[
V_D = \frac{x(W/L)_P}{(W/L)_N}
\]

4.10.3 Dynamic Operation

As explained in Section 1.7, the speed of operation of a digital system (e.g., a computer) is determined by the propagation delay of the logic gates used to construct the system. Since the inverter is the basic logic gate of any digital IC technology, the propagation delay of the inverter is a fundamental parameter in characterizing the technology. In the following, we analyze the switching operation of the CMOS inverter to determine its propagation delay. Figure 4.57(a) shows the inverter with a capacitor \(C \) between the output node and ground. Here \(C \) represents the sum of the appropriate internal capacitances of the MOSFETs \(Q_P \) and \(Q_N, \) the capacitance of the interconnect wire between the inverter output node and the inputs of the other logic gates the inverter is driving, and the total input capacitance of these load (or fan-out) gates. We assume that the inverter is driven by the ideal pulse (zero rise and fall times) shown in Fig. 4.57(b). Since the circuit is symmetric (assuming matched MOSFETs), the rise and fall times of the output waveform should be equal. It is sufficient, therefore, to consider either the turn-on or the turn-off process. In the following, we consider the first.

Figure 4.57(c) shows the trajectory of the operating point obtained when the input pulse goes from \(V_{DD} = 0 \) to \(V_{DD} = V_{DD} \) at time \(t = 0. \) Just prior to the leading edge of the input pulse (i.e., at \(t = 0^- \)) the output voltage equals \(V_{DD} \) and capacitor \(C \) is charged to this voltage. At \(t = 0, \) \(V_N \) rises to \(V_{DD}, \) causing \(Q_P \) to turn off immediately. From then on, the circuit is equivalent to that shown in Fig. 4.57(d) with the initial value of \(V_N = V_{DD}. \) Thus the operating point at \(t = 0+ \) is point \(D, \) at which it can be seen that \(Q_N \) will be in the saturation region and conducting a large current. As \(C \) discharges, the current of \(Q_N \) remains constant until \(V_N = V_{DD} = V \) (point \(E \)). Denoting this portion of the discharge interval \(t_{DEL} \) (where the subscript

\[
l_{DEL} \Delta t = -C \Delta t
\]
4.10.4 Current Flow and Power Dissipation

As the CMOS inverter is switched, current flows through the series connection of Q_0 and Q_1. Figure 4.58 shows the inverter current as a function of V_i. We note that the current peaks at the switching threshold, $V_{th} = V_0 = V_{DD}/2$. This current gives rise to dynamic power dissipation in the CMOS inverter. However, a more significant component of dynamic power dissipation results from the current that flows in Q_0 and Q_1 when the inverter is loaded by a capacitor C.

An expression for this latter component can be derived as follows: Consider once more the circuit in Fig. 4.57(a). At $t = 0$, $V_i = V_{DD}$, and the energy stored on the capacitor is $\frac{1}{2}CV_{DD}^2$. At $t = 0$, V_i goes high to V_{DD}, Q_0 turns off, and Q_1 turns on. Transistor Q_1 discharges the capacitor, and at the end of the discharge interval, the capacitor voltage is reduced to zero. Thus during the discharge interval, energy of $\frac{1}{2}CV_{DD}^2$ is removed from C and dissipated in Q_1. Next consider the other half of the cycle when V_i goes low to zero. Transistor Q_0 turns off, and Q_1 conducts and charges the capacitor. Let the instantaneous current supplied by Q_1 to C be denoted i. This current is, of course, coming from the power supply V_{DD}. The energy drawn from the supply during the charging period will be $Q = CV_i dt = V_{DD}i dt = V_{DD}Q$. Thus the energy drawn from the supply during the charging interval is $\frac{1}{2}CV_{DD}^2$. At the end of the charging interval, the capacitor voltage will be V_{DD} and thus the energy stored in it will be $\frac{1}{2}CV_{DD}^2$. It follows that during the charging interval, half of the energy drawn from the supply, $\frac{1}{2}CV_{DD}^2$, is dissipated in Q_1.

From the above, we see that in every cycle, $\frac{1}{2}CV_{DD}^2$ of energy is dissipated in Q_1 and $\frac{1}{2}CV_{DD}^2$ dissipated in Q_0 for a total energy dissipation in the inverter of CV_{DD}^2. Now if the inverter is switched at the rate of f cycles per second, the dynamic power dissipation is it will be

$$ P_D = fCV_{DD}^2 $$

(4.158)

Observe that the frequency of operation is related to the propagation delay. The lower the propagation delay, the higher the frequency at which the circuit can be operated, and, according to Eq. (4.158), the higher the power dissipation in the circuit. A figure of merit or a quality measure of the particular circuit technology is the delay-power product (DP).

$$ DP = P_D f $$

(4.159)
The delay-power product tends to be a constant for a particular digital circuit technology and can be used to compare different technologies. Obviously the lower the value of \(DP \) the more effective is the technology. The delay-power product has the units of joules, and is in effect a measure of the energy dissipated per cycle of operation. Thus for CMOS where most of the power dissipation is dynamic, we can take \(DP \) as simply \(CV_{DD} \).

EXERCISES

4.47 For the inverter specified in Exercise 4.42, find the peak current drawn from \(V_{DD} \) during switching.

Ans. 1.8 mA

4.48 Let the inverter specified in Exercise 4.42 be loaded by a 15-pF capacitance. Find the dynamic power dissipation that results when the inverter is switched at a frequency of 2 MHz. What is the average current drawn from the power supply?

Ans. 3 mW; 0.9 mA

4.49 Consider a CMOS VLSI chip having 100,000 gates fabricated in a 1.2-\(\mu \)m CMOS technology. Let the load capacitance per gate be 30 fF. If the chip is operated from a 3-V supply and is switched at a rate of 100 MHz, find (a) the power dissipation per gate and (b) the total power dissipated in the chip assuming that only 30% of the gates are switched at any one time.

Ans. 75 \(\mu \)W; 2.25 W

4.10.5 Summary

In this section, we have provided an introduction to CMOS digital circuits. For convenient reference, Table 4.6 provides a summary of the important characteristics of the inverter. We shall return to this subject in Chapter 10, where a variety of CMOS logic circuits are studied.

4.11 THE DEPLETION-TYPE MOSFET

In this section we briefly discuss another type of MOSFET, the depletion-type MOSFET. Its structure is similar to that of the enhancement-type MOSFET with one important difference: The depletion MOSFET has a physically implanted channel. Thus an \(n \)-channel depletion-type MOSFET has an \(n \)-type silicon region connecting the \(n^+ \) source and the \(n^+ \) drain regions at the top of the \(p \)-type substrate. Thus if a voltage \(V_{GS} \) is applied between drain and source, a current \(i_{DS} \) flows for \(V_{GS} = 0 \). In other words, there is no need to induce a channel, unlike the case of the enhancement MOSFET.

The channel depth and hence its conductivity can be controlled by \(V_{GS} \) by exactly the same manner as in the enhancement-type device. Applying a positive \(V_{GS} \) enhances the channel by attracting more electrons into it. Here, however, we also can apply a negative \(V_{GS} \), which causes electrons to be repelled from the channel, and thus the channel becomes shallower and its conductivity decreases. The negative \(V_{GS} \) is said to deplete the channel of its charge carriers, and this mode of operation (negative \(V_{GS} \)) is called depletion mode. As the magnitude of \(V_{GS} \) is increased in the negative direction, a value is reached at which the channel is completely depleted of charge carriers and \(i_{DS} \) is reduced to zero even though \(V_{DD} \)

TABLE 4.6 Summary of Important Characteristics of the CMOS Logic Inverter

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Output Resistance</td>
<td>(r_{GS} = \sqrt{C_m L/2})</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>(V_{TH} = \frac{V_{DD}}{2} + \frac{V_t}{2})</td>
</tr>
<tr>
<td>Switching Current and Power Dissipation</td>
<td>(I_{out} = \frac{C_m V_{DD}^2}{2})</td>
</tr>
<tr>
<td>Noise Margins</td>
<td>(V_{IL} = V_{DD} - 2V_t)</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>(t_{PD} = \frac{C_m L}{2} V_{DD})</td>
</tr>
</tbody>
</table>
CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

FIGURE 4.59 (a) Circuit symbol for the n-channel depletion-type MOSFET. (b) Simplified circuit symbol applicable for the case the substrate (B) is connected to the source (S).

The description above suggests (correctly) that a depletion-type MOSFET can be operated in the enhancement mode by applying a positive \(V_{GS} \) and in the depletion mode by applying a negative \(V_{GS} \). The \(I_{DS} - V_{DS} \) characteristics are similar to those for the enhancement device except that \(V_t \) of the n-channel depletion device is negative.

Figure 4.59(a) shows the circuit symbol for the n-channel depletion-type MOSFET. This symbol differs from that of the enhancement-type device in only one respect: There is a shaded area next to the vertical line representing the channel, signifying that a physical channel exists. When the body (B) is connected to the source (S), the simplified symbol shown in Fig. 4.59(b) can be used.

The \(I_{DS} - V_{DS} \) characteristics of a depletion-type n-channel MOSFET for which \(V_t = -4 \) V and \(I_s' (W/L) = 2 \) mA/V² are sketched in Fig. 4.60(b). (These numbers are typical of discrete devices.) Although these characteristics do not show the dependence of \(I_D \) on \(V_{GS} \) in saturation, such dependence exists and is identical to the case of the enhancement-type device. Observe that because the threshold voltage \(V_t \) is negative, the depletion NMOS will operate in the triode region as long as the drain voltage does not exceed the gate voltage by more than \(|V_t| \) volts. For it to operate in saturation, the drain voltage must be greater than the gate voltage by at least \(|V_t| \) volts. The chart in Fig. 4.61 shows the relative levels of the terminal voltages of the depletion NMOS transistor for the two regions of operation.

Figure 4.60(c) shows the \(I_{DS} - V_{GS} \) characteristics in saturation, indicating both the depletion and enhancement modes of operation.

TABLE 4.1 Characteristics of a depletion-type MOSFET for which \(V_t = -4 \) V and \(I_s' (W/L) = 2 \) mA/V²:

- \(I_{DS} = 27 \) mA for \(V_G = -3 \) V (saturation)
- \(I_{DS} = 16 \) mA for \(V_G = -2 \) V (saturation)
- \(I_{DS} = 2 \) mA for \(V_G = -1 \) V (saturation)
- \(I_{DS} = 0 \) mA for \(V_G = 0 \) V (saturation)
- \(I_{DS} = 0 \) mA for \(V_G = +1 \) V (saturation)
- \(I_{DS} = 0 \) mA for \(V_G = +2 \) V (saturation)
- \(I_{DS} = 0 \) mA for \(V_G = +3 \) V (saturation)
- \(I_{DS} = 0 \) mA for \(V_G = +4 \) V (saturation)

FIGURE 4.61 Characteristics of a depletion-type MOSFET for which \(V_t = -4 \) V and \(I_s' (W/L) = 2 \) mA/V²:

- Depletion mode
- Enhancement mode

FIGURE 4.60 The current-voltage characteristics of a depletion-type n-channel MOSFET for which \(V_t = -4 \) V and \(I_s' (W/L) = 2 \) mA/V²:

- (a) Transistor with current and voltage polarities indicated;
- (b) the \(I_{DS} \) vs \(V_G \) characteristics;
- (c) the \(I_{DS} \) vs \(V_G \) characteristics in saturation.

Depletion-type MOSFETs can be fabricated on the same IC chip as enhancement-type devices, resulting in circuits with improved characteristics, as will be shown in a later chapter.
4.50 For a depletion-type NMOS transistor with $V_t = -2\,\text{V}$ and $k'_n(W/L) = 2\,\text{mA/\sqrt{V}^2}$, find the minimum v_{DS} required to operate in the saturation region when $v_{GS} = +1\,\text{V}$. What is the corresponding value of i_D?

Ans. $3\,\text{V}$; $9\,\text{mA}$

4.51 The depletion-type MOSFET in Fig. E4.51 has $k'_n(W/L) = 4\,\text{mA/\sqrt{V}^2}$ and $V_t = -2\,\text{V}$. What is the value of v_{DS}? Neglecting the effect of v_{DS} on i_D in the saturation region, find the voltage that will appear at the source terminal.

Ans. $8\,\text{mA}; +1\,\text{V}$

4.52 Find I as a function of v for the circuit in Fig. E4.52. Neglect the effect of v_{DS} on i_D in the saturation region.

Ans. $I = k'_n\frac{W}{L}v_{GS} - \frac{1}{2}k'_n\frac{W}{L}v^2$ for $v < -V_t$; $I = -k'_n\frac{W}{L}v_{GS} - \frac{1}{2}k'_n\frac{W}{L}v^2$ for $v > -V_t$.
The simple square-law model is useful for understanding the basic operation of the MOSFET as a circuit element and is indeed used to obtain approximate pencil-and-paper circuit designs. However, more elaborate models, which account for short-channel effects, are required to be able to predict the performance of integrated circuits with a certain degree of precision prior to fabrication. Such models have indeed been developed and continue to be refined to more accurately represent the higher-order effects in short-channel transistors through a mix of physical relationships and empirical data. Examples include the Berkeley short-channel IGFET model (BSIM) and the EKV model, popular in Europe. Currently, semiconductor manufacturers rely on such sophisticated models to accurately represent the fabrication process. These manufacturers select a MOSFET model and then extract the values for the corresponding model parameters using both their knowledge of the device fabrication process and extensive measurements on a variety of fabricated MOSFETs. A great deal of effort is expended on extracting the model parameter values. Such effort pays off in fabricated circuits exhibiting performance very close to that predicted by simulation, thus reducing the need for costly redesign.

Although it is beyond the scope of this book to delve into the subject of MOSFET modeling and short-channel effects, it is important to be aware of the limitations of the square-law model and of the availability of more accurate but, unfortunately, more complex MOSFET models. In fact, the power of computer simulation is more apparent when one has to use these complex device models in the analysis and design of integrated circuits.

SPICE-based simulators, like PSPice, provide the user with a choice of MOSFET models. The corresponding SPICE model parameters (whose values are provided by the semiconductor manufacturer) include a parameter, called LEVEL, which selects the MOSFET model to be used by the simulator. Although the value of this parameter is not always indicative of the accuracy, nor of the complexity of the corresponding MOSFET model, LEVEL = 1 corresponds to the simplest first-order model (called the Shichman-Hodges model) which is based on the square-law MOSFET equations presented in this chapter. For simplicity, we model of SPICE. The reader should already be familiar with these parameters, except for a few, which are described next.

4.12.2 MOSFET Model Parameters

Table 4.7 provides a listing of some of the MOSFET model parameters used in the Level-1 model of SPICE. The reader should already be familiar with these parameters, except for a few, which are described next.

MOSFET Diode Parameters

For the two reverse-biased diodes formed between each of the source and drain diffusion regions and the body (see Fig. 4.1) the saturation-current density is modeled in SPICE by the parameter JS. Furthermore, based on the parameters specified in Table 4.7, SPICE will calculate the depletion-layer (junction) capacitances discussed in Section 4.8.2 as

\[
C_{ja} = \frac{C_{JSW}}{1 + V_{GS}^{MIN} / V_{PD}} \frac{V_{GS}^{MIN} / V_{PD}}{AD + C_{JSW}} \quad (4.161)
\]

\[
C_{ja} = \frac{C_{JSW}}{1 + V_{GS}^{MIN} / V_{PD}} \frac{V_{GS}^{MIN} / V_{PD}}{AS + C_{JSW}} \quad (4.162)
\]

where AD and AS are the areas while PD and PS are the perimeters of, respectively, the drain and source regions of the MOSFET. The first capacitance term in Eqs. (4.161) and (4.162) represents the depletion-layer (junction) capacitance over the bottom plate of the drain and source regions. The second capacitance term accounts for the depletion layer capacitance along the sidewall (periphery) of these regions. Both terms are expressed using the formula developed in Section 3.7.3 (Eq. 3.56). The values of AD, AS, PD, and PS must be specified by the user based on the dimensions of the device being used.

Table 4.7 Parameters of the SPICE-Level-1 MOSFET Model (Partial Listing)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>LEVEL</td>
<td>MOSFET model selector</td>
<td>m</td>
</tr>
<tr>
<td>TOX</td>
<td>s_e</td>
<td>Gate-oxide thickness</td>
<td>(\text{nm}^2)</td>
</tr>
<tr>
<td>COX</td>
<td>(C_{ox})</td>
<td>Gate-oxide capacitance per unit area</td>
<td>(\text{F/cm}^2)</td>
</tr>
<tr>
<td>UO</td>
<td>(\mu)</td>
<td>Carrier mobility</td>
<td>(\text{cm}^2/\text{V}\cdot\text{s})</td>
</tr>
<tr>
<td>KP</td>
<td>(k')</td>
<td>Process-transconductance parameter</td>
<td>(\text{A/\text{cm}^2})</td>
</tr>
<tr>
<td>LAMBDA</td>
<td>(\lambda)</td>
<td>Channel-length modulation coefficient</td>
<td>(\text{V}^{-1})</td>
</tr>
<tr>
<td>VTO</td>
<td>(V_t)</td>
<td>Zero-bias threshold voltage</td>
<td>V</td>
</tr>
<tr>
<td>GAMMA</td>
<td>(\gamma)</td>
<td>Body-effect parameter</td>
<td>(V/\text{cm}^2)</td>
</tr>
<tr>
<td>NSUB</td>
<td>(N_p, N_n)</td>
<td>Substrate doping</td>
<td>(\text{cm}^{-2})</td>
</tr>
<tr>
<td>PHI</td>
<td>(\phi)</td>
<td>Surface inversion potential</td>
<td>V</td>
</tr>
<tr>
<td>JS</td>
<td></td>
<td>Body-junction saturation-current density</td>
<td>(\text{A/cm}^2)</td>
</tr>
<tr>
<td>CJSW</td>
<td></td>
<td>Zero-bias body-junction capacitance per unit area</td>
<td>(\text{F/cm})</td>
</tr>
<tr>
<td>MJ</td>
<td></td>
<td>Grinding coefficient, for area component</td>
<td></td>
</tr>
<tr>
<td>CJSW</td>
<td></td>
<td>Zero-bias body-junction capacitance per unit length along the sidewall (periphery) of the drain/source region</td>
<td>(\text{F/cm})</td>
</tr>
<tr>
<td>PB</td>
<td></td>
<td>Body-junction built-in potential</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
<td>Lateral diffusion into the channel</td>
<td>m</td>
</tr>
<tr>
<td>WD</td>
<td></td>
<td>Sideways diffusion into the channel</td>
<td>m</td>
</tr>
<tr>
<td>CGBO</td>
<td></td>
<td>Gate-body overlap capacitance, per unit channel length</td>
<td>(\text{F/cm})</td>
</tr>
<tr>
<td>CGDO</td>
<td></td>
<td>Gate-drain overlap capacitance, per unit channel width</td>
<td>(\text{F/cm})</td>
</tr>
<tr>
<td>CGSO</td>
<td></td>
<td>Gate-source overlap capacitance, per unit channel width</td>
<td>(\text{F/cm})</td>
</tr>
</tbody>
</table>

MOSFET Dimension Parameters

- **CGBO**: Gate-body overlap capacitance, per unit channel length
- **CGDO**: Gate-drain overlap capacitance, per unit channel width
- **CGSO**: Gate-source overlap capacitance, per unit channel width

The simple square-law model is useful for understanding the basic operation of the MOSFET as a circuit element and is indeed used to obtain approximate pencil-and-paper circuit designs. However, more elaborate models, which account for short-channel effects, are required to be able to predict the performance of integrated circuits with a certain degree of precision prior to fabrication. Such models have indeed been developed and continue to be refined to more accurately represent the higher-order effects in short-channel transistors through a mix of physical relationships and empirical data. Examples include the Berkeley short-channel IGFET model (BSIM) and the EKV model, popular in Europe. Currently, semiconductor manufacturers rely on such sophisticated models to accurately represent the fabrication process. These manufacturers select a MOSFET model and then extract the values for the corresponding model parameters using both their knowledge of the details of the fabrication process and extensive measurements on a variety of fabricated MOSFETs. A great deal of effort is expended on extracting the model parameter values. Such effort pays off in fabricated circuits exhibiting performance very close to that predicted by simulation, thus reducing the need for costly redesign.
under the gate oxide during fabrication. Furthermore, the effective channel width W_{eff} of the MOSFET is shorter than the nominal or drawn channel width W because of the sideways diffusion into the channel from the body along the width. Based on the parameters specified in Table 4.7:

$$L_{\text{on}} = L - 2L_{\text{D}} \quad (4.163)$$

$$W_{\text{on}} = W - 2W_{\text{D}} \quad (4.164)$$

In a manner analogous to using L_{on} to denote L_{D}, we will use the symbol W_{on} to denote W_{D}. Consequently, as indicated in Section 4.8.1, the gate-source capacitance C_{gs} and the gate-drain capacitance C_{gd} must be increased by an overlap component of, respectively:

$$C_{gso} = W C_{\text{GOx}} \quad (4.165)$$

and

$$C_{gdw} = W C_{\text{DOx}} \quad (4.166)$$

Similarly, the gate-body capacitance C_{gb} must be increased by an overlap component of

$$C_{gbo} = L C_{\text{B0x}} \quad (4.167)$$

The reader may have observed that there is a built-in redundancy in specifying the MOSFET model parameters in SPICE. For example, the user may specify the value of K_P for a MOSFET or, alternatively, specify V_D and U_0 and let SPICE compute K_P as U_0/V_D. Similarly, $GAMMA$ can be directly specified, or the physical parameters that enable SPICE to determine it can be specified (e.g., $NSUB$). In any case, the user-specified values will always take precedence over (i.e., override) these values calculated by SPICE. As another example, note that the user has the option of either directly specifying the overlap capacitances C_{GBO}, C_{GDO}, and C_{GSO} or letting SPICE compute them as $C_{\text{GDO}} = C_{\text{GSO}} = L D C_{\text{OX}}$.

Table 4.8 provides typical values for the Level-1 MOSFET model parameters of a modern 0.5-μm CMOS technology and, for comparison, those of an older (even obsolete) 5-μm CMOS technology. The corresponding values for the minimum channel length L_{min}, minimum channel width W_{min}, and the maximum supply voltage V_{DD} are as follows:

<table>
<thead>
<tr>
<th>Technology</th>
<th>L_{min}</th>
<th>W_{min}</th>
<th>V_{DD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-μm CMOS</td>
<td>5 μm</td>
<td>12.5 μm</td>
<td>10 V</td>
</tr>
<tr>
<td>0.5-μm CMOS</td>
<td>0.5 μm</td>
<td>2.25 μm</td>
<td>3.3 V</td>
</tr>
</tbody>
</table>

Because of the thinner gate oxide in modern CMOS technologies, the maximum supply voltage must be reduced to ensure that the MOSFET terminal voltages do not cause a breakdown of the oxide dielectric under the gate. The shrinking supply voltage is one of the most challenging design aspects of analog integrated circuits in advanced CMOS technologies. From Table 4.8, the reader may have observed some other trends in CMOS processes. For example, as L increases, the channel-length modulation effect becomes more pronounced, and, hence, the value of A increases. This results in MOSFETs having smaller output resistance r_o and, therefore, smaller "intrinsic gains" (Chapter 6). Another example is the decrease in surface mobility μ_S in modern CMOS technologies and the corresponding increase in the ratio of μ_S/μ_F from 2 to close to 5. The impact of this and other trends on the design of integrated circuits in advanced CMOS technologies is discussed in Chapter 6 (see in particular Section 6.2).

When simulating a MOSFET circuit, the user needs to specify both the values of the model parameters and the dimensions of each MOSFET in the circuit being simulated. At least, the channel length L and width W must be specified. The areas AD and AS and the perimeters PD and PS need to be specified for SPICE to model the body-junction capacitances (otherwise, zero capacitances would be assumed). The exact values of these geometry parameters depend on the actual layout of the device (Appendix A). However, to estimate these dimensions, we will assume that a metal contact is to be made to each of the source and drain regions of the MOSFET. For this purpose, typically, these diffusion regions must be extended past the end of the channel (i.e., in the L-direction in Fig. 4.1) by at least $2.75L_{\text{min}}$. Thus, the minimum area and perimeter of a drain/source diffusion region with a contact are, respectively,

$$AD = L_{\text{min}} \times V_{DD} \; (4.168)$$

and

$$PD = 2 \times 2.75L_{\text{min}} + W \; (4.169)$$

Unless otherwise specified, we will use Eqs. (4.168) and (4.169) to estimate the dimensions of the drain/source regions in our examples.

Finally, we note that SPICE computes the values for the parameters of the MOSFET small-signal model based on the dc operating point (bias point). These are then used by SPICE to perform the small-signal analysis (ac analysis).
THE CS AMPLIFIER

In this example, we will use PSpice to compute the frequency response of the CS amplifier whose Capture schematic is shown in Fig. 4.63.\(^1\) Observe that the MOSFET has its source and body connected in order to cancel the body effect. We will assume a 0.5-μm CMOS technology for the MOSFET and use the SPICE level-1 model parameters listed in Table 4.8. We will also assume a signal-source resistance \(R_g\) = 10 kΩ, a load resistance \(R_L\) = 50 kΩ, and bypass and coupling capacitors of 10 pF. The targeted specifications for this CS amplifier are a midband gain \(A_{\Delta x}\) = 10 V/V and a maximum power consumption \(P\) = 1.5 mW. As should always be the case with computer simulation, we will begin with an approximate pencil-and-paper design. We will then use PSpice to fine-tune our design, and to investigate the performance of the final design. In this way, maximum advantage and insight can be obtained from simulation.

With a 3.3-V power supply, the drain current of the MOSFET must be limited to \(I_D = P/\Delta V_D = 1.5\) mW/3.3 V = 0.45 mA to meet the power consumption specification. Choosing \(V_{DSS} = 0.3\) V (a typical value in low-voltage designs) and \(V_{DD} = \Delta V_D/3\) (to achieve a large signal swing at the output), the MOSFET can now be sized as

\[
W = \frac{I_D}{\Delta V_D} \frac{1}{2g_m(1 + aV_D)} = 0.45 \times 10^{-3} \approx 53
\]

where \(g_m = u_C\Delta V_D/170.1\) (from Table 4.8). Here, \(L_D\) rather than \(L\) is used to more accurately compute \(I_D\). The effect of using \(W_D\) rather than \(W\) is much less important because typically \(W > W_D\). Thus, choosing \(L = 0.6\) μm results in \(L_D = 1.2\) μm and \(W = 23.5\) μm. Note that we chose \(L\) slightly larger than \(L_D\). This is a common practice in the design of analog ICs to minimize the effects of fabrication nonidealities on the actual value of \(L\). As we will study in later chapters, this is particularly important when the circuit performance depends on the matching between the dimensions of two or more MOSFETs (e.g., in the current-mirror circuits we will study in Chapter 6).

Next, \(R_g\) is calculated based on the desired voltage gain:

\[
A_{\Delta x} = \frac{W}{L_D} \frac{R_g}{R_L} L_D = 10 \ \text{V/V} \Rightarrow R_g = 4.2 \ \Omega
\]

where \(g_m = 3.0\) mA/V and \(v_C = 22.2\) μA/V. Hence, the output bias voltage is \(V_{CC} = V_{DSS} = 1.29\) V. Using large values for these gate resistors ensures that both their power consumption and the loading effect on the input signal source are negligible. Note that we neglected the body effect in the expression for \(V_{DSS}\) to simplify our hand calculations.

We will now use PSpice to verify our design and investigate the performance of the CS amplifier. We begin by performing a bias-point simulation to verify that the MOSFET is properly biased in the saturation region and that the dc voltages and currents are within the desired specifications. Based on this simulation, we have decreased the value of \(W\) to 22 μm to limit \(I_D\) to about 0.45 mA. Next, to measure the midband gain \(A_{\Delta x}\) and the 3-dB frequencies \(f_s\) and \(f_L\), we apply a 1-V ac voltage at the input, perform an ac-analysis simulation, and plot the output voltage magnitude (in dB) versus frequency as shown in Fig. 4.64. This corresponds to the magnitude response of the CS amplifier because we chose a 1-V input signal.\(^2\) Accordingly, the midband gain is \(A_{\Delta x} = 9.55\) V/V and the 3-dB bandwidth is \(B = f_s = f_L = 122.1\) MHz. Figure 4.64 further shows that the gain begins to fall off at about 300 Hz but flattens out again at about 10 Hz. This flattening in the gain at low frequencies is due to a real transmission zero\(^3\) introduced in the transfer function \(R_g\). This zero occurs at a frequency \(f_s = 2f_0 = 1/(2 \pi C_R C_0) = 25.3\) Hz, which is typically between the break frequencies \(f_{o1}\) and \(f_{o2}\) derived in Section 4.9.3 (Fig. 4.52). So, let us now verify this phenomenon by ret澳malizing the CS amplifier with a \(C_0 = 0\) (i.e., removing \(C_0\)) in order to move \(f_0\) to infinity and remove its effect. The corresponding frequency response is plotted also in Fig. 4.64. As expected, with \(C_0 = 0\), we do not observe any flattening in the low-frequency response of the amplifier, which now looks similar to that in Fig. 4.52. However, because the CS amplifier now includes a source resistor \(R_0\), the drop in gain \(A_{\Delta x}\) as expected from our study of the CS amplifier with a source-degeneration resistance in Section 4.7.4. Note that the bandwidth \(B\) has increased by approximately the same factor as the drop in gain \(A_{\Delta x}\). As we will learn in Chapter 8 when we study negative feedback, the source-degeneration resistor \(R_0\) provides negative feedback, which allows us to trade off gain for wider bandwidth.

\(^1\) The reader is reminded that the Capture schematics and the corresponding PSpice simulation files of all SPICE examples in this book can be found on the book’s CD as well as on its website (www.edenadgroup.org). In these schematics (as shown in Fig. 4.63), we used variable parameters to enter the values of the various circuit components, including the dimensions of the MOSFET. This will allow the reader to investigate the effect of changing component values by simply changing the corresponding parameter values.

\(^2\) The reader should not be alarmed about the use of such a large signal amplitude. Recall (Section 2.9.1) that in a small-signal (ac) simulation, SPICE first finds the small-signal equivalent circuit at the bias point and then analyzes this linear circuit. Such an analysis can, of course, be done with any signal amplitude. However, a 1-V input is convenient to use as the resulting output corresponds to the voltage gain of the circuit.

\(^3\) Readers who have not yet studied poles and zeros can either refer to Appendix E or skip these few sentences.
358 CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

\[V_{t} = \frac{\mu C_{ox}}{2} \left(\frac{W}{L} \right) V_{T0} \]

Figure 4.64 Frequency response of the CS amplifier in Example 4.14 with \(R_{S} = 10 \, \text{k} \Omega \) and \(C_{g} = 0 \) (i.e., \(C_{g} \) removed).

To conclude this example, we will demonstrate the improved bias stability achieved when a source resistor \(R_{S} \) is used (see the discussion in Section 4.5.2). Specifically, we will change (in the MOSFET level-1 model for part NMOSIP) the value of the zero-bias threshold voltage parameter \(V_{T0} \) by \(\pm 15\% \) and perform a bias-point simulation in PSpice. Table 4.9 shows the corresponding variations in \(I_{D} \) and \(V_{DS} \) for the case in which \(R_{S} = 0.88 \, \text{k} \Omega \). For the case without source degeneration, we use an \(I_{D} = 0 \) in the schematic of Fig. 4.63. Furthermore, to obtain the same \(I_{D} \) and \(V_{DS} \) in both cases (for the nominal threshold voltage \(V_{T0} = 0.7 \, \text{V} \)), we use an \(R_{S} = 0.88 \, \text{k} \Omega \) to reduce \(R_{S} \) to around \(V_{DS} = V_{T0} = 1 \, \text{V} \). The corresponding variations in the bias point are shown in Table 4.9. Accordingly, we see that the source degeneration resistor makes the bias point of the CS amplifier less sensitive to changes in the threshold voltage. In fact, the reader can show for the values displayed in Table 4.9 that the variation in bias current \((\Delta I_{D})/I_{D} \) is reduced by approximately the same factor, \((1 + g_{m}R_{S}) \). However, unlike a large bypass capacitor \(C_{g} \) is used; this reduces sensitivity even at the expense of a reduction in the midband gain (as we observed in this example when we simulated the frequency response of the CS amplifier with a \(C_{g} = 0 \).

Table 4.9 Variation in the Bias Point with the MOSFET Threshold Voltage

<table>
<thead>
<tr>
<th>(V_{T0})</th>
<th>(\mu) (nA)</th>
<th>(I_{D}) (mA)</th>
<th>(V_{DS}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.56</td>
<td>0.962</td>
<td>0.71</td>
</tr>
<tr>
<td>0.7</td>
<td>0.46</td>
<td>1.58</td>
<td>0.95</td>
</tr>
<tr>
<td>0.81</td>
<td>0.36</td>
<td>1.81</td>
<td>0.21</td>
</tr>
</tbody>
</table>

SUMMARY

The enhancement-type MOSFET is currently the most widely used semiconductor device. It is the basis of CMOS technology, which is the most popular IC fabrication technology at this time. CMOS provides both n-channel (NMOS) and p-channel (PMOS) transistors, which increases design flexibility. The minimum MOSFET channel length achievable with a given CMOS process is used to characterize the process. This figure has been continually reduced and is currently about 0.1 μm.

The current-voltage characteristics of the MOSFET are presented in Section 4.2 and are summarized in Table 4.1.

The magnitude of the transistors is characterized by the midband gain \(A_{m} \) and the lower and upper 3-dB frequencies \(f_{L} \) and \(f_{H} \) respectively, and the bandwidth is \(f_{3dB} \).

The internal capacitances of the MOSFET cause the gain of MOS amplifiers to fall off at high frequencies. Also, the coupling and bypass capacitors that are used in discrete MOS amplifiers cause the gain to fall off at lower frequencies. The frequency band over which both sets of capacitors can be neglected, and hence over which the gain is constant, is known as the midband. The amplifier frequency response is characterized by the midband gain \(A_{m} \) and the lower and upper 3-dB frequencies \(f_{L} \) and \(f_{H} \). The bandwidth is \(f_{3dB} \) and is expressed in Section 4.5.

A key step in the design of transistor amplifiers is to bias the transistor to operate at an appropriate point in the saturation region. A good bias design ensures that the parameters of the bias point \(I_{C}, V_{CE}, \) and \(V_{BE} \) are predictable and stable, and do not vary by a large amount when the transistor is replaced by another of the same type. A variety of biasing methods suitable for discrete-circuit design are presented in Section 4.5.

The small-signal operation of the MOSFET as well as circuit models that represent it are covered in Section 4.6. A summary of the relationships for determining the values of MOSFET model parameters is provided in Table 4.2.

The voltage transfer characteristic is used to show the three regions of operation: cutoff and triode, which are useful for the application of the MOSFET as a switch and as a digital logic inverter; and saturation, which is the region for amplifier operation. To obtain linear amplification, the transistor is biased to operate somewhere near the middle of the saturation region, and the signal is superimposed on the dc bias level and small. The small-signal gain is equal to the slope of the transfer characteristic at the bias point (see Fig. 4.26).

To conclude this example, we will demonstrate improved bias stability achieved when a source resistor \(R_{S} \) is used (see the discussion in Section 4.5.2). Specifically, we will change (in the MOSFET level-1 model for part NMOSIP) the value of the zero-bias threshold voltage parameter \(V_{T0} \) by \(\pm 15\% \) and perform a bias-point simulation in PSpice. Table 4.9 shows the corresponding variations in \(I_{D} \) and \(V_{DS} \) for the case in which \(R_{S} = 0.88 \, \text{k} \Omega \). For the case without source degeneration, we use an \(I_{D} = 0 \) in the schematic of Fig. 4.63. Furthermore, to obtain the same \(I_{D} \) and \(V_{DS} \) in both cases (for the nominal threshold voltage \(V_{T0} = 0.7 \, \text{V} \)), we use an \(R_{S} = 0.88 \, \text{k} \Omega \) to reduce \(R_{S} \) to around \(V_{DS} = V_{T0} = 1 \, \text{V} \). The corresponding variations in the bias point are shown in Table 4.9. Accordingly, we see that the source degeneration resistor makes the bias point of the CS amplifier less sensitive to changes in the threshold voltage. In fact, the reader can show for the values displayed in Table 4.9 that the variation in bias current \((\Delta I_{D})/I_{D} \) is reduced by approximately the same factor, \((1 + g_{m}R_{S}) \). However, unlike a large bypass capacitor \(C_{g} \) is used; this reduces sensitivity even at the expense of a reduction in the midband gain (as we observed in this example when we simulated the frequency response of the CS amplifier with a \(C_{g} = 0 \).

Table 4.9 Variation in the Bias Point with the MOSFET Threshold Voltage

<table>
<thead>
<tr>
<th>(V_{T0})</th>
<th>(\mu) (nA)</th>
<th>(I_{D}) (mA)</th>
<th>(V_{DS}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.56</td>
<td>0.962</td>
<td>0.71</td>
</tr>
<tr>
<td>0.7</td>
<td>0.46</td>
<td>1.58</td>
<td>0.95</td>
</tr>
<tr>
<td>0.81</td>
<td>0.36</td>
<td>1.81</td>
<td>0.21</td>
</tr>
</tbody>
</table>

SUMMARY

The enhancement-type MOSFET is currently the most widely used semiconductor device. It is the basis of CMOS technology, which is the most popular IC fabrication technology at this time. CMOS provides both n-channel (NMOS) and p-channel (PMOS) transistors, which increases design flexibility. The minimum MOSFET channel length achievable with a given CMOS process is used to characterize the process. This figure has been continually reduced and is currently about 0.1 μm.

The current-voltage characteristics of the MOSFET are presented in Section 4.2 and are summarized in Table 4.1.

The magnitude of the transistors is characterized by the midband gain \(A_{m} \) and the lower and upper 3-dB frequencies \(f_{L} \) and \(f_{H} \). The bandwidth is \(f_{3dB} \).
4.2 A particular MOSFET being the same gate structure and channel length as the transistor whose V_{th} characteristics are shown in Fig. 4.14 has a channel width that is 10 times greater. How should the vertical axis be relabeled to represent this change? Find the new constant of proportionality relating I_D and V_{DS}. What is the range of drain-source resistance, R_{ds}, corresponding to an overdrive voltage ($V_{gs}-V_{th}$) ranging from 0.5 V to 2 V?

With the knowledge that $u_{n} = 4.9 \times 10^{14}$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $\mu_{p} = 1000$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $L = 50$ nm, $W = 20$ nm, and $V_{DD} = 5$ V, answer the following questions:

(a) Find I_{on} and I_{off}.
(b) Find V_{th} and r_{DS}.
(c) Find R_{ds} and R_{ds}. What is the range of dimensions for the channel and the drain region width

Find the drain current I_D and the drain voltage V_{DS} for a MOSFET with $W/L = 50 / 10^{6}$ m, $V_{DD} = 5$ V, and $V_{SS} = 0$ V. If the channel length is doubled, find I_{on} and I_{off}. What is the range of channel resistance, R_{ds}, corresponding to an overdrive voltage ($V_{gs}-V_{th}$) ranging from 0.5 V to 2 V?

With the knowledge that $u_{n} = 4.9 \times 10^{14}$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $\mu_{p} = 1000$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $L = 50$ nm, $W = 20$ nm, and $V_{DD} = 5$ V, answer the following questions:

(a) Find I_{on} and I_{off}.
(b) Find V_{th} and r_{DS}.
(c) Find R_{ds} and R_{ds}. What is the range of dimensions for the channel and the drain region width

Find the drain current I_D and the drain voltage V_{DS} for a MOSFET with $W/L = 50 / 10^{6}$ m, $V_{DD} = 5$ V, and $V_{SS} = 0$ V. If the channel length is doubled, find I_{on} and I_{off}. What is the range of channel resistance, R_{ds}, corresponding to an overdrive voltage ($V_{gs}-V_{th}$) ranging from 0.5 V to 2 V?

With the knowledge that $u_{n} = 4.9 \times 10^{14}$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $\mu_{p} = 1000$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $L = 50$ nm, $W = 20$ nm, and $V_{DD} = 5$ V, answer the following questions:

(a) Find I_{on} and I_{off}.
(b) Find V_{th} and r_{DS}.
(c) Find R_{ds} and R_{ds}. What is the range of dimensions for the channel and the drain region width

Find the drain current I_D and the drain voltage V_{DS} for a MOSFET with $W/L = 50 / 10^{6}$ m, $V_{DD} = 5$ V, and $V_{SS} = 0$ V. If the channel length is doubled, find I_{on} and I_{off}. What is the range of channel resistance, R_{ds}, corresponding to an overdrive voltage ($V_{gs}-V_{th}$) ranging from 0.5 V to 2 V?

With the knowledge that $u_{n} = 4.9 \times 10^{14}$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $\mu_{p} = 1000$ cm$^{-2}$ V$^{-1}$ s$^{-1}$, $L = 50$ nm, $W = 20$ nm, and $V_{DD} = 5$ V, answer the following questions:

(a) Find I_{on} and I_{off}.
(b) Find V_{th} and r_{DS}.
(c) Find R_{ds} and R_{ds}. What is the range of dimensions for the channel and the drain region width

Find the drain current I_D and the drain voltage V_{DS} for a MOSFET with $W/L = 50 / 10^{6}$ m, $V_{DD} = 5$ V, and $V_{SS} = 0$ V. If the channel length is doubled, find I_{on} and I_{off}. What is the range of channel resistance, R_{ds}, corresponding to an overdrive voltage ($V_{gs}-V_{th}$) ranging from 0.5 V to 2 V?
4.29 In a particular application, an n-channel MOSFET operates with $V_{GS} = 0.6$ V. If V_{DS} is nominally 3 V, find the range of V_{DS} that results if $V = 0.5$ V/°C and $\lambda = 0.15$. If the gate oxide thickness is increased by a factor of 4, what does the threshold voltage become?

4.30 A p-channel transistor operates in saturation with its source voltage 3 V lower than its substrate. For $V = 0.5$ V/°C, $V_{TH} = 0.75$ V, and $V_{GS} = 0.2$ V, find V_I.

4.31 (a) Using the expression for I_D in saturation and neglecting the channel-length modulation effect (i.e., let $\lambda = 0$), derive an expression for the per unit change in V_{GS} per °C ($\Delta V_{GS}/\Delta t$) in terms of the per unit change in V_L per °C ($\Delta V_L/\Delta t$), the temperature coefficient of V_L, and V_{GS} and V_D.

(b) If V_T decreases by 2 mV for every °C rise in temperature, find the temperature coefficient of V_L that results in I_D decreasing by 0.2%/°C when the NMOS transistor with $V_{GS} = 1$ V is operated at $V_{DS} = 5$ V.

4.32 Various NMOS and PMOS transistors are measured in operation, as shown in the table at the bottom of the page. For each transistor, find the value of $\mu C_{ox} W/L$ and V_T that apply and complete the table, with V in volts, I in μA, and $\mu C_{ox} W/L$ as μA/V.

4.33 All the transistors in the circuits shown in Fig. P4.33 have the same values of $|V_T|$, $k', W/L$, and λ. Moreover, λ is negligibly small. All operate in saturation at $V_{DS} = 4$ V and $V_{GS} = 3$ V. Find the voltage V_{DS}, V_{GS}, and V_{DS} of each circuit. Find the resistance each transistor can be oriented in series with each drain connection while maintaining saturation? What is the largest resistor that can be placed in series with each gate? If the current source is required to establish a drain current of 1 mA in Q_1, what does V_{GS}, V_{DS}, and V_{DS} become?

4.34 Design the circuit of Fig. 4.20 to establish a drain current of 1 mA and a drain voltage of 0 V. The MOSFET has $V_T = 1$ V, $\mu C_{ox} = 60 \mu A$/V2, $L = 3 \mu m$, and $W = 100 \mu m$.

4.35 Consider the circuit of Fig. P4.12. Let Q_1 and Q_2 have $V_T = 0.5$ V, $\mu C_{ox} = 100 \mu A$/V2, $L = 0.8 \mu m$, $W = 8 \mu m$, and $\lambda = 0$.

(a) Find the value of R required to establish a current of 0.2 mA in Q_2.

(b) Find R, and a new value for R_1 so that Q_2 operates in the saturation region with a current of 0.5 mA and a drain voltage of 1 V.

4.36 The PMOS transistor in the circuit of Fig. P4.36 has $V_T = -3$ V, $\mu C_{ox} = 60 \mu A$/V2, $L = 1.5 \mu m$, and $L_2 = 1.5 \mu m$. Find the values required for R and R_2 in order to establish a drain current of $125 \mu A$ and a voltage V_{DS} of 1.5 V.

4.37 The NMOS transistors in the circuit of Fig. P4.37 have $V_T = -3.3$ V, $\mu C_{ox} = 60 \mu A$/V2, $L = 0.8 \mu m$, and $L_2 = 1$. Find the required values of R and R_2 to obtain the voltage and current values indicated.

4.38 The NMOS transistor in the circuit of Fig. P4.38 has $V_T = 1$ V, $\mu C_{ox} = 100 \mu A$/V2, and $\lambda = 0$. Find the required values of R and R_2 to obtain the voltage and current values indicated.

4.39 Consider the circuit of Fig. 4.23(a). In Example 4.5 it was found that when $V_I = 1$ V and $V_{GS}/V_{DS} = 1$ mA/V2, the drain current is 0.5 mA and the drain voltage is 7 V. If the transistor is replaced with another having $V_T = 2$ V and $V_{GS}/V_{DS} = 2$ mA/V2, find the new values of I_D and V_{DS}. Comment on how tolerant (or intolerant) the circuit is to changes in device parameters.

4.40 Using an enhancement-type PMOS transistor with $V_T = -1.3$ V, $\mu C_{ox} = 1$ mA/V2, and $\lambda = 0$, design a circuit that resembles that in Fig. 4.23(e). Using a 10-V supply design for a gate voltage of +5 V, a drain current of 0.5 mA, and a drain voltage of -5 V. Find the values of R_1 and R_2.

4.41 The MOSFET in Fig. P4.41 has $V_T = 1$ V, $\lambda' = 100 \mu A$/V, and $\lambda = 0$. Find V_{GS}, and V_{DS} of each transistor. The current source is operated at $V_{GS} = 5$ V, and $V_T = 50 \Omega$, and $V_{DS} = 50$ mV.
4.42 In the circuits shown in Fig. P4.42, transistors are characterized by \(|V_T| = 2 \) V, \(k'_{nW/L} = 1 \) mA/V, and \(\lambda = 0 \).

(a) Find the labeled voltages \(V_1 \) through \(V_7 \).

(b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix G. Find the new values of \(V_1 \) to \(V_7 \).

\[\begin{align*}
\text{(a)} & & \begin{array}{c}
+10 \text{V} \\
-10 \text{V} \\
1 \text{mA} \\
2 \text{mA} \\
\end{array} \\
\text{(b)} & & \begin{array}{c}
+10 \text{V} \\
10 \mu\text{A} \\
100 \mu\text{A} \\
\end{array} \\
\end{align*} \]

FIGURE P4.42

4.43 For each of the circuits in Fig. P4.43, find the labeled node voltages. For all transistors, \(k'_{nW/L} = 0.4 \) mA/V, \(|V_T| = 1 \) V, and \(\lambda = 0 \).

\[\begin{align*}
\text{(a)} & & \begin{array}{c}
+5 \text{V} \\
-10 \text{V} \\
1 \text{mA} \\
2 \text{mA} \\
\end{array} \\
\text{(b)} & & \begin{array}{c}
+5 \text{V} \\
10 \mu\text{A} \\
100 \mu\text{A} \\
\end{array} \\
\end{align*} \]

FIGURE P4.43

4.44 For each of the circuits shown in Fig. P4.44, find the labeled node voltages. The NMOS transistors have \(V_T = 1 \) V and \(k'_{nW/L} = 2 \) mA/V. Assume \(\lambda = 0 \).

\[\begin{align*}
\text{(a)} & & \begin{array}{c}
+5 \text{V} \\
+10 \text{V} \\
1 \text{k}\Omega \\
\end{array} \\
\text{(b)} & & \begin{array}{c}
+5 \text{V} \\
1 \mu\text{A} \\
1 \mu\text{A} \\
\end{array} \\
\end{align*} \]

FIGURE P4.44

4.45 For the PMOS transistor in the circuit shown in Fig. P4.45, \(k'_{pW/L} = 8 \) pA/V, \(W/L = 25 \), and \(|V_T| = 1 \) V. For \(I = 100 \mu\text{A} \), find the voltages \(V_{GS} \) and \(V_{GD} \) for \(R = 0, 10 \text{k}\Omega, 30 \text{k}\Omega, \text{and } 100 \text{k}\Omega \). For what value of \(R \) is \(V_{GD} = V_{GS} \)? \(V_{GS} = V_{SD}/2 \)? \(V_{SD} = V_{SG}/10 \)?

\[\begin{align*}
\text{(a)} & & \begin{array}{c}
+5 \text{V} \\
-5 \text{V} \\
2 \text{mA} \\
\end{array} \\
\text{(b)} & & \begin{array}{c}
+5 \text{V} \\
2 \text{mA} \\
\end{array} \\
\end{align*} \]

FIGURE P4.45

4.46 For the circuits in Fig. P4.46, find the labeled currents and voltages. \(|V_T| = 1 \) V, \(\lambda = 0 \), \(\gamma = 0 \), \(\mu_{nC_{ox}} = 50 \mu\text{A/V}^2 \), \(L = 1 \) \mu\text{m}, and \(W = 10 \) \mu\text{m}.

\[\begin{align*}
\text{(a)} & & \begin{array}{c}
+5 \text{V} \\
+3 \text{V} \\
\end{array} \\
\text{(b)} & & \begin{array}{c}
+5 \text{V} \\
+3 \text{V} \\
\end{array} \\
\end{align*} \]

FIGURE P4.46

4.47 For the devices in the circuits of Fig. P4.47, \(|V_T| = 1 \) V, \(\lambda = 0 \), \(\gamma = 0 \), \(\mu_{nC_{ox}} = 50 \mu\text{A/V}^2 \), \(L = 1 \) \mu\text{m}, and \(W = 10 \) \mu\text{m}.

Find \(V_1 \) and \(V_2 \). How do these values change if \(Q_1 \) and \(Q_2 \) are made to have \(W = 100 \) \mu\text{m}?

\[\begin{align*}
\text{(a)} & & \begin{array}{c}
+5 \text{V} \\
+5 \text{V} \\
\end{array} \\
\text{(b)} & & \begin{array}{c}
+5 \text{V} \\
+5 \text{V} \\
\end{array} \\
\end{align*} \]

FIGURE P4.47
4.48 In the circuit of Fig. P4.48, transistors \(Q_1 \) and \(Q_2 \) have \(V_1 = 1 \) V, and the process transconductance parameter \(k' = 100 \mu A/V^2 \). Assuming \(\alpha = 0 \), find \(V_2 \) and \(V_3 \) for each of the following cases:

(a) \((W_1/L_1, W_2/L_2) = (20, 20) \)
(b) \((W_1/L_1, W_2/L_2) = (1, 1) \)

4.49 Consider the CS amplifier of Fig. 4.26(a) for the case \(V_{DD} = 5 \) V, \(R_G = 4.2 \text{k} \Omega \), \(k'(W/L) = 1 \text{ mS/mm}^2 \), and \(V_{T} = 1 \) V.

(a) Find the coordinates of the two end points of the saturation-region segment of the amplifier transfer characteristic, that is, points A and B on the sketch of Fig. 4.26(c).

(b) If the amplifier is biased to operate with an overdrive voltage \(V_{DD} = 0.5 \) V, find the coordinates of the bias point \(Q_b \) on the transfer characteristic. Also, find the value of \(v_{DS} \) and \(v_{GS} \) at the bias point.

(c) For the situation in (b), find the voltage gain.

4.50 We wish to investigate the operation of the CS amplifier circuit studied in Example 4.8 for various bias conditions, that is, for bias at various points along the saturation-region segment of the transfer characteristic. Prepare a table giving the values of \(k' \), \(k'' \), \(k''(W/L) \), \(k''(W/L) \), and the magnitude of the largest allowable positive output signal \(v_{DS} \) (V) and the magnitude of the largest allowable negative output signal \(v_{DS} \) (V) for values of \(V_{DD} = 5 \) V in the range of \(1 \) to \(10 \) V, in increments of \(1 \) V (i.e., there should be 10 rows for \(V_{DD} = 1 \) V, 2 V, 3 V, ..., 10 V). Note that we have determined by the MOSFET cutting on/off and \(V_{DS} \) for each of these conditions.

4.51 Various measurements are made on a MOSFET for which the drain current \(I_D \) is 2 mA, with about one-third of the supply \(V_{DD} \). Instead of a CS amplifier, it is operating in saturation at all times, even when \(V_{DD} = 0 \) and \(V_{GS} = 0 \). Note also that the two transistors conduct equal drain currents. Using \(V_{DD} = 5 \) V, find the coordinates of the bias point \(Q_b \) operating in saturation, that is, for which \(V_{GS} = 0 \), \(i_D = 0 \), and \(i_{DS} = 0 \).

4.52 Refer to the expression for the incremental voltage gain in Eq. (4.41). Various design considerations place a lower limit on the value of the on-resistance \(R_o \). For our purposes here, let this lower limit be 0.2 V. Also, assume that \(V_{DD} = 5 \) V.

(a) Without allowing any room for output voltage swing, what is the maximum voltage gain achievable?

(b) If we are required to allow for an output voltage swing of \(\pm 0.5 \) V, what is the largest possible output voltage swing?

(c) What input signal value that resulted in a +0.5-V output swing?
D4.62 A very useful way to characterize the stability of the bias current I_D is to evaluate the sensitivity of I_D relative to a particular transistor parameter whose variability might be large. The sensitivity of I_D relative to the MOSFET parameter K = (W/L) is defined as

\[S_{I_D} = \frac{\partial I_D}{\partial K} / I_D \]

and its value, when multiplied by the variability (or tolerance) of K, provides the corresponding expected variability of I_D.

The purpose of this problem is to investigate the use of the sensitivity function in the design of the bias circuit of Fig. 4.38(e).

(a) Show that for V_D constant,

\[S_{I_D} = 1 / (1 + 2K/L_D) \]

(b) For a MOSFET having K = 100 mA/V^2 with a variability of ±20%, and V_G = 1 V, find the value of R_S that would result in I_D = 100 µA with a variability of 2%. Also, find V_D and the required value of R_S.

(c) If the available supply V_D = 5 V, find the value of R_S for I_D = 100 µA. Evaluate the sensitivity function, and give the expected variability of I_D in this case.

FIGURE P4.66

SECTION 4.6: SMALL-SIGNAL OPERATION AND MODELS

D4.67 This problem investigates the nonlinear distortion introduced by a MOSFET amplifier. Let the signal V_S be a sine wave with amplitude V_m, and V_G = V_G0 in Eq. (4.57). Using the trigonometric identity sin(θ) = θ for |θ| < 0.1 rad, show that the ratio of the signal at frequency 2f to that at frequency f, expressed as a percentage (known as the second-harmonic distortion) is

Second harmonic distortion = \[\frac{V(2f)}{V(f)} \times 100 \]

If in a particular application V_G0 = 10 mV, find the minimum overdrive voltage at which the transistor should be operated so that the second-harmonic distortion is kept to less than 5%.

D4.68 Consider an NMOS transistor having K = 2 mV/µA. Let the transistor be biased at V_G = 1 V. For operation in saturation, what is the bias current I_D0? If I_D0 = 1 mA, find the value of V_D and V_S that results in a 2% overdrive of V_G. For a transistor with L = 10 µm, find the value of V_D and V_S that results in a 2% overdrive of V_G.

D4.69 Consider the PEB amplifier of Fig. 4.34 for the case I_D = V_D = 2 V, K/L_D = 1 mA/V, V_G = 4 V, V_D = 10 V, and R_S = 3.6 kΩ.

(a) Find the dc transistor I_D and V_G0.

(b) Calculate the value of V_G0 at the bias point.

(c) Calculate the value of the voltage gain.

(d) If the MOSFET has K = 0.01 V^2, find the dc bias point and calculate the voltage gain.

D4.70 An NMOS amplifier is to be designed to provide a 0.50-V peak output signal across a 50-kΩ load that can be used as a drain resistor. If a gain of at least 3 V/V is needed, what I_D is required? Using a dc supply of 3 V, what values of I_D and V_G would you choose? What V/G ratios are required if \(I_D = 0.1 \mu A/V^2 \) and V_G = 0.8 V, find V_G0.

D4.71 In this problem we investigate an optimum design of the CS amplifier circuit of Fig. 4.34. First, use the voltage gain expression \(A_v = -g_m R_D \) together with Eq. (4.71) for \(g_m \) to show that

\[A_v = 2(1 + R_P/R_D) \]

which is the expression we obtained in Section 4.4 (Eq. 4.41).

Next, let the maximum positive input signal be \(\Delta V \). To keep the second-harmonic distortion to an acceptable level, we bias the MOSFET to operate at an overdrive voltage \(V_D > 0 \). Let \(V_D = \Delta V \). Now, to maximize the voltage gain \(|A_v| \), we design for the lowest possible \(V_D \). Show that the minimum \(V_D \) that is consistent with allowing a negative signal voltage swing at the drain of \(4V \) while maintaining saturation-mode operation is given by

\[V_D = \frac{V_{DD}}{2} + \frac{2V_{DD}(\Delta V)}{2V_{DD} - 2V_{DD}} \]

Now, find V_D, V_G, and I_D for the case V_D = 3 V, \(\Delta V = 0.1 \) V, and n = 10. If it is desired to operate this transistor at \(V_D = 100 \mu A \), find the values of R_D and W/L, assuming that for this process technology \(K = 100 \mu A/V^2 \).

4.73 In the table below, for enhancement MOS transistors operating under a variety of conditions, complete as many entries as possible. Although some data is not available, it is always possible to calculate \(g_m \) using one of Eqs. (4.69), (4.70) or (4.71). In the table, current is in mA, voltage in V, and dimensions in µm. Assume \(\mu_p = 500 \) cm/Vs, \(\mu_n = 250 \) cm/Vs, and \(C_{ox} = 0.1 \mu F/cm^2 \).

D4.74 In the circuit of Fig. 4.34, replace the transistor with an I equivalent circuit of Fig. 4.39(e). Derive expressions for the voltage gains \(V/v_p \) and \(V/v_n \), and calculate the voltage gain.

FIGURE P4.74

4.75 In the circuit of Fig. P4.75, the NMOS transistor has \(|V| = 0.9 \) V and \(V_D = 50 \) V and operates with \(V_D = 2 \) V. What is the voltage gain \(v/v_p \)? What do \(V_D \) and the gain become for \(I \) increased to 1 mA?

FIGURE P4.75

PROBLEMS

Case | **Type** | **I_D** | **I_E** | **V_D** | **W** | **L** | **R_D** | **g_m** | **R** | **|V|** |
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
a | N | 1 | 3 | 2 | 0.7 | 0.5 | 50 | 1 | 1 | 1 |
b | N | 1 | 2 | 0.5 | 10 | 2 | 0.8 | 40 | 0 | 1 |
c | N | 0.5 | 1.8 | 0.5 | 10 | 2 | 2 | 0 | 25 | 500 |
d | N | 0.1 | 2 | 0.1 | 1 | 2 | 0.1 | 4000 | 2 | 2 |
e | N | 0.1 | 4 | 0.1 | 3 | 4 | 0 | 30 | 3 | 8 |

FIGURE P4.76

FIGURE P4.77

FIGURE P4.78

FIGURE P4.79

FIGURE P4.80
FIGURE P4.77

The fundamental relationship that describes MOSFET operation is the parabolic relationship between v_D and v_{GS}. The slope of this tangent is g_{m}, at this bias point. Show that this tangent intercepts the v_D axis at $v_{GS}/2$ and then that $g_{m} = 2v_{GS}/v_D$.

SECTION 4.7: SINGLE-STAGE MOS AMPLIFIERS

4.79 Calculate the overall voltage gain G_o of a common-source amplifier for which $v_{gs} = 2$ mA/V, $r_o = 50$ kΩ, $R_D = 10$ kΩ, and $R_I = 10$ kΩ. The amplifier is fed from a signal source with a Thévenin resistance of 0.5 MΩ, and the amplifier output is coupled to a load resistance of 20 kΩ.

4.80 This problem investigates a redefinition of the common-source amplifier of Exercise 4.32 whose bias design was done in Exercise 4.30 and shown in Fig. P4.30. Please refer to these two exercises. (a) The open-circuit voltage gain of the CS amplifier can be written as

$$A_{v0} = \frac{2(v_{GS} - V_D)}{V_D}$$

Verify that this expression yields the results in Exercise 4.32 (i.e., $A_{v0} = -15$ V/V).

(b) A_{v0} can be doubled by reducing v_{GS} by a factor of 2, i.e., from 1 V to 0.5 V while V_D is kept unchanged. What corresponding values for I_D, R_D, r_o, and g_m apply?

(c) Find A_{v0} and r_o with N_{gs} taken into account.

(d) For the same value of signal-generator resistance $R_G = 100$ Q, the source value of gate-bias resistance $R_{gs} = 4.8$ kΩ, and the same value of load resistance $R_D = 15$ kΩ, evaluate the new value of overall voltage gain G_o with r_o taken into account.

(e) Compare your results to those obtained in Exercises 4.30 and 4.32, and comment.

Sketch the parabolic curve together with the tangent at a point whose coordinates are (v_{GS}, v_D). The slope of this tangent is g_{m}, at this bias point. Show that this tangent intercepts the v_D axis at $v_{GS}/2$ and then that $g_{m} = 2v_{GS}/v_D$.

4.81 A common-gate amplifier using an n-channel enhancement MOS transistor for which $v_{gs} = 5$ mA/V has a 5 kΩ drain resistance (R_D) and a 2.4 kΩ load resistance (R_{L}). The amplifier is driven by a voltage source having a 20 kΩ resistance. What is the input resistance of the amplifier? What is the output resistance of the amplifier? What is the overall voltage gain G_o? If the circuit allows a bias-current increase by a factor of 4 while maintaining linear operation, what do the input resistance and output voltage gain become?

4.82 A CS amplifier using an NMOS transistor biased in the manner of Fig. 4.43 for which $v_{gs} = 2$ mA/V is found to have an overall voltage gain G_o of 16 V/V. What value should a resistance R_I inserted in the source lead have to reduce the voltage gain by a factor of 4?

4.83 The overall voltage gain of the amplifier of Fig. 4.44(a) was measured with a resistance R_{L} of 1 kΩ in place and found to be 10 V/V. When R_{L} is shorted, the circuit operation remained linear the gain doubled. What must g_m be? What value of R_{L} is needed to obtain an overall voltage gain of 8 V/V?

4.84 Careful measurements performed on the source follower of Fig. 4.46(a) showed that the open-circuit voltage gain is 0.98 V/V. Also, when R_{L} is connected and its value is varied, it is found that the gain is halved for $R_{L} = 500$ kΩ. If the amplifier remained linear throughout this measurement, what must the values of g_m and r_o be?

4.85 The source follower of Fig. 4.46(a) uses a MOSFET biased to have $v_{gs} = 5$ mA/V and $V_{GS} = 20$ kΩ. Find the open-circuit voltage gain g_{m} and the output resistance. What will the gain become when a 1 kΩ load resistance (R_{L}) is connected?

4.86 Figure P4.86 shows a scheme for coupling and amplifying a high-frequency pulse signal. The circuit utilizes two MOSFETS whose bias details are not shown and a 50-4 coaxial cable. Transistor Q_1 operates as a CS amplifier and Q_2 as a CG amplifier. For proper operation, transistor Q_2 is required to present a 30 kΩ resistance to the cable. This situation is known as "proper termination" of the cable and ensures that there will be no signal reflection coming back on the cable. When the cable is properly terminated, its input resistance is 50 Ω. What must v_{gs_2} be if Q_2 is biased at the same point as Q_1, what is the amplitude of the current pulses at the drain of Q_1, and what is the amplitude of the voltage pulses at the drain of Q_2? What value of R_{L} is required to provide 1 V pulses at the drain of Q_2?

*4.87 The MOSFET in the circuit of Fig. P4.87 has $v_{gs} = 1$ V, $v_{gs}' = 0.8$ mA/V, and $v_{gs}'' = -5$ V.

(a) Find the values of R_D, R_I, and R_{L} so that $I_{D} = 0.1$ mA, the largest possible value for R_{L}, while maintaining a maximum signal swing at the drain of ±2 V is possible, and the input resistance at the gate is 10 kΩ.

(b) Find the values of v_{gs} and r_o at the bias point.

(c) If terminal Z is grounded, terminal X is connected to a signal source having a resistance of 1 kΩ, and terminal Y is connected to a load resistance of 40 kΩ, find the voltage gain from signal source to load.

(d) If terminal Y is grounded, find the voltage gain from Z open-circuited. What is the output resistance of this source follower?

(e) If terminal X is grounded and terminal Z is connected to a current source delivering a signal current of 10 μA and having a resistance of 100 kΩ, find the voltage signal that can be measured at Y. For simplicity, neglect the effect of r_o.
4.90 Refer to the MOSFET high-frequency model in Section 4.8: The MOSFET internal capacitances and high-frequency model. Evaluate the total capacitance at the input of the common-gate amplifier in (b), use the results of (a) and (b) to obtain the overall voltage gain g_{m}/v_{g}. This current will subtract from the bias current I_b, and making the approximation that C_{gd} is negligibly small, show that

$$f_t = \frac{1}{2\pi C_{gd}R}$$

Thus note that to obtain a high f_t from a given device it must be operated at a high current. Also note that faster operation is obtained from smaller devices. Find f_t for a MOSFET, and making the approximation that C_{gd} is negligibly small, that the overall component of C_{gd} is negligibly small, show that for an n-channel device

$$f_t = \frac{1}{2\pi C_{gd}R}$$

4.93 Starting from the expression for the MOSFET unity-gain frequency,

$$f_t = \frac{1}{2\pi C_{gd}R}$$

and making the approximation that C_{gd} is negligibly small, show that for an n-channel device

$$f_t = \frac{1}{2\pi C_{gd}R}$$

Observe that for a given device, f_t can be increased by operating the MOSFET as a high-impedance source. Evaluate f_t for devices with $L = 1.0 \mu m$, $g_m = 200 \, mA/V$, and $C_{gd} = 0.1 \, pF$. Neglecting C_{gs}, what is the largest possible negative output signal?

4.94 In a particular MOSFET amplifier for which the midband voltage gain between gate and drain is $27 \, V/V$, the MOSFET has $C_{gd} = 0.3 \, pF$ and $C_{gs} = 0.1 \, pF$. What input capacitance would you expect? For what range of signal-source resistances can you expect the 3-dB frequency to exceed $10 \, MHz$? Neglect the effect of R_I. $D_4.99$ In a P-FET amplifier, such as that in Fig. 4.49(a), the midband voltage gain A_{v0} is $100 \, kHz$. Amplifier input resistance (which is due to the biasing network) $R_I = 10 \, k\Omega$, $C_{gs} = 1 \, pF$, $g_m = 0.2 \, mA/V$, $v_{d} = 3 \, mA/V$, $r_0 = 50 \, k\Omega$, $R_o = 8 \, k\Omega$, and $R_u = 10 \, k\Omega$. Determine the expected 3-dB cut-off frequency f_{0u} and the midband gain. In evaluating ways to double f_{0u}, a designer considers the alternatives of changing either R_u or R_I. To raise f_{0u} as described, what separate change in each would be required? What midband voltage gain results in each case?

4.95 A discrete MOSFET common-source amplifier has $R_I = 2 \, M\Omega$, $g_m = 4 \, mA/V$, $v_{d} = 10 \, k\Omega$, $C_{gs} = 2 \, pF$, and $C_{gd} = 0.5 \, pF$. The amplifier is fed from a voltage source with an internal resistance of $500 \, k\Omega$ and is connected to a 10-k\Omega load. Find:

(a) the overall midband gain A_{v0}.

(b) the upper 3-dB frequency f_u.

4.98 Consider the amplifier of Fig. 4.49(a). Let $R_f = 15 \, k\Omega$, $r_0 = 150 \, k\Omega$, and $R_u = 10 \, k\Omega$. Find the value of C_{gs}, specified to one significant digit, to ensure that the associated break frequency is not to exceed $10 \, kHz$. If a high-power design results in doubling R_u, both R_u and r_0 reduced by a factor of 2, what does the corner frequency (due to C_{gs}) become? For an increasingly high-power design, what is the highest corner frequency that can be associated with C_{gs}?

4.101 The NMOS transistor in the discrete CS amplifier circuit of Fig. 4.101 is biased to have $v_{ds} = 1 \, mA/V$. Find A_{v0} for $v_{ds} = 1 \, mA/V$.
SECTION 4.10: THE CMOS DIGITAL LOGIC INVERTER

4.105 For a digital logic inverter fabricated in a 0.8-µm CMOS technology (for which $k_T = 120 \, \mu A/V^2$, $k_C = 60 \, \mu A/V^2$, $V_T = 0.7 \, V$, $V_{DD} = 3 \, V$, $V_{SS} = 0.8 \, V$, $W/L = 1.2 \, \mu m$ and $W/L = 2.4 \, \mu m$), find:

(a) the output resistance for $v_{DD} = 3.3 \, V$ and $v_{SS} = V_{DD}$

(b) the maximum current that the inverter can sink or source while the output remains within 0.1 \, V of ground or v_{DD}, respectively.

4.106 For the technology specified in Problem 4.105, investigate the threshold voltage of the inverter. V_T varies with the degree of matching of the NMOS and PMOS devices. Use the formula given in Exercise 4.44, and find v_T for the cases of $W/L = 2W/L$, $W/2L$, and $2W/L$, (the matched case), and $W/(2L)$.

4.107 For an inverter designed with equal-sized NMOS and PMOS transistors and fabricated in the technology specified in Problem 4.105 above, find V_T and V_{OL} and hence the noise margins.

4.108 Repeat Exercise 4.41 for $v_{DD} = 10 \, V$ and $15 \, V$.

4.109 Repeat Exercise 4.42 for $v_{DD} = 0.5 \, V$, $1.5 \, V$, and $2 \, V$.

4.110 For a technology in which $V_{DD} = 0.2 \, V$, show that the maximum current that the CMOS inverter can sink while its load is in the saturation region is $I_{OL} = 0.075 \, V/\mu A/V^2 \times V_{DD}$.

4.111 For the inverter specified in Problem 4.105, find the peak current drawn from the $3 \, V$ supply during switching.

4.112 For the inverter specified in Problem 4.105, find the value of v_{OL} when the inverter is loaded with a capacitance $C = 0.05 \, \mu F$.

4.113 Consider an inverter fabricated in the CMOS technology specified in Problem 4.105 having $L_1 = L_2 = 2 \, \mu m$ and $W/2L = 2 \, \mu m$. It is required to limit the propagation delay to 60 ps when the inverter is loaded with 0.05-\mu F capacitance.

4.114 (a) In the transfer characteristic shown in Fig. 4.56, the segment BC is vertical because the Early effect is neglected. Taking the Early effect into account, use small-signal analysis to show that the slope of the transfer characteristic at v_{OL} will be $-2V_T/(V_{DD} - 2V_T)$, where V_T is the Early voltage for Q_1 and Q_2.

(b) A CMOS inverter with devices having $k_T/2W/L = k_C/2W/L$ is biased by connecting a resistor $R = 10 \, M\Omega$ between input and output. What is the dc voltage at input and output? What is the small-signal voltage gain and input resistance of the resulting amplifier? Assume the inverter has the characteristics specified in Problem 4.105 with $V_{DD} = 5 \, V$.

SECTION 4.11: THE DEPLETION-TYPE MOSFET

4.115 A depletion-type n-channel MOSFET with $V_{DD} = 2 \, mA/V$ and $V_{GS} = -3 \, V$ has its source and gate grounded. Find the region of operation and the drain current for $v_{GS} = 0 \, V$, 1 \, V, and $2 \, V$. Neglect the channel-length modulation effect.

4.116 For a particular depletion-mode MOSFET device, $v_{GS} = 0 \, V, V_{DD} = 200 \, mA/V^2$, and $L = 0.02 \, V$. When operated at $v_{GS} = 0 \, V$, what is the drain current that flows for $v_{DS} = 1 \, V, 2 \, V, 3 \, V$, and $10 \, V$? What does each of these currents become if the device's width is doubled with the same L? With L also doubled?

4.117 Neglecting the channel-length modulation effect show the drain current for depletion-type MOSFET transistors of Fig. P4.117 the v-v relationship is given by

\[i = \frac{1}{2} I_{DS} (v'^2 - 2v'n), \quad \text{for} \ v' > v \]

\[i = -\frac{1}{2} I_{DS} (v'n - 2v'^2), \quad \text{for} \ v' < v \]

(Recall that v' is negative.) Sketch the v-v relationship for the case of $v' = 2 \, V$ and $v'n = 2 \, mA/V^2$.

FIGURE P4.117

4.118 For the circuit analyzed in Exercise 4.51 (refer to Fig. P4.51), what does the voltage at the source become when the drain voltage is lowered to $v' = 1 \, V$?

4.119 A depletion-type n-channel MOSFET transistor operating in the saturation region with $v_{DS} = 5 \, V$ conducts a drain current of 1 mA at $v_{GS} = -1 \, V$, and 9 mA at $v_{GS} = +1 \, V$. Find I_{DS} and V_{TH}.

4.120 Assume $L = 0$.

4.121 Consider the circuit shown in Fig. P4.120 in which Q_1 with R_1 establishes the bias current for Q_2. R_2 has no effect on the bias of Q_1 but provides an interesting function. R_1 acts as a load resistor in the drain of Q_1. Assume that Q_1 and Q_2 are fabricated together (as a matched pair, or as part of an IC) and are identical. For each depletion NMOS, $Q_2 = -4 \, mA$ and $|V'_{DD}| = 2 \, V$. The voltage at the input is time varying, say $0 \, V$, that keeps Q_1 in saturation. What is the value of V'_{DD} for these transistors?

Now, design R_2 so that $I_{DS} = I_0 = 1 \, mA$. Make $R_1 = R_2$. Choose R_1 so that $v_{DD} = 5 \, V$. What is the voltage v_{TH}? Check what the voltage v_{DD} is when $v_{GS} = 5 \, V$. Notice the interesting behavior, namely, that node C follows node A. This circuit can be called a source follower, but it is a special one, one with zero offset! Note also that R_2 is not essential since node B also follows node A but with a positive offset. In many applications, R_2 is short-circuited. Now, recognize that as the voltage on A rises, Q_1 will turn on and vice versa. At what value of v_{DD} does this occur? Also, v_{DD} lowers, Q_1 will enter its triode region. At what value of v_{DD} (Note that between these two values of v_{DD}, the linear signal range of both Q_1 and Q_2.)
376 CHAPTER 4 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

and $R_2 = 1$ MΩ, find the overall voltage gain v_o/v_{in} and the input resistance R_{in} for each circuit. Neglect the body effect. Do these circuits remind you of op-amp circuits? Comment.

4.123 In the amplifier shown in Fig. P4.123, transistors having $V_{t} = 0.6$ V and $V_A = 20$ V are operated at $V_{GS} = 0.8$ V using the appropriate choice of W/L ratio. In a particular application, Q_1 is to be sized to operate at 10 μA, while Q_2 is intended to operate at 1 mA. For $R_2 = 2$ kΩ, the (R_1, R_2) network sized to consume only 1% of the current in R_1, v_{in} having zero dc component, and $i_L = 10$ μA, find the values of R_1 and R_2 that satisfy all the requirements. (Note: V_{DD} must be $+2$ V.) What is the voltage gain v_o/v_{in}? Using a result from a theorem known as Miller's theorem (Chapter 6), find the input resistance R_{in} as $R_2/(1 - v_o/v_{in})$. Now, calculate the value of the overall voltage gain v_o/v_{in}. Does this result remind you of the inverting configuration of the op amp? Comment. How would you modify the circuit at the input using an additional resistor and a very large capacitor to raise the gain v_o/v_{in} to -5 V/V? Neglect the body effect.

4.122 For the two circuits in Problem 4.121 (shown in Fig. P4.121), we wish to consider their dc bias design. Since v_{in} has a zero dc component, we short circuit its generator.

4.124 Consider the bias design of the circuit of Problem 4.123 (shown in Fig. P4.123). For $i_I = 200$ μA/V and $V_{DD} = 3.3$ V, find W/L_1 and W/L_2, to obtain the operating conditions specified in Problem 4.123.

5.1 Device Structure and Physical Operation 378

5.2 Current-Voltage Characteristics 392

5.3 The BJT as an Amplifier and as a Switch 407

5.4 BJT Circuits at DC 421

5.5 Biasing in BJT Amplifier Circuits 436

5.6 Small-Signal Operation and Models 443

INTRODUCTION

In this chapter, we study the other major three-terminal device: the bipolar junction transistor (BJT). The presentation of the material in this chapter parallels but does not rely on that for the MOSFET in Chapter 4; thus, if desired, the BJT can be studied before the MOSFET.

Three-terminal devices are far more useful than two-terminal ones, such as the diodes studied in Chapter 3, because they can be used in a multitude of applications, ranging from signal amplification to the design of digital logic and memory circuits. The basic principle involved is the use of the voltage between two terminals to control the current flowing in the third terminal. In this way, a three-terminal device can be used to realize a controlled source, which as we learned in Chapter 1 is the basis for amplifier design. Also, in the extreme, the control signal can be used to cause the current in the third terminal to change from zero to a large value, thus allowing the device to act as a switch. As we learned also in
Chapter 5, the switch is the basis for the realization of the logic inverter, the basic element of digital circuits.

The invention of the BJT in 1948 at the Bell Telephone Laboratories ushered in the era of solid-state circuits, which led to electronics changing the way we work, play, and live. The invention of the BJT also eventually led to the dominance of information technology and the emergence of the knowledge-based economy.

The bipolar transistor enjoyed nearly three decades as the device of choice in the design of both discrete and integrated circuits. Although the MOSFET had been known very early on, it was not until the 1970s and 1980s that it became a serious competitor to the BJT. At the time of this writing (2003), the MOSFET is undeniably the most widely used electronic device, and CMOS technology is the technology of choice in the design of integrated circuits. Nevertheless, the BJT remains a significant device that excels in certain applications. For instance, the reliability of BJT circuits under severe environmental conditions makes them the dominant device in automotive electronics, an important and still-growing area.

The BJT remains popular in discrete-circuit design, in which a very wide selection of BJT types are available to the designer. Here we should mention that the characteristics of the bipolar transistor are so well understood that one is able to design transistor circuits whose performance is remarkably predictable and quite insensitive to variations in device parameters.

The BJT is still the preferred device in very demanding analog circuit applications, both integrated and discrete. This is especially true in very-high-frequency applications, such as radio-frequency (RF) circuits for wireless systems. A very-high-speed digital logic-circuit family based on bipolar transistors, namely emitter-coupled logic, is still in use. Finally, bipolar transistors can be combined with MOSFETs to create innovative circuits that take advantage of the high-input-impedance and low-power operation of MOSFETs and the very-high-frequency operation and high-current-driving capability of bipolar transistors. The resulting technology is known as BiMOS or BiCMOS, and it is finding increasingly larger areas of application (see Chapters 6, 7, 9, and 11).

In this chapter, we shall start with a simple description of the physical operation of the BJT. Though simple, this physical description provides considerable insight regarding the performance of the transistor as a circuit element. We then quickly move from describing current flow in terms of electrons and holes to a study of the transistor terminal characteristics. Circuit models for transistor operation in different modes will be developed and utilized in the analysis and design of transistor circuits. The main objective of this chapter is to develop in the reader a high degree of familiarity with the BJT. Thus, by the end of the chapter, the reader should be able to perform rapid first-order analysis of transistor circuits and to design single-stage transistor amplifiers and simple logic inverters.

5.1 DEVICE STRUCTURE AND PHYSICAL OPERATION

5.1.1 Simplified Structure and Modes of Operation

Figure 5.1 shows a simplified structure for the BJT. A practical transistor structure will be shown later (see also Appendix A, which deals with fabrication technology).

As shown in Fig. 5.1, the BJT consists of three semiconductor regions: the emitter region (n-type), the base region (p-type), and the collector region (n-type). Such a transistor is called an npn transistor. Another transistor, a dual of the npn as shown in Fig. 5.2, has a p-type emitter, an n-type base, and a p-type collector, and is appropriately called a pnp transistor.

A terminal is connected to each of the three semiconductor regions of the transistor, with the terminals labeled emitter (E), base (B), and collector (C). Depending on the bias condition (forward or reverse) of each of these junctions, different modes of operation of the BJT are obtained, as shown in Table 5.1.

The active mode, which is also called forward active mode, is the one used if the transistor is to operate as an amplifier. Switching applications (e.g., logic circuits) utilize both the cutoff mode and the saturation mode. The reverse active (or inverse active) mode has very limited application but is conceptually important.

As we will see shortly, charge carriers of both polarities—that is, electrons and holes—participate in the current-conduction process in a bipolar transistor, which is the reason for the name bipolar.

<table>
<thead>
<tr>
<th>TABLE 5.1</th>
<th>BJT Modes of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>EBJ</td>
</tr>
<tr>
<td>Cut-off</td>
<td>Reverse</td>
</tr>
<tr>
<td>Active</td>
<td>Forward</td>
</tr>
<tr>
<td>Reverse-active</td>
<td>Reverse</td>
</tr>
<tr>
<td>Saturation</td>
<td>Forward</td>
</tr>
</tbody>
</table>
Let us now consider the electrons injected from the emitter into the base. These electrons will be minority carriers in the p-type base region. Because the base is usually very thin, in the steady state the excess minority-carrier (electron) concentration in the base will have an almost-straight-line profile, as indicated by the solid straight line in Fig. 5.4. The electron concentration will be highest (denoted by \(n_e(0) \)) at the emitter side and lowest (zero) at the collector side. As in the case of any forward-biased pn junction (Section 3.7.5), the concentration \(n_e(0) \) will be proportional to \(e^{V_{BE}/V_T} \),

\[
n_e(0) = n_pe^{V_{BE}/V_T}
\]

where \(n_pe \) is the thermal-equilibrium value of the minority-carrier (electron) concentration in the base region, \(V_{BE} \) is the forward base-emitter bias voltage, and \(V_T \) is the thermal voltage, which is equal to approximately 25 mV at room temperature. The reason for the zero concentration at the collector side of the base is that the positive collector voltage \(V_{CB} \) causes the electrons to drift toward the collector, which leads to a net electron drift in the base region.

The tapered minority-carrier concentration profile (Fig. 5.4) causes the electrons injected into the base to diffuse through the base region toward the collector. This electron diffusion current \(I_e \) is directly proportional to the slope of the straight-line concentration profile,

\[
I_e = A_e q D_e \frac{dn_e(x)}{dx}
\]

where \(A_e \) is the effective area of the emitter and \(D_e \) is the diffusion coefficient of the minority carriers.

This minority-carrier distribution in the base results from the boundary conditions imposed by the two junctions. If the base region were infinitely thick, it would result in the base region being highly doped, which would cause the distribution to decay linearly. Furthermore, the reverse bias on the collector-base junction causes the electron concentration at the collector side of the base to be zero.

The forward bias on the emitter-base junction will cause current to flow across this junction. Current will consist of two components: electrons injected from the emitter into the base, and holes injected from the base into the emitter. As will become apparent shortly, it is highly desirable to have the first component (electrons from emitter to base) at a much higher level than the second component (holes from base to emitter). This can be accomplished by fabricating the device with a heavily doped emitter and a lightly doped base; that is, the device is designed to have a high density of electrons in the emitter and a low density of holes in the base.

The current that flows across the emitter-base junction will constitute the emitter current \(I_e \), as indicated in Fig. 5.3. The direction of \(I_e \) is "out of" the emitter lead, which is in the direction of the hole current and opposite to the direction of the electron current, with the emitter current \(I_e \) being equal to the sum of these two components. However, since the electron component is much larger than the hole component, the emitter current will be dominated by the electron component.

The electron concentration \(n_e(0) \) at the emitter side of the base is the forward base-emitter bias voltage, and \(V_T \) is the thermal voltage, which is equal to approximately 25 mV at room temperature. The reason for the zero concentration at the collector side of the base is that the positive collector voltage \(V_{CB} \) causes the electrons to drift toward the collector, which leads to a net electron drift in the base region.

The tapered minority-carrier concentration profile (Fig. 5.4) causes the electrons injected into the base to diffuse through the base region toward the collector. This electron diffusion current \(I_e \) is directly proportional to the slope of the straight-line concentration profile,

\[
I_e = A_e q D_e \frac{dn_e(x)}{dx}
\]

where \(A_e \) is the effective area of the emitter and \(D_e \) is the diffusion coefficient of the minority carriers.

This minority-carrier distribution in the base results from the boundary conditions imposed by the two junctions. If the base region were infinitely thick, it would result in the base region being highly doped, which would cause the distribution to decay linearly. Furthermore, the reverse bias on the collector-base junction causes the electron concentration at the collector side of the base to be zero.
where \(A_n \) is the cross-sectional area of the base-emitter junction (in the direction perpendicular to the page), \(q \) is the magnitude of the electron charge, \(D_e \) is the electron diffusivity in the base, and \(W \) is the effective width of the base. Observe that the negative slope of the minority-carrier concentration results in a negative current \(i_c \) across the base; that is, \(i_c \) flows from right to left (in the negative direction of \(x \)).

Some of the electrons that are diffracting through the base region will combine with holes, which are the majority carriers in the base. However, since the base is usually very thin, the proportion of electrons "lost" through this recombination process will be quite small. Nevertheless, the recombination in the base region causes the excess minority-carrier concentration profile to deviate from a straight line and take the slightly concave shape indicated by the broken line in Fig. 5.4. The slope of the concentration profile at the EBJ is slightly higher than that at the CBJ, with the difference accounting for the small number of electrons lost in the base region through recombination.

The Collector Current From the description above we see that most of the diffusing electrons will reach the boundary of the Collector-base depletion region. Because the collector is more positive than the base (by \(v_{bc} \) volts), these successful electrons will be swept across the CBJ depletion region into the collector. They will thus get "collected" to constitute the collector current \(i_c \). Thus \(i_c = i_{bc} \), which will yield a negative value for \(i_c \), indicating that \(i_c \) flows in the negative direction of the \(x \) axis (i.e., from right to left). Since we will take this to be the positive direction of \(i_c \), we can drop the negative sign in Eq. (5.2). Doing this and substituting for \(n_l(0) \) from Eq. (5.1), we can thus express the collector current \(i_c \) as

\[
i_c = I_{ce}e^{v_{bc}/V_T}
\]

where the saturation current \(I_{ce} \) is given by

\[
I_{ce} = A_{eq}qD_eN_{eq}/W
\]

Substituting \(n_{eq} = n_l^0/N_A \), where \(n_l^0 \) is the intrinsic carrier density and \(N_A \) is the doping concentration in the base, we can express \(I_{ce} \) as

\[
I_{ce} = A_{eq}qD_eN_l^0/W
\]

An important observation to make here is that the magnitude of \(i_c \) is independent of \(n_l(0) \). That is, as long as the collector is positive with respect to the base, the electrons that reach the collector side of the base region will be swept into the collector and register as collector current.

The saturation current \(I_{ce} \) is inversely proportional to the base width \(W \) and is directly proportional to the area of the EBJ. Typically \(I_{ce} \) is in the range of \(10^{-17} \) A to \(10^{-11} \) A (depending on the size of the device). Because \(I_{ce} \) is proportional to \(n_l^0 \), it is a strong function of temperature, approximately doubling for every 5°C rise in temperature. (For the dependence of \(n_l^0 \) on temperature, refer to Eq. 3.57.)

Since \(I_{ce} \) is directly proportional to the junction area (i.e., the device size), it will also be referred to as the *scale current*. Two transistors that are identical except that one has an EBJ area, say, twice that of the other will have saturation currents with that same ratio (i.e., 2). Thus for the same value of \(v_{bc} \), the larger device will have a collector current twice that in the smaller device. This concept is frequently employed in integrated-circuit design.

The Base Current The base current \(i_b \) is composed of two components. The first component \(i_{b1} \) is due to the holes injected from the base region into the emitter region. This current component is proportional to \(e^{v_{bc}/V_T} \),

\[
i_{b1} = A_{eq}qD_hN_hW
\]

where \(D_h \) is the hole diffusivity in the emitter, \(L_h \) is the hole diffusion length in the emitter, and \(N_h \) is the doping concentration of the emitter.

The second component of base current, \(i_{b2} \), is due to holes that have to be supplied by the external circuit in order to replace the holes lost from the base through the recombination process. An expression for \(i_{b2} \) can be found by noting that if the average time for a minority electron to recombine with a majority hole in the base is denoted \(\tau \) (called *minority-carrier lifetime*), then in \(\tau \) seconds the minority-carrier charge in the base, \(Q_n \), recombines with holes. Of course in the steady state, \(Q_n \) is replenished by electron injection from the emitter. To replenish the holes, the current \(i_{b2} \) must supply the base with a positive charge equal to \(Q_n \) every \(\tau \) seconds,

\[
i_{b2} = \frac{Q_n}{\tau}
\]

The minority-carrier charge stored in the base region, \(Q_n \), can be found by reference to Fig. 5.4. Specifically, \(Q_n \) is represented by the area of the triangle under the straight-line distribution in the base, thus

\[
Q_n = A_{eq}Wn_l^0/2
\]

Substituting for \(n_l(0) \) from Eq. (5.1) and replacing \(n_{eq} \) by \(n_l^0/N_A \), we have

\[
Q_n = A_{eq}Wn_l^0/2N_A
\]

which can be substituted in Eq. (5.6) to obtain

\[
i_{b2} = \frac{A_{eq}Wn_l^0/2}{\tau N_A}
\]

Combining Eqs. (5.5) and (5.8) and utilizing Eq. (5.4), we obtain for the total base current \(i_b \) the expression

\[
i_b = i_{b1} + i_{b2} = A_{eq}qD_eN_l^0e^{v_{bc}/V_T} + A_{eq}Wn_l^0/2N_A = \frac{A_{eq}Wn_l^0}{2N_A}e^{v_{bc}/V_T}
\]

Comparing Eqs. (5.3) and (5.9), we see that \(i_c \) can be expressed as a fraction of \(i_b \) as follows:

\[
i_c = \frac{i_c}{i_b} = \frac{I_{ce}e^{v_{bc}/V_T}}{i_b}
\]

That is,

\[
i_c = \frac{i_c}{i_b} = \frac{I_{ce}}{i_b}e^{v_{bc}/V_T}
\]

where \(\beta \) is given by

\[
\beta = \frac{i_c}{i_b} \approx \frac{I_{ce}}{i_b}e^{v_{bc}/V_T}
\]
from which we see that β is a constant for a particular transistor. For modern npn transistors, β is in the range 50 to 200, but it can be as high as 1000 for special devices. For reasons that will become clear later, the constant β is called the common-emitter current gain.

Equation (5.12) indicates that the value of β is highly influenced by two factors: the width of the base region, W, and the relative dopings of the base region and the emitter region, (N_B/N_E). To obtain a high β (which is highly desirable since β represents a gain parameter) the base should be thin (W small) and lightly doped and the emitter heavily doped (making N_B/N_E small). Finally, we note that the discussion thus far assumes an idealized situation, where β is a constant for a given transistor.

The Emitter Current

Since the current that enters a transistor must leave it, it can be seen from Fig. 5.3 that the emitter current i_E is equal to the sum of the collector current i_C and the base current i_B; that is,

$$i_E = i_C + i_B \quad (5.13)$$

Use of Eqs. (5.10) and (5.13) gives

$$i_E = \frac{\beta + 1}{\beta} i_C \quad (5.14)$$

That is,

$$i_E = \beta i_C \quad (5.15)$$

Alternatively, we can express Eq. (5.14) in the form

$$i_C = \alpha i_E \quad (5.16)$$

where the constant α is related to β by

$$\alpha = \frac{\beta}{\beta + 1} \quad (5.17)$$

Thus the emitter current in Eq. (5.15) can be written

$$i_E = (1/\alpha) e^{v_{BE}/v_{sat}} \quad (5.18)$$

Finally, we can use Eq. (5.17) to express β in terms of α; that is,

$$\beta = \frac{\alpha}{1 - \alpha} \quad (5.19)$$

It can be seen from Eq. (5.17) that α is a constant (for a particular transistor) that is less than but very close to unity. For instance, if $\beta = 100$, then $\alpha = 0.99$. Equation (5.19) reveals an important fact: Small changes in α correspond to very large changes in β. This mathematical observation manifests itself physically, with the result that transistors of the same type may have widely different values of β.

Recapitulation and Equivalent-Circuit Models

We have presented a first-order model for the operation of the npn transistor in the active (or "forward" active) mode. Basically, the forward-bias voltage v_{BE} causes an exponentially related current i_C to flow in the collector terminal. The collector current i_C is independent of the value of the collector voltage as long as the collector-base junction remains reverse-biased; that is, $v_{BC} \leq 0$. Thus in the active mode the transistor operates as an ideal constant-current source where the value of the current is determined by v_{BE}. The base current i_B is a factor $1/\beta$ of the collector current, and the emitter current is equal to the sum of the collector and base currents.

Since i_E is much smaller than i_C (i.e., $i_E \ll i_C$), $i_E = i_C$. More precisely, the collector current is a fraction αi_E of the emitter current, with α smaller than, but close to, unity.

This first-order model of transistor operation in the forward active mode can be represented by the equivalent circuit shown in Fig. 5.5(a). Here diode D_B has a scale current i_B equal to $(1/\alpha) i_C$ and thus provides a current i_B related to v_{BE} according to Eq. (5.18). The current of the controlled source, which is equal to the collector current, is controlled by v_{BE} according to the exponential relationship indicated, a restatement of Eq. (5.3). This model is in essence a nonlinear voltage-controlled current source. It can be converted to the constant-controlled current-source model shown in Fig. 5.5(b) by expressing the current of the controlled source as αi_C. Note that this model is also nonlinear because of the exponential relationship of the current i_C through diode D_B and the voltage v_{BE}. From this model we observe that if the transistor is used as a two-port network with the input port between B and E and the output port between C and B (i.e., with B as a common terminal), then the current gain observed is equal to α. Thus α is called the common-base current gain.

Exercises

5.1 Consider an npn transistor with $v_{BE} = 0.7$ V at $i_C = 1$ mA. Find v_{BE} at $i_C = 0.7$ mA and 10 mA.

Ans. 0.64 V, 0.76 V
5.2 Transistors of a certain type are specified to have β values in the range 50 to 150. Find the range of their a values.

Ans. 0.980 to 0.993

5.3 Measurement of an npn BJT in a particular circuit shows the base current to be 14.46 mA, the emitter current to be 1.460 mA, and the base-emitter voltage to be 0.7 V. For these conditions, calculate a, β, and I_C.

Ans. $0.99; 100; 10^4$ A

5.4 Calculate β for two transistors for which $a = 0.99$ and 0.98. For collector currents of 10 mA, find the base current of each transistor.

Ans. $99; 49; 0.1$ mA; 0.2 mA

5.1.3 Structure of Actual Transistors

Figure 5.6 shows a more realistic (but still simplified) cross-section of an npn BJT. Note that the collector virtually surrounds the emitter region, thus making it difficult for the electrons injected into the thin base to escape being collected. In this way, the resulting a_F is close to unity and β_F is large. Also, observe that the device is not symmetrical. For more detail on the physical structure of actual devices, the reader is referred to Appendix A.

The fact that the BJT structure is not symmetrical means that if the emitter and collector are interchanged and the transistor is operated in the reverse active mode, the resulting values of a and β, denoted a_R and β_R, will be different from the forward active mode values, a_F and β_F. Furthermore, because the structure is optimized for forward mode operation, a_R and β_R will be much lower than their forward mode counterparts. Of course, a_R and β_R are related by equations identical to those that relate a_F and β_F. Typically, a_R is in the range of 0.01 to 0.5, and the corresponding range of β_R is 0.01 to 1.

The structure in Fig. 5.6 indicates also that the CBJ has a much larger area than the EBJ. It follows that if the transistor is operated in the reverse active mode (i.e., with the CBJ forward biased and the EBJ reverse biased) and the operation is modeled in the manner of Fig. 5.5(b), we obtain the model shown in Fig. 5.7. Here diode D_E represents the collector-base junction and has a scale current I_{SC} that is much larger than the scale current I_{SE} of diode D_C. The two scale currents have, of course, the same ratio as the areas of the corresponding junctions. Furthermore, a simple and elegant formula relates the scale currents I_{SC}, I_{SE}, and I_c and the current gains a_E and a_C, namely

$$a_E I_{SE} = a_C I_{SC} = I_c$$ (5.20)

5.1.4 The Ebers-Moll (EM) Model

The model of Fig. 5.5(a) can be combined with that of Fig. 5.7 to obtain the circuit model shown in Fig. 5.8. Note that we have relabeled the currents through D_C and D_E, and the corresponding control currents of the controlled sources, as I_{CE} and I_{CE}. Ebers and Moll, two
early workers in the area, have shown that this composite model can be used to predict the operation of the BJT in all of its possible modes. To see how this can be done, we derive expressions for the terminal currents \(i_E \), \(i_c \), and \(i_B \) in terms of the junction voltages \(v_{BE} \) and \(v_{BC} \). Toward that end, we write an expression for the current at each of the three nodes of the model in Fig. 5.8 as follows:

\[
i_E = A R L DC
\]

\[
i_c = -i_{DC} + X F l D E
\]

\[
i_B = (1 - a F) l E + (1 - a R) i_{DC}
\]

Then we use the diode equation to express \(i_{DE} \) and \(i_{DC} \) as

\[
i_{DE} = l S E e^{-l}
\]

\[
i_{DC} = h c (e^{v_{BC}/V_T} - 1)
\]

Substituting for \(i_{DE} \) and \(i_{DC} \) in Eqs. (5.21), (5.22), and (5.23) and using the relationship in Eq. (5.20) yield the required expressions:

As a first application of the EM model, we shall use it to predict the terminal currents of a transistor operating in the forward active mode. Here \(v_{BE} \) is positive and in the range of 0.6 V to 0.8 V, and \(v_{BC} \) is negative. One can easily see that terms containing \(e^{v_{BC}/V_T} \) will be negligibly small and can be neglected to obtain

\[
i_E = l_{0E} - a F l_{OE}
\]

\[
i_c = -l_{DC} + a R l_{OE}
\]

\[
i_B = (1 - a F) l E + (1 - a R) i_{DC}
\]

In each of these three equations, one can normally neglect the second term on the right-hand side. This results in the familiar current-voltage relationships we derived earlier, namely, Eqs. (5.18), (5.3), and (5.11), respectively.

Thus far, we have stated the condition for forward active mode operation as \(v_{CB} > 0 \) to ensure that the CBJ is reverse biased. In actual fact, however, a pn junction does not become effectively forward biased until the forward voltage across it exceeds approximately 0.5 V. It follows that one can maintain active mode operation of an npn transistor for negative \(v_{CB} \) down to approximately \(-0.4 \) V or so. This is illustrated in Fig. 5.9, which shows a sketch of \(i_c \) versus \(v_{CB} \) for an npn transistor operated with a constant-emitter current \(I_E \).

Observe that \(i_c \) remains constant at \(a F I_E \) for \(v_{CB} \) going negative to approximately \(-0.4 \) V. Below this value of \(v_{CB} \), the CBJ begins to conduct sufficiently that the transistor leaves the active mode and enters the saturation mode of operation, where \(i_c \) decreases. We shall study BJT saturation next. For now, however, note that we can use the EM equations to verify that the terms containing \(e^{v_{BC}/V_T} \) remain negligibly small for \(v_{BC} \) as high as \(0.4 \) V.

EXERCISE

56 For a BJT with \(a_F = 0.999, a_R = 0.02, \) and \(I_E = 10^{-5} \) A, calculate the second term on the right-hand side of each of Eqs. (5.31), (5.32), and (5.33) to verify that they can be ignored. Then calculate \(i_E, i_c, \) and \(i_B \) for \(v_{CB} = 0.7 \) V.
5.1.5 Operation in the Saturation Mode

Figure 5.9 indicates that as \(v_{CB} \) is lowered below approximately 0.4 V, the BJT enters the saturation mode of operation. Ideally, \(v_{CB} \) has no effect on the collector current in the active mode, but the situation changes dramatically in saturation: Increasing \(v_{CB} \) reduces the concentration profile of the minority carriers (electrons) in the base of the saturated transistor, as shown in Fig. 5.10. Observe that because the CBJ is now forward-biased, the electron concentration at the collector edge of the base is no longer zero; rather, it is a value proportional to \(e^{v_{CB}/v_T} \). Also note that the slope of the concentration profile is reduced in correspondence with the reduction in \(i_c \).

\[I_c = I_e e^{v_{CB}/v_T} \left(\frac{1}{(a_F)^2} \right) \]

The first term on the right-hand side is a result of the forward-biased EBJ, and the second term is a result of the forward-biased CBJ. The second term starts to play a role when \(v_{CB} \) exceeds approximately 0.4 V or so. As \(v_{CB} \) is increased, this term becomes larger and eventually reaches zero. Of course, one can operate the saturated transistor at any value of \(i_c \) lower than \(a_F i_E \). We will have more to say about saturation-mode operation in subsequent sections. Here, however, it is instructive to examine the minority-carrier concentration profile in the base of the saturated transistor, as shown in Fig. 5.10. Observe that because the CBJ is now forward-biased, the electron concentration at the collector edge of the base is no longer zero; rather, it is a value proportional to \(e^{v_{CB}/v_T} \). Also note that the slope of the concentration profile is reduced in correspondence with the reduction in \(i_c \).

Saturation in a BJT means something completely different from that in a MOSFET. The saturation mode of operation of the BJT is analogous to the triode region of operation of the MOSFET. On the other hand, the saturation region of operation of the MOSFET corresponds to the active mode of BJT operation.

EXERCISE

37. (a) Use the EJN expressions in Eqs. (5.26) and (5.27) to show that the \(I_c - v_{CB} \) relationship sketched in Fig. 5.9 can be described by \(I_c = a_F i_E = I_c (1 - 0.01 e^{-v_{CB}/V_T}) \). Neglect all terms not containing exponentials.

(b) For the case \(I_E = 10^{-3} A, I_c = 1 mA, \alpha_F = 1, \) and \(0.01 \), find \(I_c \) for \(v_{CB} = -1 V, -0.4 V, -0.5 V, -0.54 V, \) and -0.57 V. Also find the value of \(v_{crit} \) at which \(I_c = 0 \).

(c) At the value of \(v_{crit} \) that makes \(I_c = 0 \), what do you think it should be? Verify using Eq. (5.28).

Ans. (b) 1 mA: 1 mA; 0.95 mA; 0.76 mA; 0.2 mA; 576 mA (c) 1 mA

5.1.6 The pnp Transistor

The pnp transistor operates in a manner similar to that of the npn device described above. Figure 5.11 shows a pnp transistor biased to operate in the active mode. Here the voltage \(V_{CE} \) causes the \(p \)-type collector to be higher in potential than the \(n \)-type base, thus forward-biasing the base–emitter junction. The collector–base junction is reverse-biased by the voltage \(V_{BC} \), which keeps the \(p \)-type collector lower in potential than the \(n \)-type base.

Unlike the npn transistor, current in the pnp device is mainly conducted by holes injected from the emitter into the base as a result of the forward-bias voltage \(V_{EB} \). Since the component of emitter current contributed by electrons injected from base to emitter is kept small by using a lightly doped base, most of the emitter current will be due to holes. The electrons injected from base to emitter give rise to the first component of base current, \(i_B \). Also, a number of the holes injected into the base will recombine with the minority carriers in the base (electrons) and will thus be lost. The disappearing base electrons will have to be replaced from the external circuit, giving rise to the second component of base current, \(i_C \). The holes that succeed in reaching the boundary of the depletion region of the collector–base junction will be attracted by the negative voltage on the collector. Thus these holes will be swept across the depletion region into the collector and appear as collector current.

FIGURE 5.11 Current flow in a pnp transistor biased to operate in the active mode.
5.2 CURRENT-VOLTAGE CHARACTERISTICS

5.2.1 Circuit Symbols and Conventions

The physical structure used thus far to explain transistor operation is rather cumbersome to employ in drawing the schematic of a multitransistor circuit. Fortunately, a very descriptive and convenient circuit symbol exists for the BJT. Figure 5.13(a) shows the symbol for the npn transistor; the pnp symbol is given in Fig. 5.13(b). In both symbols the emitter is distinguished by an arrowhead. This distinction is important because, as we have seen in the last section, practical BJTs are not symmetric devices.

The polarity of the device—npn or pnp—is indicated by the direction of the arrowhead on the emitter. This arrowhead points in the direction of normal current flow in the emitter, which is also the forward direction of the base-emitter junction. Since we have adopted a drawing convention by which currents flow from top to bottom, we will always draw pnp transistors in the manner shown in Fig. 5.13 (i.e., with their emitters on top).

Figure 5.14 shows npn and pnp transistors biased to operate in the active mode. It should be noted in passing that the biasing arrangement shown, utilizing two dc voltage sources, is not a usual one and is used here merely to illustrate operation. Practical biasing schemes will be presented in Section 5.5. Figure 5.14 also indicates the reference and actual directions of current flow throughout the transistor. Our convention will be to take the reference direction to coincide with the normal direction of current flow. Hence, normally, we should not encounter a negative value for i_e, i_b, or i_c.

The convenience of the circuit drawing convention that we have adopted should be obvious from Fig. 5.14. Note that currents flow from top to bottom and that voltages are higher at the top and lower at the bottom. The arrowhead on the emitter also implies the polarity of the emitter-base voltage that should be applied in order to forward bias the emitter-base junction. Just a glance at the circuit symbol of the pnp transistor, for example, indicates that we should make the emitter higher in voltage than the base (by V_{BE}) in order to cause current to flow into the emitter (downward). Note that the symbol V_{BE} means the voltage by which the emitter (E) is higher than the base (B). Thus for a pnp transistor operating in the active mode V_{BE} is positive, while in an npn transistor V_{BE} is positive.

From the discussion of Section 5.1 it follows that an npn transistor whose EBJ is forward biased will operate in the active mode as long as the collector voltage does not fall below that of the base by more than approximately 0.4 V. Otherwise, the transistor leaves the active mode and enters the saturation region of operation.
TABLE 5.2 Summary of the BJT Current-Voltage Relationships in the Active Mode

\[i_c = I_s e^{i c/ V_{BE}} \]
\[i_b = I_{ib} e^{i b/ V_{BE}} \]
\[i_e = I_{ie} e^{i e/ V_{BE}} \]

<table>
<thead>
<tr>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{I_c}{I_b})</td>
</tr>
</tbody>
</table>

Note: For the pnp transistor, replace \(V_{BE} \) with \(V_{EB} \).

\(I_c = a i_e \)
\(I_b = (1 - a) i_e \)
\(I_e = \beta i_b \)
\(a = \frac{\beta}{1 + \beta} \)
\(\beta = \frac{i_c}{i_b} \)
\(V_T = \text{thermal voltage} = \frac{kT}{q} \approx 25 \text{ mV at room temperature} \)

In a parallel manner, the pnp transistor will operate in the active mode if the EBJ is forward biased and the collector voltage is not allowed to rise above that of the base by more than 0.4 V or so. Otherwise, the CBJ becomes forward biased, and the pnp transistor enters the saturation region of operation.

For easy reference, we present in Table 5.2 a summary of the BJT current-voltage relationships in the active mode of operation. Note that for simplicity we use \(a \) and \(\beta \) rather than \(a_F \) and \(\beta_F \).

The Constant \(n \)

In the diode equation (Chapter 3) we used a constant \(n \) in the exponential and mentioned that its value is between 1 and 2. For modern bipolar junction transistors the constant \(n \) is close to unity except in special cases: (1) at high currents (i.e., high relative to the normal current range of the particular transistor) the \(i_c-V_{BE} \) relationship exhibits a value for \(n \) that is close to 2, and (2) at low currents the \(i_b-V_{BE} \) relationship shows a value for \(n \) of approximately 2. Note that for our purposes we shall assume always that \(n = 1 \).

The Collector-Base Reverse Current \((i_{CBO}) \)

In our discussion of current flow in transistors we ignored the small reverse currents carried by thermally generated minority carriers. Although such currents can be safely neglected in modern transistors, the reverse current across the collector-base junction deserves some mention. This current, denoted \(i_{CBO} \), is the reverse current flowing from collector to base with the emitter open-circuited (hence the subscript 0). This current is usually in the nanocouple range, a value that is many times higher than its theoretically predicted value. As with the diode reverse current, \(i_{CBO} \) contains a substantial leakage component, and its value is dependent on \(V_{CB} \). \(i_{CBO} \) depends strongly on temperature, approximately doubling for every 10°C rise.

\[\text{Solution} \]

Refer to Fig. 5.15(b). We note at the outset that since we are required to design for \(V_C = +5 \text{ V} \), the CBJ will be reverse biased and the BIT will be operating in the active mode. To obtain a voltage \(V_C = +5 \text{ V} \), the voltage drop across \(R_C \) must be 15 - 5 = 10 V. Now, since \(i_c = 2 \text{ mA} \), the value of \(R_C \) should be selected according to

\[R_C = \frac{10 \text{ V}}{2 \text{ mA}} = 5 \text{ k}\Omega \]

Since \(V_{BE} = 0.7 \text{ V} \) at \(i_c = 1 \text{ mA} \), the value of \(V_{BE} \) at \(i_c = 2 \text{ mA} \) is

\[V_{BE} = 0.7 + V_T \ln \left(\frac{I_c}{I_{ic}} \right) = 0.7 + 0.717 \text{ V} \]

Since the base is at 0 V, the emitter voltage should be

\[V_E = -0.717 \text{ V} \]

For \(\beta = 100, \alpha = 100/301 = 0.99 \), the emitter current should be

\[I_E = \frac{I_c}{\alpha} = \frac{2}{0.99} = 2.02 \text{ mA} \]

Now the value required for \(R_E \) can be determined from

\[R_E = \frac{V_E + V_T}{I_E} = \frac{-0.717 + 2.02}{2.02} = 7.07 \text{ k}\Omega \]
This completes the design. We should note, however, that the calculations above were made with a degree of accuracy that is usually neither necessary nor justified in practice, in view, for instance, of the expected tolerances of component values. Nevertheless, we chose to do the design precisely in order to illustrate the various steps involved.

5.10 In the circuit shown in Fig. E5.10, the voltage at the emitter was measured and found to be -0.7 V. If $I_B = 50$, find I_C, I_E, and V_C.

![Figure E5.10](image)

Ans. $I_C = I_B / eta$, $I_E = I_B + I_C$, $V_C = V_T - I_C R_C$.

5.11 In the circuit shown in Fig. E5.11, measurement indicates $V_B = +1.0$ V and $V_L = +1.7$ V. What are I_B and I_C for this transistor? What voltage V_C do you expect at the collector?

![Figure E5.11](image)

Ans. $I_B = 0.93$ mA; $I_C = 0.91$ mA; $V_C = -5.45$ V.

5.2 CURRENT-VOLTAGE CHARACTERISTICS

5.2.2 Graphical Representation of Transistor Characteristics

It is sometimes useful to describe the transistor $i-v$ characteristics graphically. Figure 5.16 shows the i_C-v_{BE} characteristic, which is the exponential relationship

$$i_C = I_A e^{v_{BE}/V_T}$$

which is identical (except for the value of constant n) to the diode $i-v$ relationship. The i_C-v_{BE} and i_C-v_{E} characteristics are also exponential but with different scale currents: $I_A / eta$ for I_C and $I_A / eta$ for I_B. Since the constant of the exponential characteristic, $1 / V_T$, is quite high (40), the curve rises very sharply. For v_{BE} smaller than about 0.5 V, the current is negligibly small.2 Also, over most of the normal current range I_A lies in the range of 0.5 V to 0.8 V. In performing rapid first-order dc calculations we normally will assume that $V_{BE} = 0.7$ V, which is similar to the approach used in the analysis of diode circuits (Chapter 3). For a pnp transistor, the i_C-v_{BE} characteristic will look identical to that of Fig. 5.16 with v_{BE} replaced with v_{EB}.

As in silicon diodes, the voltage across the emitter-base junction decreases by about 2 mV for each rise of 1°C in temperature, provided that the junction is operating at a constant current. Figure 5.17 illustrates this temperature dependence by depicting i_C-v_{BE} curves at three different temperatures for an npn transistor.

The Common-Base Characteristics One way to describe the operation of a bipolar transistor is to plot i_C versus v_{CB} for various values of i_B. We have already encountered one such graph, in Fig. 5.9, which we used to introduce the saturation mode of operation. A conceptual experimental setup for measuring such characteristics is shown in Fig. 5.18(a). Observe that in these measurements the base voltage is held constant, here at ground potential, and thus the base serves as a common terminal between the input and output ports. Consequently, the resulting set of characteristics, shown in Fig. 5.18(b), are known as common-base characteristics.

2 The i_C-v_{BE} characteristic is the BJT's counterpart of the i_D-v_{GS} characteristic of the enhancement MOSFET. They share an important attribute: In both cases the voltage has to exceed a "threshold" for the device to conduct appreciably. In the case of the MOSFET, there is a formal threshold voltage, V_T, which lies typically in the range of 0.5 V to 1.0 V. For the BJT, there is an "apparent threshold" of approximately 0.5 V. The i_C-v_{BE} characteristic of the MOSFET is parabolic and thus is less steep than the i_C-v_{BE} characteristic of the BJT. This difference has a direct and significant implication on the value of transconductance g_m realized with each device.
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

indicated in Fig. 5.18(b). Usually, the values of incremental and total differ slightly, but we shall discuss this phenomenon shortly. Second, at relatively large values of the CBv, but show a small positive slope, indicating that i depends slightly on CBv in the active mode.

we shall not make a distinction between the two in this book. An increment E

This measurement is usually made at a constant CBc, as indicated in Fig. 5.18(b). Usually, the values of incremental and total differ slightly, but we shall not make a distinction between the two in this book.

Finally, turning to the saturation region, the Ebers-Moll equations can be used to obtain the following expression for the ic-vce curve in the saturation region (for iv = ivh).

\[i_C = \alpha I_C - I_F \left(\frac{1}{\alpha R} \right) e^{v_C/\alpha} \] (3.35)

We can use this equation to determine the value of vce at which ic is reduced to zero. Recalling that the CBJ is much larger than the EBJ, the forward-voltage drop vce will be smaller than vbc resulting in a collector-emitter voltage, vce, of 0.1 V to 0.3 V in saturation.

EXERCISES

5.12 Consider a pnp transistor with vbe = 0.7 V at ic = 1 mA. Let the base be grounded, the emitter be fed by a 5 mA constant current source, and the collector be connected to a 5 V supply through a 1 kΩ resistor. If the temperature rises by 30°C, find the changes in emitter and collector voltages. Neglect the effect of vbe.

Ans. -60 mV, 0 V.

5.13 Find the value of ic at which ic of an npn transistor operated in the CB configuration with ic = 1 mA is reduced to half its input-mold value and (b) to zero. Assume \(\alpha = 1 \) and \(\eta = 1 \). The value of \(V_C \) was measured for \(V_C = 0 \) (see measuring setup in Fig. 5.18(a)) and found to be 0.70 V. Repeat (a) and (b) for \(\alpha = 0.01 \).

Ans. 0.626 V, -0.65 V, -0.366 V, -0.585 V.

5.2.3 Dependence of ic on the Collector Voltage—The Early Effect

When operated in the active region, practical BJTs show some dependence of the collector current on the collector voltage, with the result that their ic-vce characteristics are not perfectly horizontal straight lines. To see this dependence more clearly, consider the conceptual circuit shown in Fig. 5.19(a). The transistor is connected in the common-emitter configuration; that is, here the emitter serves as a common terminal between the input and output ports. The voltage vbe can be set to any desired value by adjusting the dc source connected between base and emitter. At each value of vbe, the corresponding ic-vce characteristic curve can be measured point-by-point by varying the dc source connected between collector and emitter and measuring the corresponding collector current. The result is the family of ic-vce characteristic curves shown in Fig. 5.19(b) and known as common-emitter characteristics.

At low values of vbe, as the collector voltage goes below that of the base by more than 0.4 V, the collector-base junction becomes forward biased and the transistor leaves the active mode and enters the saturation mode. We shall shortly look at the details of the ic-vce curves in the saturation region. At this time, however, we wish to examine the characteristic curves in the active region in detail. We observe that the characteristic curves, though still straight lines, have finite slope. In fact, when extrapolated, the characteristic lines meet at a point on the negative vbe axis, at vbe = -vbe. The voltage vbe, a positive number, is a parameter for the particular BJT, with typical values in the range of 20 V to 100 V. It is called the Early voltage, after J. M. Early, the engineering scientist who first studied this phenomenon.

At a given value of vbe, increasing ic increases the reverse-bias voltage on the collector-base junction and thus increases the width of the depletion region of this junction (refer to Fig. 5.3). This in turn results in a decrease in the effective base width \(W \). Recalling that \(I_B \) is inversely proportional to \(W \) (Eq. 5.4), we see that \(I_B \) will increase and that ic increases proportionally. This is the Early effect.
Bipolar Junction Transistors (BJTs)

Chapter 5

Bipolar Transistor operating in the active mode. Observe that diode models the exponential dependence in Fig. 5.20, where we show large-signal circuit models of a common-emitter npn transistor, where \(I_c' \) is the value of the collector current with the Early effect neglected; that is,

\[
I_c' = I_c \beta
\]

Alternatively, we can write

\[
I_c = I_c' \frac{V_{BE}}{V_T}
\]

The nonzero slope of the \(V_{CE} \)-\(I_c \) straight lines indicates that the output resistance looking into the collector is not infinite. Rather, it is finite and defined by

\[
r_c = \frac{dI_c}{dV_{CE}}
\]

Using Eq. (5.36) we can show that

\[
r_c = \frac{V_{CE} + V_{BE}}{I_c'}
\]

where \(I_c \) and \(V_{BE} \) are the coordinates of the point at which the BJT is operating on the particular \(V_{CE} \)-\(I_c \) curve (i.e., the curve obtained for \(V_{BE} = V_{BE} \)). Alternatively, we can write

\[
r_c = \frac{V_{CE}}{I_c'}
\]

where \(I_c' \) is the value of the collector current with the Early effect neglected; that is,

\[
I_c' = I_c \beta
\]

It is rarely necessary to include the dependence of \(I_c \) on \(V_{BE} \) in dc bias design and analysis. However, the finite output resistance \(r_c \) can have a significant effect on the gain of transistor amplifiers, as we will see in later sections and chapters.

The output resistance \(r_c \) can be included in the circuit model of the transistor. This is illustrated in Fig. 5.20, where we show large-signal circuit models of a common-emitter npn transistor operating in the active mode. Observe that diode \(D_B \) models the exponential dependence of \(I_c \) on \(V_{BE} \) and thus has a scale current \(I_{BE} = I_c' \beta \). Also note that the two models differ only in how the control function of the transistor is expressed: In the circuit of Fig. 5.20(a), voltage \(V_{BE} \) controls the collector current source, while in the circuit of Fig. 5.20(b), the base current \(I_B \) is the control parameter for the current source \(I_{BE} \). Here we note that \(\beta \) represents the ideal current gain (i.e., when \(r_c \) is not present) of the common-emitter configuration, which is the reason for its name, the common-emitter current gain.

5.2.4 The Common-Emitter Characteristics

An alternative way of expressing the transistor common-emitter characteristics is illustrated in Fig. 5.21. Here the base current \(I_B \) rather than the base-emitter voltage \(V_{BE} \) is used as a parameter. That is, each \(V_{CE} \)-\(I_c \) curve is measured with the base fed with a constant current \(I_B \). The resulting characteristics look similar to those in Fig. 5.19 except that here we show the breakdown phenomena, which we shall discuss shortly. We should also mention that although it is not obvious from the graphs, the slope of the curves in the active region of operation differs from the corresponding slope in Fig. 5.19, This, however, is a rather subtle point and beyond our interest at this moment.

The Common-Emitter Current Gain \(\beta \)

An important transistor parameter is the common-emitter current gain \(\beta \) or simply \(\beta \). Thus far we have defined \(\beta \) as the ratio of the total current in the collector to the total current in the base, and we have assumed that \(\beta \) is constant for a given transistor, independent of the operating conditions. In the following we examine those two points in some detail.

Consider a transistor operating in the active region at the point labeled \(Q \) in Fig. 5.21, that is, at a collector current \(I_c \), a base current \(I_B \), and a collector-emitter voltage \(V_{CEQ} \). The
ratio of the collector current to the base current is the large-signal or dc β,

$$\beta_{dc} = \frac{i_c}{i_b}$$ \hspace{1cm} (5.39)

which is the β we have been using in our description of transistor operation. It is commonly referred to on the manufacturer’s data sheets as h_{fe}, a symbol that comes from the use of the hybrid, or h, two-port parameters to characterize transistor operation (see Appendix B). One can define another β based on incremental or small-signal quantities. Referring to Fig. 5.21 we see that while keeping v_{ce} constant at the value V_{ceq}, changing i_b from i_{bq} to $(i_{bq} + \Delta i_b)$ results in i_c increasing from i_{cq} to $(i_{cq} + \Delta i_c)$. Thus we can define the incremental or ac β,

$$\beta_{ac} = \frac{\Delta i_c}{\Delta i_b}$$ \hspace{1cm} (5.40)

The magnitudes of β_{dc} and β_{ac} differ, typically by approximately 10% to 20%. In this book we shall not normally make a distinction between the two. Finally, we should mention that the small-signal β or β_{ac} is also known by the alternate symbol h_{fe}. Because the small-signal β or β_{ac} is defined and measured at a constant v_{ce}—that is, with a zero signal component between collector and emitter—it is known as the short-circuit common-emitter current gain.

The value of β depends on the current at which the transistor is operating, and the relationship takes the form shown in Fig. 5.22. The physical processes that give rise to this relationship are beyond the scope of this book. Figure 5.22 also shows the temperature dependence of β.

The Saturation Voltage V_{cesat} and Saturation Resistance R_{cesat} An expanded view of the common-emitter characteristics in the saturation region is shown in Fig. 5.23. The fact that the curves are "bunched" together in the saturation region implies that the incremental β is lower there than in the active region. A possible operating point in the saturation region is that labeled X. It is characterized by a base current i_{bq}, a collector current i_{cq}, and a collector-emitter voltage V_{cesat}. Note that $i_{cq} < \beta_{dc} i_{bq}$. Since the value of i_{bq} is established by the circuit designer, a saturated transistor is said to be operating at a forced β given by

$$\beta_{forced} = \frac{i_{cq}}{i_{bq}}$$ \hspace{1cm} (5.41)

Thus,

$$\beta_{forced} < \beta_{dc}$$ \hspace{1cm} (5.42)

The ratio of β_{dc} to β_{forced} is known as the overdrive factor. The greater the overdrive factor, the deeper the transistor is driven into saturation and the lower V_{cesat} becomes.
CHAPTER 5

BIPOLAR JUNCTION TRANSISTORS (BJTs)

The i_c-v_{CE} curves in saturation are rather steep, indicating that the saturated transistor exhibits a low collector-to-emitter resistance R_{CEsat}:

$$R_{CEsat} = \frac{\partial v_{CE}}{\partial i_c}$$ \hspace{1cm} (5.43)

Typically, R_{CEsat} ranges from a few ohms to a few tens of ohms.

Figure 5.24(b) shows one of the i_c-v_{CE} characteristic curves of the saturated transistor shown in Fig. 5.24(a). It is interesting to note that the curve intersects the v_{CE} axis at $V_{V_{ln}(\sqrt{a/R_{CEsat}})}$, a value common to all the i_c-v_{CE} curves. We have also shown in Fig. 5.24(b) the tangent at operating point X of slope $1/R_{CEsat}$. When extrapolated, the tangent intersects the v_{CE} axis at V_{CEoB}, typically approximately 0.1 V. It follows that the i_c-v_{CE} characteristic of a saturated transistor can be approximately represented by the equivalent circuit shown in Fig. 5.24(c). At the collector side, the transistor is represented by a resistance R_{CEsat} in series with a battery V_{CEsat}. Thus, the saturation voltage V_{CEsat} can be found from

$$V_{CEsat} = V_{CEoff} + \frac{\Delta V_{CEsat}}{\Delta i_c}$$ \hspace{1cm} (5.44)

Typically, V_{CEsat} falls in the range of 0.1 V to 0.3 V. For many applications, the even simpler model shown in Fig. 5.24(d) suffices. The offset voltage of a saturated transistor, though small, makes the BJT less attractive as a switch than the MOSFET, whose i_d-v_{DS} characteristics go right through the origin of the i_d-v_{DS} plane.

It is interesting and instructive to use the Ebers-Moll model to derive analytical expressions for the characteristics of the saturated transistor. Toward that end, we use Eqs. (5.28) and (5.27), substitute $i_B = I_B$, and neglect the small terms that do not include exponentials; thus,

$$i_c = \frac{I_c}{R_c} e^{- \frac{v_{BE}}{V_T}} - \frac{I_c}{R_c} e^{- \frac{v_{BC}}{V_T}}$$ \hspace{1cm} (5.45)

$$v_{CE} = v_{BE} + v_{BC}$$ \hspace{1cm} (5.46)

Dividing Eq. (5.46) by Eq. (5.45) and writing $V_{BE} = V_{BC}$ enables us to express i_c in the form

$$i_c = \frac{(\beta_c I_B)}{e^{(v_{CE}/V_T)} - 1} \frac{\alpha_f}{e^{(v_{CE}/V_T)} + \frac{\alpha_f}{\beta_c}}$$ \hspace{1cm} (5.47)

This is the equation of the i_c-v_{CE} characteristic curve obtained when the base is driven with a constant current I_B. Figure 5.25 shows a typical plot of the normalized collector current $i_c/(\beta_c I_B)$.

FIGURE 5.25 Plot of the normalized i_c versus v_{CE} for an npn transistor with $\beta_c = 100$ and $\alpha_f = 0.1$. This is a plot of Eq. (5.47), which is derived using the Ebers-Moll model.

FIGURE 5.24

(a) An npn transistor operated in saturation mode with a constant base current I_B. (b) The i_c-v_{CE} characteristic curve corresponding to $i_B = I_B$. The curve can be approximated by a straight line of slope $1/R_{CEsat}$. (c) Equivalent-circuit representation of the saturated transistor. (d) A simplified equivalent-circuit model of the saturated transistor.
which is equal to \((\beta_{max}/\beta) \), versus \(V_{CE} \). As shown, the curve can be approximated by a straight line coincident with the tangent at the point \(\beta_{max}/\beta = 0.5 \). It can be shown that this tangent has a slope of approximately 10 V\(^{-1}\), independent of the transistor parameters. Thus,

\[
R_{CE} = \frac{1}{10\beta I_C}
\]

Other important parameters of the normalized plot are indicated in Fig. 5.25. Finally, we can obtain an expression for \(V_{CE} \) by substituting \(v = I_{C}/\beta \) and \(V_{CE} = V_T \) in Eq. (5.47),

\[
V_{CE} = V_T \ln \left(\frac{1 + (\beta_{max} + 1)/\beta}{1 - (\beta_{max} + 1)/\beta} \right)
\]

EXERCISES

5.16 An npn transistor characterized by \(\beta = 100 \) and \(r_o = 0.3 \) is operated in saturation with a constant base-current drive of 10 mA. Find the values of \(V_{CE}, R_{CE} \), and \(I_{C} \). Use the latter two figures to obtain an approximate value for \(V_T \) (i.e., using the equivalent-circuit model of Fig. 5.24(c)). Find a more accurate value for \(V_T \) using Eq. (5.49), and compare results. Repeat for a \(\beta \) of 20.

\[\text{Ans.} \ 10 \text{ mV}, \ 0.5 \Omega, \ 10 \text{ mA}, \ \beta = 100\]

5.17 Measurements made on a BIT operated in saturation with a constant base-current drive provide the following data: at \(I_C = 5 \text{ mA}, \ V_{CE} = 170 \text{ mV}, \) at \(I_C = 2 \text{ mA}, \ V_{CE} = 110 \text{ mV}. \) What are the values of the offset voltage \(V_{CE} \) and saturation resistance \(R_{CE} \) in this situation?

\[\text{Ans.} \ 70 \text{ mV}, \ 20 \Omega\]

5.2.5 Transistor Breakdown

The maximum voltages that can be applied to a BJT are limited by the EBJ and CBJ breakdown effects that follow the avalanche multiplication mechanism described in Section 3.7.4. Consider first the common-base configuration. The \(\text{CE}_{sat} \) characteristics in Fig. 5.18(b) indicate that for \(I_C = 0 \) (i.e., with the emitter open-circuited) the collector-base junction breaks down at a voltage denoted by \(BV_{CEO} \). For \(I_C > 0 \), breakdown occurs at voltages smaller than \(BV_{CEO} \). Typically, \(BV_{CEO} \) is greater than 50 V.

Next consider the common-emitter characteristics of Fig. 5.21, which show breakdown occurring at a voltage \(BV_{CEO} \). Here, although breakdown is still of the avalanche type, the effects on the characteristics are more complex than in the common-base configuration. We will not explain these in detail; it is sufficient to point out that typically \(BV_{CEO} \) is about half \(BV_{CEO} \). On transistor data sheets, \(BV_{CEO} \) is sometimes referred to as the sustaining voltage \(BV_{CEO} \).

Breakdown of the CBJ in either the common-base or common-emitter configuration is not destructive as long as the power dissipation in the device is kept within safe limits. This, however, is not the case with the breakdown of the emitter-base junction. The EBJ breaks down in an avalanche manner at a voltage \(BV_{CEO} \), much smaller than \(BV_{CEO} \). Typically, \(BV_{CEO} \) is in the range of 6 V to 8 V, and the breakdown is destructive in the sense that the \(\beta \) of the transistor is permanently reduced. This does not prevent use of the EBJ as a zener diode to generate reference voltages in IC design. In such applications one is not concerned with the \(\beta \) degradation effect. A circuit arrangement to prevent EBJ breakdown in IC amplifiers will be discussed in Chapter 9. Transistor breakdown and the maximum allowable power dissipation are important parameters in the design of power amplifiers (Chapter 14).

EXERCISE

5.18 What is the output voltage of the circuit in Fig. E5.18 if the transistor \(BV_{CEO} = 70 \text{ V}? \)

\[\text{Ans.} \ 0 \text{ V}\]

5.3 THE BJT AS AN AMPLIFIER AND AS A SWITCH

5.3.6 Summary

We conclude our study of the current-voltage characteristics of the BJT with a summary of important results in Table 5.3.
TABLE 5.3 Summary of the BJT Current-Voltage Characteristics

<table>
<thead>
<tr>
<th>Circuit Symbol and Directions of Current Flow</th>
<th>npn Transistor</th>
<th>pnp Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operation in the Active Mode (for Amplifier Application)

Conditions:

1. EBJ Forward Biased
 - $V_{BE} > V_{BE(on)} = 0.5 \text{ V}$
 - Typically, $V_{BE} = 0.7 \text{ V}$
 - $V_{BC} > V_{CB(on)} = 0.4 \text{ V}$
 - Typically, $V_{BC} = 0.5 \text{ V}$

2. CBJ Reversed Biased
 - $V_{BE} < V_{BE(on)} = 0.5 \text{ V}$
 - Typically, $V_{BE} = 0.7 \text{ V}$
 - $V_{BC} < V_{CB(on)} = 0.4 \text{ V}$
 - Typically, $V_{BC} = 0.5 \text{ V}$

Current-Voltage Relationships

- $I_C = I_S e^\beta V_{BE}$
- $I_B = I_S e^\beta V_{BE}$
- $\beta = \frac{\alpha}{1 - \alpha}
- \alpha = \frac{V_{BE(on)}}{V_{BC(on)}}$
- $V_{CE} > 0.3 \text{ V}$
- $V_{EC} > 0.3 \text{ V}$

Large-Signal Equivalent-Circuit Model (including the Early Effect)

Ebers-Moll Model

Operation in the Saturation Mode

Conditions:

1. EBJ Forward Biased
 - $V_{BE} > V_{BE(on)} = 0.5 \text{ V}$
 - Typically, $V_{BE} = 0.7-0.8 \text{ V}$
 - $V_{BC} > V_{CB(on)} = 0.4 \text{ V}$
 - Typically, $V_{BC} = 0.5-0.6 \text{ V}$

2. CBJ Forward Biased
 - $V_{BE} < V_{BE(on)} = 0.5 \text{ V}$
 - Typically, $V_{BE} = 0.7-0.8 \text{ V}$
 - $V_{BC} < V_{CB(on)} = 0.4 \text{ V}$
 - Typically, $V_{BC} = 0.5-0.6 \text{ V}$

Equations

- $I_{CE} = \frac{I_S}{2} (1 + \alpha)$
- $I_{B(CE)} = \frac{I_S}{2 (1 + \alpha)}
- \beta_{max} = \beta / 2$
- $R_{CE} = 1 / 10 \beta_{max} I_S$
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

Since we are particularly interested in linear amplification, we will have to devise a way to achieve it in the face of the highly nonlinear behavior of the transistor, namely, that the collector current \(i_c \) is exponentially related to \(v_{BC} \). We will use the approach described in general terms in Section 1.4. Specifically, we will bias the transistor to operate at a dc base-emitter voltage \(V_{BE} \) and a corresponding dc collector current \(i_C \). Then we will superimpose the signal to be amplified, \(v_s \), on the dc voltage \(V_{CE} \). By keeping the amplitude of the signal \(v_s \) small, we will be able to constrain the transistor to operate on a short, almost linear segment of the \(i_c-v_{BE} \) characteristic; thus, the change in collector current, \(i_c \), will be linearly related to \(v_s \). We will study the small-signal operation of the BJT later in this section and in greater detail in Section 5.5. First, however, we will look at the "big picture": We will study the total or large-signal operation of a BJT amplifier. From the transfer characteristic of the circuit, we will be able to see clearly the region over which the circuit can be operated as a linear amplifier. We also will be able to see how the BJT can be employed as a switch.

5.3 THE BJT AS AN AMPLIFIER AND AS A SWITCH

5.3.1 Large-Signal Operation—The Transfer Characteristic

Figure 5.26(a) shows the basic structure (a skeleton) of the most commonly used BJT amplifier, the grounded-emitter or common-emitter (CE) circuit. The total input voltage \(v_I \) (bias + signal) is applied between base and emitter, that is, \(v_I = v_c + v_e \). The total output voltage \(v_O \) (bias + signal) is taken between collector and ground, that is, \(v_O = v_C \). Resistor \(R_C \) has two functions: to establish a desired dc bias voltage at the collector, and to convert the collector signal current, \(i_o \), to an output voltage, \(v_O \) or \(v_C \). The supply voltage \(V_{CC} \) is needed to bias the BJT as well as to supply the power needed for the operation of the amplifier.

Figure 5.26(b) shows the voltage transfer characteristic of the CE circuit of Fig. 5.26(a). To understand how this characteristic arises, we first express \(v_O \) as

\[
v_O = V_{CC} - R_C i_C
\]

Next, we observe that since \(v_O = v_C \), the transistor will be effectively cutoff for \(v_C \) is 0.5 V or so. Thus, for the range \(0 < v_C < 0.5 \) V, \(i_C \) will be negligibly small, and \(v_O \) will be equal to the supply voltage \(V_{CC} \) (segment XY of the transfer curve).

As \(v_C \) is increased above 0.5 V, the transistor begins to conduct, and \(i_C \) increases. From Eq. (5.50), we see that \(v_O \) decreases. However, since initially \(v_O \) will be large, the BJT will be operating in the active mode, which gives rise to the sharply descending segment YZ of the voltage transfer curve. The equation for this segment can be obtained by substituting in Eq. (5.50) the active-mode expression for \(i_C \), namely,

\[
i_C = I_{CC} e^{v_C / V_T}
\]

where we have, for simplicity, neglected the Early effect. Thus we obtain

\[
v_O = V_{CC} - R_C I_{CC} e^{v_C / V_T}
\]

We observe that the exponential term in this equation gives rise to the steep slope of the YZ segment of the transfer curve. Active-mode operation ends when the collector voltage \(v_C \) or \(v_O \) falls by 0.5 V or so below that of the base \(v_B \) or \(v_{BE} \). At this point, the BJT turns off, and the transistor enters the saturation region. This is indicated by point Z on the transfer curve.

The total output voltage \(v_O = V_C = V_{CEsat} \) between the collector node \(C \) and ground and hence can be thought of as a closed switch.

Observe that a further increase in \(v_C \) causes \(v_{CE} \) to decrease only slightly. In the saturation region, \(v_{CE} = V_{CEsat} \), which falls in the narrow range of 0.1 V to 0.2 V. It is the almost-constant \(V_{CEsat} \) that gives this region of BJT operation the name saturation. The collector current will also remain nearly constant at the value \(I_{CEsat} \).

The resulting output signal \(v_O \) is superimposed on the dc collector voltage \(V_{CE} \). The amplitude of \(v_O \) is larger than that of \(v_s \) by the voltage gain \(A_v \).

We recall from our study of the saturation region of operation in the previous section that the saturated BJT exhibits a very small resistance \(R_{CEsat} \) between its collector and emitter. Thus, when saturated, the transistor in Fig. 5.26 provides a low-resistance path between the collector node \(C \) and ground and hence can be thought of as a closed switch.

On the other hand, when the BJT is cut off, it conducts negligibly small (ideally zero)
current and thus acts as an open switch, effectively disconnecting node C from ground. The status of the switch (i.e., open or closed) is determined by the value of the control voltage v_{BC}. Very shortly, we will show that the BJT switch can also be controlled by the base current.

5.3.2 Amplifier Gain

To operate the BJT as a linear amplifier, it must be biased at a point in the active region. Figure 5.26(b) shows such a bias point, labeled Q (for quiescent point), and characterized by a dc base-emitter voltage V_{BE} and a dc collector-emitter voltage V_{CE}. If the collector current at this value of V_{CE} is denoted I_C, that is,

$$I_C = I_{FE} e^{v_{IR}/\beta}$$ \hspace{1cm} (5.53)

then from the circuit in Fig. 5.26(a) we can write

$$V_{CE} = V_{CC} - R_C I_C$$ \hspace{1cm} (5.54)

Now, if the signal to be amplified, v_h, is superimposed on V_{CE} and kept sufficiently small, as indicated in Fig. 5.26(b), the instantaneous operating point will be constrained to a relatively short, almost-linear segment of the transfer curve around the bias point Q. The slope of this linear segment will be equal to the slope of the tangent to the transfer curve at Q. This slope is the voltage gain of the amplifier for small-input signals around Q. An expression for the small-signal gain A_{V} can be found by differentiating the expression in Eq. (5.51) and evaluating the derivative at point Q; that is, for $v_{0} = V_{AC}$,

$$A_V = \frac{dV_h}{dv} \bigg|_{v_h=V_{AC}}$$ \hspace{1cm} (5.55)

Thus,

$$A_V = \frac{1}{V_{out}^2} \frac{dV_{out}}{dv} R_C$$ \hspace{1cm} (5.56)

where V_{out} is the dc voltage drop across R_C,

$$V_{out} = V_{CC} - V_{CE}$$ \hspace{1cm} (5.57)

Observe that the CE amplifier is inverting; that is, the output signal is 180° out of phase relative to the input signal. The simple expression in Eq. (5.56) indicates that the voltage gain of the common-emitter amplifier is the ratio of the dc voltage drop across R_C to the thermal voltage V_T (at room temperature). It follows that to maximize the voltage gain we should use as large a voltage drop across R_C as possible. For a given value of V_{CE}, Eq. (5.57) indicates that to increase V_{out} we have to operate at a lower V_{CE}. However, reference to Fig. 5.26(b) shows that a lower V_{CE} means a bias point Q close to the end of the active-region segment, which might not leave sufficient room for the negative-output signal swing without the amplifier entering the saturation region. If this happens, the negative peaks of the waveform of v_h will be flattened. Indeed, it is the need to allow sufficient room for output signal swing that determines the most effective placement of the bias point Q on the active-region segment, YZ, of the transfer curve. Placing Q too high on this segment not only results in reduced gain (because V_{out} is lower) but could possibly limit the available range of positive signal swing. At the positive end, the limitation is imposed by the BJT cutting off, in which event the positive-output peaks would be clipped off at a level equal to V_{CC}. Finally, it is useful to note that the theoretical maximum gain A_{V} is obtained by biasing the BJT at the edge of saturation, which of course would not leave any room for negative signal swing. The resulting gain is given by

$$A_V = \frac{V_{CC} - V_{CE}}{V_T}$$ \hspace{1cm} (5.58)

Thus,

$$A_{V_{max}} = \frac{V_{CC}}{V_T}$$ \hspace{1cm} (5.59)

Although the gain can be increased by using a larger supply voltage, other considerations come into play when determining an appropriate value for V_{CC}. In fact, the trend has been toward using lower and lower supply voltages, currently approaching 1 V or so. As each low supply voltage, large gain values can be obtained by replacing the resistor R_C with a constant-current source, as will be seen in Chapter 6.

Examples 5.2

Consider a common-emitter circuit using a BJT having $I_s = 10^{-14}$ A, a collector resistance $R_C = 6.8 \ \text{k} \Omega$, and a power supply $V_{CC} = 10 \ \text{V}$.

(a) Determine the value of the bias voltage V_{BE} required to operate the transistor at $V_{CE} = 3.2 \ \text{V}$. What is the corresponding value of I_C?

(b) Find the voltage gain A_V at this bias point. If an input sine-wave signal of 5-mV peak amplitude is superimposed on V_{BE}, find the amplitude of the output sine-wave signal (assume linear operation).

(c) Find the positive increment in V_{BE} (above V_{AB}) that drives the transistor to the edge of saturation, where $v_{out} = 0.3 \ \text{V}$.

(d) Find the negative increment in V_{BE} that drives the transistor to within 1% of cutoff (i.e., to $v_{out} = 0.99V_{CC}$).

Solution

\(I_C = \frac{V_{CC} - V_{CE}}{R_C} = \frac{10 - 3.2}{6.8} = 1 \ mA\)
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

The value of \(V_{RF} \) can be determined from

\[V_{RF} = 690.8 \text{ mV} \]

which results in

(b) \[A_v = \frac{V_{CE} - V_{CC}}{V_i} = \frac{-10 - 3.2}{0.005} = -272 \text{ V/V} \]

\[V_o = 272 \times 0.005 = 1.36 \text{ V} \]

(c) For \(V_{CE} = 0.3 \text{ V} \),

\[I_C = \frac{10 - 0.3}{6.8} = 1.617 \text{ mA} \]

To increase \(I_c \) from 1 mA to 1.617 mA, \(V_{BE} \) must be increased by

\[\Delta V_{BE} = V_T \ln \left(\frac{1.617}{1} \right) = 12 \text{ mV} \]

(d) For \(V_0 = 0.99V_{CC} = 9.9 \text{ V} \),

\[I_C = \frac{10 - 9.9}{6.8} = 0.0147 \text{ mA} \]

To decrease \(I_c \) from 1 mA to 0.0147 mA, \(V_{BE} \) must change by

\[\Delta V_{BE} = V_T \ln \left(\frac{0.0147}{1} \right) = -105.5 \text{ mV} \]

EXERCISE

5.19 For the situation described in Exercise 5.2, while keeping \(I_C \) unchanged at 1 mA, find the value of \(R_C \) that will result in a voltage gain of -320 V/V. What is the largest negative signal swing allowed at the output (assume that \(V_{BE} \) is not to decrease below 0.3 V)? What (approximately) is the corresponding input signal amplitude? (Assume linear operation.)

Ans. 8 k\(\Omega \); 1.7 V; 5.3 mV

5.3 Graphical Analysis

Although formal graphical methods are of little practical value in the analysis and design of most transistor circuits, it is illustrative to portray graphically the operation of a simple transistor amplifier circuit. Consider the circuit of Fig. 5.27, which is similar to the circuit we have been studying except for an added resistance in the base lead, \(R_B \). A graphical analysis of the operation of this circuit can be performed as follows: First, we have to determine the dc bias point. Toward that end we set \(V_o = 0 \) and use the technique illustrated in Fig. 5.28 to determine the dc base current \(I_B \). We next move to the \(i_c - V_{CE} \) characteristics, shown in Fig. 5.29. We know that the operating point will lie on the \(i_c - V_{CE} \) curve corresponding to the value of base current we have determined (the curve for \(I_B = I_B \)). Where it lies on the curve will be determined by the collector circuit. Specifically, the collector circuit imposes the constraint

\[V_{CE} = V_{CC} - I_C R_C \]

which can be rewritten as

\[I_C = \frac{V_{CC} - V_{CE}}{R_C} \]

which represents a linear relationship between \(V_{CE} \) and \(I_C \). This relationship can be represented by a straight line, as shown in Fig. 5.29. Since \(R_C \) can be considered the amplifier load,
FIGURE 5.29 Graphical construction for determining the dc collector current I_c and the collector-to-emitter voltage V_{CE} in the circuit of Fig. 5.27. The straight line of slope $-1/R_c$ is known as the load line. The dc bias point, or quiescent point, Q will be at the intersection of the load line and the i_c-V_{CE} curve corresponding to the base current I_B. The coordinates of point Q give the dc collector current I_c and the dc collector-to-emitter voltage V_{CE}. Observe that for amplifier operation, Q should be in the active region and furthermore should be located so as to allow for a reasonable signal swing as the input signal v_t is applied. This will become clearer shortly.

The situation when v_t is applied is illustrated in Fig. 5.30. Consider first Fig. 5.30(a), which shows a signal v_t having a triangular waveform being superimposed on the dc voltage V_{BB}. Corresponding to each instantaneous value of $V_{BB}+v_t(t)$, one can draw a straight line with slope $-1/R_b$. Such an “instantaneous load line” intersects the i_t-v_{BE} curve at a point whose coordinates give the total instantaneous values of i_t and v_{BE} corresponding to the particular value of $V_{BB}+v_t(t)$. As an example, Fig. 5.30(a) shows the straight lines corresponding to $v_t=0$, v_t at its positive peak, and v_t at its negative peak. Now, if the amplitude of v_t is sufficiently small so that the instantaneous operating point is confined to an almost-linear segment of the i_t-v_{BE} curve, then the resulting signals i_b and v_{be} will be triangular in waveform, as indicated in the figure. This, of course, is the small-signal approximation. In summary, the graphical construction in Fig. 5.30(a) can be used to determine the total instantaneous value of i_t corresponding to each value of v_t.

Next, we move to the i_c-v_{CE} characteristics of Fig. 5.30(b). The operating point will move along the load line of slope $-1/R_c$ as i_t goes through the instantaneous values determined from Fig. 5.30(a). For example, when i_t is at its positive peak, $i_t = i_{tp}$ from Fig. 5.30(a), and the instantaneous operating point in the i_t-v_{CE} plane will be at the intersection of the load line and the curve corresponding to $i_t = i_{tp}$. In this way, one can determine the waveforms of i_t and v_{CE} and hence the signal components i_c and v_{ce} as indicated in Fig. 5.30(b).

Effects of Bias-Point Location on Allowable Signal Swing The location of the dc bias point in the i_t-v_{BE} plane significantly affects the maximum allowable signal swing at the collector. Refer to Fig. 5.30(b) and observe that the positive peaks of v_{ce} cannot go beyond

The term load line is also employed for the straight line in Fig. 5.28.
5.20 Consider the circuit of Fig. 5.27 with $R_C = 100 \text{k}\Omega$, $B = H - R = 5 \text{k}\Omega$. Let the $V_{CE} = 1.7 \text{V}$, $V_C = 10 \text{V}$, and the Early effect, find i_c and of i_v.

(a) What is the voltage gain of this amplifier? Assume operation on a straight line segment of the exponential characteristic. (b) Assuming the input v is a triangular wave of 0.4 V peak-to-peak. Refer to Fig. 5.30, and compute its value. (c) Find approximate values for the peak-to-peak amplitude of i_v and of i_C. (d) Assuming the $i_C - i_v$ curve to be horizontal (i.e., ignoring the Early effect), find i_C and V_{CE}. (e) Find the peak-to-peak amplitude of i_v and of i_v.

\[
\begin{align*}
\text{Ans. (a)} & : 10 \mu\text{A}; (b) 2.5 \mu\text{A}; (c) 4 \mu\text{A}; 10 \text{mV}; (d) 1 \text{mA}; 5 \text{V}; (e) 0.4 \text{mA}; 2 \text{V}; (f) -5 \text{V/V}
\end{align*}
\]

5.3.4 Operation as a Switch

To operate the BJT as a switch, we utilize the cutoff and the saturation modes of operation. To illustrate, consider once more the common-emitter circuit shown in Fig. 5.32 as the input v_t is varied. For v_t less than about 0.5 V, the transistor will be cut off; thus $i_c = 0$, $i_C = 0$, and $v_C = V_{CC}$. In this state, node C is disconnected from ground; the switch is in the open position.

To turn the transistor on, we have to increase v_t above 0.5 V. In fact, for appreciable currents to flow, v_{BC} should be about 0.7 V and v_C should be higher. The base current will be

\[
i_b = \frac{v_t - V_{BB}}{R_b}
\]

and the collector current will be

\[
i_C = \beta i_b
\]

which applies only when the device is in the active mode. This will be the case as long as the CBJ is not forward biased, that is, as long as $v_{BC} > v_t - 0.4 \text{ V}$, where v_{BC} is given by

\[
v_{BC} = V_{CC} - R_C i_c
\]

Obviously, as v_t is increased, i_b will increase (Eq. 5.60), i_C will correspondingly increase (Eq. 5.61), and v_C will decrease (Eq. 5.62). Eventually, v_C will become lower than v_t by 0.4 V, at which point the transistor leaves the active region and enters the saturation region. This edge-of-saturation (EOS) point is defined by

\[
i_{EOS} = \frac{V_{CC} - 0.3}{R_C}
\]

where we have assumed that V_{BE} is approximately 0.7 V, and

\[
i_{EOS} = \frac{i_{BC}}{\beta}
\]

The corresponding value of i_t required to drive the transistor to the edge-of-saturation can be found from

\[
V_{EOS} = i_{EOS} R_C + V_{BE}
\]
Increasing v above $V_{_{_C}}$ increases the base current, which drives the transistor deeper into saturation. The collector-to-emitter voltage, however, decreases only slightly. As a reasonable approximation, we shall usually assume that for a saturated transistor, $V_{_{_C}} = 0.2$ V.

The collector current then remains nearly constant at $I_{_{_{C_{sat}}}} = \frac{V_{_{_{C}}}}{R_{_{E}}}$ (5.66)

Forcing more current into the base has very little effect on $I_{_{_{C_{sat}}}}$ and $V_{_{_{C_{sat}}}}$. In this state the switch is closed, with a low closure resistance $R_{_{C_{sat}}}$ and a small offset voltage $V_{_{CE_{os}}}$ (see Fig. 5.24c).

Finally, recall that in saturation one can force the transistor to operate at any desired β below the normal value; that is, the ratio of the collector current $I_{_{_{C_{sat}}}}$ to the base current can be set at will and is therefore called the forced β,

$$\beta_{_{_{forced}}} = \frac{I_{_{_{C_{sat}}}}}{I_{_{_{B}}}}$$ (5.67)

Also recall that the ratio of $I_{_{_{B}}}$ to $I_{_{_{B(E_{_{_B}})}}}$ is known as the overdrive factor.

Example 5.3

The transistor in Fig. 5.33 is specified to have β in the range of 50 to 150. Find the value of $R_{_{B}}$ that results in saturation with an overdrive factor of at least 10.

The circuit for Example 5.3 is shown in Fig. 5.33. Calculate the base current, the collector current, and the collector voltage. If the transistor is saturated, find $\beta_{_{_{forced}}}$. What value should $R_{_{B}}$ be raised to in order to bring the transistor to the edge of saturation?

Solution

When the transistor is saturated, the collector voltage will be

$$V_{_{C}} = V_{_{CE_{sat}}} = 0.2$$ V

Thus the collector current is given by

$$I_{_{_{C_{sat}}}} = \frac{V_{_{C}}}{R_{_{E}}} = 9.8$$ mA

To saturate the transistor with the lowest β, we need to provide a base current of at least

$$I_{_{_{B(B_{_{_{E}}})}}} = \frac{I_{_{_{C_{sat}}}}}{\beta_{_{_{min}}}} = \frac{9.8}{50} = 0.196$$ mA

For an overdrive factor of 10, the base current should be

$$I_{_{_{B}}} = 10 \times 0.196 = 1.96$$ mA

Thus we require a value of $R_{_{B}}$ such that

$$\frac{+5 - 0.7}{R_{_{B}}} = 1.96$$

$$R_{_{B}} = \frac{4.3}{1.96} = 2.2$$ kΩ

Exercise 5.21 Consider the circuit in Fig. 5.32 for the case $V_{_{CC}} = +5$ V, $V_{_{BE}} = +5$ V, $R_{_{B}} = R_{_{E}} = 1$ kΩ, and $\beta = 100$.

Calculate the base current, the collector current, and the collector voltage. If the transistor is saturated, find $\beta_{_{_{forced}}}$. What value should $R_{_{B}}$ be raised to in order to bring the transistor to the edge of saturation?

Ans. 4.3 mA; 4.8 mA; 0.2 V; 11.91 kΩ

5.4 BJT CIRCUITS AT DC

We are now ready to consider the analysis of BJT circuits to which only dc voltages are applied. In the following examples we will use the simple model in which, $V_{_{BE}}$ of a conducting transistor is 0.7 V and $V_{_{CE}}$ of a saturated transistor is 0.2 V, and we will neglect the Early effect. Better models can, of course, be used to obtain more accurate results. This, however, is usually achieved at the expense of speed of analysis, and more importantly, it could impede the circuit designer's ability to gain insight regarding circuit behavior. Accurate results using elaborate models can be obtained using circuit simulation with SPICE, as we shall see in Section 5.11. This is almost always done in the final stages of a design and certainly before circuit fabrication. Computer simulation, however, is not a substitute for quick pencil-and-paper circuit analysis, an essential ability that aspiring circuit designers must master. The following series of examples is a step in that direction.

As will be seen, in analyzing a circuit the first question that one must answer is: In which mode is the transistor operating? In some cases, the answer will be obvious. In many cases, however, it will not. Needless to say, as the reader gains practice and experience in transistor circuit analysis and design, the answer will be obvious in a much larger proportion of problems. The answer, however, can always be determined by utilizing the following procedure:

Assume that the transistor is operating in the active mode, and proceed to determine the various voltages and currents that correspond. Then check for consistency of the results with the assumption of active-mode operation: that is, is $V_{_{CE}}$ of an npn transistor greater than -0.4 V (or $V_{_{CE}}$ of a pnp transistor lower than 0.4 V)? If the answer is yes, then our task is complete. If the answer is no, assume saturation-mode operation, and proceed to determine currents and voltages and then to check for consistency of the results with the assumption of saturation-mode operation. Here the test is usually to compute the ratio $I_{_{C}}/I_{_{B}}$ and to verify that it is...
lower than the transistor β, i.e., $\beta_{max} < \beta$. Since β for a given transistor varies over a wide range, one should use the lowest specified β for this test. Finally, note that the order of these two assumptions can be reversed.

Consider the circuit shown in Fig. 5.34(a), which is redrawn in Fig. 5.34(b) to remind the reader of the convention employed throughout this book for indicating connections to dc sources. We wish to analyze this circuit to determine all node voltages and branch currents. We will assume that β_{spec} specified to be 100.

Solution

Glancing at the circuit in Fig. 5.34(a), we note that the base is connected to +4 V and the emitter is connected to ground through a resistance R_E. It is therefore safe to conclude that the base-emitter junction will be forward biased. Assuming that this is the case and assuming that V_{BE} is approximately 0.7 V, it follows that the emitter voltage will be

$$V_E = 4 - V_{BE} = 4 - 0.7 = 3.3 \text{ V}$$

We are now in an opportune position; we know the voltages at the two ends of R_E and thus can determine the current I_E through it,

$$I_E = \frac{V_E}{R_E} = \frac{3.3}{3.3} = 1 \text{ mA}$$

Since the collector is connected through R_C to the +10-V power supply, it appears possible that the collector voltage will be higher than the base voltage, which is essential for active-mode operation. Assuming that this is the case, we can evaluate the collector current from

$$I_C = \alpha I_E$$

The value of α is obtained from

$$\alpha = \frac{\beta_{min}}{\beta_{max}} = \frac{100}{101} = 0.99$$

Thus I_C will be given by

$$I_C = 0.99 \times 1 = 0.99 \text{ mA}$$

We are now in a position to use Ohm's law to determine the collector voltage V_C.

$$V_C = 10 - I_C R_C = 10 - 0.99 \times 4.7 = +5.3 \text{ V}$$

Since the base is at +4 V, the collector-base junction is reverse biased by 1.3 V, and the transistor is indeed in the active mode as assumed.

It remains only to determine the base current I_B, as follows:

$$I_B = \frac{I_C - 0.99}{\beta_{max}} = \frac{1}{101} = 0.01 \text{ mA}$$

Before leaving this example we wish to emphasize strongly the value of carrying out the analysis directly on the circuit diagram. Only in this way will one be able to analyze complex circuits in a reasonable length of time. Figure 5.34(c) illustrates the above analysis on the circuit diagram, with the order of the analysis steps indicated by the circled numbers.

Example 5.5

We wish to analyze the circuit of Fig. 5.35(a) to determine the voltages at all nodes and the currents through all branches. Note that this circuit is identical to that of Fig. 5.34 except that the voltage at the base is now +6 V. Assume that the transistor β is specified to be at least 50.
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

5.4 BJT CIRCUITS AT DC

Since the collector voltage calculated appears to be less than the base voltage by 3.52 V, it follows that our original assumption of active-mode operation is incorrect. In fact, the transistor has to be in the saturation mode. Assuming this to be the case, we have

\[V_E = +6 - 0.7 = +5.3 \text{ V} \]

\[I_E = \frac{V_E}{R_E} = \frac{5.3}{3.3} = 1.6 \text{ mA} \]

\[V_C = V_E + V_Ctext = +5.3 + 0.2 = +5.5 \text{ V} \]

\[I_C = \frac{10 - 5.5}{4.7} = 0.96 \text{ mA} \]

\[I_B = I_E - I_C = 1.6 - 0.96 = 0.64 \text{ mA} \]

Thus the transistor is operating at a forced \(\beta \) of

\[\beta_{forced} = \frac{I_C}{I_B} = \frac{0.96}{0.64} = 1.5 \]

Since \(\beta_{forced} \) is less than the minimum specified value of \(\beta \), the transistor is indeed saturated. We should emphasize here that in testing for saturation the minimum value of \(\beta \) should be used. By the same token, if we are designing a circuit in which a transistor is to be saturated, the design should be based on the minimum specified \(\beta \). Obviously, if a transistor with this minimum \(\beta \) is saturated, then transistors with higher values of \(\beta \) will also be saturated. The details of the analysis are shown in Fig. 5.35(c), where the order of the steps used is indicated by the circled numbers.

EXAMPLE 5.6

We wish to analyze the circuit in Fig. 5.36(a) to determine the voltages at all nodes and the currents through all branches. Note that this circuit is identical to that considered in Examples 5.4 and 5.5 except that now the base voltage is zero.

\[+10 \text{ V} \]

\[-10 \text{ V} \]

\[4.7 \text{ k} \Omega \]

\[3.3 \text{ k} \Omega \]

\[4.7 \text{ k} \Omega \]

\[3.3 \text{ k} \Omega \]

\[+10 \text{ V} \]

\[-10 \text{ V} \]

\[R_C = 4.7 \text{ k} \Omega \]

\[R_E = 3.3 \text{ k} \Omega \]

\[+10 \text{ V} \]

\[Cutoff \]

\[0 \text{ mA} \]

\[0 \text{ mA} \]

FIGURE 5.35 Analysis of the circuit for Example 5.5. Note that the circled numbers indicate the order of the analysis steps.

Solution

Assuming active-mode operation, we have

\[V_E = +6 - 0.7 = 5.3 \text{ V} \]

\[I_E = \frac{5.3}{3.3} = 1.6 \text{ mA} \]

\[V_C = +10 - 4.7 \times 1.6 = 7.52 = 2.48 \text{ V} \]

The details of the analysis performed above are illustrated in Fig. 5.35(b).
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

Solution

Since the base is at zero volts and the emitter is connected to ground through \(R_E \), the emitter-base junction cannot conduct and the emitter current is zero. Also, the collector-base junction cannot conduct since the n-type collector is connected through \(R_C \) to the positive power supply while the p-type base is at ground. It follows that the collector current will be zero. The base current will also have to be zero, and the transistor is in the cutoff mode of operation.

The emitter voltage will obviously be zero, while the collector voltage will be equal to +10 V, since the voltage drop across \(R_C \) is zero. Figure 5.36(b) shows the analysis details.

D5.22 For the circuit in Fig. 5.34(a), find the highest voltage to which the base can be raised while the transistor remains in the active mode. Assume \(\beta = 100 \).

Ans. +4.7 V

D5.23 Redesign the circuit of Fig. 5.34(a) (i.e., find new values for \(R_E \) and \(R_C \)) to establish a collector current of 0.5 mA and a reverse bias on the collector-base junction of 2 V. Assume \(\alpha = 1 \).

Ans. \(R_E = 6.0 \, \text{k} \Omega; \, R_C = 8 \, \text{k} \Omega \)

D5.24 For the circuit in Fig. 5.35(a), find the value to which the base voltage should be changed so that the transistor operates in saturation with a forced \(B \) of 5.

Ans. +5.18 V

We desire to analyze the circuit of Fig. 5.37(a) to determine the voltages at all nodes and the currents through all branches.

\[
\begin{align*}
\text{Solution} \\
\text{The base of this pnp transistor is grounded, while the emitter is connected to a positive supply (} V^+ = +10 \text{ V}) \text{ through } R_E. \text{ It follows that the emitter-base junction will be forward biased with } V_E = V_{BE} = 0.7 \text{ V}.
\end{align*}
\]

Thus the emitter current will be given by

\[
I_E = \frac{V^+ - V_E}{R_E} = \frac{10 - 0.7}{2} = 4.65 \text{ mA}
\]

Since the collector is connected to a negative supply (more negative than the base voltage) through \(R_C \), it is possible that this transistor is operating in the active mode. Assuming this to be the case, we obtain

\[
I_C = \alpha I_E
\]

Thus the collector voltage will be

\[
V_C = V^+ - I_C R_C = -10 + 4.6 \times 1 = -5.4 \text{ V}
\]

Thus the collector-base junction is reverse biased by 5.4 V, and the transistor is indeed in the active mode, which supports our original assumption.

It remains only to calculate the base current,

\[
I_B = \frac{-I_C}{\beta + 1} = \frac{-4.65}{100} = 0.05 \text{ mA}
\]

Obviously, the value of \(\beta \) critically affects the base current. Note, however, that in this circuit the value of \(\beta \) will have no effect on the mode of operation of the transistor. Since \(\beta \) is generally an ill-specified parameter, this circuit represents a good design. As a rule, one should strive to design the circuit such that its performance is as insensitive to the value of \(\beta \) as possible. The analysis details are illustrated in Fig. 5.37(b).

EXERCISES

D5.25 For the circuit in Fig. 5.37(a), find the largest value to which \(R_C \) can be raised while the transistor remains in the active mode.

Ans. 2.26 k\Omega

D5.26 Redesign the circuit of Fig. 5.37(a) (i.e., find new values for \(R_E \) and \(R_C \)) to establish a collector current of 1 mA and a reverse bias on the collector-base junction of 4 V. Assume \(\alpha = 1 \).

Ans. \(R_E = 9.3 \, \text{k} \Omega; \, R_C = 6 \, \text{k} \Omega \)

FIGURE 5.37 Example 5.7: (a) circuit; (b) analysis with the steps indicated by circled numbers.
Example 5.8

We want to analyze the circuit in Fig. 5.38(a) to determine the voltages at all nodes and the currents in all branches. Assume \(p = 100 \).

Solution

The base-emitter junction is clearly forward biased. Thus,

\[
\beta = \frac{V_{BE}}{V_{BE}} = 0.043 \text{ mA}
\]

Assume the transistor is operating in the active mode. We now can write

\[
I_C = \beta I_B = 100 \times 0.043 = 4.3 \text{ mA}
\]

The collector voltage can now be determined as

\[
V_C = V_B + 0.7 = +1.4 \text{ V}
\]

Since the base voltage \(V_B \) is

\[
V_B = V_{BE} + 0.7 = +0.7 \text{ V}
\]

it follows that the collector-base junction is reverse-biased by 0.7 V and the transistor is indeed in the active mode. The emitter current will be given by

\[
I_E = (\beta + 1)I_B = 101 \times 0.043 = 4.3 \text{ mA}
\]

We note from this example that the collector and emitter currents depend critically on the value of \(\beta \). In fact, if \(\beta \) were 10% higher, the transistor would leave the active mode and enter saturation. Therefore this clearly is a bad design. The analysis details are illustrated in Fig. 5.38(b).

Example 5.9

We want to analyze the circuit of Fig. 5.39 to determine the voltages at all nodes and the currents through all branches. The minimum value of \(p \) is specified to be 30.

Solution

A quick glance at this circuit reveals that the transistor will be either active or saturated. Assuming active-mode operation and neglecting the base current, we see that the base voltage will be approximately zero volts, the emitter voltage will be approximately +0.7 V, and the emitter current will be approximately 4.3 mA. Since the maximum current that the collector can support while the transistor remains in the active mode is approximately 0.5 mA, it follows that the transistor is definitely saturated.

Assuming that the transistor is saturated and denoting the voltage at the base by \(V_B \), we see that the base to emitter voltage will be approximately +0.7 V, and the emitter current will be approximately 4.3 mA. Since the maximum current that the collector can support while the transistor remains in the active mode is approximately 0.5 mA, it follows that the transistor is definitely saturated.

Exercise

B.2. The circuit of Fig. 5.38(a) is to be fabricated using a transistor type whose \(p \) is specified to be in the range of 50 to 150. That is, individual units of this same transistor type can have \(p \) values anywhere in this range. Redesign the circuit by selecting a new value for \(R_C \) so that all fabricated circuits are guaranteed to be in the active mode. What is the range of collector voltages that the fabricated circuits may exhibit?

\(p = 100 \), \(V_C = 0.3 \text{ V} \) to \(+6.8 \text{ V} \)

Solution

We want to analyze the circuit of Fig. 5.39 to determine the voltages at all nodes and the currents through all branches. The minimum value of \(p \) is specified to be 30.
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

\[I_E = \frac{5 - V_f}{5} = \frac{5 - 0.7}{5} = 4.3 \text{ mA} \]

\[I_B = \frac{V_f}{10} = 0.1V_f \text{ mA} \]

\[I_C = \frac{V_f - (-5)}{10} = \frac{0.5 + 2.5}{10} = 0.1V_f + 0.55 \text{ mA} \]

Using the relationship \(I_C = I_E + I_B \), we obtain

\[4.3 - V_f = 0.1V_f + 0.1V_f + 0.55 \]

which results in

\[V_f = \frac{3.75}{1.2} = 3.13 \text{ V} \]

Substituting in the equations above, we obtain

\[V_c = 3.83 \text{ V} \]

\[V_c = 3.63 \text{ V} \]

\[I_E = 1.17 \text{ mA} \]

\[I_C = 0.86 \text{ mA} \]

\[I_B = 0.31 \text{ mA} \]

It is clear that the transistor is saturated, since the value of forced \(\beta \) is

\[\beta_{\text{forced}} = \frac{0.86}{0.31} = 2.8 \]

which is much smaller than the specified minimum \(\beta \).

EXAMPLE 5.10

We want to analyze the circuit of Fig. 5.40(a) to determine the voltages at all nodes and the currents through all branches. Assume \(\beta = 100 \).

Solution

The first step in the analysis consists of simplifying the base circuit using Thévenin's theorem. The result is shown in Fig. 5.40(b), where

\[V_{BB} = +15 \text{ V} \]

\[R_{BB} = 100 \text{ k}\Omega \]

\[R_{E1} = 3 \text{ k}\Omega \]

\[R_{E2} = 3 \text{ k}\Omega \]

\[R_{B1} = 50 \text{ k}\Omega \]

To evaluate the base or the emitter current, we have to write a loop equation around the loop marked L in Fig. 5.40(b). Note, though, that the current through \(R_{BB} \) is different from the current through \(R_B \). The loop equation will be:

\[V_{BB} = I_B R_{BB} + V_{SE} + I_E R_E \]

\[V_{SE} = I_E R_{SE} + V_{EC} \]

Substituting for \(I_B \) by

\[I_B = \frac{I_E}{\beta + 1} \]

and rearranging the equation gives

\[I_E = \frac{V_{SE} - V_{EC}}{R_E - \left[R_{BB}/(\beta + 1)\right]} \]

For the numerical values given we have

\[I_E = \frac{5 - 0.7}{3 \times (33.3/101)} = 1.29 \text{ mA} \]

The base current will be

\[I_B = \frac{1.29}{101} = 0.0128 \text{ mA} \]
The base voltage is given by

\[V_B = V_{BE} + I_E R_E = 0.7 + 1.29 \times 3 = 4.57 \text{ V} \]

Assume active-mode operation. We can evaluate the collector current as

\[I_C = a I_E = 0.99 \times 1.29 = 1.28 \text{ mA} \]

The collector voltage can now be evaluated as

\[V_C = +15 - I_C R_C = 15 - 1.28 \times 5 = 8.6 \text{ V} \]

It follows that the collector is higher in potential than the base by 4.03 V, which means that the transistor is in the active mode, as had been assumed. The results of the analysis are given in Figs. 5.40(c and d).

EXERCISE

5.28 If the transistor in the circuit of Fig. 5.40(a) is replaced with another having half the value of base resistance (i.e., \(\beta = 50 \)), find the new value of \(I_C \), and express the change in \(I_C \) as a percentage.

Ans. \(I_C = 1.15 \text{ mA}; -10\% \)

EXAMPLE 5.11

We wish to analyze the circuit in Fig. 5.41(a) to determine the voltages at all nodes and the currents through all branches.

Solution

We first recognize that part of this circuit is identical to the circuit we analyzed in Example 5.10—namely, the circuit of Fig. 5.40(a). The difference, of course, is that in the new circuit we have an additional transistor \(Q_2 \) together with its associated resistors \(R_{22} \) and \(R_{27} \). Assume that \(Q_2 \) is still in the active mode. The following values will be identical to those obtained in the previous example:

\[V_{BE} = +4.57 \text{ V} \quad I_E = 1.29 \text{ mA} \]
\[I_B = 0.0128 \text{ mA} \quad I_C = 1.28 \text{ mA} \]

However, the collector voltage will be different than previously calculated since part of the collector current \(I_{C2} \) will flow in the base lead of \(Q_2 \) (\(I_E \)). As a first approximation we may assume that \(I_{EB} \) is much smaller than \(I_C \); that is, we may assume that the current through \(R_{27} \) is almost equal to \(I_C \). This will enable us to calculate \(V_{C2} \),

\[V_{C2} = +15 - I_C R_{27} \]
\[= 15 - 1.28 \times 5 = 8.6 \text{ V} \]

Thus \(Q_2 \) is in the active mode, as had been assumed.

FIGURE 5.41 Circuits for Example 5.11.

As far as \(Q_2 \) is concerned, we note that its emitter is connected to +15 V through \(R_{27} \). It is therefore safe to assume that the emitter-base junction of \(Q_1 \) will be forward biased. Thus the emitter of \(Q_2 \) will be at a voltage \(V_{E2} \) given by

\[V_{E2} = V_{C2} + V_{EB} \]
\[= 8.6 + 0.7 = +9.3 \text{ V} \]

The emitter current of \(Q_2 \) may now be calculated as

\[I_{E2} = \frac{+15 - V_{E2}}{R_{27}} = \frac{15 - 9.3}{2} = 2.85 \text{ mA} \]
CHAPTER 5
BIPOLAR JUNCTION TRANSISTORS (BJTs)

Since the collector of Q_2 is returned to ground via R_C, it is possible that Q_2 is operating in the active mode. Assume this to be the case. We now find I_{C_2} as

$$I_{C_2} = \alpha_j I_{E_2}$$

$$= 0.99 \times 2.85 = 2.82 \text{ mA} \quad \text{(assuming } \beta_j = 100)$$

The collector voltage of Q_2 will be

$$V_{C_2} = I_{C_2} R_C = 2.82 \times 2.7 = 7.62 \text{ V}$$

which is lower than V_B by 0.98 V. Thus Q_2 is in the active mode, as assumed.

It is important at this stage to find the magnitude of the error incurred in our calculations by the assumption that I_{B_2} is negligible. The value of I_{B_2} is given by

$$I_{B_2} = \frac{I_{E_2}}{\beta_j + 1} = \frac{2.85}{101} = 0.028 \text{ mA}$$

which is indeed much smaller than I_a (1.28 mA). If desired, we can obtain more accurate results by iterating one more time, assuming I_{B_2} to be 0.028 mA. The new values will be

Current in $R_C$$ = I_{C_1} - I_{B_2} = 1.28 - 0.028 = 1.252 \text{ mA}$

$V_{C_1} = 15 - 5 \times 1.252 = 8.74 \text{ V}$

$V_{E_2} = 8.74 + 0.7 = 9.44 \text{ V}$

$V_{C_2} = 2.78 \times 2.7 = 7.43 \text{ V}$

$V_{E_2} = 2.78 \text{ V}$

$V_{C_2} = 0.0275 \text{ mA}$

Note that the new value of I_{B_2} is very close to the value used in our iteration, and no further iterations are warranted. The final results are indicated in Fig. 5.41(b).

The reader justifiably might be wondering about the necessity for using an iterative scheme in solving a linear (or linearized) problem. Indeed, we can obtain the exact solution (if we can call anything we are doing with a first-order model exact!) by writing appropriate equations. The reader is encouraged to find this solution and then compare the results with those obtained above. It is important to emphasize, however, that in most such problems it is quite sufficient to obtain an approximate solution, provided that we can obtain it quickly and, of course, correctly.

In the above examples, we frequently used a precise value of a to calculate the collector current. Since $a = 1$, the error in such calculations will be very small if one assumes $a = 1$ and $I_c = I_a$. Therefore, except in calculations that depend critically on the value of a (e.g., the calculation of base current), one usually assumes $a = 1$.

Exercises

5.23 For the circuit of Fig. 5.41, find the total current drawn from the power supply. Hence find the power dissipated in the circuit.

Ans. 4.35 mA; 42 mW.

5.30 The circuits in Fig. 5.30 is to be connected to the circuit in Fig. 5.41(a) as indicated; specifically, the base of Q_2 is to be connected to the collector of Q_2. If Q_2 has $\beta = 100$, find the new value of V_{C_2} and the values of V_{C_2} and I_{C_2}.

Solution

We desire to evaluate the voltages at all nodes and the currents through all branches in the circuit of Fig. 5.42(a). Assume $\beta = 100$.

Solution

By examining the circuit we conclude that the two transistors Q_1 and Q_2 cannot be simultaneously conducting. Thus if Q_1 is on, Q_2 will be off, and vice versa. Assume that Q_1 is on.
EXERCISE

5.31 Solve the problem in Example 5.12 with the voltage feeding the bases changed to +10 V. Assume that $V_{BB} = +4.8$ V; $V_{CE} = +5.5$ V; $I_C = 0.35$ mA. Find V_{BE}, I_B, I_E, R_E, and R_C.

The question now is whether Q_1 is active or saturated. The answer in this case is obvious. Since the base is fed with a +5-V supply and since base current flows into the base of Q_2, it follows that the base of Q_2 will be at a voltage lower than +5 V. Thus the collector-base junction of Q_2 is reverse biased and Q_2 is in the active mode. It remains only to determine the currents and voltages using techniques already described in detail. The results are given in Fig. 5.42(b).

5.5 BIASING IN BJT AMPLIFIER CIRCUITS

The biasing problem is that of establishing a constant dc current in the collector of the BJT. This current has to be calculable, predictable, and insensitive to variations in temperature and to the large variations in the value of β encountered among transistors of the same type. Another important consideration in bias design is locating the dc bias point in the I_C-V_C plane to allow for maximum output signal swing (see the discussion in Section 5.3.3). In this section, we shall deal with various approaches to solving the bias problem in transistor circuits designed with discrete devices. Bias methods for integrated-circuit design are presented in Chapter 6.

Before presenting the "good" biasing schemes, we should point out why two obvious arrangements are not good. First, attempting to bias the BJT by fixing the voltage V_{BB} by, for instance, using a voltage divider across the power supply V_{CC} as shown in Fig. 5.43(a), is not a viable approach. The very sharp exponential relationship $i_C = i_B$ means that any small and inevitable differences in V_{BB} from the desired value will result in large differences in I_C and in V_{CE}. Second, biasing the BJT by establishing a constant current in the base, as shown in Fig. 5.43(b), where $I_B = (V_{BB} - 0.7)/R_B$, is also not a recommended approach. Here the typically large variations in the value of β among units of the same device type will result in correspondingly large variations in I_C and hence in V_{CE}.

5.5.1 The Classical Discrete-Circuit Bias Arrangement

Figure 5.44(a) shows the arrangement most commonly used for biasing a discrete-circuit transistor amplifier if only a single power supply is available. The technique consists of supplying the base of the transistor with a fraction of the supply voltage V_{CC} through the voltage divider R_1, R_2. In addition, a resistor R_E is connected to the emitter.

FIGURE 5.45 Two obvious schemes for biasing the BJT: (a) by fixing V_{BB}; (b) by fixing I_B. Both result in wide variations in I_C and hence in V_{CE} and therefore are considered to be "bad." Neither scheme is recommended.

FIGURE 5.44 Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider supplying the base replaced with its Thevenin equivalent.

The current I_E can be determined by writing a Kirchhoff loop equation for the base-emitter-ground loop, labeled L, and substituting $I_R = I_E/(\beta + 1)$:

$$I_E = \frac{V_{EB} - V_{BE}}{R_E + R_E/(\beta + 1)}$$ (5.70)
To make I_B insensitive to temperature and β variation, we design the circuit to satisfy the following two constraints:

$$V_{BE} \gg V_T$$ \hspace{1cm} (5.71)

$$R_B \gg \frac{R_A}{\beta + 1}$$ \hspace{1cm} (5.72)

Condition (5.71) ensures that small variations in V_{BE} (=0.7 V) will be swamped by the much larger V_{BE}. There is a limit, however, on how large V_{BE} can be: For a given value of the supply voltage V_{CC}, the higher the value we use for V_{BE}, the lower will be the sum of voltages across R_C and the collector-base junction (V_Cc). On the other hand, we want the voltage across R_C to be large in order to obtain high voltage gain and large signal swing (before transistor cutoff). We also want V_{CE} (or V_{CE}) to be large to provide a large signal swing (before transistor saturation). Thus, in the case of any design, we have a set of conflicting requirements, and the solution must be a compromise. As a rule of thumb, one designs for V_{BE} about $\frac{1}{3}V_{CC}$ (or V_{CE} about $\frac{1}{3}V_{CC}$, and I_B about $\frac{1}{3}V_{CE}$.

Condition (5.72) makes I_E insensitive to variations in β and could be satisfied by selecting R_A small. This is achieved by using low values for R_1 and R_2. Lower values for R_1 and R_2, however, will mean a higher current drain from the power supply, and will result in a lowering of the input resistance of the amplifier (if the input signal is coupled to the base), which is the trade-off involved in this part of the design. It should be noted that Condition (5.72) means that we want to make the base voltage independent of the value of β and determined solely by the voltage divider. This will obviously be satisfied if the current in the divider is made much larger than the base current. Typically one selects R_1 and R_2 such that their current is in the range of $I_E = 0.1 I_B$.

Further insight regarding the mechanism by which the bias arrangement of Fig. 5.44(a) stabilizes the dc emitter (and hence collector) current is obtained by considering the feedback action provided by R_C. Consider that for some reason the emitter current increases. The back action provided by R_C will result in an equally stable I_E, a change opposite to that originally assumed. Thus R_C provides a negative feedback action that stabilizes the bias current. We shall study negative feedback formally in Chapter 8.

Example 5.13

We wish to design the bias network of the amplifier in Fig. 5.44 to establish a current $I_E = 1$ mA using a power supply $V_{CC} = +12$ V. The transistor is specified to have a nominal β value of 100.

Solution

We shall follow the rule of thumb mentioned above and allocate one-third of the supply voltage to the voltage drop across R_C and another one-third to the voltage drop across R_E, leaving one-third for possible signal swing at the collector. Thus,

$$V_P = +6$$

and V_P is determined from

$$V_P = 4 - V_{BE} = 3.3$$

Neglecting the base current, we find

$$R_1 + R_2 = 12 \frac{1}{10} = 120 \text{ k}\Omega$$

and

$$\frac{R_2}{R_1 + R_2} V_{CE} = 4$$

Thus $R_1 = 40 \text{ k}\Omega$ and $R_2 = 80 \text{ k}\Omega$.

At this point, it is desirable to find a more accurate estimate for I_E, taking into account the nonzero base current. Using Eq. (5.70),

$$I_E = \frac{4 - 0.7}{3.3(0.1)} = 0.93 \text{ mA}$$

This is quite a bit lower than the value we are aiming for of 1 mA. It is easy to see from the above equation that a simple way to restore I_E to its nominal value would be to reduce R_1 (now 3.3 $\text{k}\Omega$) by the magnitude of the second term in the denominator (0.267 $\text{k}\Omega$). Thus a more suitable value for R_1 in this case would be $R_1 = 3 \text{ k}\Omega$, which results in $I_E = 1.01 \text{ mA} = 1$ mA.

It should be noted that if we are willing to draw a higher current from the power supply and to accept a lower input resistance for the amplifier, then we may use a voltage-divider current equal, say, to I_E (i.e., 1 mA), resulting in $R_1 = 8 \text{ k}\Omega$ and $R_2 = 4 \text{ k}\Omega$. We shall refer to the circuit using these latter values as design 2, for which the actual value of I_E using the initial value of R_1 of 3.3 $\text{k}\Omega$ will be

$$I_E = \frac{4 - 0.7}{5.3 + 0.027} = 0.99 \approx 1 \text{ mA}$$

In this case, design 2, we need not change the value of R_C.

Finally, the value of R_C can be determined from

$$R_C = \frac{12 - V_E}{I_E}$$

Substituting $I_E = \alpha I_E = 0.99 \times 1 = 0.99 \text{ mA} = 1 \text{ mA}$ results, for both designs, in

$$R_C = \frac{12 - 4}{1} = 4 \text{ k}\Omega$$

8 Bias design seeks to stabilize either I_E or I_C, since $I_E = \alpha I_C$, and α varies very little. That is, a stable I_E will result in an equally stable I_C, and vice versa.
5.32 For design 1 in Example 5.3, calculate the expected range of I_E if the transistor used has β in the range of 50 to 150. Express the range of I_E as a percentage of the nominal value ($I_E = 1\, \text{mA}$) obtained for $\beta = 100$. Repeat for design 2.

Ans. For design 1: $0.94\, \text{mA}$ to $1.04\, \text{mA}$, a 10% range; for design 2: $0.984\, \text{mA}$ to $0.995\, \text{mA}$, a 1.1% range.

5.5.2 A Two-Power-Supply Version of the Classical Bias Arrangement

A somewhat simpler bias arrangement is possible if two power supplies are available, as shown in Fig. 5.45. Writing a loop equation for the loop labeled L gives

$$I_L = \frac{V_{EE} - V_{RE}}{R_E + R_B/(\beta + 1)} \quad (5.73)$$

This equation is identical to Eq. (5.70) except for V_{EE} replacing V_{BB}. Thus the two constraints of Eqs. (5.71) and (5.72) apply here as well. Note that if the transistor is to be used with the base grounded (i.e., in the common-base configuration), then R_B can be eliminated altogether. On the other hand, if the input signal is to be coupled to the base, then R_B is needed. We shall study the various BJT amplifier configurations in Section 5.7.

![Biasing the BJT using two power supplies. Resistor R_B is needed only if the signal is to be capacitively coupled to the base. Otherwise, the base can be connected directly to ground, or to a grounded signal source, resulting in almost total β-independence of the bias current.](image)

5.5.3 Biasing Using a Collector-to-Base Feedback Resistor

Figure 5.46(a) shows a simple but effective alternative biasing arrangement suitable for common-emitter amplifiers. The circuit employs a resistor R_B connected between the collector and the base. Resistor R_B provides negative feedback, which helps to stabilize the bias point of the BJT. We shall study feedback formally in Chapter 8.

Analysis of the circuit is shown in Fig. 5.46(b), from which we can write

$$V_{CC} = I_L R_C = I_L R_B + V_{BE}$$

Thus the emitter bias current is given by

$$I_E = \frac{V_{CC} - V_{BE}}{R_C + R_B/(\beta + 1)} \quad (5.74)$$

It is interesting to note that this equation is identical to Eq. (5.70), which governs the operation of the traditional bias circuit, except that V_{CC} replaces V_{BB} and R_C replaces R_E. It follow that to obtain a value of I_E that is insensitive to variation of β, we select $R_B/(\beta + 1) < R_C$.

EXERCISE D5.34 Design the circuit of Fig. 5.46 to obtain a dc emitter current of 1 mA and to ensure a ±2-V signal swing at the collector, that is, design for $V_{CC} = 2\, \text{V}$, $V_{BE} = 0.7\, \text{V}$, and $\beta = 100$.

Ans. $R_B = 160\, \text{k} \Omega$ and $R_C = 10\, \text{k} \Omega$. Note that if standard 5% resistor values are used (Appendix G), we select $R_B = 160\, \text{k} \Omega$ and $R_C = 10\, \text{k} \Omega$. This results in $I_E = 1.02\, \text{mA}$ and $V_{CE} = 2.3\, \text{V}$.

![Biasing the BJT using collector-to-base feedback resistor.](image)
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

5.5.4 Biasing Using a Constant-Current Source

The BJT can be biased using a constant-current source as indicated in the circuit of Fig. 5.47(a). This circuit has the advantage that the emitter current is independent of the values of \(\beta \) and \(R_B \). Thus \(R_B \) can be made large, enabling an increase in the input resistance at the base without adversely affecting bias stability. Further, current-source biasing leads to significant design simplification, as will become obvious in later sections and chapters.

A simple implementation of the constant-current source \(I \) is shown in Fig. 4.47(b). The circuit utilizes a pair of matched transistors \(Q_1 \) and \(Q_2 \), with \(Q_1 \) connected as a diode by shorting its collector to its base. If we assume that \(Q_1 \) and \(Q_2 \) have high \(\beta \) values, we can neglect their base currents. Thus the current through \(Q_1 \) will be approximately equal to

\[
I_{Q1} = \frac{V_R}{R} \tag{5.76}
\]

Now, since \(Q_1 \) and \(Q_2 \) have the same \(V_{BE} \), their collector currents will be equal, resulting in

\[
I = I_{Q2} = \frac{V_{CE} + V_{BE} - V_{BE}}{R} \tag{5.77}
\]

Neglecting the Early effect in \(Q_2 \), the collector current will remain constant at the value given by this equation as long as \(Q_2 \) remains in the active region. This can be guaranteed by keeping the voltage at the collector \(V_C \) greater than that at the base \((-V_{BE} + V_{RE})\). The connection of \(Q_1 \) and \(Q_2 \) in Fig. 4.47(b) is known as a current mirror. We will study current mirrors in detail in Chapter 6.

5.6 SMALL-SIGNAL OPERATION AND MODELS

Having learned how to bias the BJT to operate as an amplifier, we now take a closer look at the small-signal operation of the transistor. Toward that end, consider the conceptual circuit shown in Fig. 5.48(a). Here the base-emitter junction is forward biased by a dc voltage \(V_{BE} \) (battery). The reverse bias of the collector-base junction is established by connecting the collector to another power supply of voltage \(V_{CC} \) through a resistor \(R_C \). The input signal to be amplified is represented by the voltage source \(v_{be} \) that is superimposed on \(V_{BE} \).

We consider first the dc bias conditions by setting the signal \(v_{be} \) to zero. The circuit reduces to that in Fig. 5.48(b), and we can write the following relationships for the dc currents and voltages:

\[
I_C = I_{Q1} \tag{5.78}
\]
\[
I_B = I_{Q2} \tag{5.79}
\]
\[
I = I_{Q2} = \frac{V_{CC} + V_{BE} - V_R}{R} \tag{5.80}
\]

Finally, the collector current will remain constant at the value given by this equation as long as \(Q_2 \) remains in the active region. This can be guaranteed by keeping the voltage at the collector \(V_C \) greater than that at the base \((-V_{BE} + V_{RE})\).

5.6.1 The Collector Current and the Transconductance

If a signal \(v_{be} \) is applied as shown in Fig. 5.48(a), the total instantaneous base-emitter voltage \(v_{BE} \) becomes

\[
v_{BE} = V_{BE} + v_{be} \tag{5.81}
\]

Correspondingly, the collector current becomes

\[
I_C = I_{Q2} e^{v_{be}/V_T} = I_{Q2} e^{v_{be}/v_{BE}} \tag{5.82}
\]

\[
= I_{Q2} e^{v_{be}/V_T} e^{v_{be}/v_{BE}} \tag{5.83}
\]

EXERCISE

5.38 For the circuit in Fig. 5.47(a) with \(V_{BE} = 10 \), \(I = 1 \) \(mA \), \(\beta = 100 \), \(R_B = 100 \) \(k\Omega \), and \(R_C = 7.5 \) \(k\Omega \), find the dc voltage at the base, the emitter, and the collector. For \(V_{BE} = 10 \) \(V \), find the required value of \(R \) in order for the biased circuit in Fig. 5.47(b) to implement the current source \(I \).

5.39 For the circuit in Fig. 5.47(a) with \(V_{BE} = 10 \) \(V \), \(I = 1 \) \(mA \), \(\beta = 100 \), \(R_B = 100 \) \(k\Omega \), and \(R_C = 7.5 \) \(k\Omega \), find the required value of \(R \) in order for the biased circuit in Fig. 5.47(b) to implement the current source \(I \).
Use of Eq. (5.78) yields

\[\frac{I_c}{I_{b}} = e^{\frac{V_{b}}{V_T}} \]

(5.82)

Now, if \(V_b \ll V_T \), we may approximate Eq. (5.82) as

\[I_c \approx I_c \left(1 + \frac{V_b}{V_T}\right) \]

(5.83)

Here we have expanded the exponential in Eq. (5.82) in a series and retained only the first two terms. This approximation, which is valid only for \(V_b \ll \) less than approximately 10 mV, is referred to as the small-signal approximation. Under this approximation the total collector current is given by Eq. (5.83) and can be rewritten

\[I_c = I_c + \frac{I_c}{V_T} V_b \]

(5.84)

Thus the collector current is composed of the dc bias value \(I_c \) and a signal component \(i_{c} \),

\[i_c = \frac{I_c}{V_T} V_b \]

(5.85)

This equation relates the signal current in the collector to the corresponding base-emitter signal voltage. It can be rewritten as

\[i_c = \gamma V_b \]

(5.86)

where \(\gamma \) is called the transconductance, and from Eq. (5.85), it is given by

\[\gamma = \frac{I_c}{V_T} \]

(5.87)

We observe that the transconductance of the BJT is directly proportional to the collector bias current \(I_c \). Thus to obtain a constant predictable value for \(\gamma \), we need a constant predictable \(I_c \).

Finally, we note that BJTs have relatively high transconductance (as compared to MOSFETs, which we studied in Chapter 4); for instance, at \(I_c = 1 \text{ mA} \), \(\gamma = 40 \text{ mA/V} \).

A graphical interpretation for \(\gamma \) is given in Fig. 5.49, where it is shown that \(\gamma \) is equal to the slope of the \(i_c-V_{BE} \) characteristic curve at \(i_c = I_c \) (i.e., at the bias point \(Q \)). Thus,

\[\gamma = \frac{\Delta i_c}{\Delta V_{BE}} \]

(5.88)

The small-signal approximation implies keeping the signal amplitude sufficiently small so that operation is restricted to an almost-linear segment of the \(i_c-V_{BE} \) exponential curve. Increasing the signal amplitude will result in the collector current having components nonlinearly related to \(V_b \). This, of course, is the same approximation that we discussed in the context of the amplifier transfer curve in Section 5.3.

The analysis above suggests that for small signals (\(V_b \ll V_T \)), the transistor behaves as a voltage-controlled current source. The input port of this controlled source is between base and emitter, and the output port is between collector and emitter. The transconductance of the controlled source is \(\gamma \), and the output resistance is infinite. The latter ideal property is a result of our first-order model of transistor operation in which the collector voltage has no effect on the collector current in the active mode. As we have seen in Section 5.2, practical
Substituting for \(I_C/V_T \) by \(g_m \) gives

\[
hr = \frac{h}{g_m} = \frac{8 - \beta V_{BE}}{g_m} \quad (5.91)
\]

The small-signal input resistance between base and emitter, looking into the base, is denoted by \(r_b \) and is defined as

\[
r_b = \frac{v_{be}}{i_b} \quad (5.92)
\]

Using Eq. (5.91) gives

\[
r_b = \frac{h}{g_m} \quad (5.93)
\]

Thus \(r_b \) is directly dependent on \(\beta \) and is inversely proportional to the bias current \(I_c \).

Substituting for \(g_m \) in Eq. (5.93) from Eq. (5.87) and replacing \(I_c/\beta \) by \(I_B \) gives an alternative expression for \(r_b \),

\[
r_b = \frac{V_T}{I_B} \quad (5.94)
\]

5.6.3 The Emitter Current and the Input Resistance at the Emitter

The total emitter current \(I_E \) can be determined from

\[
I_E = I_C - I_e \quad (5.95)
\]

Thus,

\[
i_e = I_C - i_e \quad (5.96)
\]

where \(I_e \) is equal to \(I_C/\alpha \) and the signal current \(i_e \) is given by

\[
i_e = \frac{I_c}{\alpha} = \frac{I_{CE} - V_{BE}}{V_{BE}} \quad (5.97)
\]

If we denote the small-signal resistance between base and emitter, looking into the emitter, by \(r_e \), it can be defined as

\[
r_e = \frac{V_T}{I_e} \quad (5.98)
\]

Using Eq. (5.96) we find that \(r_e \), called the emitter resistance, is given by

\[
r_e = \frac{V_T}{I_e} \quad (5.99)
\]

Comparison with Eq. (5.87) reveals that

\[
r_e = \frac{\alpha}{g_m} = \frac{1}{\beta} \quad (5.99)
\]

The relationship between \(r_b \) and \(r_e \) can be found by combining their respective definitions in Eqs. (5.92) and (5.97) as

\[
v_{be} = i_b r_b = \alpha i_e \]

which yields

\[
r_e = (\beta + 1) r_b \quad (5.100)
\]

5.6.4 Voltage Gain

In the preceding section we have established only that the transistor senses the base-emitter signal \(v_{be} \) and causes a proportional current \(g_m v_{be} \) to flow in the collector lead at a high (ideally infinite) impedance level. In this way the transistor is acting as a voltage-controlled current source. To obtain an output voltage signal, we may force this current to flow through a resistor, as is done in Fig. 5.48(a). Then the total collector voltage \(v_c \) will be

\[
v_C = V_{CC} - I_C R_C = V_{CC} - (I_C + i_e) R_C \quad (5.101)
\]

Here the quantity \(V_C \) is the dc bias voltage at the collector, and the signal voltage is given by

\[
v_e = -I_C R_C = -g_m v_{be} R_C \quad (5.102)
\]

Thus the voltage gain of this amplifier \(A_v \) is

\[
A_v = \frac{V_c}{v_e} = -g_m R_C \quad (5.103)
\]

Here again we note that because \(g_m \) is directly proportional to the collector bias current, the gain will be as stable as the collector bias current is made. Substituting for \(g_m \) from Eq. (5.87) enables us to express the gain in the form

\[
A_v = \frac{I_C R_C}{V_T} \quad (5.104)
\]

which is identical to the expression we derived in Section 5.3 (Eq. 5.56).
5.6.5 Separating the Signal and the DC Quantities

The analysis above indicates that every current and voltage in the amplifier circuit of Fig. 5.48(a) is composed of two components: a dc component and a signal component. For instance, $v_{BE} = V_{BE} + v_{be}$, $I_C = I_c + i_c$, and so on. The dc components are determined from the dc circuit given in Fig. 5.48(b) and from the relationships imposed by the transistor (Eqs. 5.78 through 5.81). On the other hand, a representation of the signal operation of the BJT can be obtained by eliminating the dc sources, as shown in Fig. 5.50. Observe that since the voltage of an ideal dc supply does not change, the signal voltage across it will be zero. For this reason we have replaced V_{CC} and V_{BE} with short circuits. Had the circuit contained ideal dc current sources, these would have been replaced by open circuits. Note, however, that the circuit of Fig. 5.50 is useful only in so far as it shows the various signal currents and voltages; it is not an actual amplifier circuit since the dc bias circuit is not shown.

Figure 5.50 also shows the expressions for the current increments (i_c, i_b, and i_e) obtained when a small signal v_{be} is applied. These relationships can be represented by a circuit. Such a circuit should have three terminals—C, B, and E—and should yield the same terminal currents indicated in Fig. 5.50. The resulting circuit is then equivalent to the transistor as far as small-signal operation is concerned, and thus it can be considered an equivalent small-signal circuit model.

5.6.6 The Hybrid-π Model

An equivalent circuit model for the BJT is shown in Fig. 5.51(a). This model represents the BJT as a voltage-controlled current source and explicitly includes the input resistance looking into the base, r_e. The model obviously yields $i_e = g_{m}v_{be}$ and $i_b = v_{be}/r_e$. Not so obvious, however, is the fact that the model also yields the correct expression for i_c. This can be shown as follows:

At the emitter node we have

$$i_c = \frac{\Delta i_c}{\Delta v_{be}} g_{m} v_{be} = \frac{2}{r_e} g_{m} (1 + \beta) = \frac{v_{be}}{r_e} \left(1 + \frac{1}{\beta} \right)$$

A slightly different equivalent circuit model can be obtained by expressing the current of the controlled source ($g_{m}v_{be}$) in terms of the base current i_b as follows:

$$i_c = \frac{2}{r_e} g_{m} v_{be} = \frac{2}{r_e} \left(1 + \beta \right)$$

This results in the alternative equivalent circuit model shown in Fig. 5.51(b). Here the transistor is represented as a current-controlled current source, with the control current being i_b.

The two models of Fig. 5.51 are simplified versions of what is known as the hybrid-π model. This is the most widely used model for the BJT.

It is important to note that the small-signal equivalent circuits of Fig. 5.51 model the operation of the BJT at a given bias point. This should be obvious from the fact that the model parameters g_{m} and r_e depend on the value of the dc bias current I_c, as indicated in Fig. 5.51. Finally, although the models have been developed for an npn transistor, they apply equally well to a pnp transistor with no change of polarities.

5.6.7 The T Model

Although the hybrid-π model (in one of its two variants shown in Fig. 5.51) can be used to carry out small-signal analysis of all transistor circuits, there are situations in which an alternative model, shown in Fig. 5.52, is much more convenient. This model, called the T model, is shown...
in two versions in Fig. 5.52. The model of Fig. 5.52(a) represents the BJT as a voltage-controlled current source with the control voltage being v_{be}. Here, however, the resistance between base and emitter, looking into the emitter, is explicitly shown. From Fig. 5.52(a) we see clearly that the model yields the correct expressions for i_c and i_e. For i_b we note that at the base node we have

$$i_b = \frac{v_{be}}{r_e} = g_m v_{be}$$

$$= \frac{v_{be}}{r_e} \frac{1 - \beta}{1 - \beta}$$

$$= \frac{v_{be}}{(\beta + 1) r_e}$$

as should be the case.

If in the model of Fig. 5.52(a) the current of the controlled source is expressed in terms of the emitter current as follows:

$$g_m^r (I_e) = \left(g_m r_e \right) i_e = \left(g_m r_e \right) I_e$$

we obtain the alternative T model shown in Fig. 5.52(b). Here the BJT is represented as a current-controlled current source but with the control signal being i_e.

5.6.8 Application of the Small-Signal Equivalent Circuits

The availability of the small-signal BJT circuit models makes the analysis of transistor amplifier circuits a systematic process. The process consists of the following steps:

1. Determine the dc operating point of the BJT and in particular the dc collector current I_c.
2. Calculate the values of the small-signal model parameters: $g_m = I_c/V_T$, $r_e = \beta g_m$, and $r_e' = V_T/I_e = \alpha g_m$.
3. Eliminate the dc sources by replacing each dc voltage source with a short circuit and each dc current source with an open circuit.
4. Replace the BJT with one of its small-signal equivalent circuit models. Although any one of the models can be used, one might be more convenient than the others for the particular circuit being analyzed. This point will be made clearer later in this chapter.
5. Analyze the resulting circuit to determine the required quantities (e.g., voltage gain, input resistance). The process will be illustrated by the following examples.

Example 5.14

We wish to analyze the transistor amplifier shown in Fig. 5.53(a) to determine its voltage gain. Assume $\beta = 100$.

Solution

The first step in the analysis consists of determining the quiescent operating point. For this purpose we assume that $i_f = 0$. The dc base current will be

$$i_b = \frac{V_{be}}{r_p} = \frac{-0.7}{100} = -0.007 mA$$

V_{be} is taken as $-0.7 V$.

The dc collector current will be

$$I_c = \beta i_b = 100 \times 0.007 = 2.3 mA$$

The dc voltage at the collector will be

$$V_c = V_{CC} - I_c R_c$$

$$= +10 - 2.3 \times 3 = +3.1 V$$

Since $V_B = -0.7 V$ is less than V_c, it follows that in the quiescent condition the transistor will be operating in the active mode. The dc analysis is illustrated in Fig. 5.53(b).

Having determined the operating point, we may now proceed to determine the small-signal model parameters:

$$\begin{align*}
 r_e &= \frac{V_T}{I_e} = \frac{25 \text{ mV}}{2.3 \text{ mA}} = 10.8 \Omega \\
 g_m &= \frac{I_e}{V_T} = \frac{2.3 \text{ mA}}{25 \text{ mV}} = 92 \text{ mA/V} \\
 r_e' &= \frac{\alpha g_m}{g_m} = \frac{100}{92} = 1.09 \Omega
\end{align*}$$

To carry out the small-signal analysis it is equally convenient to employ either of the two hybrid-π equivalent circuit models of Fig. 5.51. Using the first results in the amplifier equivalent...
circuit given in Fig. 5.53(c). Note that no dc quantities are included in this equivalent circuit. It is most important to note that the dc supply voltage \(V_{cc} \) has been replaced by a short circuit in the signal equivalent circuit because the circuit terminal connected to \(V_{cc} \) will always have a constant voltage; that is, the signal voltage at this terminal will be zero. In other words, a circuit terminal connected to a constant dc source can always be considered as a signal ground.

Analysis of the equivalent circuit in Fig. 5.53(c) proceeds as follows:

\[
\nu_r = \frac{r_e + R_E}{R_E} \nu_t = 1.09 \text{ mV}
\]

The output voltage \(\nu_o \) is given by

\[
\nu_o = -v_t R_C = -0.92 \times 0.011 \times 3 = -3.04 \text{ mV}
\]

Thus the voltage gain will be

\[
A_v = \frac{\nu_o}{\nu_t} = -3.04 \text{ V/V}
\]

where the minus sign indicates a phase reversal.

EXAMPLE 5.15

To gain more insight into the operation of transistor amplifiers, we wish to consider the waveforms at various points in the circuit analyzed in the previous example. For this purpose assume that \(\nu_t \) has a triangular waveform. First determine the maximum amplitude that is allowed to have. Then, with the amplitude of \(\nu_t \) set to this value, give the waveforms of \(i_B(t) \), \(\nu_{BE}(t) \), \(i_c(t) \), and \(\nu_c(t) \).

Solution

One constraint on signal amplitude is the small-signal approximation, which stipulates that \(\nu_{be} \) should not exceed about 10 mV. If we take the triangular waveform \(\nu_{be} \) to be 20 mV peak-to-peak and work backward, Eq. (5.105) can be used to determine the maximum possible peak of \(\nu_t \).

\[
\nu_t = \frac{\nu_{be}}{0.011} = 0.91 \text{ V}
\]

To check whether or not the transistor remains in the active mode with \(\nu_t \) having a peak value \(0.91 \text{ V} \), we have to evaluate the collector voltage. The voltage at the collector will consist of a triangular wave \(\nu_c \) superimposed on the dc value \(V_c = 3.1 \text{ V} \). The peak voltage of the triangular waveform will be

\[
\nu_c = \nu_t \times \text{gain} = 0.91 \times 3.04 = 2.77 \text{ V}
\]

It follows that when the output swings negative, the collector voltage reaches a minimum of

\[
3.1 - 2.77 = 0.33 \text{ V}
\]

which is lower than the base voltage by less than 0.4 V. Thus the transistor will remain in the active mode with \(\nu_t \) having a peak value of \(0.91 \text{ V} \). Nevertheless, we will use a somewhat lower value for \(\nu_c \) of approximately 0.8 V, as shown in Fig. 5.54(a), and complete the analysis of this problem. The signal current in the base will be triangular, with a peak value \(I_b \) of

\[
I_b = \frac{\nu_t}{0.011 + 0.8} = 0.008 \text{ mA}
\]

Figure 5.54 Signal waveforms in the circuit of Fig. 5.53.
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

This triangular-wave current will be superimposed on the quiescent base current \(I_b \), as shown in Fig. 5.54(b). The base-emitter voltage will consist of a triangular-wave component superimposed on the dc \(V_{BE} \) that is approximately 0.7 V. The peak value of the triangular waveform will be

\[
V_{be} = V_t - V_{BE} = 0.8 - 0.7 = 0.1 \text{ V}
\]

The total \(V_{BE} \) is sketched in Fig. 5.54(c).

The signal current in the collector will be triangular in waveform, with a peak value \(I_c \) given by

\[
I_c = B h = 100 \times 0.008 = 0.8 \text{ mA}
\]

This current will be superimposed on the quiescent collector current \(I_c \) (=2.3 mA), as shown in Fig. 5.54(d).

Finally, the signal voltage at the collector can be obtained by multiplying \(v_t \) by the voltage gain; that is,

\[
V_c = 3.04 \times 0.8 = 2.43 \text{ V}
\]

Figure 5.54(e) shows a sketch of the total collector voltage \(v_c \) versus time. Note the phase reversal between the input signal \(v_t \) and the output signal \(v_c \).

We need to analyze the circuit of Fig. 5.55(a) to determine the voltage gain and the signal waveforms at various points. The capacitor \(C \) is a coupling capacitor whose purpose is to couple the signal \(v_t \) to the emitter while blocking dc. In this way the dc bias established by \(V^+ \) and \(V^- \) together with \(R_1 \) and \(R_2 \) will not be disturbed when the signal \(v_t \) is connected. For the purpose of this example, \(C \) will be assumed to be very large and ideally infinite—that is, acting as a perfect short circuit at signal frequencies of interest. Similarly, another very large capacitor is used to couple the output signal \(v_o \) to other parts of the system.

\[
V^+ = +10 \text{ V}
\]

\[
R_2 = 10 \text{ k}\Omega
\]

\[
C = \infty
\]

\[
R_1 = 10 \text{ k}\Omega
\]

\[
V^- = -10 \text{ V}
\]

\[
V = +10 \text{ V}
\]

\[
R_1 = 10 \text{ k}\Omega
\]

\[
R_2 = 5 \text{ k}\Omega
\]

\[
0.93 \text{ mA}
\]

\[
+0.7 \text{ V}
\]

\[
0.92 \text{ mA}
\]

\[
0.92 \text{ mA}
\]

\[
-5.4 \text{ V}
\]

\[
+10 \text{ V}
\]

\[
+0.7 \text{ V}
\]

\[
0.93 \text{ mA}
\]

\[
0.92 \text{ mA}
\]

\[
-10 \text{ V}
\]

\[
-5.4 \text{ V}
\]

\[
-10 \text{ V}
\]
CHAPTER 5
BIPOLAR JUNCTION TRANSISTORS (BJTs)

"c
(V
i
)>- t

Negative peaks clipped owing to cutoff

FIGURE 5.56 Distortion in output signal due to transistor cutoff. Note that it is assumed that no distortion due to the transistor nonlinear characteristics is occurring.

Analysis of the circuit in Fig. 5.55(c) to determine the output voltage \(v_a \) and hence the voltage gain \(A_v \) is straightforward and is given in the figure. The result is

\[A_v = \frac{-\frac{v_i}{v_t}}{v_t} = 183.3 \text{ V/V} \]

Note that the voltage gain is positive, indicating that the output is in phase with the input signal. This property is due to the fact that the input signal is applied to the emitter rather than to the base, as was done in Example 5.14. We should emphasize that the positive gain has nothing to do with the fact that the transistor used in this example is of the pnp type.

Returning to the question of allowable signal magnitude, we observe from Fig. 5.55(c) that \(v_{eb} = \frac{v_t}{2} \). Thus, if small-signal operation is desired (for linearity), then the peak of \(v_t \) should be limited to approximately 10 mV. With \(V_i \) set to this value, as shown for a sine-wave input in Fig. 5.57,

\[v_i (\text{mV}) \]

\[10 \text{ mV} \]

\[0 \text{ mV} \]

\[v_c (\text{V}) \]

\[-2 \text{ V} \]

\[1.8 \text{ V} \]

\[v_c = -5.4 \text{ V} \]

\[v_e \]

\[-10 \text{ V} \]

\[-6 \text{ V} \]

\[-8 \text{ V} \]

\[-10 \text{ V} \]

FIGURE 5.57 Input and output waveforms for the circuit of Fig. 5.55. Observe that this amplifier is noninverting, a property of the common-base configuration.

5.6 SMALL-SIGNAL OPERATION AND MODELS

5.6.9 Performing Small-Signal Analysis Directly on the Circuit Diagram

In most cases one should explicitly replace each BJT with its small-signal model and analyze the resulting circuit, as we have done in the examples above. This systematic procedure is particularly recommended for beginning students. Experienced circuit designers, however, often perform a first-order analysis directly on the circuit. Figure 5.55(d) illustrates this process for the circuit we have just analyzed. The reader is urged to follow this direct analysis procedure (the steps are numbered). Observe that the equivalent circuit model is implicitly utilized; we are only saving the step of drawing the circuit with the BJT replaced with its model. Direct analysis, however, has an additional very important benefit: It provides insight regarding the signal transmission through the circuit. Such insight can prove invaluable in design, particularly at the stage of selecting a circuit configuration appropriate for a given application.

5.6.10 Augmenting the Small-Signal Models to Account for the Early Effect

The Early effect, discussed in Section 5.2, causes the collector current to depend not only on \(v_{be} \) but also on \(v_{ce} \). The dependence on \(v_{ce} \) can be modeled by assigning a finite output resistance to the controlled-current source in the hybrid-\(\pi \) model, as shown in Fig. 5.58. The output resistance \(r_o \) was defined in Eq. (5.37); its value is given by

\[r_o = \frac{(V_A + V_{CE})}{I_c} = \frac{V_A}{I_c} \]

where \(V_A \) is the Early voltage and \(V_{CE} \) and \(I_c \) are the coordinates of the dc bias point. Note that in the models of Fig. 5.58 we have renamed \(v_{be} \) as \(v_i \), in order to conform with the literature.

\[\text{the peak amplitude at the collector, } V_c, \text{ will be} \]

\[V_c = 183.3 \times 0.01 = 1.833 \text{ V} \]

and the total instantaneous collector voltage \(v_c(t) \) will be as depicted in Fig. 5.57.

EXERCISE

5.5.9 To increase the voltage gain of the amplifier analyzed in Example 5.16, the collector resistance \(r_c \) is increased to 7.5 k\(\Omega \). Find the new values of \(V_c \), \(A_v \), and the peak amplitude of the output sine wave corresponding to the peak of 10 mV peak input.

5.5.10 The hybrid-\(\pi \) small-signal model, in its two versions, with the resistance \(r_o \) included.

FIGURE 5.58
The question arises as to the effect of r_e on the operation of the transistor as an amplifier. In amplifier circuits in which the emitter is grounded (as in the circuit of Fig. 5.53), r_e simply appears in parallel with R_c. Thus, if we include r_e in the equivalent circuit of Fig. 5.53(c), for example, the output voltage v_o becomes

$$v_o = -g_m v_{be} (R_c / r_e)$$

Thus the gain will be somewhat reduced. Obviously if $r_e > R_c$, the reduction in gain will be negligible, and one can ignore the effect of r_e. In general, in such a configuration r_e can be neglected if it is greater than $10k\Omega$.

When the emitter of the transistor is not grounded, including r_a in the model can complicate the analysis. We will make comments regarding r_a and its inclusion or exclusion on frequent occasions throughout the book. We should also note that in integrated-circuit BJT amplifiers, r_e plays a dominant role, as will be seen in Chapter 6. Of course, if one is performing an accurate analysis of an almost-final design using computer-aided analysis, then r_e can be easily included (see Section 5.11).

Finally, it should be noted that either of the T models in Fig. 5.52 can be augmented to account for the Early effect by including r_a between collector and emitter.

5.6.11 Summary

The analysis and design of BJT amplifier circuits is greatly facilitated if the relationships between the various small-signal model parameters are at your fingertips. For easy reference, these are summarized in Table 5.4. Over time, however, we expect the reader to be able to recall these from memory.

EXERCISE

5.40 The transistor in Fig. 5.40 is biased with a constant current source $I = 1\ mA$ and has $\beta = 100$ and $V_T = 100\ V$. (a) Find the dc voltages at the base, emitter, and collector. (b) Find g_{m}, r_x, and r_e. (c) If terminal Z is connected to ground, X to a signal source V_{sig} with a source resistance $r_{sig} = 2\ k\Omega$, and Y to an 8-kQ load resistance, use the hybrid-α model of Fig. 5.58(a), to draw the small-signal equivalent circuit of the amplifier. (Note that the current source I should be replaced with an open circuit.) Calculate the overall voltage gain v_y/v_{sig}. If r_e is neglected what is the error in estimating the gain magnitude? (Note: An infinite capacitance is used to indicate that the capacitance is sufficiently large that it acts as a short circuit at all signal frequencies of interest. However, the capacitor still blocks dc.)

FIGURE E5.40

Ans. (a) -0.1 V, -0.8 V, +2 V; (b) 40 mA/V, 2.5 kΩ, 100 kΩ; (c) -77 V/V, +3.9%
5.7 SINGLE-STAGE BJT AMPLIFIERS

We have studied the large-signal operation of BJT amplifiers in Section 5.3 and identified the region over which a properly biased transistor can be operated as a linear amplifier for small signals. Methods for dc biasing the BJT were studied in Section 5.5, and a detailed study of small-signal amplifier operation was presented in Section 5.6. We are now ready to consider practical transistor amplifiers, and we will do so in this section for circuits suitable for discrete-circuit fabrication. The design of integrated-circuit BJT amplifiers will be studied in Chapter 6.

There are basically three configurations for implementing single-stage BJT amplifiers: the common-emitter, the common-base, and the common-collector configurations. All three are studied below, utilizing the same basic structure with the same biasing arrangement.

5.7.1 The Basic Structure

Figure 5.59 shows the basic circuit that we shall utilize to implement the various configurations of BJT amplifiers. Among the various biasing schemes possible for discrete BJT amplifiers (Section 5.5), we have selected, for simplicity and effectiveness, the one employing constant-current biasing. Figure 5.59 indicates the dc currents in all branches and the dc voltages at all nodes. We should note that one would want to select a large value for R_B in order to keep the input resistance at the base large. However, we also want to limit the dc voltage drop across R_B and even more importantly the variability of this dc voltage resulting from the variation in β values among transistors of the same type. The dc voltage V_D determines the allowable signal swing at the collector.

\[
V_D = V_{CC} - \alpha R_c \frac{I_C}{\beta + 1}
\]

\[
I_C = \frac{V_D}{\beta + 1}
\]

Fig. 5.59 Basic structure of the circuit used to realize single-stage, discrete-circuit BJT amplifier configurations.

5.7.2 Characterizing BJT Amplifiers

As we begin our study of BJT amplifier circuits, it is important to know how to characterize the performance of amplifiers as circuit building blocks. An introduction to this subject was presented in Section 1.5. However, the material of Section 1.5 was limited to unilateral amplifiers. A number of the amplifier circuits we shall study in this book are not unilateral; that is, they have internal feedback that may cause their input resistance to depend on the load resistance. Similarly, internal feedback may cause the output resistance to depend on the value of the resistance of the signal source feeding the amplifier.

To accommodate nonunilateral amplifiers, we present in Table 5.5 a general set of parameters and equivalent circuits that we will employ in characterizing and comparing transistor amplifiers. A number of remarks are in order:

1. The amplifier in Table 5.5 is shown fed with a signal source having an open-circuit voltage V_{sig} and an internal resistance R_{sig}. These can be the parameters of an actual signal source or the Thévenin equivalent of the output circuit of another amplifier stage preceding the one under study in a cascade amplifier. Similarly, R_L can be an actual load resistance or the input resistance of a succeeding amplifier stage in a cascade amplifier.

EXERCISE

5.41 Consider the circuit of Fig. 5.59 for the case: $V_{CC} = V_B = 10$ V, $I_B = 1$ mA, $R_B = 100$ kΩ, $R_c = 8$ kΩ, and $\beta = 100$. Find all dc currents and voltages. What are the allowable signal swings at the collector in both directions? How do these values change as β is changed to 50 and 200? Find the values of the BJT small-signal parameters at the bias point (with $\beta = 100$). Early voltage $V_A = 100$ V.

\[
V_{CC} = 10 \text{ V}, I_B = 1 \text{ mA}, R_B = 100 \text{ kΩ}, R_c = 8 \text{ kΩ}, \beta = 100
\]

Fig. 85.41 Signal swing for $\beta = 100$, $V_B = 1$ V, $V_{CC} = 10$ V, $R_B = 100$ kΩ, $R_c = 8$ kΩ, and $R_L = 100$ kΩ.

Figures E5.41 (a) to (e) for Exercise 5.41.
Circuit Definitions

- **Input resistance with no load**:
 \[R_i = \frac{v_i}{i_i} \]
- **Input resistance**:
 \[R_i = \frac{v_i}{i_i} \]
- **Open-circuit voltage gain**:
 \[A_v = \frac{v_o}{v_i} \]
- **Voltage gain**:
 \[A_v = \frac{v_o}{v_i} \]
- **Short-circuit current gain**:
 \[A_i = \frac{I_o}{I_i} \]
- **Current gain**:
 \[A_i = \frac{I_o}{I_i} \]
- **Short-circuit transconductance**:
 \[g_m = \frac{I_o}{v_i} \]
- **Output resistance**:
 \[R_o = \frac{v_o}{I_o} \]
- **Open-circuit overall voltage gain**:
 \[G_m = \frac{v_o}{v_i} \]
- **Overall voltage gain**:
 \[G_m = \frac{v_o}{v_i} \]

Relationships

1. Parameters \(R_i, R_o, A_v, A_i, g_m \), and \(G_m \) pertain to the amplifier proper; that is, they do not depend on the values of \(R_{sig} \) and \(R_L \). By contrast, \(R_i, R_o, A_v, A_i, G_m \), and \(G_o \) may depend on one or both of \(R_{sig} \) and \(R_L \). Also, observe the relationships of related pairs of these parameters; for instance, \(R_i = R_{sig} \) and \(R_o = R_{sig} \).

2. As mentioned above, for nonunilateral amplifiers, \(R_i \) may depend on \(R_{sig} \), and \(R_o \) may depend on \(R_{sig} \). One such amplifier circuit is studied in Section 5.7.6. No such dependencies exist for unilateral amplifiers, for which \(R_i = R_o \) and \(R_o = R_i \).

3. Parameters \(R_i, R_o, A_v, A_i, g_m \), and \(G_m \) pertain to the amplifier proper; that is, they do not depend on the values of \(R_{sig} \) and \(R_L \). By contrast, \(R_i, R_o, A_v, A_i, G_m \), and \(G_o \) may depend on one or both of \(R_{sig} \) and \(R_L \). Also, observe the relationships of related pairs of these parameters; for instance, \(R_i = R_{sig} \) and \(R_o = R_{sig} \).
4. The loading of the amplifier on the signal source is determined by the input resistance \(R_{\text{in}} \). The value of \(R_{\text{in}} \) determines the current \(i \), that the amplifier draws from the signal source. It also determines the proportion of the signal \(v_{\text{sig}} \) that appears at the input of the amplifier proper, that is, \(v_t \).

5. When evaluating the gain \(A_v \) from the open-circuit value \(A_{\text{vo}} \), \(R_0 \) is the output resistance to use. This is because \(A_v \) is based on feeding the amplifier with an ideal voltage signal \(v \). This should be evident from Equivalent Circuit A in Table 5.5. On the other hand, if we are evaluating the overall voltage gain \(G_v \) from its open-circuit value \(G_{\text{vo}} \), the output resistance to use is \(R_{\text{out}} \). This is because \(G_v \) is based on feeding the amplifier with \(v_{\text{sig}} \), which has an internal resistance \(R_{\text{sig}} \). This should be evident from Equivalent Circuit C in Table 5.5.

6. We urge the reader to carefully examine and reflect on the definitions and the six relationships presented in Table 5.5. Example 5.17 should help in this regard.

Example 5.17

A transistor amplifier is fed with a signal source having an open-circuit voltage \(v_{\text{sig}} \) of 10 mV and an internal resistance \(R_{\text{sig}} \) of 100 k\(\Omega \). The voltage \(v \) at the amplifier input and the output voltage \(v_0 \) are measured both without and with a load resistance \(R_L = 10 \text{ k}\Omega \) connected to the amplifier output. The measured results are as follows:

<table>
<thead>
<tr>
<th>Without (R_L)</th>
<th>With (R_L) connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v) (mV)</td>
<td>(v_0) (mV)</td>
</tr>
<tr>
<td>9</td>
<td>85</td>
</tr>
<tr>
<td>90</td>
<td>73</td>
</tr>
</tbody>
</table>

Find all the amplifier parameters.

Solution

First, we use the data obtained for \(R_L = \infty \) to determine:

\[
A_{\text{vo}} = \frac{90}{9} = 10 \text{ V/V}
\]

and

\[
G_{\text{vo}} = \frac{90}{10} = 9 \text{ V/V}
\]

Now, since

\[
G_{\text{vo}} = \frac{R}{R + R_{\text{sig}}}
\]

\[
9 = \frac{R_0}{R_0 + 100} \times 10
\]

which gives

\[
R_0 = 900 \text{ k}\Omega
\]

Next, we use the data obtained when \(R_L = 10 \text{ k}\Omega \) is connected to the amplifier output to determine

\[
A_v = \frac{70}{8} = 8.75 \text{ V/V}
\]

and

\[
G_v = \frac{70}{10} = 7 \text{ V/V}
\]

The values of \(A_v \) and \(A_{\text{vo}} \) can be used to determine \(R_{\text{in}} \) as follows:

\[
A_v = \frac{90}{R_0} - \frac{R_0}{R_0 + R_{\text{in}}}
\]

\[
8.75 = \frac{10}{10 + R_{\text{in}}}
\]

which gives

\[
R_{\text{in}} = 10 \text{ k}\Omega
\]

Similarly, we use the values of \(G_v \) and \(G_{\text{vo}} \) to determine \(R_{\text{out}} \) from

\[
G_v = \frac{R_0}{R_0 + R_{\text{out}}}
\]

\[
7 = \frac{10}{10 + R_{\text{out}}}
\]

resulting in

\[
R_{\text{out}} = 2.86 \text{ k}\Omega
\]

The value of \(R_{\text{sig}} \) can be determined from

\[
v_{\text{sig}} = \frac{R_0}{R_0 + R_{\text{sig}}}
\]

Thus,

\[
\frac{8}{10} = \frac{R_0}{R_0 + 100}
\]

which yields

\[
R_{\text{sig}} = 400 \text{ k}\Omega
\]

The short-circuit transconductance \(G_{\text{m}} \) can be found as follows:

\[
G_{\text{m}} = \frac{10}{7} = 1.43 \text{ mA/V}
\]
and the current gain A_c can be determined as follows:

$$A_c = \frac{I_c}{I_e} = \frac{V_{BE}}{V_{BE} + V_{RE}}$$

Finally, we determine the short-circuit current gain A_v as follows. From Equivalent Circuit A, the short-circuit output current is

$$I_{OC} = A_v V_{BE}$$

However, to determine A_v, we need to know the value of R_L obtained with $R_C = 0$. Toward this end, note that from Equivalent Circuit C, the output short-circuit current can be found as

$$I_{OC} = \frac{V_{CC}}{R_{CS}}$$

Now, equating the two expressions for I_{OC} and substituting for G_v by

$$G_v = \frac{R_C}{R_C + R_L} A_v$$

and for V_i from

$$V_i = V_{BE} + \frac{R_L}{R_C + R_L} V_{BE}$$

results in

$$R_v = R_{CS} \left[1 + \frac{R_C}{R_L} - \frac{R_C}{R_L} \right] = 81.8 \Omega$$

We now can use

$$I_{OC} = A_v V_{BE}$$

and for I_{OC} to obtain

$$A_v = \frac{10 \times 81.8}{1.43} = 572 \text{ A/A}$$

EXERCISE

5.42 Refer to the amplifier of Example 5.17. (a) If R_C is doubled, find the values for R_L, C_E, and A_v. (b) Repeat for R_L doubled (but R_C unchanged), i.e., 100 kΩ. (c) Repeat for both R_C and R_L doubled. Ans. (a) 400 kΩ, 5.63 V/V, 4.03 kΩ; (b) 538 kΩ, 7.87 V/V, 2.86 kΩ; (c) 538 kΩ, 6.8 V/V, 4.03 kΩ

5.7.2 The Common-Emitter (CE) Amplifier

The CE configuration is the most widely used of all BJT amplifier circuits. Figure 5.60(a) shows a CE amplifier implemented using the circuit of Fig. 5.59. To establish a signal ground (or an ac ground, as it is sometimes called) at the emitter, a large capacitor C_E, usually in the μF or tens of μF range, is connected between emitter and ground. This capacitor is required to provide a very low impedance to ground (ideally, zero impedance; i.e., a short circuit) at all signal frequencies of interest. In this way, the emitter signal current passes through C_E to ground and thus bypasses the output resistance of the current source I_e (and any other circuit component that might be connected to the emitter); hence C_E is called a bypass capacitor. Obviously, the lower the signal frequency, the less effective the bypass capacitor becomes. This issue will be studied in Section 5.9. For our purposes here we shall assume that C_E is acting as a perfect short circuit and thus is establishing a zero signal voltage at the emitter.

FIGURE 5.60 (a) A common-emitter amplifier using the structure of Fig. 5.59. (b) Equivalent circuit obtained by replacing the transistor with its hybrid-$
\pi$ model.
In order not to disturb the dc bias currents and voltages, the signal to be amplified, shown as a voltage source v_{sig} with an internal resistance R_{in}, is connected to the base through a large capacitor C_{1}. Capacitor C_{2}, known as a coupling capacitor, is required to act as a perfect short circuit at all signal frequencies of interest while blocking dc. Here again we shall assume this to be the case and defer discussion of imperfect signal coupling, arising as a result of the rise of the impedance of C_{1} at low frequencies, to Section 5.9.

At this juncture, we should point out that in situations where the signal source can provide a dc path for the dc base current I_{B} without significantly changing the bias point, we may dispense with C_{2}, establishing R_{B} has the added beneficial effect of raising the input resistance of the amplifier.

The voltage signal resulting at the collector, v_{c}, is coupled to the load resistance R_{L} via another coupling capacitor C_{C}. We shall assume that C_{C} also acts as a perfect short circuit at all signal frequencies of interest; thus the output voltage v_{o} is given by $v_{o} = v_{c}$. Note that R_{c} can be an actual load resistor to which the amplifier is required to provide its output voltage signal, or it can be the input resistance of a subsequent amplifier stage in cases where more than one stage of amplification is needed. (We will study multistage amplifiers in Chapter 7).

To determine the terminal characteristics of the CE amplifier, that is, its input resistance, voltage gain, and output resistance, we replace the BJT with its hybrid h small-signal model. The resulting small-signal equivalent circuit of the CE amplifier is shown in Fig. 5.60(b). We observe at the output that this amplifier is unilateral and thus $R_{o} = R_{C}$ and $R_{in} = R_{S}$. Analysis of this circuit is straightforward and proceeds in a step-by-step manner, from the signal source to the amplifier load. At the amplifier input we have

At the output of the amplifier we have

$$v_{o} = -\alpha v_{c} (r_{o} \parallel R_{L} \parallel R_{B} \parallel R_{S})$$

Replacing v_{c} by v_{i} we can write for the voltage gain of the amplifier proper (that is, the voltage gain from base to collector),

$$A_{v} = -\alpha (r_{o} \parallel R_{L} \parallel R_{B} \parallel R_{S})$$

This equation simply says that the voltage gain from base to collector is found by multiplying g_{m}, by the total resistance between collector and ground. The open-circuit voltage gain A_{v} can be obtained by setting $R_{L} = \infty$ in Eq. (5.116); thus,

$$A_{v} = -\alpha (r_{o} \parallel R_{C})$$

from which we note that the effect of r_{o} is to simply reduce the gain, usually only slightly since typically $r_{o} \gg R_{C}$, resulting in

$$A_{v} = -\alpha R_{C}$$

The output resistance R_{out} can be found from the equivalent circuit of Fig. 5.60(b) by looking back into the output terminal while short-circuiting the source v_{sig}. Since this will result in $v_{o} = 0$, we see that

$$R_{out} = R_{C} \parallel r_{o}$$

Thus r_{o} reduces the output resistance of the amplifier, again usually only slightly since typically $r_{o} \gg R_{C}$ and

$$R_{out} = R_{C}$$

Recalling that for this unilateral amplifier $R_{S} = R_{in}$, we can utilize A_{v} and R_{out} to obtain the voltage gain A_{v} corresponding to any particular R_{S},

$$A_{v} = \frac{R_{L}}{R_{C}}$$

The reader can easily verify that this approach does in fact lead to the expression for A_{v} in Eq. (5.116), which we have derived directly.

The overall voltage gain from source to load, G_{v}, can be obtained by multiplying (v_{i}/v_{sig}) from Eq. (5.113) by A_{v} from Eq. (5.116),

$$G_{v} = -\alpha R_{C} \parallel r_{o} \parallel r_{o} \parallel R_{S}$$

For the case $R_{S} \gg r_{o}$, this expression simplifies to

$$G_{v} = -\beta R_{C} \parallel r_{o} \parallel r_{o} \parallel r_{o} \parallel R_{S} \parallel R_{L}$$

From this expression we note that if $R_{S} \gg r_{o}$, the overall gain will be highly dependent on β. This is not a desirable property since β varies considerably between units of the same transistor type. At the other extreme, if $R_{S} \ll r_{o}$, we see that the expression for the overall gain...
voltage gain reduces to

\[G_v = -g_m (R_c/R_L) \] (5.123)

which is the gain \(A_v \); in other words, when \(R_{sig} \) is small, the overall voltage gain is almost equal to the gain of the CE circuit proper, which is independent of \(\beta \). Typically, a CE amplifier can realize a voltage gain on the order of a few hundred, which is very significant. It follows that the CE amplifier is used to realize the bulk of the voltage gain required in a usual amplifier design. Unfortunately, however, as we shall see in Section 5.9, the high-frequency response of the CE amplifier can be rather limited.

Before leaving the CE amplifier, we wish to evaluate its short-circuit current gain, \(\beta \). This can be easily done by referring to the amplifier equivalent circuit in Fig. 5.60(b). When \(R_L \) is short circuited, the current through it will be equal to \(-g_m \frac{v_{in}}{R_{in}} \).

Since \(v_r \) is related to \(i_e \) by

\[v_r = v_t = i_L R_{in} \]

the short-circuit current gain can be found as

\[\beta = \frac{i_e}{i_i} = -g_m R_{in} \] (5.124)

Substituting \(R_{in} = R_e || r_e \), we can see that in the case \(R_e \gg r_e \), \(\beta \) reduces to \(\beta \), which is to be expected since \(\beta \) is, by definition, the short-circuit current gain of the common-emitter configuration.

In conclusion, the common-emitter configuration can provide large voltage and current gains, but \(R_{in} \) is relatively low and \(R_{out} \) is relatively high.

5.43 Consider the CE amplifier of Fig. 5.60(a) when biased as in Exercise 5.41. In particular, refer to Fig. 5.41 for the bias currents and the values of the elements of the BJT model at the bias point. Evaluate \(A_v \) (without and with \(R_e \) taken into account), \(A_{ip} \) (without and with \(r_e \) taken into account), \(R_{in} \) (without and with \(R_e \) taken into account), and \(R_{out} \) (without and with \(r_e \) taken into account). For \(R_e = 5 \) k\(\Omega \), find \(A_v \) if \(R_{in} = 5 \) k\(\Omega \). If \(R_{in} = 5 \) k\(\Omega \), find the overall voltage gain \(G_v \). If the signal waveform \(v_{in} \) is to be limited to 5 mV peak, what is the maximum allowable peak amplitude of \(v_{out} \)? If the corresponding peak amplitude of \(v_{in} \) is

\[5 \text{ mV}, 0.5 \text{ V} \]

\[2.5 \text{ k}\Omega, 2 \text{ k}\Omega \]

\[1 \text{ k}\Omega \]

Analysis of the circuit in Fig. 5.61(a) can be performed by replacing the BJT with one of its small-signal models. Although any one of the models of Figs. 5.51 and 5.52 can be used, the most convenient for this application is one of the two T models. This is because a resistance \(R_e \) in the emitter will appear in series with the emitter resistance \(r_e \) of the T model and can thus be added to it, simplifying the analysis considerably. In fact, whenever there is a

5.74 The Common-Emitter Amplifier with an Emitter Resistance

Including a resistance in the signal path between emitter and ground, as shown in Fig. 5.61(a), can lead to significant changes in the amplifier characteristics. Thus such a resistor can be utilized by the designer as an effective design tool for tailoring the amplifier characteristics to fit the design requirements.
resistance in the emitter lead, the T model should prove more convenient to use than the hybrid-π model.

Replacing the BJT with the T model of Fig. 5.52(b) results in the amplifier small-signal equivalent-circuit model shown in Fig. 5.61(b). Note that we have not included the BJT output resistance r_e including r_e complicates the analysis considerably. Since for the discrete amplifier at hand it turns out that the effect of r_e on circuit performance is small, we shall not include it in the analysis here. This is not the case, however, for the IC version of this circuit, and we shall indeed take r_e into account in the analysis in Chapter 6.

To determine the amplifier input resistance R_a, we note from Fig. 5.61(b) that R_a is the parallel equivalent of R_e and the input resistance at the base R_b:

$$ R_a = R_e \parallel R_b $$

The input resistance at the base R_b can be found from

$$ R_b = \frac{1}{\beta+1} $$

where

$$ i_b = \frac{V_I}{R_e} $$

and

$$ i_e = \frac{V_I}{r_e + R_e} $$

Thus,

$$ R_b = (\beta+1) (r_e + R_e) $$

This is a very important result. It says that the input resistance looking into the base is $(\beta+1)$ times the total resistance in the emitter. Multiplication by the factor $(\beta+1)$ is known as the resistance-reflection rule. The factor $(\beta+1)$ arises because the base current is $1/(\beta+1)$ times the emitter current. The expression for R_b in Eq. (5.127) shows clearly that including a resistance R_e in the emitter can substantially increase R_b. Indeed the value of R_b is increased by the ratio

$$ \frac{R_b \text{ (with } R_e \text{ included)}}{R_b \text{ (without } R_e)} = \frac{(\beta+1)(r_e + R_e)}{(\beta+1)r_e} = 1 + \frac{R_e}{r_e} $$

Thus the circuit designer can use the value of R_e to control the value of R_b and hence R_a. Of course, for this control to be effective, R_b must be much larger than R_e; in other words, R_a must dominate the input resistance.

To determine the voltage gain A_v, we see from Fig. 5.61(b) that

$$ v_o = -\alpha (R_e \parallel R_b) $$

Substituting for i_e from Eq. (5.126) gives

$$ A_v = \frac{v_o}{i_o} = -\frac{\alpha (R_e \parallel R_b)}{r_e + R_e} $$

Since $\alpha \ll 1$,

$$ A_v = -\frac{\alpha R_e}{r_e + R_e} $$

This simple relationship is very useful and is definitely worth remembering: The voltage gain from base to collector is equal to the ratio of the total resistance in the collector to the total resistance in the emitter. This statement is a general one and applies to any amplifier circuit. The open-circuit voltage gain A_{vo} can be found by setting $R_b = \infty$ in Eq. (5.129),

$$ A_{vo} = -\frac{\alpha R_e}{r_e + R_e} $$

which can be expressed alternatively as

$$ A_{vo} = \frac{\alpha R_e}{r_e (1 + \frac{R_e}{r_e})} $$

$$ A_{vo} = \frac{1}{1 + \frac{R_e}{r_e}} $$

This is the same value as for the CE circuit. Indeed the value of R_a increases by the ratio

$$ (\beta+1) $$

Thus, the circuit designer can use the value of R_e to control the value of R_b and hence R_a. Of course, for this control to be effective, R_b must be much larger than R_e; in other words, R_b must dominate the input resistance.

To determine the voltage gain A_v, we see from Fig. 5.61(b) that

$$ v_o = -\alpha (R_e \parallel R_b) $$

where

$$ i_b = \frac{V_I}{R_e} $$

and

$$ i_e = \frac{V_I}{r_e + R_e} $$

Thus,

$$ R_b = (\beta+1) (r_e + R_e) $$

This is a very important result. It says that the input resistance looking into the base is $(\beta+1)$ times the total resistance in the emitter. Multiplication by the factor $(\beta+1)$ is known as the resistance-reflection rule. The factor $(\beta+1)$ arises because the base current is $1/(\beta+1)$ times the emitter current. The expression for R_b in Eq. (5.127) shows clearly that including a resistance R_e in the emitter can substantially increase R_b. Indeed the value of R_b is increased by the ratio

$$ \frac{R_b \text{ (with } R_e \text{ included)}}{R_b \text{ (without } R_e)} = \frac{(\beta+1)(r_e + R_e)}{(\beta+1)r_e} = 1 + \frac{R_e}{r_e} $$

Thus the circuit designer can use the value of R_e to control the value of R_b and hence R_a. Of course, for this control to be effective, R_b must be much larger than R_e; in other words, R_b must dominate the input resistance.

To determine the voltage gain A_v, we see from Fig. 5.61(b) that

$$ v_o = -\alpha (R_e \parallel R_b) $$

Substituting for i_e from Eq. (5.126) and for R_b from Eq. (5.125),

$$ A_v = \frac{\alpha (R_e \parallel R_b)}{r_e + R_e} $$

which for the case $R_b \gg R_e$ reduces to

$$ A_v = -\frac{\alpha (\beta+1)(r_e + R_e)}{r_e + R_e} = -\beta $$

the same value as for the CE circuit.
5.75 The Common-Base (CB) Amplifier

By establishing a signal ground on the base terminal of the BJT, a circuit configuration aptly named common-base or grounded-base amplifier is obtained. The input signal is applied to the emitter, and the output is taken at the collector, with the base forming a common terminal between the input and output ports. Figure 5.62(b) shows a CB amplifier based on the circuit of Fig. 5.59. Since both the dc and ac voltages at the base are zero, we have connected the base directly to ground, thus eliminating resistor \(R_e \) altogether. Coupling capacitors \(C_1 \) and \(C_2 \) perform similar functions to those in the CE circuit.

The small-signal equivalent circuit model of the amplifier is shown in Fig. 5.62(b). Substituting for \(R_e \) in the model of Fig. 5.59, we have established the base directly to ground, thus eliminating resistor \(R_e \) altogether. Coupling capacitors \(C_1 \) and \(C_2 \) perform similar functions to those in the CE circuit.

To summarize, including a resistance \(R_e \) in the emitter of the CE amplifier results in the following characteristics:

1. The input resistance \(R_i \) is increased by the factor \((1 + g_m R_e) \).
2. The voltage gain from base to collector, \(A_c \), is reduced by the factor \((1 + g_m R_e) \).
3. For the same nonlinear distortion, the input signal \(v_i \) can be increased by the factor \((1 + g_m R_e) \).
4. The overall voltage gain is less dependent on the value of \(R_e \).
5. The high-frequency response is significantly improved (as we shall see in Chapter 6).

With the exception of gain reduction, these characteristics represent performance improvements. Indeed, the reduction in gain is the price paid for obtaining the other performance improvements. In many cases this is a good bargain; it is the underlying motive for the use of negative feedback. That the resistance \(R_e \) introduces negative feedback in the amplifier circuit can be seen by reference to Fig. 5.61(a). If for some reason the collector current increases, the emitter voltage also will increase, resulting in an increased voltage drop across \(R_e \). Thus the emitter voltage rise, and the base-emitter voltage decreases. The latter effect causes the collector current to decrease, counteracting the initially assumed change, an indication of the presence of negative feedback. In Chapter 6, where we shall study negative feedback formally, we will find that the factor \((1 + g_m R_e) \) which appears repeatedly, is the "amount of negative feedback" introduced by \(R_e \). Finally, we note that the negative feedback action of \(R_e \) gives it the name emitter degeneration resistance.

Before leaving this circuit we wish to point out that we have shown a number of the circuit analysis steps directly on the circuit diagram in Fig. 5.61(a). With practice, the reader should be able to do all of the small-signal analysis directly on the circuit diagram, thus dispelling the task of drawing a complete small-signal equivalent circuit model.
CHAPTER 5 Bipolar Junction Transistors (BJTs)

(a)

(b)

FIGURE 5.62 (a) A common-base amplifier using the structure of Fig. 5.59. (b) Equivalent obtained by replacing the transistor with its T model.

The open-circuit voltage gain \(A_{vo} \) can be found from Eq. (5.138) by setting \(R_L = 0 \): \[A_{vo} = g_m R_C \] (5.139)

Again, this is identical to \(A_{vo} \) for the CE amplifier except that the CB amplifier is noninverting. The output resistance of the CB circuit can be found by inspection from the circuit in Fig. 5.62(b) as

\[R_{out} = R_f \]

which is similar to the case of the CE amplifier. Here we should note that the CB amplifier with \(r_e \) neglected is unilateral, with the result that \(R_{in} = R_i \) and \(R_{out} = R_f \).

The short-circuit current gain \(A_i \) is given by

\[
A_i = \frac{\alpha \mu}{i_i} = \frac{-\alpha i_i}{-i_i} = \alpha
\]

which corresponds to our definition of \(\alpha \) as the short-circuit current gain of the CB configuration.

Although the gain of the CB amplifier proper has the same magnitude as that of the CE amplifier, this is usually not the case as far as the overall voltage gain is concerned. The low input resistance of the CB amplifier can cause the input signal to be severely attenuated, specifically

\[
\frac{v_i}{v_{sig}} = \frac{R_l}{R_{sig} + R_l}
\]

from which we see that except for situations in which \(R_{sig} \) is on the order of \(r_e \), the signal transmission factor \(v_i/v_{sig} \) can be very small. It is useful at this point to mention that one of the applications of the CB circuit is to amplify high-frequency signals that appear on a coaxial cable. To prevent signal reflection on the cable, the CB amplifier is required to have an input resistance equal to the characteristic resistance of the cable, which is usually in the range of 50 Ω to 75 Ω.

The overall voltage gain \(G_v \) of the CB amplifier can be obtained by multiplying the ratio \(v_i/v_{sig} \) of Eq. (5.141) by \(A_{vo} \) from Eq. (5.138),

\[
G_v = \frac{1}{R_{sig} + r_e (R_c \parallel R_f)} = \frac{R_l}{R_{sig} + r_e}
\]

which is identical to \(A_{vo} \) for the CE amplifier except that the CB amplifier is noninverting. The output resistance of the CB circuit can be found by inspection from the circuit in Fig. 5.62(b) as

\[R_{out} = R_f \]

The overall voltage gain \(G_v \) is simply the ratio of the total resistance in the collector circuit to the total resistance in the emitter circuit. We also note that the overall voltage gain is almost independent of the value of \(\beta \) (except through the small dependence of \(\alpha \) on \(\beta \)), a desirable property. Observe that for \(R_{sig} \) of the same order as \(R_C \) and \(R_f \), the gain will be very small.

In summary, the CB amplifier exhibits a very low input resistance \((r_e) \), a short-circuit current gain that is nearly unity \((\alpha) \), an open-circuit voltage gain that is positive and equal in magnitude to that of the CE amplifier \((g_m R_C) \), and like the CE amplifier, a relatively high output resistance \((R_f) \). Because of its very low input resistance, the CB circuit alone is not attractive as a voltage amplifier except in specialized applications, such as the cable amplifier mentioned above. The CB amplifier has excellent high-frequency performance as well, which as we shall see in Chapter 6 makes it useful together with other circuits in the implementation of high-frequency amplifiers. Finally, a very significant application of the CB circuit is as a unity-gain current amplifier or current buffer: It accepts an input signal current at a low input resistance and delivers a nearly equal current at very high output resistance at the collector (the output resistance excluding \(R_C \) and neglecting \(r_e \) is infinite).

We shall study such an application in the context of the IC version of the CB circuit in Chapter 6.
EXERCISES

5.45 Consider the CB amplifier of Fig. 5.62(a) when designed using the BJT and component values specified in Exercise 5.41. Specifically, refer to Fig. E5.41 for the bias quantities and the values of the components of the BJT small-signal model. Let $R_{\text{e}} = 5\, \text{k}\Omega$ and the values of $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$, and V_{cc}. To what value should R_{1} be reduced to obtain an overall voltage gain equal to that found for the CE amplifier in Exercise 5.43, that is, $-39 \, \text{V/V}$?

Ans. 25 Ω; $-320 \, \text{V/V}$; $8 \, \text{k}\Omega$; $-123 \, \text{V/V}$; $0.6 \, \text{V/V}$; $54 \, \Omega$

5.46 It is required to design a CB amplifier for a signal delivered by a $50\, \Omega$ coaxial cable. The amplifier is to provide a "proper termination" for the cable and to provide an overall voltage gain of $+100 \, \text{V/V}$.

Specify the value of the bias current I_{E} and the total resistance in the collector circuit.

Ans. 0.5 mA; $10 \, \text{k}\Omega$

5.7.6 The Common-Collector (CC) Amplifier or Emitter Follower

The last of the basic BJT amplifier configurations is the common-collector (CC) circuit, a very important circuit that finds frequent application in the design of both small-signal and large-signal amplifiers (Chapter 14) and even in digital circuits (Chapter 11). The circuit is more commonly known by the alternate name emitter follower, the reason for which will shortly become apparent.

An emitter-follower circuit based on the structure of Fig. 5.59 is shown in Fig. 5.63(a).

Observe that since the collector is to be at signal ground, we have eliminated the collector resistance R_{c}. The input signal is capacitively coupled to the base, and the output signal is capacitively coupled from the emitter to a load resistance R_{L}.

Since, as far as signals are concerned, resistance R_{1} is connected in series with the emitter, the T model of the BJT would be the more convenient one to use. Figure 5.63(b) shows the small-signal equivalent circuit of the emitter follower with the BJT replaced by its T model augmented to include r_{0}. Here it is relatively simple to take r_{0} into account, and we shall do so. Inspection of the circuit in Fig. 5.63(b) reveals that r_{0} appears in effect in parallel with R_{L}. Therefore the circuit is redrawn to emphasize this point, and indeed to simplify the analysis, in Fig. 5.63(c).

Unlike the CE and CB circuits we studied above, the emitter-follower circuit is not unilateral: that is, the input resistance depends on R_{L}, and the output resistance depends on R_{c}. Care therefore must be exercised in characterizing the emitter follower. In the following we shall derive expressions for R_{in}, G_{v}, G_{vo}, and R_{out}. The expressions that we derive will shed light on the operation and characteristics of the emitter follower. More important than the actual expressions, however, are the methods we use to obtain them. It is in these that we hope the reader will become proficient.

Reference to Fig. 5.63(c) reveals that the BJT has a resistance $(r_{0} || R_{L})$ in series with the emitter resistance r_{e}. Thus application of the resistance reflection rule results in the equivalent circuit shown in Fig. 5.64(a). Recall that in reflecting resistances to the base side, we multiply all resistances in the emitter by $(\beta + 1)$, the ratio of i_{e} to i_{b}. In this way the voltages remain unchanged.

Inspection of the circuit in Fig. 5.64(a) shows that the input resistance at the base, R_{in}, is

$$R_{in} = (\beta + 1)(r_{e} + (r_{0} || R_{L}))$$

(5.143)
from which we see that the emitter follower acts to raise the resistance level of R_0 (or $R_{ie} || R_B$) to be exact by the factor $(\beta + 1)$ and presents to the source the increased resistance.

The total input resistance of the follower is

$$R_{in} = R_B || R_0$$

from which we see that to realize the full effect of the increased R_{in}, we have to choose a large value for the base resistance R_B as is practical (i.e., from a bias design point of view). Also, whenever possible, we should dispense with R_B altogether and connect the signal source directly to the base (in which case we also dispense with C_C).

To find the overall voltage gain G_v, we first apply Thévenin theorem at the input side of the circuit (Fig. 5.63(c)) to simplify it to the form shown in Fig. 5.64(a). From the latter circuit we see that v_i can be found by utilizing the voltage divider rule; thus,

$$G_v = \frac{R_{ie}}{R_{ie} + R_B} \left[\left(\beta + 1 \right) \left(r_L + \left(r_e || R_B \right) \right) \right]$$ \hspace{1cm} (5.144)

We observe that the voltage gain is less than unity; however, for $R_{ie} \gg R_B$ and $(\beta + 1) (r_e + (r_L || R_B)) \gg (R_{ie} || R_B)$, it becomes very close to unity. Thus the voltage at the emitter (v_e) follows very closely the voltage at the input, which gives the circuit the name **emitter follower**.

Rather than reflecting the emitter resistance network into the base side, we can do the converse: Reflect the base resistance network into the emitter side. To keep the voltages unchanged, we divide all the base-side resistances by $(\beta + 1)$. This is the dual of the resistance reflection rule. Doing this for the circuit in Fig. 5.63(c) results in the alternate emitter-follower equivalent circuit, shown in Fig. 5.65(a). Here also we can simplify the circuit by applying Thévenin theorem at the input side, resulting in the circuit in Fig. 5.65(b). Inspection of the latter reveals that the output voltage and hence v_o / v_i can be found by a simple application of the voltage divider rule, with the result that

$$G_v = \frac{R_{o}}{R_{o} + R_B} \left(r_L + \left(r_e || R_B \right) \right)$$ \hspace{1cm} (5.145)

which, as expected, is identical to the expression in Eq. (5.144) except that both the numerator and denominator of the second factor on the right-hand side have been divided by $(\beta + 1)$. To gain further insight regarding the operation of the emitter follower, let's simplify this expression for the usual case of $R_{ie} \gg R_B$ and $r_e \gg R_B$. The result is

$$\frac{v_o}{v_i} = \frac{R_{o}}{R_{o} + r_e}$$ \hspace{1cm} (5.146)

which clearly indicates that the gain approaches unity when $R_{o} / (\beta + 1)$ becomes much smaller than R_B or alternatively when $(\beta + 1) R_B$ becomes much larger than R_{o}. This is the **buffering action** of the emitter follower, which derives from the fact that the circuit has a short-circuit current gain that is approximately equal to $(\beta + 1)$.

It is also useful to represent the output of the emitter follower by its Thévenin equivalent circuit. The open-circuit output voltage will be $G_{oo} v_i$, where G_{oo} can be obtained from Eq. (5.145) by setting $R_B = 0$,

$$G_{oo} = \frac{R_0}{R_{ie} + R_B} \left[\left(\beta + 1 \right) + r_e \right]$$ \hspace{1cm} (5.147)
Note that \(r_e \) usually is large and the second factor becomes almost unity. The first factor approaches unity for \(R_L \ll R_e \). The \(\text{Thevenin} \) resistance is the output resistance \(R_{out} \). It can be determined by inspection of the circuit in Fig. 5.65(b). Reduce \(v_{EB} \) to zero, "grab hold" of the emitter terminal, and look back into the circuit. The result is
\[
R_{out} = r_e \left(1 + \frac{R_e}{\beta + 1} \right)
\]
(5.148)

Usually \(r_e \) is much larger than the parallel component between the parentheses and can be neglected, leaving
\[
R_{out} = r_e \left(1 + \frac{R_e}{\beta + 1} \right)
\]
(5.149)

Thus the output resistance of the emitter follower is low, again a result of its impedance transformation or buffering action, which leads to the division of \((R_{out} \parallel R_e) \) by \(\beta + 1 \). The \(\text{Thevenin} \) equivalent circuit of the emitter follower is shown together with the formulas for \(G_{in} \) and \(R_{out} \) in Fig. 5.66. This circuit can be used to find \(v_i \) and hence \(G_{in} \) for any value of \(R_e \).

Before leaving the emitter follower, the question of the maximum allowed signal swing deserves comment. Since only a small fraction of the input signal appears between the base and the emitter, the emitter follower exhibits linear operation for a wide range of output-signal amplitude by transistor cutoff. We shall study the design of amplifier output stages in Chapter 14.

The circuit of Fig. 5.63(a) when the input signal is a sine wave. As the input goes negative, the corresponding value of \(v_{EB} \) will be
\[
\hat{v}_{EB} = \frac{1}{\beta + 1}
\]

Increasing the amplitude of \(v_{EB} \) above this value results in the transistor becoming cut off and the negative peaks of the output-signal waveform being clipped off.

EXERCISE

The emitter follower in Fig. 5.63(a) is used to connect a source with \(R_s = 10 \, \text{k} \Omega \) to a load \(R_L = 1 \, \text{k} \Omega \). The transistor is biased at \(I = 5 \, \text{mA} \), utilizes a resistance \(R_1 = 40 \, \text{k} \Omega \), and has \(\beta = 100 \) and \(V_T = 100 \, \text{V} \).

What is the largest peak amplitude of an output signal that can be used without the transistor reaching cutoff? If in order to limit nonlinear distortion the base-emitter signal voltage is limited to \(10 \, \text{mV} \) peak, what is the corresponding amplitude at the output? What will the overall voltage gain become if \(R_L \) is changed to \(2 \, \text{k} \Omega \) at \(500 \, \text{k} \Omega \)?

Ans. \(v_i = 0.685 \, \text{V/V}; 0.735 \, \text{V/V}; 0.8 \, \text{V/V}; 84 \, \text{Q}; 5 \, \text{V/V}; 0.685 \, \text{V/V} \)

5.7.7 Summary and Comparisons

For easy reference and to enable comparisons, we present in Table 5.6 the formulas for determining the characteristic parameters of discrete single-stage BJT amplifiers. In addition to the remarks already made throughout this section about the characteristics and areas of applicability of the various configurations, we make the following concluding points:

1. The CE configuration is the best suited for realizing the bulk of the gain required in an amplifier. Depending on the magnitude of the gain required, either a single stage or a cascade of two or three stages can be used.

2. Including a resistor \(R_e \) in the emitter lead of the CE stage provides a number of performance improvements at the expense of gain reduction.

3. The low input resistance of the CB amplifier makes it useful only in specific applications. As we shall see in Chapter 6, it has a much better high-frequency response than the CE amplifier. This superiority will make it useful as a high-frequency amplifier, especially when combined with the CE circuit. We shall see one such combination in Chapter 6.
4. The emitter follower finds application as a voltage buffer for connecting a high-
resistance source to a low-resistance load and as the output stage in a multistage
amplifier.

Finally, we should point out that the Exercises in this section (except for that relating to the
emitter follower) used the same component values to allow numerical comparisons.

TABLE 5.6 Characteristics of Single-Stage Discrete BJT Amplifiers

<table>
<thead>
<tr>
<th>Circuit Type</th>
<th>Symbol</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Emitter</td>
<td></td>
<td>V_{CC}, R_1, C_1, C_2, R_2, R_3</td>
</tr>
<tr>
<td>Common Emitter with Emitter Resistance</td>
<td></td>
<td>V_{CC}, R_1, C_1, C_2, R_2, R_3, R_e</td>
</tr>
<tr>
<td>Common Base</td>
<td></td>
<td>V_{CC}, R_1, C_1, C_2, R_2, R_3, R_e</td>
</tr>
<tr>
<td>Common Collector or Emitter Follower</td>
<td></td>
<td>V_{CC}, R_1, C_1, C_2, R_2, R_3, R_e</td>
</tr>
</tbody>
</table>

5.8 THE BJT INTERNAL CAPACITANCES AND HIGH-FREQUENCY MODEL

Thus far we have assumed transistor action to be instantaneous, and as a result the transistor
models we have developed do not include any elements (i.e., capacitors or inductors) that
would cause time or frequency dependence. Actual transistors, however, exhibit charge-
storage phenomena that limit the speed and frequency of their operation. We have already
encountered such effects in our study of the $p-n$ junction in Chapter 3 and learned that they
can be modeled using capacitances. In the following we study the charge-storage effects that
take place in the BJT and take them into account by adding capacitances to the hybrid-$
\pi$
model. The resulting augmented BJT model will be able to predict the observed dependence of amplifier gain on frequency and the time delays that transistor switches and logic gates exhibit.

5.8.1 The Base-Charging or Diffusion Capacitance C_{de}

When the transistor is operating in the active or saturation modes, minority-carrier charge is stored in the base region. In fact, we have already derived an expression for this charge, Q_{e}, in the case of an npn transistor operating in the active mode (Eq. 5.7). Using the result in Eq. (5.7) together with Eqs. (5.3) and (5.4), we can express Q_{e} in terms of the collector current I_c as

$$Q_{e} = \frac{W}{2D_{e}}I_{c} = r_{f}I_{C}$$

(5.150)

where r_{f} is a device constant,

$$r_{f} = \frac{W^{2}}{2D_{e}}$$

(5.151)

with the dimension of time. It is known as the forward base-transit time and represents the average time a charge carrier (electron) spends in crossing the base. Typically, r_{f} is in the range of 10 ps to 100 ps. For operation in the reverse active mode, a corresponding constant r_{x} applies and is many orders of magnitude larger than r_{f}.

Equation (5.150) applies for large signals and, since I_{c} is exponentially related to V_{BE}, Q_{e} will similarly depend on V_{BE}. Thus this charge-storage mechanism represents a nonlinear capacitive effect. However, for small signals we can define the small-signal diffusion capacitance C_{de},

$$C_{de} = \frac{dQ_{e}}{dV_{BE}}$$

(5.152)

resulting in

$$C_{de} = r_{f}I_{C}$$

(5.153)

5.8.2 The Base-Emitter Junction Capacitance C_{je}

Using the development in Chapter 3, and in particular Eq. (3.58), the base-emitter junction or depletion-layer capacitance C_{je} can be expressed as

$$C_{je} = \frac{C_{eo}}{(1 + \frac{V_{BE}}{V_{oc}})^{m}}$$

(5.154)

where C_{eo} is the value of C_{je} at zero voltage, V_{o} is the EBJ built-in voltage (typically, 0.9 V), and m is the grading coefficient of the EBJ junction (typically, 0.5). It turns out, however, that because the EBJ is forward biased in the active mode, Eq. (5.154) does not provide an accurate prediction of C_{je}. Alternatively, one typically uses an approximate value for C_{je},

$$C_{je} \approx 2C_{eo}$$

(5.155)

5.8.3 The Collector-Base Junction Capacitance C_{c}

In active-mode operation, the CB junction is reverse biased, and its junction or depletion capacitance, usually denoted C_{u}, can be found from

$$C_{u} = \frac{C_{eo}}{(1 + \frac{V_{OC}}{V_{OC}})^{m}}$$

(5.156)

where C_{eo} is the value of C_{u} at zero voltage, V_{OC} is the CB junction built-in voltage (typically, 0.75 V), and m is its grading coefficient (typically, 0.2-0.5).

5.8.4 The High-Frequency Hybrid-π Model

A hybrid-π model (Fig. 5.67) shows the hybrid-π model of the BJT, including capacitive effects. Specifically, there are two capacitances: the emitter-base capacitance $C_{be} = C_{eo} - C_{de}$ and the collector-base capacitance C_{c}. Typically, C_{be} is in the range of a few picofarads to a few hundred picofarads, and C_{c} is in the range of a fraction of a picofarad to a few picofarads. Note that we have also added a resistor r_{i} to model the resistance of the silicon material of the base region between the base terminal B and a fictitious internal, or intrinsic, base terminal B' that is right under the emitter region (refer to Fig. 5.6). Typically, r_{i} is a few tens of ohms, and its value depends on the current level in a rather complicated manner. Since (usually) $r_{i} \ll r_{f}$, its effect is negligible at low frequencies. Its presence is felt, however, at high frequencies, as will become apparent later.

The values of the hybrid-π equivalent circuit parameters can be determined at a given bias point using the formulas presented in this chapter. They can also be found from the terminal measurements specified on the BJT data sheets. For computer simulation, SPICE uses the parameters of the given IC technology to evaluate the BJT model parameters (Section 5.11).

Before proceeding, a note on notation is in order. Since we are now dealing with voltages and currents that are functions of frequency, we have reverted to using symbols that are uppercase letters with lowercase subscripts (e.g., V_{BE}, I_{C}). This conforms to the notation system used throughout this book.

5.8.5 The Cutoff Frequency

The transistor data sheets do not usually specify the value of C_{u}. Rather, the behavior of β (or h_{fe}) versus frequency is normally given. In order to determine C_{u} and C_{je}, we shall derive an expression for f_{c}, the CE short-circuit current gain, as a function of frequency in terms of

![Figure 5.67](image-url)
FIGURE 5.68 Circuit for deriving an expression for \(h_{fe} \). For this purpose consider the circuit shown in Fig. 5.68, in which the collector is shorted to the emitter. A node equation at C provides the short-circuit collector current \(I_c \) as

\[
I_c = (g_m - sC_f) V_n
\]

(5.157)

A relationship between \(V_n \) and \(I_c \) can be established by multiplying \(I_c \) by the impedance seen between B' and E:

\[
V_n = h_{ir} I_c = \frac{g_m - sC_f}{1 + s(C_f + C_g)}
\]

(5.158)

Thus \(h_{fe} \) can be obtained by combining Eqs. (5.157) and (5.158):

\[
h_{fe} = \frac{g_m}{1 + s(C_f + C_g)}
\]

(5.159)

At the frequencies for which this model is valid, \(g_m \gg sC_f \); thus we can neglect the \(sC_f \) term in the numerator and write

\[
h_{fe} = \frac{g_m}{1 + s(C_f + C_g)}
\]

Thus,

\[
h_{fe} = \frac{\beta_0}{1 + s(C_f + C_g)}
\]

(5.160)

where \(\beta_0 \) is the low-frequency value of \(\beta \). Thus \(h_{fe} \) has a single-pole (or STC) response with a 3-dB frequency at \(\omega = \omega_T \), where

\[
\omega_T = \frac{1}{C_f + C_g}
\]

(5.161)

Figure 5.69 shows a Bode plot for \(\beta_0 \). From the -6-dB/octave slope it follows that the frequency at which \(\beta_0 \) drops to unity, which is called the unity-gain bandwidth \(\omega_T \), is given by

\[
\omega_T = \beta_0 \omega_f
\]

(5.162)

Thus,

\[
\omega_T = \frac{\beta_0}{C_f + C_g}
\]

(5.163)

The unity-gain bandwidth \(f_T \) is usually specified on the data sheets of a transistor. In some cases \(f_T \) is given as a function of \(I_c \) and \(V_{CE} \). To see how \(f_T \) changes with \(I_c \), recall that \(g_m \) is directly proportional to \(I_c \), but only part of \(C_f \) (the diffusion capacitance \(C_{de} \)) is directly proportional to \(I_c \). It follows that \(f_T \) decreases at low currents, as shown in Fig. 5.70. However, the decrease in \(f_T \) at high currents, also shown in Fig. 5.70, cannot be explained by this argument; rather it is due to the same phenomenon that causes \(\beta_0 \) to decrease at high currents. In the region where \(f_T \) is almost constant, \(C_f \) is dominated by the diffusion part.

Typically, \(f_T \) is in the range of 100 MHz to tens of GHz. The value of \(f_T \) can be used in Eq. (5.163) to determine \(C_f - C_g \). The capacitance \(C_f \) is usually determined separately by measuring the capacitance between base and collector at the desired reverse-bias voltage \(V_{CB} \).
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

Before leaving this section, we should mention that the hybrid-π model of Fig. 5.68 characterizes transistor operation fairly accurately up to a frequency of about 0.2fT. At higher frequencies one has to add other parasitic elements to the model as well as refine the model to account for the fact that the transistor is in fact a distributed-parameter network that we are trying to model with a lumped-component circuit. One such refinement consists of splitting rX into a number of parts and replacing CCM by a number of capacitors, each connected between the collector and one of the taps of rX. This topic is beyond the scope of this book.

An important observation to make from the high-frequency model of Fig. 5.68 is that at frequencies above 5 to 10fT, one may ignore the resistance rX. It can be seen then that rX becomes the only resistive part of the input impedance at high frequencies. Thus rX plays an important role in determining the frequency response of transistor circuits at high frequencies. It follows that an accurate determination of rX should be made from a high-frequency measurement.

Exercises

5.48 Find Cg, Cc, Cae, and fT for a BJT operating at a dc collector current IC = 1 mA and a CBJ reverse bias of 2 V. The device has xe = 20 ps, Ccm = 20 fF, Ccc = 20 fF, VCE = 0.9 V, VCB = 0.5 V, and βT = 0.33.

Ans. 0.8 pF; 40 fF; 0.86 pF; 12 GHz; 7.47 GHz

5.49 For a BJT operated at IC = 1 mA, determine fT and Cc if Cc = 2 pF and βT = 10 at 50 MHz.

Ans. 500 MHz; 0.7 pF

5.50 If Ccm of the BJT in Exercise 5.49 includes a relatively constant depletion-layer capacitance of 2 pF, find fT of the BJT when operated at IC = 0.1 mA.

Ans. 130 MHz

Summary

For convenient reference, Table 5.7 provides a summary of the relationships used to determine the values of the parameters of the BJT high-frequency model.

Table 5.7 The BJT High-Frequency Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>rX</td>
<td></td>
</tr>
<tr>
<td>rO</td>
<td></td>
</tr>
<tr>
<td>rA</td>
<td></td>
</tr>
<tr>
<td>rB</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td></td>
</tr>
<tr>
<td>Cc</td>
<td></td>
</tr>
<tr>
<td>Cae</td>
<td></td>
</tr>
<tr>
<td>Ccc</td>
<td></td>
</tr>
<tr>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>Ccm</td>
<td></td>
</tr>
<tr>
<td>Cce</td>
<td></td>
</tr>
<tr>
<td>Cds</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>0.3-0.5</td>
</tr>
</tbody>
</table>

Table 5.7 The BJT High-Frequency Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>rX</td>
<td></td>
</tr>
<tr>
<td>rO</td>
<td></td>
</tr>
<tr>
<td>rA</td>
<td></td>
</tr>
<tr>
<td>rB</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td></td>
</tr>
<tr>
<td>Cc</td>
<td></td>
</tr>
<tr>
<td>Cae</td>
<td></td>
</tr>
<tr>
<td>Ccc</td>
<td></td>
</tr>
<tr>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>Ccm</td>
<td></td>
</tr>
<tr>
<td>Cce</td>
<td></td>
</tr>
<tr>
<td>Cds</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>0.3-0.5</td>
</tr>
</tbody>
</table>

5.9 FREQUENCY RESPONSE OF THE COMMON-EMITTER AMPLIFIER

In this section we study the dependence of the gain of the BJT common-emitter amplifier of Fig. 5.71(a) on the frequency of the input signal.

5.9.1 The Three Frequency Bands

When the common-emitter amplifier circuit of Fig. 5.71(a) was studied in Section 5.7.3, it was assumed that the coupling capacitors Cc1 and Cc2 and the bypass capacitor Ce were
BIPOLAR JUNCTION TRANSISTORS (BJTs): CHAPTER 5

5.9 FREQUENCY RESPONSE OF THE COMMON-EMITTER AMPLIFIER

acting as perfect short circuits at all signal frequencies of interest. We also neglected the internal capacitances of the BJT. That is, C_e and C_b of the BJT high-frequency model (Fig. 5.67) were assumed to be sufficiently small to act as open circuits at all signal frequencies of interest. As a result of ignoring all capacitive effects, the gain expressions derived in Section 5.7.3 were independent of frequency. In reality, however, this situation only applies over a limited, though usually wide, band of frequencies. This is illustrated in Fig. 5.71(b), which shows a sketch of the magnitude of the overall voltage gain, $|A_{VH}|$, of the common-emitter amplifier versus frequency. We observe that the gain is almost constant over a wide frequency band, called the midband. The value of the midband gain A_{MH} corresponds to the overall voltage gain G, that we derived in Section 5.7.3, namely,

$$A_{MH} = \frac{V_{o}}{V_{i}} = \frac{(R_L || r_e)}{(R_E || r_a) + R_2} \quad (5.164)$$

Figure 5.71(b) shows that the gain falls off at signal frequencies below and above the midband. The gain falloff in the low-frequency band is due to the fact that even though C_{1e}, C_{1b}, and C_e are large capacitors (typically, in the pF range), as the signal frequency is reduced their impedances increase and they no longer behave as short circuits. On the other hand, the gain falls off in the high-frequency band as a result of C_e and C_b, which though very small (in the fraction of a pF to the pF range), their impedances at sufficiently high frequencies decrease; thus they can no longer be considered as open circuits. Our objective in this section is to study the mechanisms by which these two sets of capacitances affect the amplifier gain in the low-frequency and the high-frequency bands. In this way we will be able to determine the frequencies f_L and f_H, which define the extent of the midband, as shown in Fig. 5.71(b).

The midband is obviously the useful frequency band of the amplifier. Usually, f_L and f_H are the frequencies at which the gain drops by 3 dB below its value at midband; that is, at f_L and f_H, $|A_{VH}| = |A_{MH}| / \sqrt{2}$. The amplifier bandwidth or 3-dB bandwidth is defined as the difference between the lower (f_L) and upper or higher (f_H) 3-dB frequencies:

$$BW = f_H - f_L$$

Since usually $f_L < f_H$,

$$BW = f_H$$

A figure-of-merit for the amplifier is its gain–bandwidth product, defined as

$$GB = |A_{MH}|BW$$

(5.166)

It will be shown at a later stage in amplifier design, it is usually possible to trade off gain for bandwidth. One way of accomplishing this, for instance, is by including an emitter-degeneration resistance R_e, as we have done in Section 5.7.4.

5.9.2 The High-Frequency Response

To determine the gain, or the transfer function, of the amplifier of Fig. 5.71(a) at high frequencies, and in particular the upper 3-dB frequency f_H, we replace the BJT with the high-frequency model of Fig. 5.67. At these frequencies C_{1e}, C_{1b}, and C_e will be behaving as perfect short circuits. The result is the high-frequency amplifier equivalent circuit shown in Fig. 5.72(a).
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS (BJTs)

is still much smaller than \(V \), reasonable to assume that \(g_m \) can be with the result that

\[
\text{given approximately by}
\]

\[
V_s = -g_m V'_s = -g_m R'_s V'_s
\]

Since \(V_s = V_{eq} \), Eq. (5.169) indicates that the gain from \(B' \) to \(C \) is \(-g_m R'_s\), the same value as in the midband. The current \(I_p \) can now be found from

\[
I_p = s C_v (V_s - V'_s)
\]

\[
= s C_v [V_s - (-g_m R'_s V'_s)]
\]

\[
= s C_v (1 + g_m R'_s V'_s)
\]

Now, in Fig. 5.72(b), the left-hand-side of the circuit, at \(XX' \), knows of the existence of \(C_v \) only through the current \(I_p \). Therefore, we can replace \(C_v \) by an equivalent capacitance \(C'_v \) between \(B' \) and ground as long as \(C_v \) draws a current equal to \(I_p \). That is,

\[
c C_v V_s = I_p = s C_v (1 + g_m R'_s) V'_s
\]

which results in

\[
C_v = C_v (1 + g_m R'_s)
\]

Using \(C_v \) enables us to simplify the equivalent circuit at the input side to that shown in Fig. 5.72(c), which we recognize as a single-time-constant (STC) network of the low-pass type (see Section 1.6 and Appendix D). Therefore we can express \(V_s \) in terms of \(V_{eq} \) as

\[
V_s = \frac{V_{eq}}{1 + s/\omega_0}
\]

where \(\omega_0 \) is the corner frequency of the STC network composed of \(C_v \) and \(R'_s \),

\[
\omega_0 = \frac{1}{C_v R'_s}
\]

where \(C_v \) is the total input capacitance at \(B' \),

\[
C_v = \frac{C_v + C_{eq}}{C_v + C_{eq} (1 + g_m R'_s)}
\]

and \(R'_s \) is the effective source resistance, given by Eq. (5.168). Combining Eqs. (5.169), (5.171), and (5.167) give the voltage gain in the high-frequency band as

\[
\frac{V}{V_{eq}} = \frac{R_s}{\left[R_s + R'_s + R_{eq} \right] + \left(R_{eq} + R_s \right)}
\]

\[
\text{The quantity between the square brackets of Eq. (5.174) is the midband gain, and except for the fact that here \(\omega_0 \) is taken into account, this expression is the same as that in Eq. (5.164). Thus,}
\]

\[
\frac{V}{V_{eq}} = \frac{R_s}{1 + \frac{R_s}{\omega_0}}
\]

\[
\text{from which we deduce that the upper 3-dB frequency \(f_H \) must be}
\]

\[
f_H = \frac{\omega_0}{2\pi} = \frac{1}{2\pi C_v R'_s}
\]

Thus we see that the high-frequency response will be that of a low-pass STC network with a 3-dB frequency \(f_H \) determined by the time constant \(C_v R'_s \). Fig. 5.72(d) shows a sketch of the magnitude of the high-frequency gain. Before leaving this section we wish to make a number of observations:

1. The upper 3-dB frequency is determined by the interaction of \(R'_s \) and \(C_v \). If \(R'_s \) is large, then \(R'_s \approx R_{eq} \), and \(\omega_0 \approx \omega_0 \). Thus the extent to which \(R'_s \) determines \(f_H \) depends on its value relative to \(R_{eq} \). If \(R'_s \approx R_{eq} \), then \(\omega_0 \approx \omega_0 \), on the other hand, if \(R'_s \) is on the order of or smaller than \(R_{eq} \), then it has much greater influence on the value of \(f_H \).
2. The input capacitance \(C_v \) is usually dominated by \(C_{eq} \), which in turn is made large by the multiplication effect that \(C_v \) undergoes. Thus, although \(C_v \) is usually very small, its effect on the amplifier frequency response can be significant as a result of its

![Figure 5.72](image-url)
multiplication by the factor \((1 + g_mR'_L)\), which is approximately equal to the midband gain of the amplifier.

3. The multiplication effect that \(C_p\) undergoes comes about because it is connected between two nodes (\(B'\) and \(C\)) whose voltages are related by a large negative gain \((-g_mR'_L)\). This effect is known as the Miller effect, and \((1 + g_mR'_L)\) is known as the Miller multiplier. It is the Miller effect that causes the CE amplifier to have a large input capacitance \(C_{in}\) and hence a low \(f_H\).

4. To extend the high-frequency response of a BJT amplifier, we have to find configurations in which the Miller effect is absent or at least reduced. We shall return to this subject at great length in Chapter 6.

5. The above analysis, resulting in an STC or a single-pole response, is a simplified one. Specifically, it is based on neglecting \(r_e^*\) relative to \(g_mV_K\), an assumption that applies well at frequencies not too much higher than \(f_T\). A more exact analysis of the circuit in Fig. 5.72(a) will be considered in Chapter 6. The results above, however, are more than sufficient for our current needs.

EXAMPLE 5.18

It is required to find the midband gain and the upper 3-dB frequency of the common-emitter amplifier of Fig. 5.71(a) for the following case: \(V_{cc} = V_{ee} = 10\, \text{V}, I = 1\, \text{mA}, R_B = 100\, \text{k}\Omega, R_C = 8\, \text{k}\Omega, r^*_{sig} = 5\, \text{k}\Omega, R_L = 5\, \text{k}\Omega, B_0 = 100, V_A = 100\, \text{V}, C_p = 1\, \text{pF}, f_T = 800\, \text{MHz},\) and \(r_x = 50\, \Omega\).

Solution

The transistor is biased at \(I_c = 1\, \text{mA}.\) Thus the values of its hybrid-\(\pi\) model parameters are

\[
\begin{align*}
\beta_n &= \frac{I_c}{V_T} = \frac{1\, \text{mA}}{25\, \text{mV}} = 40\, \text{mA/V} \\
r_e &= \frac{\beta_n}{g_m} = \frac{40\, \text{mA/V}}{2.5\, \text{k}\Omega} = 16\, \text{m}\Omega \\
r_o &= \frac{I_c}{V_T} = \frac{1\, \text{mA}}{1\, \text{mA}} = 1\, \text{k}\Omega \\
C_x + C_p &= \frac{1}{\omega C_x} = \frac{40\, \text{X}10^{-3}}{2\pi \times 800\, \text{X}10^{-6}} = 8\, \text{pF} \\
C_X &= 1\, \text{pF} \\
C_p &= 7\, \text{pF} \\
r_s &= 50\, \Omega
\end{align*}
\]

The midband voltage gain is

\[
A_M = \frac{r_s}{R_s + r_s + r_e + (R_B \parallel R_C)}
\]

where

\[
R_s = r_x \| R_x \parallel R_C
\]

\[
= (100\|8\|5)\, \text{k}\Omega = 3\, \text{k}\Omega
\]

Thus,

\[
g_mR'_L = 40 \times 3 = 120\, \text{V/V}
\]

and

\[
A_M = \frac{100}{100 + 2.5 + 0.05 + (100\|5)} \times 120 = -39\, \text{V/V}
\]

and

\[
20\log |A_M| = 32\, \text{dB}
\]

To determine \(f_s\) we first find \(C_x\),

\[
C_x = C_e + C_p(1 + g_mR'_L) = 7 + (1 \times 120) = 128\, \text{pF}
\]

and the effective source resistance \(R'_x\),

\[
R'_x = r_s \| (R_B \parallel R_C)
\]

\[
= 2.5\| (0.05 + (100\|5)) = 1.65\, \text{k}\Omega
\]

Thus,

\[
f_s = \frac{1}{2\pi C_x R'_x} = \frac{1}{2\pi \times 128 \times 10^{-12} \times 1.65 \times 10^3} = 754\, \text{kHz}
\]

EXERCISE

5.3 For the amplifier in Example 5.18, find the value of \(R_L\) that reduces the midband gain to half the value found. What value of \(f_s\) results? Note the trade-off between gain and bandwidth.

Ans. 10\, \text{k}\Omega; \, 423\, \text{kHz}.

5.9 The Low-Frequency Response

To determine the low-frequency gain (or transfer function) of the common-emitter amplifier circuit, we show in Fig. 5.73(a) the circuit with the dc sources eliminated (current source \(I\) open circuited and voltage source \(V_{cc}\) short circuited). We shall perform the small-signal analysis directly on this circuit. We will, of course, ignore \(C_p\) and \(C_x\) since at such low frequencies their impedances will be very high and thus can be considered as open circuits. Also, to keep the analysis simple and thus focus attention on the mechanisms that limit the amplifier gain at low frequencies, we will neglect \(r_s\). The reader can verify through SPICE simulation that the effect of \(r_s\) on the low-frequency amplifier gain is small. Finally, we shall also neglect \(r_x\), which is usually much smaller than \(r_e\), with which it appears in series.
Our first cut at the analysis of the circuit in Fig. 5.72(a) is to consider the effect of the three capacitors C_{C1}, C_E, and C_{C2} one at a time. That is, when finding the effect of C_{C1}, we shall assume that C_E and C_{C2} are acting as perfect short circuits, and when considering C_E, we assume that C_{C1} and C_{C2} are perfect short circuits, and so on. This is obviously a major simplifying assumption—and one that might not be justified. However, it should serve as a first cut at the analysis enabling us to gain insight into the effect of these capacitances.

Figure 5.72(b) shows the circuit with C_E and C_{C2} replaced with short circuits. The voltage V_b at the base of the transistor can be written as

$$V_b = V_{bq} - \frac{R_E}{(R_E + r_s)} + \frac{1}{sC_{C1}}$$

and the output voltage is obtained as

$$V_o = -g_mV_s(R_E + R_{C2})$$
These two equations can be combined to obtain the voltage gain \(V_o / V_{in} \) including the effect of \(C_{C_2} \):

\[
V_o / V_{in} = \frac{(R_{b} \parallel r_s) - (R_{b} \parallel r_s + R_{e} \parallel R_{l})}{s + \left(1/C_{C_2} \right) \left[(R_{b} \parallel r_s) + R_{e} \parallel R_{l} \right]}
\]

(5.177)

from which we observe that the effect of \(C_{C_2} \) is to introduce the frequency-dependent factor between the square brackets on the right-hand side of Eq. (5.177). We recognize this factor as the transfer function of a single-time-constant (STC) network of the high-pass type (see Section 1.6 and Appendix D) with a corner (or break) frequency \(\omega_{br} \).

\[
\omega_{br} = \frac{1}{C_{C_2} (R_{b} \parallel r_s + R_{e} \parallel R_{l})}
\]

(5.178)

Note that \((R_{b} \parallel r_s) \) is the resistance seen between the terminals of \(C_{b} \) when \(V_{in} \) is set to zero. The STC high-pass factor introduced by \(C_{b} \) will cause the amplifier gain to roll off at low frequencies at the rate of 6 dB/decade (20 dB/decade) with a 3-dB frequency at:

\[
f = \frac{\omega_{br}}{2\pi}
\]

as indicated in Fig. 5.73(b).

Next, we consider the effect of \(C_{C_1} \). For this purpose we assume that \(C_{b} \) and \(C_{C_2} \) are acting as perfect short circuits and thus obtain the circuit in Fig. 5.73(c). Reflecting \(r_s \) and \(C_{b} \) into the base circuit and utilizing thevenin theorem enables us to obtain the base current as

\[
I_b = V_{in} \frac{R_b}{R_b + R_{cl} (R_{b} \parallel R_{cl}) + \left(\beta + 1 \right) (s + \frac{1}{C_{C_1}})}
\]

The collector current can then be found as \(\beta I_b \), and the output voltage as

\[
V_o = -\beta I_b (R_{e} \parallel R_{l})
\]

\[
= -\frac{R_g}{R_b + R_{cl} (R_{b} \parallel R_{cl}) + \left(\beta + 1 \right) (s + \frac{1}{C_{C_1}})} V_{in}
\]

Thus the voltage gain including the effect of \(C_{C_1} \) can be expressed as

\[
V_o / V_{in} = \frac{(R_{b} \parallel r_s) - (R_{b} \parallel r_s + R_{e} \parallel R_{l})}{s + \left(1/C_{C_1} \right) \left[(R_{b} \parallel r_s) + R_{e} \parallel R_{l} \right]}
\]

(5.179)

We observe that \(C_{b} \) introduces the STC high-pass factor on the extreme right-hand side. Thus \(C_{b} \) causes the gain to fall off at low frequency at the rate of 6 dB/decade with a 3-dB frequency equal to the corner (or break) frequency of the high-pass STC factor; that is,

\[
\omega_{br} = \frac{1}{C_{C_1} (R_{b} \parallel r_s + R_{e} \parallel R_{l})}
\]

(5.180)

Observe that \((R_{b} \parallel r_s) \) is the resistance seen between the two terminals of \(C_{b} \) when \(V_{in} \) is set to zero. The effect of \(C_{b} \) on the amplifier frequency response is illustrated by the sketch in Fig. 5.73(c).

Finally, we consider the effect of \(C_{C_2} \). The circuit with \(C_{b} \) and \(C_{C_1} \) assumed to be acting as perfect short circuits is shown in Fig. 5.73(d), for which we can write

\[
V_o = V_{in} \frac{R_g}{(R_{b} \parallel r_s) + R_{cl}}
\]

and

\[
V_o = -\frac{R_g}{R_b + R_{cl} (R_{b} \parallel R_{cl}) + \left(\beta + 1 \right) (s + \frac{1}{C_{C_2}})} V_{in}
\]

(5.181)

These two equations can be combined to obtain the low-frequency gain including the effect of \(C_{C_2} \) as

\[
V_o / V_{in} = \frac{(R_{b} \parallel r_s) - (R_{b} \parallel r_s + R_{e} \parallel R_{l})}{s + \left(1/C_{C_2} (R_{b} \parallel R_{l}) \right) \left[(R_{b} \parallel r_s) + R_{e} \parallel R_{l} \right]}
\]

(5.182)

We observe that \(C_{C_2} \) introduces the frequency-dependent factor between the square brackets, which we recognize as the transfer function of a high-pass STC network with a break frequency \(\omega_{br} \),

\[
\omega_{br} = \frac{1}{C_{C_2} (R_{b} \parallel R_{l})}
\]

(5.183)

from which we see that it acquires three break frequencies at \(f_{br} \) (for \(R_{b} \)) and \(f_{br} \) (for \(R_{e} \)), and \(f_{br} \) (for \(C_{b} \)) in the low-frequency band. If the frequencies are widely separated, their effects will be distinct, as indicated by the sketch in Fig. 5.73(c). The important point to note here is that the 3-dB frequency \(f_{br} \) is determined by the highest of the three break frequencies. This is usually the break frequency caused by the bypass capacitor \(C_{b} \), simply because the resistance that it sees is usually quite small. Thus, even if one uses a large value for \(C_{b} \), the low-frequency gain of the amplifier will differ somewhat from \(\omega_{br} \), usually by a corner frequency caused by the bypass capacitor \(C_{b} \) simply because the resistance that it sees is usually quite small. Thus, even if one uses a large value for \(C_{b} \), the low-frequency gain of the amplifier will differ somewhat from \(\omega_{br} \). Of course, one can derive the overall transfer function taking this interaction into account. The question becomes what will happen when all three are present at the same time. This question has two parts: First, what happens when all three capacitors are present but do not interact? The answer is that the amplifier low-frequency gain can be expressed as

\[
V_o / V_{in} = -A_{off} \left(\frac{1}{s + \omega_{br}} \right) \left(\frac{1}{s + \omega_{br}} \right) \left(\frac{1}{s + \omega_{br}} \right)
\]

(5.184)

where \(A_{off} \) is the open-loop gain of the amplifier, \(\omega_{br} \) is the corner frequency caused by the bypass capacitor \(C_{b} \), simply because the resistance that it sees is usually quite small. Thus, even if one uses a large value for \(C_{b} \), the low-frequency gain of the amplifier will differ somewhat from \(\omega_{br} \).
calculations we can obtain a reasonably good estimate for f_L using the following formula (which we will not derive here):\(^\text{(5.184)}\)

\[
f_L = \omega_c \left[1 + \frac{1}{2\pi C_2 R_L} + \frac{1}{2\pi C_1 R_L} \right]
\]

or equivalently,

\[
f_L = f_{C1} + f_{C2} + f_{R}
\]

(\text{5.185})

where R_1, R_2, and R_C are the resistances seen by C_1, C_2, and C_{C2} respectively, when V_{il} is set to zero and the other two capacitances are replaced with short circuits. Equations (\text{5.184}) and (\text{5.185}) provide insight regarding the relative contributions of the three capacitors to f_L.

Selecting Values for C_{C1}, C_{C2}, and C_{C2}. We now address the design issue of selecting appropriate values for C_{C1}, C_{C2}, and C_{C2}. The design objective is to place the lower 3-dB frequency at a specified location while minimizing the capacitor values. Since as mentioned above C_2 usually sees the lowest of the three resistances, the total capacitance is minimized by selecting C_2 so that its contribution to f_L is dominant. That is, by reference to Eq. (\text{5.184}), we may select C_2 such that $1/(C_2 R_L)$ is, say, 80% of $\omega_0^2 = 2\pi f_0$, leaving each of the other capacitors to contribute 10% to the value of ω_0. Example 5.19 should help to illustrate this process.

EXAMPLE 5.19

We wish to select appropriate values for C_{C1}, C_{C2}, and C_{C2} for the common-emitter amplifier whose high-frequency response was analyzed in Example 5.18. The amplifier has $R = 100$ kΩ, $R_2 = 5$ kΩ, $R_4 = 10$ kΩ, $\omega_0 = 100$ rad/s, and $f_0 = 2.5$ kHz. It is required to have $f_L = 100$ Hz.

Solution

We first determine the resistances seen by the three capacitors C_{C1}, C_{C2}, and C_{C2} as follows:

\[
R_{C1} = \left(R_4 \parallel R_2 \right) + R_{dc}
\]

\[
R_E = r_e + \frac{R_{dc}}{\beta + 1}
\]

\[
R_{C2} = R_E + R_{dc} = 8 + 5 = 13 \text{ kΩ}
\]

Now, selecting C_2 so that it contributes 10% of the value of ω_0 gives:

\[
\frac{1}{C_2} = 0.8 \times 2\pi \times 100
\]

or $C_2 = 27.6 \mu$F.

\(^{11}\) The interested reader can refer to Chapter 7 of the fourth edition of this book.

Next, if C_{C1} is to contribute 10% of f_L,

\[
\frac{1}{C_{C1}} = \frac{7.44 \times 10^5}{4.2 \times 10^6 + 100} = 0.1 \times 2\pi \times 100
\]

or $C_{C1} = 2.1 \mu$F.

Similarly, if C_{C2} is to contribute 10% of f_L, its value should be selected as follows:

\[
\frac{1}{C_{C2}} = \frac{3.1 \times 10^5}{4.2 \times 10^6 + 100} = 0.1 \times 2\pi \times 100
\]

or $C_{C2} = 1.2 \mu$F.

In practice, we would select the nearest standard values for the three capacitors while ensuring that $f_L < 100$ Hz.

EXERCISE

5.10 A common-emitter amplifier has $C_{C1} = C_{C2} = 1 \mu$F, $R_2 = 10$ kΩ, $R_4 = 5$ kΩ, $R_{dc} = 2$ mΩ, $V_{cc} = 2$ V, and $V_{cc} = 2$ V. Assuming that the three capacitors do not interact, find f_L, f_{C1}, and f_{C2}, and hence, estimate f_{C2}.

Ans. $f_L = 2.21$ kHz; $f_{C1} = 2.14$ Hz; $f_{C2} = 1.22$ kHz; since $f_L > f_{C1}$ and f_{C2}, and hence estimate f_{C2}.

5.9.4 A Final Remark

The frequency response of the other amplifier configurations will be studied in Chapter 6.

5.10 THE BASIC BJT DIGITAL LOGIC INVERTER

The most fundamental component of a digital system is the logic inverter. In Section 1.7, the logic inverter was studied at a conceptual level, and the realization of the inverter using voltage-controlled switches was presented. Having studied the BJT, we can now consider its application in the realization of a simple logic inverter. Such a circuit is shown in Fig. 5.74. The reader will note that we have already studied this circuit in some detail. In fact, we used it in Section 5.3.4 to illustrate the operation of the BJT as a switch. The operation of the circuit as a

FIGURE 5.74 Basic BJT digital logic inverter.
logic inverter makes use of the cutoff and saturation modes. In very simple terms, if the input voltage \(v_i \) is "high," at a value close to the power-supply voltage \(V_{CC} \), the transistor will be conducting and, with appropriate choice of values for \(R_9 \) and \(R_C \), saturated. Thus the output voltage will be \(V_{CEsat} \approx 0.2 \) V, representing a "low" logic level or logic 0 in a positive logic system. Conversely, if the input voltage is "low," at a value close to ground (e.g., \(V_{CEoff} \)), then the transistor will be cut off; \(i_c \) will be zero, and \(v_o = V_{CC} \), which is "high" or logic 1.

The choice of cutoff and saturation as the two modes of operation of the BJT in this inverter circuit is motivated by the following two factors:

1. The power dissipation in the circuit is relatively low in both cutoff and saturation: In cutoff all currents are zero (except for very small leakage currents), and in saturation the voltage across the transistor is very small (\(V_{CEsat} \)).

2. The output voltage levels (\(V_{CC} \) and \(V_{CEsat} \)) are well defined. In contrast, if the transistor is operated in the active region, \(i_c = I_C - i_t R_C = V_C - \beta I_B R_C \), which is highly dependent on the rather ill-controlled transistor parameter \(\beta \).

5.10.1 The Voltage Transfer Characteristic

As mentioned in Section 1.7, the most useful characterization of an inverter circuit is in terms of its voltage transfer characteristic, \(v_o \) versus \(v_i \). A sketch of the voltage transfer characteristic (VTC) of the inverter circuit of Fig. 5.74 is presented in Fig. 5.75. The transfer characteristic is approximated by three straight-line segments corresponding to the operation of the BJT in the cutoff, active, and saturation regions, as indicated. The actual transfer characteristic will obviously be a smooth curve but will closely follow the straight-line asymptotes indicated. We shall now compute the coordinates of the breakpoints of the transfer characteristic of Fig. 5.75 for a representative case—\(R_9 = 10 \) k\(\Omega \), \(R_C = 1 \) k\(\Omega \), \(\beta = 50 \), and \(V_{CC} = 5 \) V—as follows:

1. At \(v_i = V_{CEoff} = V_{CEsat} = 5 \) V, the transistor will be deep into saturation with \(v_o = V_{CC} = 0.2 \) V, representing a "low" logic level or logic 0 in a positive logic system. Thus, the output voltage will be \(V_{CEsat} \approx 0.2 \) V, representing a "low" logic level or logic 0 in a positive logic system. Conversely, if the input voltage is "low," at a value close to ground (e.g., \(V_{CEoff} \)), then the transistor will be cut off; \(i_c \) will be zero, and \(v_o = V_{CC} \), which is "high" or logic 1.

2. At \(v_i = V_B = V_{CEoff} = 5 \) V, the transistor begins to turn on; thus, \(V_{CEoff} = 0.2 \) V, representing a "low" logic level or logic 0 in a positive logic system. Conversely, if the input voltage is "low," at a value close to ground (e.g., \(V_{CEoff} \)), then the transistor will be cut off; \(i_c \) will be zero, and \(v_o = V_{CC} \), which is "high" or logic 1.

3. For \(V_B \leq v_o \leq V_{CEsat} \), the transistor is in the active region. It operates as an amplifier whose small-signal gain is

\[
A_v = \frac{\frac{v_o}{v_i}} {\frac{v_o}{v_i}} = \frac{R_C}{R_9 + r_e}.
\]

The gain depends on the value of \(r_e \), which in turn is determined by the collector current and hence by the value of \(v_i \). As the current through the transistor increases, \(r_e \) decreases and we can neglect \(r_e \) relative to \(R_9 \), thus simplifying the gain expression to

\[
A_v = \frac{R_C}{R_9} = 10 \Omega \times \frac{1}{10} = 1 \Omega \times \frac{1}{10} = 0.1 \Omega.
\]

4. At \(v_i = V_{CEoff} \), the transistor enters the saturation region. Thus \(V_{CEoff} \) is the value of \(v_i \) that results in the transistor being at the edge of saturation,

\[
I_C = \frac{V_{CEoff} - V_{CEsat}}{R_C}.
\]

5. For \(v_i = V_{CEoff} = 5 \) V, the transistor will be deep into saturation with \(v_o = V_{CEsat} = 0.2 \) V, and

\[
\beta_{sasat} = \frac{V_{CEoff} - V_{CEsat}}{V_{CEoff} - V_{CEoff}} = 8.84.
\]

6. The noise margins can now be computed using the formulas from Section 1.7,

\[
NM_H = V_{BB} - V_{CEoff} = 5 - 1.66 = 3.34 \text{ V}.
\]

\[
NM_L = V_{CC} - V_{CEoff} = 5 - 0.2 = 4.8 \text{ V}.
\]

7. The gain in the transition region can be computed from the coordinates of the breakpoints \(X \) and \(Y \),

\[
\text{Voltage gain} = \frac{V_{BB} - V_{CEoff}}{V_{BB} - V_{CEoff}} = \frac{5 - 0.2}{1.66 - 0.7} = 5 \text{ V/V}.
\]

which is equal to the approximate value found above (the fact that it is exactly the same value is a coincidence).

5.10.2 Saturated Versus Nonsaturated BJT Digital Circuits

The inverter circuit just discussed belongs to the saturated variety of BJT digital circuits. A historically significant family of saturated BJT logic circuits is transistor-transistor logic.
A FIGURE 5.76. The minority-carrier charge stored in the base of a saturated transistor can be divided into two components: that in blue produces the gradient that gives rise to the diffusion current across the base, and that in gray results from driving the transistor deeper into saturation.

(TTL). Although some versions of TTL remain in use, saturated bipolar digital circuits generally are no longer the technology of choice in digital system design. This is because their speed of operation is severely limited by the relatively long time delay required to turn off a saturated transistor, as we will now explain, briefly.

In our study of BJT saturation in Section 5.1.5, we made use of the minority-carrier distribution in the base region (see Fig. 5.10). Such a distribution is shown in Fig. 5.76, where the minority carrier charge stored in the base has been divided into two components: The component represented by the blue triangle produces the gradient that gives rise to the diffusion current across the base; the other component, represented by the gray rectangle, causes the transistor to be driven deeper into saturation. The deeper the transistor is driven into saturation (i.e., the greater is the base overdrive factor), the greater the amount of the “gray” component of the stored charge will be. It is this “extra” stored base charge that represents a serious problem when it comes to turning off the transistor: Before the collector current can begin to decrease, all of the extra stored charge must first be removed. This adds a relatively large component to the turn-off time of a saturated transistor.

From the above we conclude that to achieve high operating speeds, the BJT should not be allowed to saturate. This is the case in current-mode logic in general and for the particular form called emitter-coupled logic (ECL), which will be studied briefly in Chapter 11. There, we will show why ECL is currently the highest-speed logic-circuit family available. It is based on the current-switching arrangement that was discussed conceptually in Section 1.7 (Fig. 1.33).

EXERCISE

5.53 Consider the inverter of Fig. 5.74 when \(v_i = \text{low} \). Let the output be connected to the input terminals of \(N \) identical inverters. Convince yourself that the output level \(v_{OH} \) can be determined using the equivalent circuit shown in Fig. E5.53. Hence show that

\[
V_{OH} = \frac{V_{CC}}{2} - \frac{V_{BE}}{R_C + R_B} R_C.
\]
The base-emitter diode (D_{BE}) and the base-collector diode (D_{BC}) are given, respectively, by

$$i_{BE} = \frac{I_e}{\beta_p} \left(e^{\frac{V_{BE}}{V_T}} - 1\right)$$ \hspace{1cm} (5.186)

and

$$i_{BC} = \frac{I_e}{\beta_p} \left(e^{\frac{V_{BC}}{V_T}} - 1\right)$$ \hspace{1cm} (5.187)

where β_p and β_n are the emission coefficients of the BEJ and BCJ, respectively. These coefficients are generalizations of the constant n of the pn-junction diode. (We have so far assumed $\beta_p = \beta_n = 1$). The controlled current-source i_{CE} in the transport model is defined as

$$i_{CE} = I_e \left(e^{\frac{V_{CE}}{V_T}} - e^{-\frac{V_{CE}}{V_T}}\right)$$ \hspace{1cm} (5.188)

Observe that i_{CE} represents the current component of i_C that arises as a result of the minority-carrier diffusion across the base, or carrier transport across the base (hence the name transport model). The reader can easily show that, for $\beta_p = \beta_n = 1$, the relations

$$i_b = i_{BE} + i_{BC}$$ \hspace{1cm} (5.189)

$$i_C = i_{CE}$$ \hspace{1cm} (5.190)

$$i_C = i_{CE}$$ \hspace{1cm} (5.191)

for the BJT currents in the transport model result in expressions identical to those derived in Eqs. (5.53), (5.26), and (5.27), respectively. Thus, the transport form (Fig. 5.77) of the Ebers-Moll model is exactly equivalent to its injection form (Fig. 5.8). Moreover, it has the advantage of being simpler, requiring only a single controlled source from emitter to collector. Hence, it is preferred for computer simulation.

The transport model can account for the Early effect (studied in Section 5.2.3) in a forward-biased BJT by including the factor $(1 - V_{CE}/V_T)$ in the expression for the transport current i_{CE} as follows:

$$i_{CE} = I_e \left(e^{\frac{V_{CE}}{V_T}} - e^{-\frac{V_{CE}}{V_T}}\right) \left(1 - \frac{V_{CE}}{V_T}\right)$$ \hspace{1cm} (5.192)

Figure 5.78 shows the large-signal Ebers-Moll BJT model used in SPICE. It is based on the transport form of the Ebers-Moll model shown in Fig. 5.77. Here, resistors r_B, r_E, and r_C are added to represent the ohmic resistance of, respectively, the base, emitter, and collector regions. The dynamic operation of the BJT is modeled by two nonlinear capacitors, C_{BC} and C_{CE}, and a depletion junction capacitance C_J. Each of these capacitors generally includes a diffusion component (i.e., C_{BC} and C_{CE}) and a depletion junction capacitance C_J to account for the charge-storage effects within the BJT (as described in Section 5.8). Furthermore, the BJT model includes a depletion junction capacitance C_J to account for the collector-substrate capacitance in integrated-circuit BJTs, where a reverse-biased pn-junction is formed between the collector and the substrate (which is common to all components of the IC).

For small-signal (ac) analysis, the SPICE BJT model is equivalent to the hybrid-π model of Fig. 5.67, but augmented with r_B, r_E, and (for IC BJTs) C_J. Furthermore, the

5.11.2 The SPICE Gummel-Poon Model of the BJT

The large-signal Ebers-Moll BJT model described in Section 5.11.1 lacks a representation of some second-order effects present in actual devices. One of the most important such effects is the variation of the current gains, β_p and β_n, with the current I_e. The Ebers-Moll model assumes β_p and β_n to be constant, thereby neglecting their current dependence (as depicted in Fig. 5.32). To account for this, and other second-order effects, SPICE uses a more accurate, yet more complex, BJT model called the Gummel-Poon model (named after Gummel and Poon, two pioneers in this field). This model is based on the relationship between the electrical terminal characteristics of a BJT and its base charge. It is beyond the scope of this book to delve into the model details. However, it is important for the reader to be aware of the existence of such a model.

In SPICE, the Gummel-Poon model automatically simplifies to the Ebers-Moll model when certain model parameters are not specified. Consequently, the BJT model to be used by SPICE need not be explicitly specified by the user (unlike the MOSFET case in which the model is specified by the LEVEL parameter). For discrete BJTs, the values of the SPICE model parameters can be determined from the data specified on the BJT data sheets, supplemented (if needed) by key measurements. For instance, in Example 5.20 (Section 5.11.4), we will use the Q2N3904 npn BJT (from Fairchild Semiconductor) whose SPICE model is
available in PSpice. In fact, the PSpice library already includes the SPICE model parameters for many of the commercially available discrete BJTs. For IC BJTs, the values of the SPICE model parameters are determined by the IC manufacturer (using both measurements on the fabricated devices and knowledge of the details of the fabrication process) and are provided to the IC designers.

5.11.3 The SPICE BJT Model Parameters

Table 5.8 provides a listing of some of the BJT model parameters used in SPICE. The reader should be already familiar with these parameters. In the absence of a user-specified value for a particular parameter, SPICE uses a default value that typically results in the corresponding effect being ignored. For example, if no value is specified for the forward Early voltage V_{AF}, SPICE assumes that $V_{AF} = \infty$ and does not account for the Early effect. Although ignoring the forward Early voltage V_{AF} can be a serious issue in some circuits, the same is not true, for example, for the value of the reverse Early voltage V_{AR}.

5.11.4 The BJT Model Parameters BF and BR in SPICE

Before leaving the SPICE model, a comment on β is in order. SPICE interprets the user-specified model parameters BF and BR as the ideal maximum forward and reverse current gains, respectively, versus the operating current. These parameters are not equal to the constant current-independent parameters β_F and β_R used in the Ebers-Moll model (and throughout this chapter) for the forward and reverse dc current gains of the BJT. SPICE uses a current-dependent model for β_F and β_R, and the user can specify other parameters (not shown in Table 5.8) for this model. Only when such parameters are not specified, and the Early effect is neglected, will SPICE assume that β_F and β_R are constant and equal to BF and BR, respectively. Furthermore, SPICE computes values for both β_F and β_R, the two parameters that we generally assume to be approximately equal. SPICE then uses β_F to perform small-signal (ac) analysis.

EXAMPLE 5.21

DEPENDENCE OF β ON THE BIAS CURRENT

In this example, we use PSpice to simulate the dependence of β_F on the collector bias current for the Q2N3904 discrete BJT (from Fairchild Semiconductor) whose model parameters are listed in Table 5.9 and are available in PSpice. As shown in the Capture schematic of Fig. 5.79, the V_{CE} of the BJT is fixed using a constant voltage source (in this example, $V_{CE} = 2$ V) and a dc current source I_{B} is applied at the base. To illustrate the dependence of β_F on the collector current I_C, we perform a dc-analysis simulation in which the sweep variable is the current source I_B. The β_F of the BJT, which corresponds to the ratio of the collector current I_C to the base current I_B, can then be plotted versus I_B using Probe (the graphical interface of PSpice), as shown in Fig. 5.80.

We see that to operate at the maximum value of β_F (i.e., $I_B = 163$), at $V_{CE} = 2$ V, the BJT must be biased at an I_B of 10 mA. Since increasing the bias current of a transistor increases the power dissipation, it is clear from Fig. 5.80 that the choice of current source I_B is a trade-off between the current gain β_F and the power dissipation. Generally speaking, the optimum I_B depends on the application and technology in hand. For example, for the Q2N3904 BJT operating at $V_{CE} = 2$ V, decreasing I_B by a factor of 20 (from 10 mA to 0.5 mA) results in a drop in β_F of about 25% (from 163 to 125).

| **TABLE 5.8** Parameters of the SPICE BJT Model (Partial Listing) |
|------------------|------------------|----------------------------------|
| **SPICE Parameter** | **Book Symbol** | **Description** | **Units** |
| IS | I_s | Saturation current | A |
| BF | F_B | Ideal maximum forward current gain | A |
| BR | F_R | Ideal maximum reverse current gain | A |
| NF | m_F | Forward current emission coefficient | V |
| NR | m_R | Reverse current emission coefficient | V |
| VAF | V_{AF} | Forward Early voltage | V |
| VAR | V_{AR} | Reverse Early voltage | V |
| RB | r_s | Zero-bias base-emitter resistance | Ω |
| RC | r_c | Collector resistance | Ω |
| RF | r_f | Emitter resistance | Ω |
| TF | τ_f | Ideal forward transit time | s |
| TR | τ_r | Ideal reverse transit time | s |
| CJC | C_{je0} | Zero-bias base-collector depletion (junction) capacitance | F |
| MIC | m_{nc} | Base-collector grading coefficient | A |
| VIC | V_{bc0} | Base-collector built-in potential | A |
| CJE | C_{je0} | Zero-bias base-emitter depletion (junction) capacitance | F |
| MJE | m_{nc} | Base-emitter grading coefficient | A |
| VJE | V_{bc0} | Base-emitter built-in potential | A |
| CJS | C_{je0} | Zero-bias collector-substrate depletion (junction) capacitance | F |
| MSIS | C_{bc0} | Collector-substrate grading coefficient | F |
| VIS | V_{bc0} | Collector-substrate built-in potential | V |

TABLE 5.9 SPICE Model Parameters of the Q2N3904 Discrete BJT

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Value</th>
<th>Model</th>
<th>Parameter</th>
<th>Value</th>
<th>Model</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2N3904</td>
<td>I_{B}</td>
<td>163</td>
<td>Q2N3904</td>
<td>I_{C}</td>
<td>10</td>
<td>Q2N3904</td>
<td>V_{CE}</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_{AF}</td>
<td>74.03</td>
<td></td>
<td>BF</td>
<td>416.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NE</td>
<td>1.259</td>
<td></td>
<td>BR</td>
<td>.7371</td>
</tr>
</tbody>
</table>

\[\text{Reference:} \text{Fairchild Semiconductor} \]

Chapter 5

Bipolar Junction Transistors (BJTs)

Parameters:

- $I_B = 10 \mu A$
- $V_{CE} = 2V$

Figure 5.79 The PSpice testbench used to demonstrate the dependence of β_m on the collector bias current I_C for the Q2N3904 discrete BJT (Example 5.20).

Figure 5.80 Dependence of β_m on I_C (at $V_{CE} = 2V$) in the Q2N3904 discrete BJT (Example 5.20).

Example 5.21: The CE Amplifier with Emitter Resistance

In this example, we use PSpice to compute the frequency response of the CE amplifier and investigate its bias-point stability. A capture schematic of the CE amplifier is shown in Fig. 5.81. We will use part Q2N3904 for the BJT and a ±5-V power supply. We will also assume a signal-source resistor $R_{sig} = 10 \text{k}\Omega$, a load resistor $R_L = 10 \text{k}\Omega$, and bypass and coupling capacitors of 5.11 nF.

To enable us to investigate the effect of including a resistance in the signal path of the emitter, a resistor R_e is connected in series with the emitter bypass capacitor C_E. Note that the roles of R_E and R_{ce} are different. Resistor R_E is the dc emitter degeneration resistor because it appears in the dc path between the emitter and ground, and it is therefore used to stabilize the bias point for the amplifier. The equivalent resistance $R_e = R_E + R_{ce}$ is the small-signal emitter degeneration resistance because it appears in the ac (small-signal) path between the emitter and ground and helps stabilize the gain of the amplifier. In this example, we will investigate the effects of both R_E and R_{ce} on the performance of the CE amplifier. However, as should always be the case with computer simulation, we will begin with an approximate pencil-and-paper design, his way, maximum advantage and insight can be obtained from simulation.

Based on the plot of β_m versus I_C in Fig. 5.80, a collector bias current I_C of 0.5 mA is selected for the BJT, resulting in $R_{ce} = 123$. This choice of I_C is a reasonable compromise between power dissipation and current gain. Furthermore, a collector bias voltage V_C of 0 V (i.e., at the mid-supply rail) is selected to achieve a high signal swing at the amplifier output. For $V_{CE} = 2V$, the result is that $V_B = -2V$ requires bias resistors with values

- $R_C = \frac{V_{CC} - V_C}{I_C} = 30 \text{k}\Omega$

and

- $R_E = \frac{V_E - V_{BE}}{I_E} = 6 \text{k}\Omega$

Assuming $V_{BE} = 0.7 V$ and using $\beta_m = 123$, we can determine

- $R_E = \frac{V_E - V_{BE}}{I_E/\beta_m} = \frac{2V - 0.7V}{(0.5mA)/123} = 320 \text{k}\Omega$

Figure 5.81 Capture schematic of the CE amplifier in Example 5.21.
Next, the formulas of Section 5.7.4 can be used to determine the input resistance \(R_i \) and the midband voltage gain \(|A_{\text{in}}| \) of the CE amplifier:

\[
|A_{\text{in}}| = \frac{\frac{R_B}{R_C} + \frac{1}{r_e}}{1 + \frac{R_B}{r_e}}
\]

(5.194)

For simplicity, we will assume \(\beta_i = \beta_e = 123 \), resulting in

\[
r_e = \left(\frac{\beta_e}{\beta_i + 1} \right) \left(1 + \frac{V_T}{I_C} \right) = 49.6 \Omega
\]

(5.193)

Thus, with no small-signal emitter degeneration (i.e., \(R_c = 0 \)), \(R_i = 6.1 \, \text{k}\Omega \) and \(|A_{\text{in}}| = 38.2 \, \text{V/V} \). Using Eq. (5.194) and assuming \(R_B \) is large enough to have a negligible effect on \(R_i \), it can be shown that the emitter degeneration resistor \(R_c \) decreases the voltage gain \(|A_{\text{in}}| \) by a factor of

\[
\frac{1 + \frac{R_B}{R_C}}{1 + \frac{R_B}{r_e}}
\]

(5.195)

Therefore, to limit the reduction in voltage gain to a factor of 2, we will select

\[
R_c = r_e + \frac{R_B}{\beta_e + 1}
\]

(5.196)

Thus, \(R_i = R_c = 130 \, \text{Q} \). Substituting this value in Eqs. (5.193) and (5.194) shows that \(R_i \) increases from 6.1 k\Omega to 20.9 k\Omega while \(|A_{\text{in}}| \) drops from 38.2 V/V to 18.8 V/V.

We will now use PSpice to verify our design and investigate the performance of the CE amplifier. We begin by performing a bias-point simulation to verify that the BJT is properly biased in the active region and that the dc voltages and currents are within the desired specifications. Based on this simulation, we have increased the value of \(R_c \) to 340 k\Omega in order to limit \(I_C \) to about 0.5 mA while using a standard 1\% resistor value (Appendix G).

For simplicity, we will assume \(I_C = 123 \), resulting in

\[
I_C = 130 \, \text{Q}. \text{Substituting this value in Eqs. (5.193) and (5.194) shows that}
\]

\[
|A_{\text{in}}| \text{ drops from 38.2 V/V by a factor of 2 (i.e., 6 dB).}
\]

Interestingly, \(|A_{\text{in}}| \) is large enough to have a negligible effect on \(R_i \). Therefore, to limit the reduction in voltage gain to a factor of 2, we will select

\[
R_c = r_e + \frac{R_B}{\beta_e + 1}
\]

(5.195)

Thus, \(R_i = R_c = 130 \, \text{Q} \). Substituting this value in Eqs. (5.193) and (5.194) shows that \(R_i \) increases from 6.1 k\Omega to 20.9 k\Omega while \(|A_{\text{in}}| \) drops from 38.2 V/V to 18.8 V/V.

We will now use PSpice to verify our design and investigate the performance of the CE amplifier. We begin by performing a bias-point simulation to verify that the BJT is properly biased in the active region and that the dc voltages and currents are within the desired specifications. Based on this simulation, we have increased the value of \(R_c \) to 340 k\Omega in order to limit \(I_C \) to about 0.5 mA while using a standard 1\% resistor value (Appendix G).

TABLE 5.10 Variations in the Bias Point of the CE Amplifier with the SPICE Model-Parameter BF of BJT

<table>
<thead>
<tr>
<th>BF (in SPICE)</th>
<th>(\beta_{ie})</th>
<th>(\beta_{ei})</th>
<th>(I_C) (mA)</th>
<th>(V_C) (V)</th>
<th>(\beta_{in})</th>
<th>(\beta_{ce})</th>
<th>(I_C) (mA)</th>
<th>(V_C) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>106</td>
<td>94.9</td>
<td>0.452</td>
<td>0.484</td>
<td>109</td>
<td>99.9</td>
<td>0.377</td>
<td>1.227</td>
</tr>
<tr>
<td>416.4 (nominal)</td>
<td>143</td>
<td>123</td>
<td>0.494</td>
<td>0.062</td>
<td>148</td>
<td>127</td>
<td>0.094</td>
<td>0.060</td>
</tr>
<tr>
<td>832</td>
<td>173</td>
<td>153</td>
<td>0.518</td>
<td>-0.183</td>
<td>181</td>
<td>151</td>
<td>0.585</td>
<td>-0.878</td>
</tr>
</tbody>
</table>

The reader should not be alarmed about the use of such a large signal amplitude. Recall (Section 2.9.1) that, in a small-signal (ac) simulation, SPICE first finds the small-signal equivalent circuit at the dc bias point, and then analyzes this linear circuit. Such an analysis can, of course, be done with any ac signal amplitude. However, a 1-V ac input is convenient to use as the resulting ac output corresponds to the voltage gain of the circuit.

Accordingly, we see that emitter degeneration makes the bias point of the CE amplifier much less sensitive to changes in \(\beta_e \), provided that the bias point is properly set (see the discussion in Section 5.5.1). Further, they are sensitive to changes in \(\beta_e \), provided that the bias point is properly set (see the discussion in Section 5.5.1).
SUMMARY

- Depending on the bias conditions on its two junctions, the BJT can operate in one of four possible modes: cutoff (both junctions reverse biased), active (the EBJ forward biased and the CBJ reverse biased), saturation (both junctions forward biased), and reverse-active (the EBI reverse biased and the CBI forward biased).

- For amplifier applications, the BJT is operated in the active mode. Switching applications make use of the cutoff and saturation modes. The reverse-active mode of operation is of conceptual interest only.

- A BJT operating in the active mode provides a collector current \(I_C \) = \(a I_E \), with \(V_E B = 0 \), the CBJ breaks forward biased, and \(V_C E = 0 \), the EBJ is reverse biased.

- In a saturated transistor, \(|V_I C_{SNL}| \) is nearly zero, \(V_C B \) = \(0 \), and the output is taken at the collector. A high voltage gain and a reasonably high input resistance are obtained, but the high-frequency response is limited.

- Bias design seeks to establish a dc collector current that is an independent variable of the value of \(B \) as possible.

- In the common-emitter configuration, the emitter is at signal ground, the input signal is applied to the base, and the output is taken at the collector. A high voltage gain and a reasonably high input resistance are obtained, but the high-frequency response is limited.

- The input resistance of the common-emitter amplifier can be increased by including an uncompensated resistance in the emitter lead. This resistance-degeneration resistance provides other performance improvements at the expense of reduced voltage gain.

- In the common-base connection, the base is at ground, the input signal is applied to the emitter, and the output is taken at the collector. A high voltage gain (emitter amplifier to collector) and an excellent high-frequency response are obtained, but the input resistance is very low.

- The emitter-base amplifier is useful as a current buffer.

- In the emitter follower the collector is at signal ground, the input signal is applied to the base, and the output taken at the emitter. Although the voltage gain is less than unity, the input resistance is very high and the output resistance is very low. The circuit is useful as a voltage buffer.

- Table 5.5 provides a summary of the equations for determining the model parameters.

- Bias design seeks to establish a dc collector current that is independent of the value of \(B \) as possible.

- In the common-emitter configuration, the emitter is at signal ground, the input signal is applied to the base, and the output is taken at the collector. A high voltage gain and a reasonably high input resistance are obtained, but the high-frequency response is limited.

- The input resistance of the common-emitter amplifier can be increased by including an uncompensated resistance in the emitter lead. This resistance-degeneration resistance provides other performance improvements at the expense of reduced voltage gain.

- In the common-base connection, the base is at ground, the input signal is applied to the emitter, and the output is taken at the collector. A high voltage gain (emitter amplifier to collector) and an excellent high-frequency response are obtained, but the input resistance is very low.

- The emitter-base amplifier is useful as a current buffer.

- In the emitter follower the collector is at signal ground, the input signal is applied to the base, and the output taken at the emitter. Although the voltage gain is less than unity, the input resistance is very high and the output resistance is very low. The circuit is useful as a voltage buffer.

- Table 5.5 provides a summary of the equations for determining the model parameters.

- For a summary of the characteristics of discrete single-stage BJT amplifiers, refer to Table 5.6.

- Analysis of the high-frequency gain of the CE amplifier in Section 5.9 shows that the gain rolls off at a slope of -6 dB/octave with the 3 dB frequency \(f_T = 1/(2 \pi \times R_C E C \times C_E) \). Here, \(R_C E C \) is a modified value of the collector resistance equal to \(R_C E C \approx R_C \times C_E \times (1 + a \times R_C E C) \). The multiplication of \(C_E \) by \((1 + a \times R_C E C) \) is the Miller effect, which is the most significant factor limiting the high-frequency response of the CE amplifier.

- For the analysis of the effect of \(C_{BE} \) and \(C_P \) on the load line of the CE amplifier, refer to Section 5.9.3 and in particular to Figs. 5.73.

PROBLEMS

SECTION 5.1: DEVICE STRUCTURE AND PHYSICAL OPERATION

5.1 The terminal voltages of various npn transistors are measured during operation in their respective circuits with the following results:

<table>
<thead>
<tr>
<th>Case</th>
<th>E</th>
<th>B</th>
<th>C</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.7</td>
<td>0.7</td>
<td>Mode</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.8</td>
<td>0.8</td>
<td>Mode</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.7</td>
<td>0.7</td>
<td>Mode</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>Mode</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.7</td>
<td>0.7</td>
<td>Mode</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.8</td>
<td>0.8</td>
<td>Mode</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0.9</td>
<td>0.9</td>
<td>Mode</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0.95</td>
<td>0.95</td>
<td>Mode</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0.99</td>
<td>0.99</td>
<td>Mode</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.995</td>
<td>0.995</td>
<td>Mode</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0.999</td>
<td>0.999</td>
<td>Mode</td>
</tr>
</tbody>
</table>

In this table, where the entries are in volts, 0 indicates the reference terminal to which the black (negative) probe of the voltmeter is connected. For each case, identify the mode of operation of the transistor.

5.2 An npn transistor has an emitter area of 0.2 mm and a collector area of 0.01 mm. The doping concentrations are as follows: in the emitter \(N_E = 10^{18} \text{cm}^{-3} \), in the base \(N_B = 10^{16} \text{cm}^{-3} \), and in the collector \(N_C = 10^{12} \text{cm}^{-3} \). The transistor is operating at \(T = 300 \text{K} \), where \(D = 10^6 \text{cm}^2\text{v}^{-1}\text{s}^{-1} \). For holes diffusing in the base, \(L_B = 15 \mu \text{m} \) and \(D_B = 1 \times 10^{-12} \text{cm}^2\text{v}^{-1}\text{s}^{-1} \). For holes diffusing in the emitter, \(L_E = 0.6 \mu \text{m} \) and \(D_E = 1.7 \times 10^{-12} \text{cm}^2\text{v}^{-1}\text{s}^{-1} \). Calculate \(i_E \) and \(i_B \) (assuming that the base-wide diffusion is small).

5.5 Find the values of \(B \) that correspond to \(

5.6 Find the values of \(P \) that correspond to \(B \) values of 1, 2, 10, 20, 100, 200, 1000, and 2000.

5.7 Measurement of \(V_E B \) and two terminal currents taken on a number of npn transistors are tabulated below. For each, calculate the missing current value as well as \(a \) and \(B \), as indicated by the table.

<table>
<thead>
<tr>
<th>Transistor</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>100000</td>
</tr>
</tbody>
</table>

5.8 Consider an npn transistor whose base-emitter drop is 0.7 V at a collector current of 10 mA. What current will it conduct at \(V_E B = 6.70 \text{V} \)? What is its base-emitter voltage for \(i_C = 10 \mu \text{A} \)?

5.9 Show that for a transistor with \(a \) close to unity, \(B \) changes by a small per-unit amount \((\Delta B/\Delta a) \), the corresponding per unit change in \(B \) given approximately by \(\frac{\Delta B}{\Delta a} \approx \frac{B}{a} \).

5.10 An npn transistor of np type whose \(B \) is specified to range from 60 to 200 in a circuit with emitter grounded, collector at 0 V, and a current of 50 mA injected into the base. Calculate the range of collector and emitter currents that can result. What is the maximum power dissipated in the transistor? (Note: Perhaps you can see why this is a bad way to establish the operating current in the collection of a BJT.)

5.11 A particular BJT when conducting a collector current of 10 mA is known to have \(V_E B = 0.70 \text{V} \) and \(i_C = 100 \mu \text{A} \). Use these data to create specific transistor models of the form shown in Figs. 5.5(a) and (b).

The basic BJT logic inverter utilizes the cutoff and saturation modes of transistor operation. A saturated transistor has a large amount of minority-carrier charge stored in its base region and thus starts to turn off.
5.12 Using the npn transistor model of Fig. 5.5(b), consider the case of a transistor for which the base is connected to ground, the collector is connected to a 10-V dc source through a 2-kΩ resistor, and a 3-mA current source is connected to the emitter with the polarity so that current is drawn out of the emitter terminal. If $\beta = 100$ and $I_s = 10^{-5}$ A, find the voltages at the emitter and the collector and calculate the base current.

5.13 Consider an npn transistor for which $\beta = 100$, $a = 0.1$, and $I_s = 10^{-15}$ A.

(a) If the transistor is operated in the forward active mode with $I_s = 10^{-5}$ A and $V_{CE} = 1$ V, find V_{BE}, I_e, and I_c.

(b) Now, operate the transistor in the reverse active mode with a forward-bias voltage V_{BE} equal to the value of V_{BE} found in (a) and with $V_{CS} = 1$ V. Find I_e, I_c, and I_s.

5.14 A transistor characterized by the Ebers-Moll model shown in Fig. 5.5(a) is operated with both emitter and collector grounded and a base current of 1 mA. If the collector junction is 10 times larger than the emitter junction and $a = 1$, find I_e and I_c.

5.15 (a) Use the Ebers-Moll expressions in Eqs. (5.26) and (5.27) to show that the $I_c = I_v$ relationship sketched in Fig. 5.9 can be described by

$$I_c = I_v - I_s \left(1 + \frac{1}{a_v} \right) e^{-\frac{v_e}{V_T}}$$

(b) Calculate and sketch $I_c = I_v$ curves for a transistor for which $I_s = 10^{-15}$ A, $a_v = 1$, and $V_T = 0.7$. Sketch graphs for $I_s = 0.1$ mA, 0.5 mA, and 1 mA. For each, give the values of a_v, V_T, and V_B for which (a) $I_c = 0.5 I_v$, and (b) $I_c = 0$.

5.16 Consider the pnp large-signal model of Fig. 5.12 applied to a transistor having $I_f = 10^{-15}$ A and $\beta = 40$. If the emitter is connected to ground, the base is connected to a current source that pulls 20 μA out of the base terminal, and the collector is connected to a positive supply of +10 V via a 10-kΩ resistor, find the collector voltage, the emitter current, and the base voltage.

5.17 A pnp transistor has $V_{BE} = 0.8$ V at a collector current of 1 A. What do you expect V_{BE} to become at $I_c = 10$ mA? At $I_c = 5$ A?

5.18 A pnp transistor modeled with the circuit in Fig. 5.12 is connected with its base at ground, collector at −1.5 V, and 10-mA current injected into its emitter. If it is said to have $\beta = 10$, what are its base and collector currents? In which direction do they flow? If $I_c = 10^{-15}$ A, what voltage results at the emitter? What does the collector current become if a transistor with $\beta = 1000$ is substituted? (Note: The fact that the collector current changes by less than 10% for a large change of β illustrates that this is a good way to establish a specific collector current.)

5.19 A pnp power transistor operates with an emitter-to-collector voltage of 5 V, an emitter current of 10 A, and $V_{BE} = 0.85$ V. For $\beta = 15$, what base current is required? What is I_c for this transistor? Compare the emitter-base junction area of this transistor with that of a small-signal transistor that conducts $I_c = 1$ mA with $V_{BE} = 0.70$ V. How much larger is it?

SECTION 5.2: CURRENT-VOLTAGE CHARACTERISTICS

5.20 For the circuits in Fig. 5.20, assume that the transistors have very large β. Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

5.21 Measurements on the circuits of Fig. 5.21 produce labeled voltages as indicated. Find the value of β for each transistor.

5.22 Examination of the table of standard values for resistors with 5% tolerance in Appendix H reveals that the closest values to those found in the design of Example 5.1 are 5.1 kΩ and 0.6 kΩ. For these values use approximate calculations (e.g., $V_{BE} = 0.7$ V and $a = 1$) to determine the values of collector current and collector voltage that are likely to result.

5.23 Redesign the circuit in Example 5.1 to provide $V_{CE} = +3$ V and $I_c = 5$ mA.

5.24 For each of the circuits shown in Fig. P5.24, find the emitter, base, and collector voltages and currents. Use $\beta = 30$, but assume $|V_{BE}| = 0.7$ V independent of current level.

5.25 Repeat Problem 5.24 using transistors for which $|V_{BE}| = 0.7$ V at $I_c = 1$ mA.

5.26 For the circuit shown in Fig. P5.26, measurement indicates that $V_{BE} = -3.5$ V. Assuming $V_{BE} = 0.7$ V, calculate V_{CE}, β, and V_c. If a transistor with $\beta = \infty$ is used, what values of V_{BE}, V_{CE}, and I_c result?
5.27 The current I_{EB} of a small transistor is measured to be 20 mA at 25°C. If the temperature of the device is raised to 85°C, what do you expect I_{EB} to become?

5.28 Approximate the model of the npn BJT shown in Fig. 5.20(a) by a current source representing I_{EB}. Assume that r_e is very large and thus can be neglected. In terms of this addition, what do the terminal currents I_b, I_c, and I_e become? If the base lead is open-circuited while the emitter is connected to ground and the collector is connected to a positive supply, find the emitter and collector currents.

5.29 An npn transistor is accidentally connected with collector and emitter leads interchanged. The resulting currents in the normal emitter and base leads are 0.5 mA and 1 mA, respectively. What are the values of I_e and I_b?

5.30 A BJT whose emitter current is fixed at 1 mA has a base-emitter voltage of 0.9 V at 25°C. What base-emitter voltage would you expect at 0°C? At 100°C?

5.31 A particular pnp transistor operating at an emitter current of 0.5 mA at 10°C has an emitter-base voltage of 600 mV. (a) What does V_{BE} become if the junction temperature rises to 50°C? (b) If the transistor has $n = 1$ and is operated at a fixed emitter-base voltage of 700 mV, what current emitter flows at 20°C at 50°C?

5.32 Consider a transistor for which the base-emitter voltage drop is 0.7 V at 10 mA. What current flows for $V_{BC} = 0.5$ V?

5.33 In Problem 5.32, the stated voltages are measured at 25°C. What voltages correspond at -25°C? At 125°C?

5.34 Use the Ebers-Moll expressions in Eqs. (5.26) and (5.27) to derive Eq. (5.33). Note that the emitter current is set to a constant value I_e.

5.35 Use Eq. (5.33) to plot the I_e-V_{BC} characteristics of an npn transistor having $a_{np} = 1$, $a_{bp} = 0.1$, and $I_e = 10^{-11}$ A. Plot graphs for $I_e = 0.1$ mA, 0.5 mA, and 1 mA. Use an expanded scale for the negative values of V_{BC} in order to show the details of the saturation region. Neglect the Early effect.

5.36 For the saturated transistor shown in Fig. 5.36, use the EM expressions to show that for $a_p = 1$, $V_{CEO} = V_{BE}$.

5.37 Use Eq. (5.36) to plot I_e versus V_{BC} for a npn transistor having $I_e = 10^{-13}$ A and $V_{CEO} = 100$ V. Provide curves for $a_p = 0.65$, 0.70, 0.72, 0.73, and 0.74 volts. Show the characteristics for I_p up to 15 V.

5.38 For a particular npn transistor operating at a V_{BC} of 600 mV and $I_e = 3$ mA, the I_e-V_{BC} characteristic has a slope of 3×10^{-4} A/V. What is the value of output resistance does this correspond? What is the value of the Early voltage for this transistor? For operation at 30 mA, what would the output resistance become?

5.39 For a BJT having an Early voltage of 200 V, what is its output resistance at 1 mA? At 100 mA?

5.40 Measurements of the I_e-V_{BC} characteristic of a small-signal transistor operating at $V_{BC} = 720$ mV show that $I_e = 1.8$ mA at $V_{BC} = 2$ V and $I_e = 2.4$ mA at $V_{BC} = 14$ V. What is the corresponding value of I_e? What is I_e? What is the value of the Early voltage for this transistor? What is the output resistance that corresponds to operation at $V_{BC} = 720$ mV?

5.41 Give the pnp equivalent circuit models that correspond to those shown in Fig. 5.20 for the npn case.

5.42 A BJT operating at $I_e = 8$ mA and $I_b = 1.2$ mA undergoes a reduction in base current of 0.8 mA. It is found that when V_{BC} is held constant, the corresponding reduction in collector current is 0.1 mA. What are the values of R_{BE} and R_{BC} that apply? If the base current is increased from 8 mA to 10 mA and V_{CE} is increased from 8 V to 10 V, what collector current results? Assume $V_{CE} = 100$ V.

5.43 For a transistor whose β characteristic is sketched in Fig. 5.22, estimate values of β at -55°C, 25°C, and 125°C for $I_e = 100$ µA and 10 mA. For each current, estimate the temperature coefficient for temperatures above and below room temperature (four values needed).

5.44 Figure P5.44 shows a diode-connected npn transistor. Since $a_p = 0$ results in active mode operation, the BJT will normally operate in the active mode: that is, its base and collector currents will be related by β_p. Use the EM equations to show that the diode-connected transistor has the I_e-V_{BC} characteristics, $I_e = I_{BC}(n/2 - 1)/(1 + e^{V_{BC}/n})$.

5.45 A BJT for which $a_p = 0.2$ operates with a constant base current but with the collector open. What value of V_{CEO} would you measure?

5.46 Find the saturation voltage V_{CEO} and the saturation resistance R_{CEO} of an npn BJT operated at a constant base current of 0.1 mA and a forced $\beta = 20$. The transistor has $\beta_p = 50$ and $\beta_n = 0.2$.

5.47 Use Eq. (5.47) to show that the saturation resistance $R_{CEO} = \beta_p/\beta_n$, of a transistor operated with a constant base current I_b is given by

$$R_{CEO} = \frac{V_{CEO}}{I_b}.$$

Find R_{CEO} for $I_b = 10$ µA.

5.48 For a transistor for which $\beta_p = 70$ and $\beta_n = 0.2$, find an estimate of R_{CEO} and V_{CEO} for $I_b = 2$ mA by evaluating R_{CEO} at $I_b = 3$ mA and at $I_b = 0.3$ mA (using Eq. 5.48). (Note: Because we are modeling operation at a very low forced β, the value of R_{CEO} will be much larger than that given by Eq. 5.48.)

5.49 A transistor has $\beta_p = 150$ and the collector junction is 10 times larger than the emitter junction. Evaluate V_{CEO} for $\beta_p/\beta_n = 0.99$, 0.95, 0.9, 0.85, 0.8, 0.71, and 0.1.

5.50 A particular npn BJT with $V_{CEO} = 720$ mV and $I_e = 600$ µA, and having $\beta = 150$, has a collector-base junction 20 times larger than the emitter-base junction.

(a) Find α_p, α_n, and β_p.

(b) For a collector current of 5 mA and nonsaturated operation, what is the base-emitter voltage and the base current?

(c) For the situation in (b) but with double the calculated base current, what is the value of forced β? What are the base-emitter and base-collector voltages? What are V_{CEO} and R_{CEO}?

5.51 A BJT with fixed base current has $V_{CEO} = 60$ mV. If the emitter grounded and the collector open-circuited, V_{CEO} becomes -1 V. Evaluate β, β_p, and β_n for this transistor.

5.52 A BJT for which $I_b = 0.5$ mA has $V_{CEO} = 140$ mV at $I_e = 10$ mA and $V_{CEO} = 170$ mV at $I_e = 20$ mA. Estimate the values of the saturation resistance R_{CEO} and the offset voltage V_{CEO}. Also, determine the values of β_p and β_n.

5.53 A BJT for which V_{CEO} is 30 V is connected as shown in Fig. P5.53. What voltages would you measure on the collector, base, and emitter?

5.54 A common-emitter amplifier circuit operated with $V_{CEO} = +10$ V is biased at $V_{CEO} = 41$ V. Find the voltage gain, the maximum allowed output negative swing without the transistor entering saturation, and the corresponding maximum input signal permitted.

5.55 For the common-emitter circuit in Fig. 5.26(a) with $V_{CEO} = +10$ V and $R_c = 1$ kΩ, find V_{CEO} and the voltage gain at the following dc collector bias currents: 1 mA, 2 mA, 5 mA, 8 mA, and 9 mA. For each, give the maximum possible positive-
5.56 Consider the CE amplifier circuit of Fig. 5.26(a) when operated with a dc supply $V_{CC} = +5$ V. It is required to find the point at which the transistor should be biased; that is, find the value of V_{CE} so that the output sine-wave signal v_o, resulting from an input sine-wave signal v_i, peaks at the maximum possible magnitude. What is the peak amplitude of the output sine wave and the value of the gain obtained? Assume linear operation around the bias point.

5.57 The transistor in the circuit of Fig. P5.57 is biased at a bias point. To obtain the maximum possible output swing, what value of V_{CC} should be used? (Hint: Use Thévenin theorem to convert the circuit to the form in Fig. 5.26(a).)

\[V_{CC} = +5 \text{ V} \]

\[V_{BE} = -0.7 \text{ V} \]

\[I_C = 0.5 \text{ mA} \]

For the circuit in Fig. P5.66 select a value for R_C and R_E. (a) What value of R_C produces a change in i_C of $100 \mu A$? If, at a new bias point (not the one shown in the figure), i_C should be 0.5 mA, what value of R_C should be used? (b) What is the value of R_E required to provide the bias point mentioned above? Assume that the BJT has $I_E = 10^{-15}$ A.

5.56 Consider the common-emitter amplifier circuit of Fig. 5.26(a) when operated with a supply voltage $V_{CC} = +5$ V.

(a) What is the theoretical maximum voltage gain that this amplifier can provide?

(b) What value of V_{CE} must this amplifier be biased at to provide a voltage gain of -100 V/V?

(c) If the dc collector current I_C at the bias point in (b) is to be 0.5 mA, what value of R_C should be used?

(d) What is the value of V_{BE} required to provide the bias point mentioned above? Assume that the BJT has $I_E = 10^{-15}$ A.

5.57 Sketch the I_C-v_{BE} characteristics of a npn transistor having $b = 100$ and $V_{CE} = +10$ V. Sketch characteristic curves for $I_C = 20 \text{ mA}, 50 \text{ mA}, 100 \text{ mA},$ and $+100 \text{ mA}$. For the purpose of this sketch, assume that $i_C = I_C$ at $V_{CE} = 0$. Also, sketch the load lines obtained for $V_{CE} = 10$ V and $R_E = 1 \text{ k}\Omega$. If the dc bias current into the base is $50 \mu A$, write the equation for the corresponding I_C-v_{CE} curve. Also, write the equation for the load line, and solve the two equations to obtain V_{CE} and I_C.

5.58 Sketch the I_C-v_{CE} characteristic and approximate using the small-signal voltage gain. Plot the load line obtained for $V_{CE} = 10$ V and $R_E = 1 \text{ k}\Omega$. If the dc bias current into the base is $50 \mu A$, write the equation for the corresponding I_C-v_{CE} curve. Also, write the equation for the load line, and solve the two equations to obtain V_{CE} and I_C.

5.59 In deriving the expression for small-signal voltage gain A_v, in Eq. (5.56), we neglected the Early effect, by substituting $i_C = \beta g_m v_i$ in Eq. (5.58). Show that the gain expression changes to

\[A_v = \frac{-\beta g_m}{1 + \beta g_m} \]

For the case $V_{CE} = 5$ V and $V_{BE} = 2.5$ V, what is the gain without and with the Early effect taken into account? Let $V_{BE} = 100$ V.

5.60 When the common-emitter amplifier circuit of Fig. 5.26(a) is biased with a certain V_{CE}, the dc voltage at the collector is found to be $+2$ V. For $V_{CE} = +5$ V and $R_C = 1 \text{ k}\Omega$, find I_C and the small-signal voltage gain.

For the case $V_{CE} = +5$ V and $V_{BE} = +0.7$ V, the input voltage and output voltage signal are as determined by the need to keep v_{CE} negative-output signal swing as determined by the need to keep v_{CE} below 0.3 V.)

5.61 Consider the common-emitter amplifier circuit of Fig. 5.26(a) when operated with a supply voltage $V_{CC} = +5$ V.

(a) What is the theoretical maximum voltage gain that this amplifier can provide?

(b) What value of V_{CE} must this amplifier be biased at to provide a voltage gain of -100 V/V?

(c) If the dc collector current I_C at the bias point in (b) is to be 0.5 mA, what value of R_C should be used?

(d) What is the value of V_{BE} required to provide the bias point mentioned above? Assume that the BJT has $I_E = 10^{-15}$ A.

5.62 Consider the circuit in Fig. P5.65 select a value for R_E so that the transistor saturates with a forced $b = 100$. Assume $V_{BE} = 0.7$ V and $V_{CEQ} = 0.2$ V.

5.63 The essence of transistor operation is that a change in V_{BE}, V_{CE}, produces a change in I_C, V_{BE}. By keeping V_{CE} small, I_C is approximately linearly related to V_{BE}. $\Delta I_C = \Delta g_m \Delta V_{BE}$, where g_m is known as the transistor transconductance. By passing ΔI_C through R_C, on output voltage signal ΔV_{CE} is obtained. Use the expression for the small-signal voltage gain in Eq. (5.56) to derive an expression for ΔV_{CE}. Find the value of g_m for a transistor biased at $I_C = 1$ mA.

5.64 Sketch the I_C-v_{BE} characteristics of an npn transistor having $b = 100$ and $V_{CE} = +10$ V. Sketch characteristic curves for $I_C = 20 \text{ mA}, 50 \text{ mA}, 100 \text{ mA},$ and $+100 \text{ mA}$. For the purpose of this sketch, assume that $i_C = I_C$ at $V_{CE} = 0$. Also, sketch the load lines obtained for $V_{CE} = 10$ V and $R_E = 1 \text{ k}\Omega$. If the dc bias current into the base is $50 \mu A$, write the equation for the corresponding I_C-v_{CE} curve. Also, write the equation for the load line, and solve the two equations to obtain V_{CE} and I_C.

5.65 Consider the circuit in Fig. P5.65 select a value for R_E so that the transistor saturates with an output voltage of 10 V. The BJT is specified to have a minimum $b = 20$ and $V_{CEQ} = 0.2$ V. What is the value of forced b achieved?

5.66 Sketch the I_C-v_{CE} characteristic and approximate using the small-signal voltage gain. Plot the load line obtained for $V_{CE} = 10$ V and $R_E = 1 \text{ k}\Omega$. If the dc bias current into the base is $50 \mu A$, write the equation for the corresponding I_C-v_{CE} curve. Also, write the equation for the load line, and solve the two equations to obtain V_{CE} and I_C.

5.67 For each of the saturated circuits in Fig. P5.67, find $I_C, I_E,$ and I_B. Use $V_{CC} = +0.7$ V and $V_{CEQ} = +0.2$ V.
5.69 The transistor in the circuit of Fig. P5.69 has a very high β. Find V_C and V_E for $V_B = +2 V$, $+1 V$, and $0 V$. Assume $V_{BE} = 0.7 V$.

5.70 The transistor in the circuit of Fig. P5.69 has a very high β. Find the highest value of V_C for which the transistor still operates in the active mode. Also, find the value of V_C for which the transistor operates in saturation with a forced β of 2.

5.71 Consider the operation of the circuits shown in Fig. P5.71 for $V_B = -1 V$, $0 V$, and $+1 V$. Assume that $V_{BE} = 0.7 V$ for small currents and that β is very high. What values of V_C and V_E result? At what value of V_C does the emitter current reduce to one-tenth of its value for $V_C = 0 V$? What value of V_C is the transistor just at the edge of conduction? What values of V_C and V_E correspond? For what value of V_C does the transistor reach saturation (when the base-to-collector junction reaches $0.5 V$ of forward bias)? What values of V_C and V_E correspond? Find the value of V_C for which the transistor operates in saturation with a forced β of 2.

5.72 For the transistor shown in Fig. P5.72, assume $\alpha = 1$ and $V_{BE} = 0.7 V$ at the edge of conduction. What are the values of V_C and V_E for $V_B = 0 V$? For what value of V_C does the transistor cut off? Saturate? In each case, what values of V_C and V_E result?

5.73 Consider the circuit in Fig. P5.66 with the base voltage V_B obtained using a voltage divider across the 5 V supply. Assuming the transistor $\beta = 100$, design for a 0.2 mA current in the voltage divider. Now, if the BJT $\beta = 100$, analyze the circuit to determine the collector current and the collector voltage.

5.74 A single measurement indicates the emitter voltage of the transistor in the circuit of Fig. P5.74 to be $1.0 V$. Under the assumption that $V_{BE} = 0.7 V$, what are V_P, I_B, I_C, V_C, β, and r_e? Note: Isn't it surprising what a little measurement can tell you?

5.75 Design a circuit using a pnp transistor for which $I_B = 0.7 A$ using two resistors connected appropriately to 5 V so that $I_E = 2 A$ and $V_{CE} = 4.5 V$. What exact values of R_E and R_P would be needed? Now, consult a table of standard 5% resistor values (e.g., that provided in Appendix G) to select suitable practical values. What are the values of I_E and V_{CE}?

5.76 In the circuit shown in Fig. P5.76, the transistor is operating in the active mode. What is the largest value of V_C and V_E for which the transistor can be considered to be operating in the active mode?

5.77 In the circuit shown in Fig. P5.77, the transistor has $\beta = 100$. Find the values of V_P, V_C, and V_E for $R_E = 100 k\Omega$, 10 $k\Omega$, and 1 $k\Omega$. Let $\beta = 100$.

5.78 For the circuit in Fig. P5.78, find V_E, V_C, and V_P for $R_E = 100 k\Omega$, 10 $k\Omega$, and 1 $k\Omega$.

5.79 For the circuits in Fig. P5.79, find values for the labeled node voltages and branch currents. Assume β to be very high and $V_{BE} = 0.7 V$.

5.80 Repeat the analysis of the circuits in Problem 5.79 using $\beta = 100$. Find all the labeled node voltages and branch currents. Assume $V_{BE} = 0.7 V$.

5.81 It is required to design the circuit in Fig. P5.81 so that a current of 1 mA is established in the emitter and a voltage of $5 V$ appears at the collector. The transistor type used has a nominal β of 100. However, the β value can be in low as 50 and as high as 150. Your design should ensure that the specified emitter current is obtained when $\beta = 100$ and that at the extreme values of β the emitter current does not change by more than 10% of its nominal value. Also, design for as large a value for R_E as possible. Give the values of R_E, R_P, and R_C to the nearest kilohm. What is the expected range of collector current and collector voltage corresponding to the full range of β values?

5.82 The pnp transistor in the circuit of Fig. P5.82 has $\beta = 50$. Find the value for R_E to obtain $V_E = 5 V$. What happens if the transistor is replaced with another having $\beta = 100$?
5.83 Consider the circuit shown in Fig. P5.83. It resembles that in Fig. 5.41 but includes other features. First, note diodes D_1 and D_2 are included to make design (and analysis) easier and to provide temperature compensation for the emitter-base voltages of Q_1 and Q_2. Second, note resistor R, whose purpose is to provide negative feedback. Using $V_{BE} = V_{B2} = 0.7 \text{ V}$ independent of current and $\beta = \infty$, find the voltages V_{BU}, V_m, V_{CL}, V_{B2}, V_{E2}, and V_{C2}, initially with R open-circuited and then with R connected. Repeat for $\beta = 100$, initially with R open-circuited then connected.

5.84 For the circuit shown in Fig. P5.84, find the labeled node voltages for:
(a) $\beta = \infty$
(b) $\beta = 100$

5.85 Using $\beta = \infty$, design the circuit shown in Fig. P5.85 so that the bias currents in Q_1, Q_2, and Q_3 are 2 mA, 2 mA, and 4 mA, respectively, and $V_5 = 0$, $V_6 = -4 \text{ V}$, and $V_7 = 2 \text{ V}$. For each resistor, select the nearest standard value utilizing the table of standard values for 5% resistors in Appendix G. Now, for $\beta = 100$, find the values of V_3, V_4, V_5, V_6, and V_7.

5.86 For the circuit in Fig. P5.86, find V_B and V_E for $V_B = 0$, $+3 \text{ V}$, -5 V, and -10 V. The BJTs have $\beta = 100$.

5.87 Find approximate values for the collector voltages in the circuits of Fig. P5.87. Also, calculate forced β for each of the transistors. (Hint: Initially, assume all transistors are operating in saturation, and verify the assumption.)
D5.86 For the circuit in Fig. 5.44(a), neglect the base current and make a final design using 1% resistors, that is slightly higher than the ideal 5% resistors (see Appendix G), making the choice in a way that will guarantee Ic in the range obtained for Vcc. What is the corresponding range of Ic? If Rc = 3 kΩ, what is the range obtained for Vcc? Comment on the efficiency of this biasing arrangement.

D5.89 It is required to bias the transistor in the circuit of Fig. 5.43(b) at Ic = 1 mA. The transistor β is specified to be nominally 100, but can fall in the range of 50 to 150. For Vce = 0.5 V and Rce = 3 kΩ, find the required value of Rb to achieve Ic = 1 mA for the "nominal" transistor. What is the expected range for Ic and Vcc? Comment on the efficiency of this bias design.

D5.90 Consider the single-supply bias network shown in Fig. 5.46(a). Provide a design using a -5 V supply in which the supply voltage is equally split between RB, Vcc, and RE with a collector current of 3 mA. The transistor β is specified to have a minimum value of 90. Use a voltage-divider current which is Ic/2. Check your design at β = 90. If you have the data available, find how low β can be while the value of Ic does not fall below that obtained with the design of Problem 5.90 for β = 90.

D5.91 Repeat Problem 5.90, but use a voltage-divider current which is Ic/2. Check your design at β = 90. If you have the data available, find how low β can be while the value of Ic does not fall below that obtained with the design of Problem 5.90 for β = 90.

D5.92 It is required to design the bias circuit of Fig. 5.44 for a BJT whose nominal β = 100. (a) Find the largest ratio (RE/RE) that will guarantee Ic remains within ±5% of its nominal value for β as low as 50 and as high as 150. (b) If the interstage resistor found in (a) is used, find an expression for the voltage Vce = Vce(R2/RE+R1) that will result in a voltage drop of 0.1 V across RE. (c) For Vcc = 10 V, find the required values of RE, RC, and RB to obtain Ic = 2 mA and to satisfy the requirement for stability of Ic (a). (d) Find RE so that Vce = 3 V for β equal to its nominal value. Check your design by evaluating the resulting range of Ic.

D5.93 Consider the two-supply bias arrangement shown in Fig. 5.45 using ±5-V supplies. It is required to design the circuit so that Ic = 3 mA and Vcc is placed midway between Vcc and Vcc.

- (a) For β = 150, what values of Rb and RB are required?
- (b) If the BJT is specified to have a minimum β of 90, find the largest value for Rb consistent with the need to limit the voltage drop across it to one-tenth the voltage drop across RB.
- (c) What standard ±5-V resistor values (see Appendix G) would you use for RE, RC, and RB? In making your selection, use somewhat lower values in order to compensate for the low β effects.
- (d) For the values you selected in (c), find Ic, Vce, and Vcc for β = 90 and for β = 90.
B I P O L A R J U N C T I O N T R A N S I S T O R S (BJTs)

CHAPTER 5

5 3 0

PROBLEMS

0.5 mA. What is the lowest voltage that can be applied to the
collector of Q 1
3

D 5 . 1 0 1 For the circuit in Fig. P5.101 find the value of R
that will result in I ~ 2 mA. What is the largest voltage that
can be applied to the collector? Assume
• 0.7 V.

'

5 3 1

the small-signal resistance seen looking into the emitter (/•<,)?
Into the base (r^p. If the collector is connected to a 5-kQ. load,
with a signal of 5-mV peak applied between base and emitter,
what output signal voltage results?

5 . 1 1 1 A BJT is biased to operate in the active mode at a dc
collector current of 1.0 mA. It has a B of 120. Give the four
small-signal models (Figs. 5.51 and 5.52) of the BJT com­
plete with the values of their parameters.

D 5 . 1 0 6 A designer wishes to create a BJT amplifier with a
g of 50 mA/V and a base input resistance of 2000 Q. or
more. What emitter-bias current should he choose? What is
the minimum B he can tolerate for the transistor used?

5 . 1 1 2 The transistor amplifier in Fig. P5.112 is biased with
a current source / and has a very high B. Find the dc voltage
at the collector, V . Also, find the value of g . Replace the
transistor with the simplified hybrid-7T model of Fig. 5.51(a)
(note that the dc current source / should be replaced with an
open circuit). Hence find the voltage gain
v /v .

0

+5 V

m

c

5 . 1 0 7 A transistor operating with nominal g of 60 mA/V
has a B that ranges from 50 to 200. Also, the bias circuit,
being less than ideal, allows a +20% variation in I . What are
the extreme values found of the resistance looking into the
base?
m

<

R

m

c

t

+5 V

c

5 . 1 0 8 In the circuit of Fig. 5.48, V ^ i s adjusted"so that V =
2 V. If V = 5 V, R = 3 kQ, and a signal v = 0.005 sin cat
volts is applied, find expressions for the total instantaneous
quantities i (t), v (t), and i (t). The transistor has B = 100.
What is the voltage gain?
c

cc

-v

EE

FIGURE P 5 . 9 9

c

* D 5 . 1 0 0 For the circuit in Fig. P5.100, assuming all tran­
sistors to be identical with B infinite, derive an expression for
the output current I , and show that by selecting
0

R

i = 2

0

j

_

aV

cc

which is independent of V . What must the relationship of
R to R and R be? For V = 10 V and assuming a — 1 and
V = 0.7 V, design the circuit to obtain an output current of

SECTION 5 . 6 : SMALL-SIGNAL OPERATION
AND MODELS

2

BE

cc

c

B

cc

5 . 1 0 2 Consider a transistor biased to operate in the active
mode at a dc collector current l . Calculate the collector sig­
nal current as a fraction of I (i.e., i /I)
for input signals v
of +1 mV, - 1 mV, +2 mV, - 2 mV, +5 mV, - 5 mV, +8 mV,
- 8 mV, +10 mV, - 1 0 mV, +12 mV, and - 1 2 mV. In each
case do the calculation two ways:
c

c

c

* D 5 . 1 0 9 We wish to design the amplifier circuit of Fig. 5.48
tmder the constraint that V is fixed. Let the input signal v =
V sin ft)?, where V is the maximum value for acceptable
linearity. For the design that results in the largest signal at
the collector, without the BJT leaving the active region, show
that
be

c

be

be

Y

be

BE

1

be

FIGURE P 5 . 1 0 1

R

and keeping the current in each junction the same, the current
I will be

E

c

(a) using the exponential characteristic, and
(b) using the small-signal approximation.

RI
C

C

= (V

c c

- 0.3

FIGURE P 5 . 1 1 2

-V)/(l+yf^j
be

and find an expression for the voltage gain obtained. For V =
5 V and V = 5 mV, find the dc voltage at the collector, the
amplitude of the output voltage signal, and the voltage gain.

5 . 1 1 3 For the conceptual circuit shown in Fig. 5.50, R =
2 kQ,, g = 50 mA/V, and B = 100. If a peak-to-peak output
voltage of 1 V is measured at the collector, what ac input
voltage and current must be associated with the base?

5 . 1 1 0 The following table summarizes some of the basic
attributes of a number of BJTs of different types, operating as
amplifiers under various conditions. Provide the missing
entries.

5 . 1 1 4 A biased BJT operates as a grounded-emitter amplifier
between a signal source, with a source resistance of 10 kO,
connected to the base and a 10-kQ load connected as a collector
resistance R - In the corresponding model, g is 40 mA/V

c

cc

m

be

Present your results in the form of a table that includes a col­
umn for the error introduced by the small-signal approxima­
tion. Comment on the range of validity of the small-signal
approximation.
5 . 1 0 3 An npn BJT with grounded emitter is operated with
V = 0.700 V, at which the collector current is 1 mA. A 10-kQ
resistor connects the collector to a +15-V supply. What is the
resulting collector voltage V l Now, if a signal applied to
the base raises v to 705 mV, find the resulting total collec­
tor current i and total collector voltage v using the expo­
nential i -v
relationship. For this situation, what are v and
v l Calculate the voltage gain v /v .
Compare with the
value obtained using the small-signal approximation, that is,
-grrftc-

c

m

BE

c

Transistor

a

b

c

d

e

f

9

BE

c

c

c

BE

be

c

c

be

j

a

\ß
J4(mA)

5 . 1 0 5 A pnp BJT is biased to operate at 7 = 2.0 mA. What
is the associated value of g ? If B = 50, what is the value of

! r (Q)

K

e

j/ (mA)
B

1.00

j

oo

1.00

j

1.00

5
0.020

! g (mA/V)

FIGURE P 5 . 1 0 0

m

e

'
25

(Note:
\r
(Q.) Isn't it remarkable how much two parameters can reveal?)
n

I
1.10 j

m

C

j

0.90
100

/, imAi

5 . 1 0 4 A transistor with B = 120 is biased to operate at a dc
collector current of 1.2 mA. Find the values of g , r , and r .
Repeat for a bias current of 120 pA.
m

1.000

100
10.1 kO

700


and \(r_e \) is 2.5 kΩ. Draw the complete amplifier model using the hybrid-\(
\) model equivalent circuit. Calculate the overall voltage gain \((v_o/v_i) \). What is the value of BJT \(\beta \) implied by the values of the model parameters? To what value must \(\beta \) be increased to double the overall voltage gain?

5.116 For the circuit shown in Fig. P5.115, draw a complete small-signal equivalent circuit utilizing an appropriate \(T \) model for the BJT (see \(\alpha \approx 0.99 \)). Your circuit should show the values of all components, including the model parameters. What is the input resistance \(R_{in} \)? Calculate the overall voltage gain \((v_o/v_i) \).

5.117 Consider the augmented hybrid-\(
\) model shown in Fig. 5.58(a). Disregarding how biasing is to be done, what is the largest possible voltage gain available for a signal source connected directly to the base and a very-high-resistance load? Calculate the value of the maximum possible gain for \(V_i = +25 \) V and \(V_C = -25 \) V.

5.118 Reconsider the amplifier shown in Fig. 5.53 and analyzed in Example 5.14 under the condition that \(\beta \) is not well controlled. For what values of \(\beta \) does the circuit begin to saturate? We can conclude that large \(\beta \) is dangerous in this circuit. Now, consider the effect of reduced \(\beta \), say, to \(\beta = 25 \). What values of \(r_e \) and \(r_b \) result? What is the overall voltage gain? (Note: You can see that this circuit, using base current control of bias, is very sensitive and usually not recommended.)

5.119 Reconsider the circuit shown in Fig. 5.55(a) under the condition that the signal source has a high internal resistance of 100 kΩ. What does the overall voltage gain become? What is the largest input signal voltage that can be used without output-signal clipping?

5.120 Redesign the circuit of Fig. 5.55 by raising the resistor values by a factor to increase the input resistance seen by the input \(v_i \) to 75 kΩ. What value of voltage gain results? Grounded-base circuits of this kind are used in systems such as cable TV, in which, for highest-quality signaling, load resistances need to be "matched" to the equivalent resistances of the interconnecting cables.

5.121 Using the BJT equivalent circuit model of Fig. 5.52(a), sketch the equivalent circuit of a transistor amplifier for which a resistance \(R_C \) is connected between the emitter and ground. The collector is grounded, and an input signal source \(v_i \) is connected between the base and ground. (It is assumed that the transistor is properly biased to operate in the active region.) Show that:

(a) The voltage gain between base and emitter, that is, \(v_o/v_i \), is given by

\[
\frac{v_o}{v_i} = \frac{r_e}{r_e + r_b}
\]

(b) The input resistance,

\[
R_i = \frac{r_e}{\beta + 1}(R_b + r_b)
\]

Find the numerical values of \((v_o/v_i) \) and \(R_i \) for the case \(R_b = 1 \) kΩ, \(\beta = 100 \), and the emitter bias current \(I_E = 1 \) mA.

5.122 When the collector of a transistor is connected to its base, the transistor still operates (internally) in the active region because the collector-base junction is still in active reverse bias. Use the simplified hybrid-\(\pi \) model to find the incremental (small-signal) resistance of the resulting two-terminal device (known as a diode-connected transistor).

*5.123 Design an amplifier using the configuration of Fig. 5.55(a). The power supplies available are \(\pm 10 \) V. The input signal source has a resistance of 100 kΩ, and it is required that the amplifier input resistance match this value. (Note that \(R_i = r_e \), \(R_b = r_b \)). The amplifier is to have the greatest possible voltage gain and the largest possible output signal but retain small-signal linear operation (i.e., the signal component across the base-emitter junction should be limited so that no more than 10 mV) Find appropriate values for \(R_1 \) and \(R_2 \). What is the value of voltage gain realized?

5.124 The transistor in the circuit shown in Fig. P5.124 is biased to operate in the active mode. Assuming that \(\beta \) is very large, find the collector bias current \(I_C \). Replace the transistor with the small-signal equivalent circuit model of Fig. 5.52(b) (remember to replace the dc power supply with a short circuit). Analyze the resulting amplifier equivalent circuit to show that

\[
\frac{v_o}{v_i} = \frac{R_1}{R_1 + \frac{R_2}{\beta}}
\]

Find the values of these voltage gains (for \(\beta \) = 1). Now, if the terminal labeled \(v_i \) is connected to ground, what does the voltage gain \(v_o/v_i \) become?

5.127 Refer to Table 5.5. By equating the expression for \(G_{v0} \) obtained from Equivalent Circuit C with that obtained from Equivalent Circuit A to that obtained from Equivalent Circuit C with \(G_{v0} = \frac{R_1}{(R_1 + R_2)\alpha_{em}} \), show that

\[
\begin{align*}
R_2 &= R_1 \\
R_1 &= R_1 + R_2
\end{align*}
\]

Now, use this expression to:

(a) Show that for \(R_2 = R_1 + R_2 \)

(b) Show that for \(R_1 = R_1 + R_2 \)

(c) Find \(R_2 \) when \(R_1 = \beta \) (i.e., the amplifier input is open-circuited), and evaluate its value for the amplifier specified in Example 5.17.

5.128 A common-emitter amplifier of the type shown in Fig. 5.60(a) is biased to operate at \(I_E = 0.2 \) mA and has a collector resistance \(R_C = 24 \) kΩ. The transistor has \(\beta = 100 \) and a large \(V_C \). The signal source is directly coupled to the base, and \(C_1 \) and \(R_1 \) are eliminated. Find \(R_1 \), the voltage gain \(A_{v0} \), and \(R_C \). Use these results to determine the overall voltage gain when a 10-kΩ load resistor is connected to the collector and the source resistance \(R_S = 10^4 \) Ω.

5.129 Reconsider Problem 5.128 with a 125-kΩ resistance included in the signal path to the emitter. Furthermore, contrast the maximum amplitude of the input sine wave that can be applied with and without \(R_S \) assuming that to limit distortion the signal between base and emitter is not to exceed 5 mV.

5.130 For the common-emitter amplifier shown in Fig. P5.130, let \(V_C = 9 \) V, \(R_L = 274 \) kΩ, \(R_1 = 15 \) kΩ, \(R_2 = 1.2 \) kΩ, and \(R_3 = 2.2 \) kΩ. The transistor has \(\beta = 100 \) and \(V_C = 100 \) V, the
FIGURE P5.130

D5.131 Using the topology of Fig. P5.130, design an amplifier to operate between a 10-kΩ source and a 2-kΩ load with a gain of 50 V/V with the power supply available is 9 V. Use an emitter current of approximately 2 mA and a current of about one-tenth of that in the voltage divider that feeds the base, with the dc voltage at the base about one-third of the supply. The transistor available has $\beta = 100$ and $V_T = 100$ V. Use standard 5% resistor (see Appendix G).

S.132 A designer, having examined the situation described in Problem 5.130 and estimating the available gain to be approximately -8 V/V, wishes to explore the possibility of improvement by reducing the loading of the source by the amplifier input. As an experiment, the designer varies the resistance levels by a factor of approximately $1: R_1 = 0.52 \text{kΩ}, R_2 = 47 \text{kΩ}, R_3 = 3.5 \text{kΩ}$, and $R_L = 6.8 \text{kΩ}$ (standard values of 5% tolerance resistors). With $V_{CC} = 9 \text{ V}, R_C = 10 \text{kΩ}$, $R_1 = 2 \text{kΩ}, \beta = 100$, and $V_T = 100$ V, what does the gain become? Comment.

D5.133 Consider the CE amplifier circuit of Fig. 5.60(a). It is required to design the circuit (i.e., find values for R_E and R_1) to meet the following specifications:

(a) $R_E = 5 \text{kΩ}$.
(b) The dc voltage drop across R_E is approximately 0.5 V.
(c) The open-circuit voltage gain from base to collector is the maximum possible, consistent with the requirement that the collector voltage never falls by more than approximately 0.5 V below the base voltage with the signal between base and emitter being as high as 5 mV.

FIGURE P5.134

S.133 The amplifier of Fig. P5.133 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, R_{in2}, constitutes the load resistance of the first stage.

(a) For $V_{CC} = 15 \text{ V}, R_1 = 100 \text{kΩ}, R_E = 47 \text{kΩ}, R_2 = 3.9 \text{kΩ}, R_3 = 6.8 \text{kΩ}$, and $\beta = 100$, determine the dc collector current and dc collector voltage of each transistor.

(b) Draw the small-signal equivalent circuit of the entire amplifier and determine its overall voltage gain.

(c) If the R_{in1} found in (b) is used, by what factor is the gain reduced (compared to the case without R_2) for a BJT with a nominal β?

FIGURE P5.135

S.136 In the circuit of Fig. P5.136, V_{CC} is a small sine-wave signal. Find R_2 and the gain v_o/v_i. Assume $\beta = 100$. If the amplitude of the signal v_i is to be limited to 5 mV, what is the largest signal at the input? What is the corresponding signal at the output?

FIGURE P5.136

S.137 The BJT in the circuit of Fig. P5.137 has $\beta = 100$. What is the ratio of maximum to minimum voltage gain obtained without R_C?

(b) What value of R_C should be used to limit the ratio of maximum to minimum gain to 1.2?

(c) If the R_C found in (b) is used, by what factor is the gain reduced (compared to the case without R_C) for a BJT with a nominal β?
5.139 Consider the CB amplifier of Fig. 5.62(a) with \(R_C = 10 \, \text{k}\Omega, R_E = 10 \, \text{k}\Omega, V_C = 10 \, \text{V}, \) and \(R_B = 100 \, \Omega. \) What value must \(R_C \) be set in order that the input resistance at \(E \) is equal to that of the source (i.e., 100 \(\Omega \))? What is the resulting voltage gain from the source to the load? Assume \(\alpha = 1.\)

5.140 Consider the CB amplifier of Fig. 5.62(a) with the collector voltage signal coupled to a 1-M\(\Omega \) load resistance through a large capacitor. Let the power supplies be 25 V. The source has a resistance of 50 \(\Omega. \) Design the circuit so that the amplifier input resistance is matched to that of the source and the output signal swing is as large as possible with relatively low distortion \(v_{\text{sig}} \) limited to 10 mV. Find \(R_E \) and \(R_E \) and calculate the overall voltage gain obtained and the output signal swing. Assume \(\alpha = 1.\)

5.141 For the circuit in Fig. P5.141, find the input resistance \(R_i \) and the voltage gain \(v_{\text{out}}/v_{\text{in}}. \) Assume that the source provides a small signal \(v_{\text{sig}}. \)

![FIGURE P5.141](image)

5.142 Consider the emitter follower of Fig. 5.63(a) for the case: \(I = 1 \, \text{mA}, \beta = 100, V_C = 100 \, \text{V}, R_E = 100 \, \Omega, R_B = 20 \, \text{k}\Omega, \) and \(R_C = 1 \, \text{k}\Omega.\)

(a) Find \(R_{\text{in}}, v_{\text{out}}/v_{\text{in}}, \) and \(v_{\text{sig}}/v_{\text{in}}.\)

(b) If \(v_{\text{in}} \) is a sine-wave signal, to what value should its amplitude be limited in order that the transistor remains conducting at all times? For this amplitude, what is the corresponding amplitude across the base-emitter junction?

(c) If the signal amplitude across the base-emitter junction is limited to 10 mV, what is the corresponding amplitude of \(v_{\text{out}} \) and \(v_{\text{sig}}.\)

(d) Find the open-circuit voltage gain \(v_{\text{out}}/v_{\text{in}} \) and the output resistance. Use these values to determine the value of \(v_{\text{sig}}/v_{\text{in}} \) obtained with \(R_C = 50 \, \text{k}\Omega.\)

![FIGURE P5.143](image)

5.143 For the emitter-follower circuit shown in Fig. P5.143, the BJT is specified to have \(\beta \) values in the range of 40 to 200 (a distressing situation for the circuit designer). For the two extreme values of \(\beta (\beta = 40 \) and \(\beta = 200)), find:

(a) \(I_C, V_C, V_P, \) and \(V_P.\)

(b) The input resistance \(R_{\text{in}}.\)

(c) The voltage gain \(v_{\text{out}}/v_{\text{in}}.\)

5.144 For the emitter follower in Fig. P5.144, the signal source is directly coupled to the transistor base. If the dc component of \(v_{\text{in}} \) is zero, find the dc emitter current. Assume \(\beta = 100. \) Neglecting \(r_e, \) find \(I_E, \) the voltage gain \(v_{\text{out}}/v_{\text{in}}, \) the current gain \(I_E/I_{\text{in}}, \) and the output resistance \(R_{\text{out}}.\)

![FIGURE P5.144](image)

5.145 In the emitter follower of Fig. 5.63(a), the signal source is directly coupled to the base. Thus \(C_{\text{be}} \) and \(R_{\text{be}} \) are eliminated. The source has \(R_{\text{in}} = 10 \, \text{k}\Omega \) and a dc component of zero. The transistor has \(\beta = 100 \) and \(V_C = 125 \, \text{V}. \) The bias current \(I = 2.5 \, \text{mA} \) and \(V_{\text{be}} = 3 \, \text{V}. \) What is the output resistance of the follower? Find the gain \(v_{\text{out}}/v_{\text{in}} \) with no load and with a load of 1 k\Omega. With the 1-k\Omega load connected, find the largest possible negative output signal. What is the largest possible positive output signal if operation is satisfactory up to the point that the base-collector junction is forward biased by 0.4 V?\n
5.146 The emitter follower of Fig. 5.63(a), when driven from a 10-k\Omega source, was found to have an open-circuit voltage gain of 0.99 and an output resistance of 200 \(\Omega. \) The output resistance increased to 500 \(\Omega \) when the source resistance was increased to 20 \(\Omega. \) Find the overall voltage gain when the follower is driven by a 30-k\Omega source and loaded by a 1-k\Omega resistor. Assume \(r_e \) is very large.

5.147 For the circuit in Fig. P5.147, called a bootstrapped follower:

(a) Find the dc emitter current and \(r_e, \) \(r_e, \) and \(r_e. \) Use \(\beta = 100. \)

(b) Replace the BJT with its \(T \) model (neglecting \(r_e \), and analyze the circuit to determine the input resistance \(R_{\text{in}} \) and the voltage gain \(v_{\text{out}}/v_{\text{in}}.\)

(c) Repeat (b) for the case when capacitor \(C \) is open-circuited. Compare the results with those obtained in (b) to find the advantages of bootstrapping.

![FIGURE P5.145](image)

5.148 For the follower circuit in Fig. P5.148 let transistor \(Q \) have \(\beta = 50 \) and \(\alpha = 0.9, \) and neglect the effect of \(r_e. \) Use \(V_{\text{be}} = 0.7 \, \text{V}. \)

(a) Find the dc emitter currents of \(Q_1 \) and \(Q_2. \) Also, find the dc voltages \(V_{\text{be}} \) and \(V_{\text{ce}}.\)

(b) If a load resistance \(R_L = 1 \, \text{k}\Omega \) is connected to the output terminal, find the voltage gain from the base to the emitter of \(Q_1, \) \(v_{\text{out}}/v_{\text{in}} \), and find the input resistance \(R_{\text{in}} \) looking into the base of \(Q_2. \) (Hint: Consider \(Q_2 \) as an emitter follower fed by a voltage \(v_{\text{in}} \) at its base.)

(c) Replacing \(Q_2 \) with its input resistance \(R_{\text{in}} \) found in (b), analyze the circuit of emitter follower \(Q_1 \) to determine its input resistance \(R_{\text{in}} \) and the gain from its base to its emitter, \(v_{\text{out}}/v_{\text{in}}.\)

(d) If the circuit is fed with a source having a 100-k\Omega resistance, find the transmission to the base of \(Q_2, v_{\text{out}}/v_{\text{in}}.\)

(e) Find the overall voltage gain \(v_{\text{out}}/v_{\text{in}}.\)

![FIGURE P5.146](image)

5.149 An npn transistor is operated at \(i_e = 0.5 \, \text{mA} \) and \(V_C = 2 \, \text{V}. \) It has \(\beta = 100, V_T = 25 \, \text{V}, \) \(r_e = 30 \, \text{ps}, \) \(C_{\text{be}} = 20 \, \text{pF}, \) \(C_{\text{be}} = 30 \, \text{fF}, \) \(V_{\text{be}} = 0.75 \, \text{V}, \) \(r_{\text{be}} = 0.5, \) and \(r_{\text{be}} = 10 \, \text{k}\Omega. \) Sketch the complete hybrid-\(\pi \) model, and specify the values of all its components. Also, find \(f_T.\)

5.150 Measurement of \(h_{\text{fe}} \) of an npn transistor at 500 MHz shows that \(h_{\text{fe}} = 2.5 \) at \(f = 0.2 \, \text{mA} \) and 11.6 at \(f = 1.0 \, \text{mA}. \) Furthermore, \(C_{\text{be}} \) was measured and found to be 0.05 \(\text{pF}. \) Find \(f_T \) at each of the two collector currents used. What must \(r_{\text{be}} \) and \(C_{\text{be}} \) be?

5.151 A particular BJT operating at \(f = 2 \, \text{mA} \) has \(C_{\text{be}} = 1 \, \text{pF}, \) \(C_{\text{be}} = 10 \, \text{pF}, \) and \(\beta = 150. \) What are \(f_T \) and \(f_T \) for this situation?

5.152 For the transistor described in Problem 5.151, \(C_{\text{be}} \) includes a relatively constant depletion-layer capacitance of 2 \(\text{pF}.\)
If the device is operated at $I_E = 0.2$ mA, what does its f_T become?

A particular small geometry BJT has $f_T = 5$ GHz and $C_{gs} = 0.1$ pF when operated at $I_E = 0.5$ mA. What is C_{gs} in this situation? Also, find g_m. For $V_{BE} = 150$, find r_b and R_s.

For a BJT whose unity-gain bandwidth is 1 GHz and $R_b = 100$, at what frequency does the magnitude of I_b become 20? What is f_T?

For a sufficiently high frequency, measurement of the complex input impedance of a BJT having a grounded emitter and collector yields a real part approximately equal to r_e. For what frequency, defined in terms of r_e, is such an estimate of r_e good to within 10% under the condition that $r_e \leq r_e/100$? Neglect C_{gs}.

*5.156 Complete the table entries above for transistors (a) through (g), under the conditions indicated. Neglect r_e.

SECTION 5.9: FREQUENCY RESPONSE OF THE COMMON-EMITTER AMPLIFIER

5.157 A designer wishes to investigate the effect of changing the bias current on the midband gain and high-frequency response of the CE amplifier considered in Example 5.18. Let I_E be doubled to 2 mA, and assume that I_B and f_T remain unchanged at 100 and 800 MHz, respectively. To keep the node voltages nearly unchanged, the designer reduces R_b and R_c by a factor of 2, to 50 k_2 and 4 k_2, respectively. Assume $r_e = 50$ k_2 and recall that $V_C = 100$ V. Find the values of A_{oo}, f_T, and the gain-bandwidth product. Comment on the results. Note that the price paid for whatever improvement in performance is achieved is an increase in power. By what factor does the power dissipation increase?

*5.158 The purpose of this problem is to investigate the high-frequency response of the CE amplifier when it is fed with a relatively large source resistance R_s. Refer to the amplifier in Fig. 5.159 and to its high-frequency equivalent-circuit model and the analysis shown in Fig. 5.72. Let $R_b \gg R_c$, $r_b = r_c$, $r_c = 1$, and $A_{oo} = A_{vo} = 1$. Under these conditions, show that:

(a) The midband gain $A_{oo} = \frac{r_e}{R_c}$.
(b) The upper 3-dB frequency $f_T = \frac{1}{2\pi R_c C_{gs}}$.
(c) The gain-bandwidth product $A_{oo} f_T = \frac{1}{2\pi R_c C_{gs}}$.

Evaluate this approximate value of the gain-bandwidth product for the case $R_b = 25$ k_2 and $C_{gs} = 1$ pF. Now, if the transistor is biased at $I_E = 1$ mA and has $I_B = 100$, find the midband gain and f_T for the two cases $R_b = 25$ k_2 and $R_b = 2.5$ k_2. On the same coordinates, sketch Bode plots for the gain magnitude versus frequency for the two cases. What f_T is obtained when the gain is unity? What value of R_b corresponds?

5.159 Consider the common-emitter amplifier of Fig. 5.159 under the following conditions: $R_{b} = 5$ k_2, $R_c = 15$ k_2, $R_s = 22$ k_2, $R_f = 3.9$ k_2, $R_f = 4.7$ k_2, $R_f = 5.6$ k_2, $V_C = 5$ V. The dc emitter current can be shown to be $I_E = 0.3$ mA at $I_B = 100$ mA, and $V_C = 50$ V. Find the input resistance R_i, and the midband gain A_{oo}. If the transistor is specified to have $f_T = 700$ MHz and $C_{gs} = 1$ pF, find the upper 3-dB frequency f_T.

5.160 For a version of the CE amplifier circuit in Fig. 5.159, $R_b = 10$ k_2, $R_s = 0.8$ k_2, $R_f = 27$ k_2, $R_c = 2.2$ k_2, $R_f = 4.7$ k_2, $R_f = 10$ k_2, and $R_f = 10$ k_2. The collector current is 0.8 mA, $V_{BE} = 0.2$, $f_T = 1$ GHz, and $C_{gs} = 0.8$ pF. Neglecting the effect of r_b and R_f, find the midband voltage gain and the upper 3-dB frequency f_T.

*5.161 The amplifier shown in Fig. 5.161 has $R_f = R_b = 1$ k_2, $R_f = 1$ k_2, $R_f = 47$ k_2, $R_f = 100$, $C_{gs} = 0.8$ pF, and $f_T = 600$ MHz.

(a) Find the dc collector current of the transistor.
(b) Find g_m and r_b.
(c) Neglecting r_c, find the midband voltage gain from base to collector (neglect the effect of R_f).
(d) Use the gain obtained in (c) to find the component of R_f that arises as a result of R_f. Hence find R_f.
(e) Find the overall gain at midband.
(f) Find C_{gs}.
(g) Find f_T.
The purpose of this problem is to find the power dissipated in the inverter, neglecting the power dissipated due to the bias current of the transistor. (For practical circuits, the bias current is usually much smaller than the power dissipated due to signal swing.) This is a measure of the efficiency of the circuit. We wish to find the power dissipated in the inverter when the input is high and the transistor is saturated. The power dissipated in the inverter can be calculated using the expression:

\[
P_{\text{diss}} = \frac{1}{2} \left(V_{cc}^2 \right) R_C
\]

where \(V_{cc} \) is the supply voltage and \(R_C \) is the collector resistance of the transistor.

(a) With the input low and the transistor off, find the power dissipated in the inverter.

(b) With the input high and the transistor on (saturated), find the power dissipated in the inverter.

(c) Use the results of (a) and (b) to find the total power dissipated in the inverter.

\[\text{(c) Use the results of (a) and (b) to find the average power dissipated in the inverter.}\]

\[\text{Average power dissipated in the inverter:}
\]

\[P_{\text{avg}} = \frac{P_{\text{diss,low}} + P_{\text{diss,high}}}{2}
\]
INTRODUCTION

Having studied the major electronic devices (the MOSFET and the BJT) and their basic circuit applications, we are now ready to consider the design of more complex analog and digital integrated circuits and systems. The five chapters of Part II are intended for this purpose. They provide a carefully selected set of topics suitable for a second course in electronics. Nevertheless, the flexibility inherent in this book should permit replacing some of the topics included with a selection from the special topics presented in Part III. As well, if desired, Chapter 10 on CMOS logic circuits can be studied at the beginning of the course.

Study of Part II assumes knowledge of MOSFET and BJT characteristics, models, and basic applications (Chapters 4 and 5). To review and consolidate this material and differences between the two devices, Section 6.2 with its three tables (6.1–6.3) is a must read. The remainder of Chapter 6 provides a systematic study of the circuit building blocks utilized in the design of analog ICs. In each case, both low-frequency and high-frequency operations are considered. Chapter 7 continues this study, concentrating on the most widely used configuration in analog IC design, the differential pair. It concludes with a section on multistage amplifiers. In both chapters, MOSFET circuits are presented first, simply because the MOSFET is now the device that is used in over 90% of integrated circuits. Bipolar transistor circuits are presented with the same depth but presented second and, on occasion, more briefly.

A formal study of the pivotal topic of feedback is presented in Chapter 8. Such a study is essential for the proper application of feedback in the design of amplifiers, to effect desirable properties such as more precise gain value, and to avoid problems such as instability. The analog material of Part II is integrated together in Chapter 9 in the study of op-amp circuits. Chapter 9 also presents an introduction to analog-to-digital and digital-to-analog converters, and thus acts as a bridge to the study of CMOS digital logic circuits in Chapter 10. Here again we concentrate on CMOS because it represents the technology in which the vast majority of digital systems are implemented.

The second course, based on Part II, is intended to prepare the reader for the practice of electronic design, and, if desired, to pursue more advanced courses on analog and digital IC design.
Single-Stage Integrated-Circuit Amplifiers

INTRODUCTION

Having studied the two major transistor types, the MOSFET and the BJT, and their basic discrete-circuit amplifier configurations, we are now ready to begin the study of integrated-circuit amplifiers. This chapter and the next are devoted to the design of the basic building blocks of IC amplifiers.

In this chapter, we begin with a brief section on the design philosophy of integrated circuits, and how it differs from that of discrete circuits. Throughout this chapter, MOS and
Bipolar circuits are presented side-by-side, which allows a certain economy in presentation and, more importantly, provides an opportunity to compare and contrast the two circuit types. Toward that end, Section 6.2 provides a comprehensive comparison of the attributes of the two transistor types. This should serve both as a review as well as a guide to very interesting similarities and differences between the two devices.

Following the study of IC biasing, the various configurations of single-stage IC amplifiers are presented. This material builds on the study of basic discrete-amplifier configurations in Sections 4.7 and 5.7.

In addition to classical single-stage amplifiers, we also study some configurations that utilize two amplifying transistors. These "compound configurations" are usually treated as single-stage amplifiers (for reasons that will become clear later).

Current mirrors and current-source circuits play a major role in the design of IC amplifiers, where they serve both as biasing and load elements. For this reason, we return to the subject of current mirrors later in the chapter and consider some of their advanced (and indeed, ingenious) forms.

Although CMOS circuits are the most widely used at present, there are applications in which the addition of bipolar transistors can result in superior performance. Circuits that combine MOS and bipolar transistors, in a technology known as BiMOS or BiCMOS, are presented at appropriate locations throughout the chapter. The chapter concludes with SPICE simulation examples.

6.1 IC DESIGN PHILOSOPHY

Integrated-circuit fabrication technology (Appendix A) poses constraints on—and provides opportunities to—the circuit designer. Thus, while chip-area considerations dictate that large- and even moderate-value resistors are to be avoided, constant-current sources are readily available. Large capacitors, such as those we used in Sections 4.7 and 5.7 for signal coupling and bypass, are not available to be used, except perhaps as components external to the IC chip. Even then, the number of such capacitors has to be kept to a minimum; otherwise the number of chip terminals and hence its cost increase. Very small capacitors, in the picofarad and fraction of a picofarad range, however, are easy to fabricate in IC MOS technology and can be combined with MOS amplifiers and MOS switches to realize a wide range of signal processing functions, both analog (Chapter 12) and digital (Chapter 11).

As a general rule, in designing IC MOS circuits, one should strive to realize as many of the functions required as possible using MOS transistors only and, when needed, small MOS capacitors. MOS transistors can be sized; that is, their W and L values can be selected, to fix a wide range of design requirements. Also, arrays of transistors can be matched (or, more generally, made to have desired size ratios) to realize such useful circuit building blocks as current mirrors.

At this juncture, it is useful to mention that to pack a larger number of devices on the same IC chip, the trend has been to reduce the device dimensions. At the time of this writing (2003), CMOS process technologies capable of producing devices with a 0.18-μm minimum channel length are in use. Small devices need to operate with low voltage supplies close to 1 V. While low-voltage operation helps to reduce power dissipation, it poses a host of challenges to the circuit designer. For instance, such MOS transistors must be operated with overdrive voltages of only 0.2 V or so. In our study of MOS amplifiers, we will make frequent comments on such issues.

The MOS-amplifier circuits that we shall study will be designed almost entirely using MOSFETs of both polarities—that is, NMOS and PMOS—as are readily available in CMOS technology. As mentioned earlier, CMOS is currently the most widely used IC technology for both analog and digital as well as combined analog and digital (or mixed-signal) applications. Nevertheless, bipolar integrated circuits still offer many exciting opportunities to the analog design engineer. This is especially the case for general-purpose circuit packages, such as high-quality op amps that are intended for assembly on printed-circuit (pc) boards (as opposed to being part of a system-on-chip). As well, bipolar circuits can provide much higher output currents and are favored for certain applications, such as in the automotive industry, for their high reliability under severe environmental conditions. Finally, bipolar circuits can be combined with CMOS in innovative and exciting ways.

6.2 COMPARISON OF THE MOSFET AND THE BJT

In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical values for the important parameters of the two devices are first presented.

6.2.1 Typical Values of MOSFET Parameters

Typical values for the important parameters of NMOS and PMOS transistors fabricated in a number of CMOS processes are shown in Table 6.1. Each process is characterized by the minimum allowed channel length, \(L_m \), thus, for example, in a 0.18-μm process, the smallest transistor has a channel length \(L = 0.18 \mu m \). The technologies presented in Table 6.1 are in descending order of channel length, with that having the shortest channel length being the most modern. Although the 0.8-μm process is now obsolete, its data are included to show trends in the values of various parameters. It should also be mentioned that although Table 6.1 stops at the 0.18-μm process, at the time of this writing (2003), a 0.13-μm fabrication process is commercially available and a 0.09-μm process is in the advanced stages of development.

As mentioned earlier, CMOS is currently the most widely used IC technology for both analog and digital as well as combined analog and digital (or mixed-signal) applications. Nevertheless, bipolar integrated circuits still offer many exciting opportunities to the analog design engineer. This is especially the case for general-purpose circuit packages, such as high-quality op amps that are intended for assembly on printed-circuit (pc) boards (as opposed to being part of a system-on-chip). As well, bipolar circuits can provide much higher output currents and are favored for certain applications, such as in the automotive industry, for their high reliability under severe environmental conditions. Finally, bipolar circuits can be combined with CMOS in innovative and exciting ways.

6.2.2 COMPARISON OF THE MOSFET AND THE BJT

In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical values for the important parameters of the two devices are first presented.

6.2.2.1 Typical Values of MOSFET Parameters

Typical values for the important parameters of NMOS and PMOS transistors fabricated in a number of CMOS processes are shown in Table 6.1. Each process is characterized by the minimum allowed channel length, \(L_m \), thus, for example, in a 0.18-μm process, the smallest transistor has a channel length \(L = 0.18 \mu m \). The technologies presented in Table 6.1 are in descending order of channel length, with that having the shortest channel length being the most modern. Although the 0.8-μm process is now obsolete, its data are included to show trends in the values of various parameters. It should also be mentioned that although Table 6.1 stops at the 0.18-μm process, at the time of this writing (2003), a 0.13-μm fabrication process is commercially available and a 0.09-μm process is in the advanced stages of development.

As mentioned earlier, CMOS is currently the most widely used IC technology for both analog and digital as well as combined analog and digital (or mixed-signal) applications. Nevertheless, bipolar integrated circuits still offer many exciting opportunities to the analog design engineer. This is especially the case for general-purpose circuit packages, such as high-quality op amps that are intended for assembly on printed-circuit (pc) boards (as opposed to being part of a system-on-chip). As well, bipolar circuits can provide much higher output currents and are favored for certain applications, such as in the automotive industry, for their high reliability under severe environmental conditions. Finally, bipolar circuits can be combined with CMOS in innovative and exciting ways.

6.2.2.2 COMPARISON OF THE MOSFET AND THE BJT

In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical values for the important parameters of the two devices are first presented.

6.2.2.2.1 Typical Values of MOSFET Parameters

Typical values for the important parameters of NMOS and PMOS transistors fabricated in a number of CMOS processes are shown in Table 6.1. Each process is characterized by the minimum allowed channel length, \(L_m \), thus, for example, in a 0.18-μm process, the smallest transistor has a channel length \(L = 0.18 \mu m \). The technologies presented in Table 6.1 are in descending order of channel length, with that having the shortest channel length being the most modern. Although the 0.8-μm process is now obsolete, its data are included to show trends in the values of various parameters. It should also be mentioned that although Table 6.1 stops at the 0.18-μm process, at the time of this writing (2003), a 0.13-μm fabrication process is commercially available and a 0.09-μm process is in the advanced stages of development.

As mentioned earlier, CMOS is currently the most widely used IC technology for both analog and digital as well as combined analog and digital (or mixed-signal) applications. Nevertheless, bipolar integrated circuits still offer many exciting opportunities to the analog design engineer. This is especially the case for general-purpose circuit packages, such as high-quality op amps that are intended for assembly on printed-circuit (pc) boards (as opposed to being part of a system-on-chip). As well, bipolar circuits can provide much higher output currents and are favored for certain applications, such as in the automotive industry, for their high reliability under severe environmental conditions. Finally, bipolar circuits can be combined with CMOS in innovative and exciting ways.

6.2.2.2.2 COMPARISON OF THE MOSFET AND THE BJT

In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical values for the important parameters of the two devices are first presented.

6.2.2.2.2.1 Typical Values of MOSFET Parameters

Typical values for the important parameters of NMOS and PMOS transistors fabricated in a number of CMOS processes are shown in Table 6.1. Each process is characterized by the minimum allowed channel length, \(L_m \), thus, for example, in a 0.18-μm process, the smallest transistor has a channel length \(L = 0.18 \mu m \). The technologies presented in Table 6.1 are in descending order of channel length, with that having the shortest channel length being the most modern. Although the 0.8-μm process is now obsolete, its data are included to show trends in the values of various parameters. It should also be mentioned that although Table 6.1 stops at the 0.18-μm process, at the time of this writing (2003), a 0.13-μm fabrication process is commercially available and a 0.09-μm process is in the advanced stages of development.

As mentioned earlier, CMOS is currently the most widely used IC technology for both analog and digital as well as combined analog and digital (or mixed-signal) applications. Nevertheless, bipolar integrated circuits still offer many exciting opportunities to the analog design engineer. This is especially the case for general-purpose circuit packages, such as high-quality op amps that are intended for assembly on printed-circuit (pc) boards (as opposed to being part of a system-on-chip). As well, bipolar circuits can provide much higher output currents and are favored for certain applications, such as in the automotive industry, for their high reliability under severe environmental conditions. Finally, bipolar circuits can be combined with CMOS in innovative and exciting ways.
As indicated in Table 6.1, the trend has been to reduce the minimum allowable channel length. This trend has been motivated by the desire to pack more transistors on a chip as well as to operate at higher speeds or, in analog terms, at wider bandwidths. Observe that the oxide thickness, L_{ox}, scales down with the channel length, reaching a real value of 0.18 μm for the 0.18-μm process. The oxide capacitance C_{ox} is inversely proportional to L_{ox}, so we see that C_{ox} increases as the technology scales down. The surface mobility μ decreases as the technology minimum-feature size is decreased, and μ_{ox} decreases much faster than μ. As a result, the ratio of μ_{ox} to μ has been decreasing with each generation of technology. Falling from about 0.5 for older technologies to 0.2 or so for the newer ones. Despite the reduction of μ and μ_{ox}, the transconductance parameters $g_{m} = \mu_{ox}C_{ox}$ and $g_{d} = \mu_{ox}C_{ox}$ have been steadily increasing. As a result, modern short-channel devices achieve required levels of bias currents at lower overdrive voltages. As well, they achieve higher transconductance, a major advantage.

Although the magnitudes of the threshold voltages V_{th} and V_{tp} have been decreasing with L_{min} from about 0.7-0.8 V to 0.4-0.5 V, the reduction has not been as large as that of the power supply V_{DD}. The latter has been reduced dramatically, from 5 V for older technologies to 1.8 V for the 0.18-μm process. This reduction has been necessitated by the need to keep the electric fields in the smaller devices from reaching very high values. Another reason for reducing V_{DD} is to keep power dissipation as low as possible given that the IC chip now has a much larger number of transistors.

The fact that in modern short-channel CMOS processes V_{th} has become a much larger proportion of the power-supply voltage poses a serious challenge to the circuit design engineer. Recall that $V_{th} = V_{tp} + V_{DS}$, where V_{tp} is the overdrive voltage, to keep V_{th} essentially small, V_{DD} for modern technologies is usually in the range of 0.2 V to 0.3 V. To appreciate this point further, recall that to operate a MOSFET in the saturation region, $V_{gs} - V_{th}$ must exceed $|V_{tp}|$; thus, to be able to have a number of devices stacked between the power-supply rails in a regime in which V_{th} is only 1.8 V or lower, we need to keep $|V_{tp}|$ as low as possible. We will shortly see, however, that operating at a low V_{th} has some drawbacks.

Another significant though undesirable feature of modern submicron CMOS technologies is that the channel length modulation effect is very pronounced. As a result, V_{th} has been steadily decreasing, which combined with the decreasing values of L has caused the Early voltage V_{A} to become very small. Correspondingly, short-channel MOSFET's exhibit low output resistances.

From our study of the MOSFET high-frequency equivalent circuit model in the saturation mode in Section 4.8 and the high-frequency response of the common-source amplifier in Section 4.9, we know that two major MOSFET capacitances are C_{gs} and C_{gd}. While C_{gd} has an overlap component, C_{gs} is entirely an overlap capacitance. Both C_{gs} and the overlap component of C_{gd} are almost equal and are denoted C_{ov}. The last line of Table 6.1 provides the value of C_{ov} per micron of gate width. Although the normalized C_{ov} has been staying more or less constant with the reduction in L_{min}, we will shortly see that the shorter devices exhibit much higher operating speeds and wider amplifier bandwidths than the longer devices. Specifically, we will, for example, see that f_{T} for a 0.25-μm NMOS transistor can be as high as 10 GHz.

6.2.2 Typical Values of IC BJT Parameters

Table 6.2 provides typical values for the major parameters that characterize integrated-circuit bipolar transistors. Data are provided for devices fabricated in two different processes: the

Table 6.2: Typical Parameter Values for BJTs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard High-Voltage Process</th>
<th>Advanced Low-Voltage Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{B} (V)</td>
<td>500</td>
<td>900</td>
</tr>
<tr>
<td>I_{C} (A)</td>
<td>2×10^{-13}</td>
<td>2×10^{-15}</td>
</tr>
<tr>
<td>β (A/A)</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>V_{BE} (V)</td>
<td>130</td>
<td>50</td>
</tr>
<tr>
<td>V_{CEO} (V)</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>f_{T} (MHz)</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>f_{max}</td>
<td>30 ps</td>
<td>10 ps</td>
</tr>
<tr>
<td>C_{o} (pF)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>C_{pi} (pF)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>r_{p} (Ω)</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>r_{n} (Ω)</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

1At the present time, chip power dissipation has become a very serious issue, with some of the recently reported IC's dissipating as much as 100 W. As a result, an important current area of research concerns what is termed "power-aware design."
fabricated in the low-voltage process break down at collector-emitter voltages of 8 V, as compared to 50 V or so for the high-voltage process. Thus, while circuits designed with the standard high-voltage process utilize power supplies of ±15 V (e.g., in commercially available op amps of the 741 type), the total power-supply voltage utilized with modern bipolar devices is 5 V (or even 3.3 V to achieve compatibility with some of the submicron CMOS processes).

6.2.3 Comparison of Important Characteristics

Table 6.3 provides a compilation of the important characteristics of the NMOS and the npn transistors. The material is presented in a manner that facilitates comparison. In the following, we provide comments on the various items in Table 6.3. As well, a number of numerical examples and exercises are provided to illustrate how the wealth of information in Table 6.3 can be put to use. Before proceeding, note that the PMOS and the pnp transistors can be compared in a similar way.

TABLE 6.3 Comparison of the MOSFET and the BJT

<table>
<thead>
<tr>
<th>Circuit Symbol</th>
<th>NMOS</th>
<th>npn</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Operate in the Active Mode, Two Conditions Have To Be Satisfied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Induce a channel;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{GS} \geq V_T, V_T = 0.5 - 0.7 \text{ V}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pinch-off channel at drain;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DS} \geq V_T, V_T = 0.2 - 0.3 \text{ V}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current-Voltage Characteristics in the Active Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_D = \frac{1}{2} \mu A \frac{W}{L} (V_{GS} - V_T)^2 (1 + \frac{V_{GS}}{V_T})$</td>
<td>$I_C = I_D (\frac{W}{L})$</td>
<td></td>
</tr>
<tr>
<td>$I_D = \frac{1}{2} \mu A \frac{W}{L} V_T^2 (1 + \frac{V_{GS}}{V_T})$</td>
<td>$I_C = \frac{I_D}{\beta}$</td>
<td></td>
</tr>
<tr>
<td>Low-Frequency Hybrid-$$e$$ Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low-Frequency T Model

- **Transconductance**: $g_m = I_D/(V_{GS}/2)$
- $g_m = I_C/V_T$
- $g_m = (\mu A \frac{W}{L} V_{GS})$

Output Resistance: $r_o = V_a/I_D = V_a/\beta$

Intrinsic Gain: $A_0 = V_c/(V_{GS}/2)$

Input Resistance with Source (Emitter) Grounded: $r_s = \beta/g_m$

(Continued)
TABLE 6.3 Comparison of the MOSFET and the BJT (Continued)

<table>
<thead>
<tr>
<th>Capacitances</th>
<th>NMOS</th>
<th>pnp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_G = \frac{2WL}{L_0}C_{ox} + \frac{W}{L_0}C_{gs}$</td>
<td>$C_G = \frac{1}{2}\left(1 + \frac{V_{BE}}{V_T}\right)$</td>
<td></td>
</tr>
<tr>
<td>$C_E = \frac{W}{L_0}C_{gs}$</td>
<td>$C_E = \frac{W}{L_0}C_{gs}$</td>
<td></td>
</tr>
</tbody>
</table>

Transition Frequency

$\frac{f_T}{f_c} = \frac{\mu_n}{2\pi C_{gs} + C_{gd}}$

For $C_{gd} > C_{gs}$ and $C_{gs} \approx \frac{2}{3}WL_c v_{gs}$.

$\frac{f_T}{f_c} = \frac{\mu_n}{2\pi C_{gs} + C_{gd}}$

$\frac{f_T}{f_c} = \frac{2\mu_n V_{th}}{2\pi W_a}$

Design Parameters

$I_{DD}, V_{DS}, L, \frac{W}{L}$

I_{DD}, V_{GS}, A_C (or I_D)

Good Analog Switch?

Yes, because the device is symmetrical and thus the off-time characteristics pass directly through the origin.

No, because the device is asymmetrical with an offset voltage V_{offset}.

Operating Conditions

At the outset, note that we shall use active mode or active region to denote both the active mode of operation of the BJT and the saturation-mode of operation of the MOSFET.

The conditions for operating in the active mode are very similar for the two devices: the explicit threshold V_T of the MOSFET has V_{GS} as its implicit counterpart in the BJT. Furthermore, for modern processes, V_{GS} and V_T are almost equal.

Also, pinching off the channel of the MOSFET at the drain end is very similar to reverse biasing the CBJ of the BJT. Note, however, that the asymmetry of the BJT results in V_{DS} as its implicit counterpart in the BJT.

For $C_{gd} > C_{gs}$, and $C_{gs} \approx \frac{2}{3}WL_c v_{gs}$.

Finally, for both the MOSFET and the BJT to operate in the active mode, the voltage across the device (V_{GS}, V_{DS}) must be at least 0.2 V to 0.3 V.

Current-Voltage Characteristics

The square-law control characteristic, $i_C - v_C$, is the MOSFET should be compared with the exponential control characteristic: i_C = i_C in the BJT. Obviously, the latter is a much more sensitive relationship, with the result that i_C can vary over a very wide range (five decades or more) within the same BJT. In the MOSFET, the range of i_C achieved in the same device is much more limited. To appreciate this point further, consider the parabolic relationship between i_C and v_C, and recall from our discussion above that v_C is usually kept in a narrow range (0.2 V to 0.4 V).

Next we consider the effect of the device dimensions on its current. For the bipolar transistor the control parameter is the area of the emitter-base junction (EBJ), A_E, which determines the scale current I_E. It can be varied over a relatively narrow range, such as 10 to 1.

Thus, while the emitter area can be used to achieve current scaling in an IC (as we shall see in the next section in connection with the design of current mirrors) its narrow range of variation reduces its significance as a design parameter. This is particularly so if we compare A_E with its counterpart in the MOSFET, the aspect ratio W/L. MOSFET devices can be designed with W/L ratios in a wide range, such as 0.1 to 1.0. As a result W/L is a very significant MOS design parameter. Like A_E, it is also used in current scaling, as we shall see in the next section. Combining the possible range of variation of V_{GS} and V_{DS}, one can design MOS transistors to operate over an I_D range of four decades or so.

The channel-length modulation in the MOSFET and the base-width modulation in the BJT are similarly modeled and give rise to the dependence of $i_D(v_D)$ on $v_{DS}(v_{BE})$ and, hence, to the finite output resistance r_o in the active region. Two important differences, however, exist. In the BJT, V_B is solely a process-technology parameter and does not depend on the dimensions of the BJT. In the MOSFET, the situation is quite different: $V_D = V_{DL}$, where V_D is a process-technology parameter and L is the channel length used. Also, in modern submicron processes, V_D is very low, resulting in V_D values much lower than the corresponding values for the BJT.

The last, and perhaps most important, difference between the current-voltage characteristics of the two devices concerns the input current into the control terminal: While the gate current of the MOSFET is practically zero and the input resistance looking into the gate is practically infinite, the BJT has base current I_B that is proportional to the collector current; that is, $I_B = I_C/\beta$. The finite base current and the corresponding finite input resistance looking into the base is a definite disadvantage of the BJT in comparison to the MOSFET. Indeed, it is the infinite input resistance of the MOSFET that has made possible analog and digital circuit applications that are not feasible with the BJT. Examples include dynamic digital memory (Chapter 11) and switched-capacitor filters (Chapter 12).

EXAMPLE 6.1

(a) For an NMOS transistor with $W/L = 10$ fabricated in the 0.18-µm process whose data are given in Table 6.1, find the values of V_{GS} and V_{DS} required to operate the device at $I_D = 100$ µA. Ignore channel-length modulation.

(b) Find V_{DD} for an nMOS transistor fabricated in the low-voltage process specified in Table 6.2 and operated at $I_D = 100$ µA. Ignore base-width modulation.

Solution

(a) $I_D = \frac{1}{2}(\mu_n C_{ox} \frac{W}{L}) V_{GS}^2$

Substituting $I_D = 100$ µA, $W/L = 10$, and, from Table 6.1, $\mu_n C_{ox} = 387$ µA/V² results in

$$100 = \frac{1}{2} \times 387 \times 10 \times V_{GS}^2$$

$$V_{GS} = 0.23 \text{ V}$$

(b) $I_C = I_D e^{\frac{V_{DD}}{V_T}}$

Substituting $I_D = 100$ µA and, from Table 6.2, $I_D = 6 \times 10^{-4}$ A, gives

$$V_{DD} = 0.025 \times \frac{100 \times 10^{-4}}{6 \times 10^{-4}} = 0.76 \text{ V}$$
Low-Frequency Small-Signal Models

The low-frequency models for the two devices are very similar except, of course, for the finite base current \((\beta) \) of the BJT, which gives rise to \(r_e \) in the hybrid-\(\pi \) model and to the unequal currents in the emitter and collector in the \(T \) models \((\alpha < 1)\). Here it is interesting to note that the low-frequency small-signal models become identical if one thinks of the MOSFET as a BJT with \(\beta = \infty \) \((\alpha = 1)\).

For both devices, the hybrid-\(\pi \) model indicates that the open-circuit voltage gain obtained from gate to drain (base to collector) with the source

\(\text{source} \) grounded is \(\frac{V_{GS}}{V_{DS}} \).

It follows that \(g_m\), is the maximum gain available from a single transistor of either type. This important transistor parameter is given the name intrinsic gain and is denoted \(A_I \). We will have more to say about the intrinsic gain shortly.

Although not included in the MOSFET low-frequency model shown in Table 6.3, the body effect can have a significant implication for the operation of the MOSFET as an amplifier. In simple terms, if the body (substrate) is not connected to the source, it can act as a second gate for the MOSFET. The voltage signal that develops between the body and the source, \(V_{DB} \), given rise to a drain current component \(g_{m}V_{GB} \), where the body transconductance \(g_m \) is proportional to \(\frac{1}{W/L} \); that is, \(g_m = \frac{2}{W/L} \), where the factor \(\gamma \) is in the range of 0.1 to 0.2. We shall take the body effect into account in the study of IC MOS amplifiers in the succeeding sections. The body effect has no counterpart in the BJT.

The Transconductance

For the BJT, the transconductance \(g_m \) depends only on the dc collector current \(I_C \). (Recall that \(V_{CE} \) is a physical constant = 0.025 V at room temperature.) It is interesting to observe that \(g_m \) does not depend on the geometry of the BJT, and its dependence on the EBJ area is only through the effect of the area on the total collector current \(I_C \). Similarly, the dependence of \(g_m \) on \(V_{BE} \) is only through the fact that \(V_{BE} \) determines the total current in the collector. By contrast, \(g_m \) of the MOSFET depends on \(I_D \), \(V_{DS} \), and \(W/L \). Therefore, we use three different (but equivalent) formulas to express \(g_m \) of the MOSFET.

The first formula given in Table 6.3 for the MOSFET’s \(g_m \) is the most directly comparable with the formula for the BJT. It indicates that for the same operating current, \(g_m \) of the MOSFET is much smaller than that of the BJT. This is because \(V_{GS} \)/2 is the range of 0.1 V to 0.2 V, which is four to eight times the corresponding term in the BJT’s formula, namely \(V_{BE} \).

The second formula for the MOSFET’s \(g_m \) indicates that for a given device \((i.e., \text{given } W/L)\), \(g_m \) is proportional to \(V_{DS} \). Thus a higher \(g_m \) is obtained by operating the MOSFET at a higher overdrive voltage. However, we should recall the limitations imposed on the magnitude of \(V_{DS} \) by the limited value of \(V_{GG} \). Put differently, the need to obtain a reasonably high \(g_m \) constrains the designer’s interest in reducing \(V_{DD} \).

The third \(g_m \) formula shows that for a given transistor \((i.e., \text{given } W/L)\), \(g_m \) is proportional to \(V_{GG} \). This should be compared with the bipolar case, where \(g_m \) is directly proportional to \(I_C \).

Output Resistance

The output resistance for both devices is determined by similar formulas, with \(r_o \) being the ratio of \(V_T \) to the bias current \((I_D \text{ or } I_C) \). Thus, for both transistors, \(r_o \) is inversely proportional to the bias current. The difference in nature and magnitude of \(V_T \) between the two devices has already been discussed.

Intrinsic Gain

The intrinsic gain \(A_I \) of the BJT is the ratio of \(V_{BE} \), which is solely a process parameter \((V_{BE} = 35 \text{ to } 120 \text{ V})\), and \(V_T \), which is a physical parameter \((0.025 \text{ V at room temperature})\). Thus, \(A_I \) of a BJT is independent of the device junction area and of the operating current, and its value ranges from 1000 \(\text{to } 5000 \text{ V/V} \). The situation in the MOSFET is very different: Table 6.3 provides three different \((\text{but equivalent})\) formulas for expressing the MOSFET’s intrinsic gain. The first formula is the one most directly comparable to that of the BJT. Here, however, we note the following:

1. The quantity in the denominator is \(V_{GS}/2 \), which is a design parameter, and although it is becoming smaller in designs using short-channel technologies, it is still much larger than \(V_T \). Furthermore, as we have seen earlier, there are reasons for selecting smaller values for \(V_{GS} \).

2. The numerator quantity \(V_T \) is both process- and device-dependent, and its value has been steadily decreasing.

As a result, the intrinsic gain realized in a single MOSFET amplifier stage fabricated in a modern short-channel technology is only 20 V/V to 40 V/V, almost two orders of magnitude lower than that for a BJT.

The third formula given for \(A_I \) in Table 6.3 points out a very interesting fact: For a given process technology \((V_T \text{ and } \mu_C C_{ox})\) and a given device \((W/L)\), the intrinsic gain is inversely proportional to \(J_{F} \). This is illustrated in Fig. 6.1, which shows a typical plot of \(A_I \) versus the bias current \(J_F \). The plot confirms that the gain increases as the bias current is lowered. The gain, however, levels off at very low currents. This is because the MOSFET enters the subthreshold region of operation \((\text{Section 4.1.9})\), where it becomes very much like a BJT with an exponential current-voltage characteristic. The intrinsic gain then becomes constant, just like that of a BJT. Note, however, that although a higher gain is achieved at lower bias currents, the price paid is a lower \(g_m \) and less ability to drive capacitive loads and thus a decrease in bandwidth. This point will be further illustrated shortly.

Exercise

6.1 For NMOS transistors fabricated with the 0.1-mum technology specified in Table 6.1, find the range of \(I_D \) for \(V_{DD} \) ranging from 0.2 V to 0.4 V and \(W/L = 0.1 \text{ to } 1.0 \). Neglect channel-length modulation.

6.2 For a similar range of current is required in an npn device, ranging from 0.2 V to 0.4 V and \(V_{BE} \) thus a higher overdrive voltage. However, we should recall the limitations imposed on the magnitude of \(V_{BE} \), which is four to eight times the corresponding term in the BJT's formula, namely \(V_{BE} \), which is a physical parameter \((0.025 \text{ V at room temperature})\). Thus, \(A_I \) of a BJT is independent of the device junction area and of the operating current, and its value ranges from 1000 V/V to 5000 V/V. The situation in the MOSFET is very different: Table 6.3 provides three different \((\text{but equivalent})\) formulas for expressing the MOSFET's intrinsic gain. The first formula is the one most directly comparable to that of the BJT. Here, however, we note the following:

1. The quantity in the denominator is \(V_{GS}/2 \), which is a design parameter, and although it is becoming smaller in designs using short-channel technologies, it is still much larger than \(V_T \). Furthermore, as we have seen earlier, there are reasons for selecting smaller values for \(V_{GS} \).

2. The numerator quantity \(V_T \) is both process- and device-dependent, and its value has been steadily decreasing.

As a result, the intrinsic gain realized in a single MOSFET amplifier stage fabricated in a modern short-channel technology is only 20 V/V to 40 V/V, almost two orders of magnitude lower than that for a BJT.

The third formula given for \(A_I \) in Table 6.3 points out a very interesting fact: For a given process technology \((V_T \text{ and } \mu_C C_{ox})\) and a given device \((W/L)\), the intrinsic gain is inversely proportional to \(J_{F} \). This is illustrated in Fig. 6.1, which shows a typical plot of \(A_I \) versus the bias current \(J_F \). The plot confirms that the gain increases as the bias current is lowered. The gain, however, levels off at very low currents. This is because the MOSFET enters the subthreshold region of operation \((\text{Section 4.1.9})\), where it becomes very much like a BJT with an exponential current-voltage characteristic. The intrinsic gain then becomes constant, just like that of a BJT. Note, however, that although a higher gain is achieved at lower bias currents, the price paid is a lower \(g_m \) and less ability to drive capacitive loads and thus a decrease in bandwidth. This point will be further illustrated shortly.
EXERCISE

6.2 For an NMOS transistor fabricated in the 0.5-μm process specified in Table 6.1 with \(L = 0.5 \) μm, find the transconductance and the intrinsic gain obtained at \(I_D = 10 \) μA, 100 μA, and 1 mA.

Ans. 0.2 mA/V, 200 V/V; 0.6 mA/V, 62 V/V; 2 mA/V, 20 V/V

CHAPTER 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

High-Frequency Operation The simplified high-frequency equivalent circuits for the MOSFET and the BJT are very similar, and so are the formulas for determining their unity-gain frequency (also called transition frequency) \(f_T \). Recall that \(f_T \) is a measure of the intrinsic bandwidth of the transistor itself and does not take into account the effects of capacitive loads. We shall address the issue of capacitive loads shortly. For the time being, note the striking similarity between the approximate formulas given in Table 6.3 for the value of \(f_T \) of the two devices. In both cases \(f_T \) is inversely proportional to the square of the critical dimension of the device: the channel length for the MOSFET and the base width for the BJT. These formulas also clearly indicate that shorter-channel MOSFETs and narrower-base BJTs are inherently capable of a wider bandwidth of operation. It is also important to note that while for the BJT the approximate expression for \(f_T \) indicates that it is entirely process dependent, the corresponding expression for the MOSFET shows that \(f_T \) is proportional to the overdrive voltage \(V_{OV} \). Thus we have conflicting requirements on \(V_{OV} \): While a higher low-frequency gain is achieved by operating at a low \(V_{OV} \), wider bandwidth requires an increase in \(V_{OV} \). Therefore the selection of a value for \(V_{OV} \) involves, among other considerations, a trade-off between gain and bandwidth.

For \(\mu m \) transistors fabricated in the modern low-voltage process, \(f_T \) is in the range of 10 GHz to 20 GHz as compared to the 400 MHz to 600 MHz obtained with the standard high-voltage process. In the MOS case, NMOS transistors fabricated in a modern submicron technology, such as the 0.18-μm process, achieve \(f_T \) values in the range of 5 GHz to 15 GHz.

Before leaving the subject of high-frequency operation, let's look into the effect of a capacitive load on the bandwidth of the common-source (common-emitter) amplifier. For this purpose we shall assume that the frequencies of interest are much lower than \(f_T \) of the transistor. Hence we shall not take the transistor capacitances into account. Figure 6.2(a) shows a common-source amplifier with a capacitive load \(C_L \). The voltage gain from gate to drain can be found as follows:

\[
V_g = \frac{g_m V_{gs}}{r_e} = \frac{g_m}{r_e} V_{gs} = \frac{1}{r_e} V_{gs} \tag{6.1}
\]

Thus the gain has, as expected, a low-frequency value of \(g_m r_e = A_0 \) and a frequency response of the single-time-constant (STC) low-pass type with a break (pole) frequency at

\[
o_T = \frac{1}{C_L r_e} \tag{6.2}
\]

Obviously this pole is formed by \(r_e \) and \(C_L \). A sketch of the magnitude of gain versus frequency is shown in Fig. 6.2(b). We observe that the gain crosses the 0-dB line at frequency \(o_T \),

\[
o_T = A_0 o_T = \frac{g_m r_e}{C_L r_e} \frac{1}{C_L r_e} \tag{6.3}
\]

Although the reason is beyond our capabilities at this stage, \(f_T \) of MOSFETs that have very short channels varies inversely with \(L \) rather than with \(L^2 \).
For the BJT there are three design parameters—

- Frequency response is of the single-pole type; otherwise the two parameters may differ.

Design Parameters

1. The unity-gain frequency and the gain-bandwidth product of an amplifier are the same when the frequency response is of the single-pole type; otherwise the two parameters may differ.

2. In this example we investigate the gain and the high-frequency response of an npn transistor and an NMOS transistor. For the npn transistor, assume that it is fabricated in the low-voltage process with a capacitance \(C_D \), a design parameter is rather limited because of the narrow range over which \(A_g \) can vary. It follows that for the BJT there is only one effective design parameter: the collector current \(I_C \). Finally, note that we have not considered \(V_{CE} \) to be a design parameter, since its effect on \(f_T \) is only secondary. Of course, as we learned in Chapter 5, \(V_{CE} \) affects the output signal swing.

3. The second design parameter is \(V_{BE} \). We have already made numerous remarks about the effect of the value of \(V_{BE} \) on performance. Usually, for submicron technologies, \(V_{BE} \) is selected in the range of 0.2 V to 0.4 V.

4. Once values for \(L_D \) and \(V_{GS} \) are selected, the designer is left with the selection of the value of \(I_D \) or \(W/L \) (or, equivalently, \(W/L \)). For a given process and for the selected values of \(L_D \) and \(V_{GS} \), \(I_D \) is proportional to \(W/L \). It is important to note that the choice of \(I_D \) or, equivalently, \(W/L \) has no bearing on the value of intrinsic gain \(A_g \) and the transition frequency \(f_T \). However, it affects the value of \(g_m \) and hence the gain-bandwidth product. Figure 6.3 illustrates this point by showing how the gain of a common-source amplifier operated at a constant \(V_{GS} \) varies with \(I_D \) (or, equivalently, \(W/L \)). Note that while the dc gain remains unchanged, increasing \(W/L \) and, correspondingly, \(I_D \) increases the bandwidth proportionally. This, however, assumes that the load capacitance \(C_L \) is not affected by the device size, an assumption that may not be entirely justified in some cases.

Example 6.3

In this example we investigate the gain and the high-frequency response of an npn transistor and an NMOS transistor. For the npn transistor, assume that it is fabricated in the low-voltage process with a capacitance \(C_D \), a design parameter is rather limited because of the narrow range over which \(A_g \) can vary. It follows that for the BJT there is only one effective design parameter: the collector current \(I_C \). Finally, note that we have not considered \(V_{CE} \) to be a design parameter, since its effect on \(f_T \) is only secondary. Of course, as we learned in Chapter 5, \(V_{CE} \) affects the output signal swing.

For the MOSFET there are four design parameters—\(I_D \), \(V_{GS} \), \(L \) and \(W \)—of which any three can be selected by the designer. For analog circuit applications the trade-off in selecting a value for \(L \) is between the higher speeds of operation (wider amplifier bandwidth) obtained at lower values of \(L \) and the higher intrinsic gain obtained at larger values of \(L \). Usually one selects an \(L \) of about 25% to 50% greater than \(L_{min} \).

The second design parameter is \(V_{GS} \). We have already made numerous remarks about the effect of the value of \(V_{GS} \) on performance. Usually, for submicron technologies, \(V_{GS} \) is selected in the range of 0.2 V to 0.4 V.

Once values for \(L_D \) and \(V_{GS} \) are selected, the designer is left with the selection of the value of \(I_D \) or \(W/L \) (or, equivalently, \(W/L \)). For a given process and for the selected values of \(L_D \) and \(V_{GS} \), \(I_D \) is proportional to \(W/L \). It is important to note that the choice of \(I_D \) or, equivalently, \(W/L \) has no bearing on the value of intrinsic gain \(A_g \) and the transition frequency \(f_T \). However, it affects the value of \(g_m \) and hence the gain-bandwidth product. Figure 6.3 illustrates this point by showing how the gain of a common-source amplifier operated at a constant \(V_{GS} \) varies with \(I_D \) (or, equivalently, \(W/L \)). Note that while the dc gain remains unchanged, increasing \(W/L \) and, correspondingly, \(I_D \) increases the bandwidth proportionally. This, however, assumes that the load capacitance \(C_L \) is not affected by the device size, an assumption that may not be entirely justified in some cases.
Thus, for the NMOS transistor, assume that it is fabricated in the 0.25-μm CMOS process with \(L > 0.4 \) μm. Let the transistor be operated at \(V_{DD} = 0.3 \) V. Find \(I_{D} \) and \(I_{G} \) that is required to obtain \(I_{D} = 10 \) μA, 100 μA, and 1 mA. At each value of \(I_{D} \), find \(g_{m}, r_{d}, A_{o}, C_{ox}, C_{j}, \) and \(f_{T} \). Also, for each value of \(I_{D} \), determine the gain-bandwidth product \(f_{T} \) of a common-source amplifier loaded by a 3-pF capacitance, neglecting the internal capacitances of the transistor.

Solution

For the pnp transistor,

\[
\begin{align*}
\eta & = \frac{L}{V_{T}} = 0.025 \\
\eta & = 35 \\
A_{o} & = \frac{V_{T}}{I_{C}} = 1400 \Omega
\end{align*}
\]

\[
C_{ds} = 10 \times 10^{-10} \times 40I_{C} = 0.4 \times 10^{-9} \text{F}
\]

\[
C_{j} = 2C_{j0} + 10 \text{ F}
\]

\[
C_{o} = C_{o} + C_{j} = 5 \text{ F}
\]

\[
f_{T} = \frac{g_{m}}{2r_{d}}
\]

\[
f_{T} = \frac{g_{m}}{2r_{d}} = \frac{g_{m}}{2 \times 1 \times 10^{12}}
\]

We thus obtain the following results:

<table>
<thead>
<tr>
<th>(I_{D}) (mA)</th>
<th>(g_{m}) (mS)</th>
<th>(r_{d}) (GΩ)</th>
<th>(A_{o}) (V/V)</th>
<th>(r_{d}) (GHz)</th>
<th>(f_{T}) (MHz)</th>
<th>(f_{T}) (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μA</td>
<td>0.4</td>
<td>1400</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>100 μA</td>
<td>40</td>
<td>1400</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>11.6</td>
</tr>
<tr>
<td>1 mA</td>
<td>0.6</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the NMOS transistor,

\[
I_{D} = \frac{1}{2} \mu_{n}C_{ox} \frac{W}{L} \frac{V_{G}-V_{T}}{V_{T}}
\]

\[
W = \frac{0.125I_{D}}{\mu_{n}C_{ox} \frac{V_{G}-V_{T}}{V_{T}}}
\]

\[
\eta = \frac{I_{D}}{V_{GS}/V_{T}} = \frac{I_{D}}{0.25/2} = 8I_{D} / \text{A/V}
\]

\[
r_{d} = 2I_{D} - 5 \times 0.4 \Omega
\]

\[
A_{o} = g_{m}r_{d} = 16 \text{ V/V}
\]

EXERCISE

6.3 Find \(I_{D} \), \(g_{m} \), \(r_{d} \), \(A_{o} \), \(C_{ox} \), and \(f_{T} \) for an NMOS transistor fabricated in the 0.5-μm CMOS process, specified in Table 6.1 for \(L = 0.5 \) μm, \(W = 5 \) μm, and \(V_{DD} = 0.3 \) V.

Ans. \(0.57 \) mA, \(66.7 \) mA, \(66.7 \) V/V, \(8.3 \) MHz, \(8.8 \) GHz.

6.2.4 Combining MOS and Bipolar Transistors—BiCMOS Circuits

From the discussion above it should be evident that the BJT has the advantage over the MOSFET of a much higher transconductance \(g_{m} \) at the same value of dc bias current. Thus, in addition to realizing much higher voltage gains per amplifier stage, bipolar transistor amplifiers have superior high-frequency performance compared to their MOS counterparts. On the other hand, the practically infinite input resistance at the gate of a MOSFET makes it possible to design amplifiers with extremely high input resistances and an almost zero input bias current. Also, as mentioned earlier, the MOSFET provides an excellent implementation of a switch, a fact that has made CMOS technology capable of realizing a host of analog circuit functions that are not possible with bipolar transistors.

It can thus be seen that each of the two transistor types has its own distinct and unique advantages: Bipolar technology has been extremely useful in the design of very-high-quality general-purpose circuit building blocks, such as op amps. On the other hand, CMOS, with its very high packing density and its suitability for both digital and analog circuits, has become the technology of choice for the implementation of very-large-scale integrated circuits. Nevertheless, the performance of CMOS circuits can be improved if the designer has available (on the same chip) bipolar transistors that can be employed in functions that require their high \(g_{m} \) and excellent current-driving capability. A technology that allows the fabrication of high-quality bipolar transistors on the same chip as CMOS circuits is aptly called BiCMOS. At appropriate locations throughout this book we shall present interesting and useful BiCMOS circuit blocks.
6.2.5 Validity of the Square-Law MOSFET Model

We conclude this section with a comment on the validity of the simple square-law model we have been using to describe the operation of the MOS transistor. While this simple model works well for devices with relatively long channels (>1 μm) it does not provide an accurate representation of the operation of short-channel devices. This is because a number of physical phenomena come into play in these submicron devices, resulting in what are called short-channel effects. Although the study of short-channel effects is beyond the scope of this book, it should be mentioned that MOSFET models have been developed that take these effects into account. However, they are understandably quite complex and do not lend themselves to hand analysis of the type needed to develop insight into circuit operation. Rather, these models are suitable for computer simulation and are indeed used in SPICE (Section 6.13). For quick, manual analysis, however, we will continue to use the square-law model which is the basis for the comparison of Table 6.3.

6.3 IC BIASING—CURRENT SOURCES, CURRENT MIRRORS, AND CURRENT-STEERING CIRCUITS

Biasing in integrated-circuit design is based on the use of constant-current sources. On an IC chip with a number of amplifier stages, a constant dc current (called a reference current) is generated at one location and is then replicated at various other locations for biasing the various amplifier stages through a process known as current steering. This approach has the advantage that the effort expended on generating a predictable and stable reference current, usually utilizing a precision resistor external to the chip, need not be repeated for every amplifier stage. Furthermore, the bias currents of the various stages track each other in case of changes in power-supply voltage or in temperature.

In this section we study circuit building blocks and techniques employed in the bias design of IC amplifiers. These circuits are also utilized as amplifier load elements, as will be seen in Section 6.5 and beyond.

6.3.1 The Basic MOSFET Current Source

Figure 6.4 shows the circuit of a simple MOS constant-current source. The heart of the circuit is transistor Q2, the drain of which is shorted to its gate, thereby forcing it to operate in the saturation mode with

\[I_{Q2} = \frac{1}{2} k_c \left(\frac{W}{L} \right) (V_{GS} - V_{TH})^2 \]

where we have neglected channel-length modulation. The drain current of Q2 is supplied by \(V_{DD} \) through resistor \(R \), which in most cases would be outside the IC chip. Since the gate currents are zero,

\[I_{GG} = I_{REF} = \frac{V_{DD} - V_{GS}}{R} \]

where the current through R is considered to be the reference current of the current source and is denoted \(I_{REF} \). Equations (6.4) and (6.5) can be used to determine the value required for \(R \).

\[\text{Such a transistor is said to be diode connected.} \]
constant-current output. To ensure that Q₁ is saturated, the circuit to which the drain of Q₂ is to be connected must establish a drain voltage V_D that satisfies the relationship

\[V_D > V_{GS} - V_t \] \hspace{1cm} (6.8)

or, equivalently, in terms of the overdrive voltage \(V_{OV} \) of Q₁ and Q₂,

\[V_D > V_{OV} \] \hspace{1cm} (6.9)

In other words, the current source will operate properly with an output voltage \(V_D \) as low as \(V_{OV} \), which is a few tenths of a volt.

Although thus far neglected, channel-length modulation can have a significant effect on the operation of the current source. Consider, for simplicity, the case of identical devices Q₁ and Q₂. The drain current of Q₂, \(I_D \), will equal the current in Q₁, \(I_{REF} \), at the value of \(V_D \) that causes the two devices to have the same \(V_{GS} \). As \(V_D \) is increased above this value, \(I_D \) will increase according to the incremental output resistance \(r_{o2} \) of Q₂. This is illustrated in Fig. 6.6, which shows \(I_D \) vs. \(V_D \). Observe that since Q₁ is operating at a constant \(V_{GS} \) (determined by passing \(I_{REF} \) through the matched device Q₁), the curve in Fig. 6.6 is simply the \(V_{GS} \)-\(V_I \) characteristic curve of Q₂ for \(V_{GS} \) equal to the particular value \(V_{GS} \).

In summary, the current source of Fig. 6.4 and the current mirror of Fig. 6.5 have a finite output resistance \(R_o \),

\[R_o = \frac{\Delta V_D}{\Delta I_D} = r_{o2} = \frac{V_{GS} - V_t}{I_D} \] \hspace{1cm} (6.10)

where \(I_D \) is given by Eq. (6.6) and \(V_{GS} \) is the Early voltage of Q₂. Also, recall that for a given process technology, \(V_{GS} \) is proportional to the transistor channel length; thus, to obtain high output-resistance values, current sources are usually designed using transistors with relatively long channels. Finally, note that we can express the current \(I_D \) as

\[I_D = \frac{(W/L)_{2}}{(W/L)_{1}} I_{REF} \left(1 + \frac{V_D - V_{GS}}{V_{GS}} \right) \] \hspace{1cm} (6.11)

FIGURE 6.6 Output characteristic of the current source in Fig. 6.4 and the current mirror of Fig. 6.5 for the case Q₂ is matched to Q₁.

6.3 MOS Current-Steering Circuits

As mentioned earlier, once a constant current is generated, it can be replicated to provide dc bias currents for the various amplifier stages in an IC. Current mirrors can obviously be used to implement this current-steering function. Figure 6.7 shows a simple current-steering circuit.
CHAPTER 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

To ensure operation in the saturation region, the voltages at the drains of Q_2 and Q_3 are constrained as follows:

$$V_{D2} \geq -V_{GS1} + V_{D2}^V - V_{m}$$ \hspace{1cm} (6.14)

where V_{D2}^V is the overdrive voltage at which Q_1, Q_2, and Q_3 are operating. In other words, the drains of Q_2 and Q_3 will have to remain higher than $-V_{GS1}$ by at least the overdrive voltage, which is usually a few tenths of a volt.

Continuing our discussion of the circuit in Fig. 6.7, we see that current I_2 is fed to the input side of a current mirror formed by PMOS transistors Q_4, Q_5, and Q_6. This mirror provides

$$I_5 = I_6 (W/L)_5 (W/L)_6$$ \hspace{1cm} (6.16)

where $I_4 = I_6$. To keep Q_5 in saturation, its drain voltage should be

$$V_{D5} \leq V_{DD} - |V_{D2}^V|$$ \hspace{1cm} (6.17)

where V_{D2}^V is the overdrive voltage at which Q_1 is operating.

Finally, an important point to note is that while Q_2 pulls its current I_2 from a load (not shown in Fig. 6.7), Q_3 passes its current I_3 into a load (not shown in Fig. 6.7). Thus Q_3 is appropriately called a current source, whereas Q_2 should more properly be called a current sink. In an IC, both current sources and current sinks are usually needed.

EXERCISE

6.5 For the circuit of Fig. 6.7, let $V_{DD} = V_{CC} = 1.5$ V, $V_{BE} = 0.6$ V, $V_{CEQ} = -0.6$ V, all channel lengths = 1 μm, $W_1 = 200$ μm, $W_2 = 80$ μm, and $L = 0$. For $I_{REF} = 10$ μA, find the widths of all transistors to obtain $I_2 = 50$ μA, $I_3 = 70$ μA, and $I_4 = 50$ μA. It is further required that the voltage at the drain of Q_2 be allowed to go down to within 0.2 V of the negative supply, and that the voltage at the drain of Q_3 be allowed to go up to within 0.2 V of the positive supply.

Ans. $W_1 = 2.5$ μm; $W_2 = 15$ μm; $W_3 = 5$ μm; $W_4 = 12.5$ μm; $W_5 = 50$ μm

6.3.3 BJT Circuits

The basic BJT current mirror is shown in Fig. 6.8. It works in a fashion very similar to that of the MOS mirror. However, there are two important differences: First, the nonzero base current of the BJT (or, equivalently, the finite β) causes an error in the current transfer ratio of the bipolar mirror. Second, the current transfer ratio is determined by the relative areas of the emitter-base junctions of Q_1 and Q_2. Let us first consider the case when β is sufficiently high so that we can neglect the base currents. The reference current I_{REF} is passed through the diode-connected transistor Q_3 and thus establishes a corresponding voltage V_{D3}, which in turn is applied between base and emitter of Q_1. Now, if Q_1 is matched to Q_2, then the collector current of Q_2 will be equal to that of Q_1; that is,

$$I_2 = I_{REF}$$ \hspace{1cm} (6.18)

For this to happen, however, Q_2 must be operating in the active mode, which in turn is achieved so long as the collector voltage V_{CC} is 0.3 V or so higher than that of the emitter.

To obtain a current transfer ratio other than unity, say m, we simply arrange that the area of the EBJ of Q_2 is m times that of Q_1. In this case,

$$I_2 = m I_{REF}$$ \hspace{1cm} (6.19)

FIGURE 6.8 The basic BJT current mirror.
In general, the current transfer ratio is given by

$$I_Q / I_{REF} = \frac{\text{Area of EBJ of } Q_2}{\text{Area of EBJ of } Q_1}$$

Alternatively, if the area ratio \(m\) is an integer, one can think of \(Q_2\) as equivalent to \(m\) transistors, each matched to \(Q_1\) and connected in parallel.

Next we consider the effect of finite transistor \(\beta\) on the current transfer ratio. The analysis for the case in which the current transfer ratio is nominally unity—that is, for the case in which \(Q_2\) is matched to \(Q_1\)—is illustrated in Fig. 6.9. The key point here is that since \(Q_1\) and \(Q_2\) are matched and have the same \(V_{BE}\), their collector currents will be equal. The rest of the analysis is straightforward. A node equation at the collector of \(Q_1\) yields

$$I_{REF} = I_C + 2I_C/\beta = I_C (1 + \frac{2}{\beta})$$

Finally, since \(I_Q = I_C\), the current transfer ratio can be found as

$$I_{Q} / I_{REF} = \frac{I_C}{I_{REF}} = \frac{1}{1 + \frac{2}{\beta}}$$

Note that as \(\beta\) approaches \(\infty\), \(I_Q / I_{REF}\) approaches the nominal value of unity. For typical values of \(\beta\), however, the error in the current transfer ratio can be significant. For instance, \(\beta = 100\) results in a 2% error in the current transfer ratio. Furthermore, the error due to the finite \(\beta\) increases as the nominal current transfer ratio is increased. The reader is encouraged to show that for a mirror with a nominal current transfer ratio \(m\)—that is, one in which \(I_Q = mI_S\)—the actual current transfer ratio is given by

$$I_{Q} / I_{REF} = \frac{m}{1 + \frac{m + 1}{\beta}}$$

In common with the MOS current mirror, the BJT mirror has a finite output resistance \(R_o\),

$$R_o = \frac{V_0}{I_0} = \frac{V_{BE}}{I_0}$$

where \(V_{BE}\) and \(r_o\) are the Early voltage and the output resistance, respectively, of \(Q_2\). Thus, even if we neglect the error due to finite \(\beta\), the output current \(I_0\) will be at its nominal value only when \(Q_2\) has the same \(V_{BE}\) as \(Q_1\), namely at \(V_0 = V_{BE}\). As \(V_0\) is increased, \(I_0\) will correspondingly increase. Taking both the finite \(\beta\) and the finite \(R_o\) into account, we can express the output current of a BJT mirror with a nominal current transfer ratio \(m\) as

$$I_0 = I_{REF} \left[\frac{m}{1 + \frac{m + 1}{\beta}} \right] (1 + \frac{V_0 - V_{BE}}{V_{A}})$$

where we note that the error term due to the Early effect is expressed so that it reduces to zero for \(V_0 = V_{BE}\).

Exercise 6.6 Consider a BJT current mirror with a nominal current transfer ratio of unity. Let the transistors have \(\beta = 10\), \(V_{BE} = 100\) V, and \(V_A = 500\) V. For \(I_{REF} = 1\) mA, find \(I_0\) when \(V_0 = 5\) V. Also, find the output resistance.

Ans: 0.02 mA; 100 kΩ

A Simple Current Source In a manner analogous to that in the MOS case, the basic BJT current mirror can be used to implement a simple current source, as shown in Fig. 6.10. Here the reference current is

$$I_{REF} = \frac{V_{BE} - V_{E}}{R}$$

where \(V_{E}\) is the base-emitter voltage corresponding to the desired value of output current \(I_0\),

$$I_0 = I_{REF} \left[\frac{1 + \frac{V_0 - V_{BE}}{V_{A}}}{1 + \frac{2}{\beta}} \right]$$

The output resistance of this current source is \(r_o\) of \(Q_2\),

$$r_o = \frac{V_0}{I_0} = \frac{V_{BE}}{I_0}$$

In common with the MOS current mirror, the BJT current mirror has a finite output resistance \(R_o\),

$$R_o = \frac{V}{I_0} = \frac{V_{BE}}{I_0}$$

where \(V_{BE}\) and \(r_o\) are the Early voltage and the output resistance, respectively, of \(Q_2\). Thus, even if we neglect the error due to finite \(\beta\), the output current \(I_0\) will be at its nominal value only when \(Q_2\) has the same \(V_{BE}\) as \(Q_1\), namely at \(V_0 = V_{BE}\). As \(V_0\) is increased, \(I_0\) will correspondingly increase. Taking both the finite \(\beta\) and the finite \(R_o\) into account, we can express the output current of a BJT mirror with a nominal current transfer ratio \(m\) as

$$I_0 = I_{REF} \left[\frac{m}{1 + \frac{m + 1}{\beta}} \right] (1 + \frac{V_0 - V_{BE}}{V_{A}})$$

where we note that the error term due to the Early effect is expressed so that it reduces to zero for \(V_0 = V_{BE}\).
70 CHAPTER 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

D6.7 Assuming the availability of BJTs with scale currents $I_s = IC_{15} = 15 A$, $ß = 100$, and $V_A = 50 V$, design the current-source circuit of Fig. 6.10 to provide an output current $I_0 = 0.5 mA$ at $V_0 = 2 V$. The power supply $V_{CC} = 5 V$. Give the values of I_{REF}, R, and V_{0min}. Also, find I_0 at $V_0 = 5 V$.

Ans. $0.497 mA$; $8.71 k\Omega$; $0.3 V$; $0.53 mA$

Current Steering To generate bias currents for different amplifier stages in an IC, the current-steering approach described for MOS circuits can be applied in the bipolar case. As an example, consider the circuit shown in Fig. 6.11. The reference current I_{REF} is generated in the branch that consists of the diode-connected transistor Q_1, resistor R, and the diode-connected transistor Q_2:

$$I_{REF} = \frac{V_{CC} + V_{BB} - V_{BE2}}{R} \quad (6.28)$$

Now, for simplicity, assume that all the transistors have high $ß$ and thus that the base currents are negligibly small. We will also neglect the Early effect. The diode-connected transistor Q_1 forms a current mirror with Q_2; thus Q_1 will supply a constant current I equal to I_{REF}. Transistor Q_2 can supply this current to any load as long as the voltage that develops at the collector does not exceed $(V_{CC} - 0.3 V)$; otherwise Q_1 would enter the saturation region.

FIGURE 6.11 Generation of a number of constant currents of various magnitudes.
FIGURE 6.12 Frequency response of a direct-coupled (dc) amplifier. Observe that the gain does not fall off at low frequencies, and the midband gain A_M extends down to zero frequency.

large coupling capacitors, such as those we employed in Chapters 4 and 5. The frequency response of these direct-coupled or dc amplifiers takes the general form shown in Fig. 6.12, from which we note that the gain remains constant at its midband value A_M down to zero frequency (dc). That is, compared to the capacitively coupled amplifiers that utilize bypass capacitors (Sections 4.9 and 5.9), direct-coupled IC amplifiers do not suffer gain reduction at low frequencies. The gain, however, falls off at the high-frequency end due to the internal capacitances of the transistors. These capacitances, which are included in the high-frequency device models in Table 6.3, represent the charge storage phenomena that take place inside the transistors.

The high-frequency responses of the CS and CE amplifiers were studied in Sections 4.9 and 5.9. In this chapter and the next, as we study a variety of IC-amplifier configurations, we shall also consider their high-frequency operation. Some of the tools needed for such a study are presented in this section.

6.4.1 The High-Frequency Gain Function

The amplifier gain, taking into account the internal transistor capacitances, can be expressed as a function of the complex-frequency variable s in the general form

$$A(s) = A_M F(s)$$ \hspace{1cm} (6.29)

where A_M is the midband gain, which for the IC amplifiers we are studying here is equal to the low-frequency or dc gain. The value of A_M can be determined by analyzing the amplifier equivalent circuit while neglecting the effect of the transistor internal capacitances—that is, by assuming that they act as perfect open circuits. By taking these capacitances into account, the gain acquires the factor $F(s)$, which can be expressed in terms of its poles and zeros, which are usually real, as follows:

$$F(s) = \frac{(1 + s/\omega_1)(1 + s/\omega_2)\ldots(1 + s/\omega_n)}{(1 + s/\omega_{-1})(1 + s/\omega_{-2})\ldots(1 + s/\omega_{-n})}$$ \hspace{1cm} (6.30)

where $\omega_1, \omega_2, \ldots, \omega_n$ are positive numbers representing the frequencies of the n real poles and $\omega_{-1}, \omega_{-2}, \ldots, \omega_{-n}$ are positive, negative, or infinite numbers representing the frequencies of the n real transmission zeros. Note from Eq. (6.30) that as should be expected, as s approaches 0, $F(s)$ approaches unity and the gain approaches A_M.

6.4.2 Determining the 3-dB Frequency f_3

The amplifier designer usually is particularly interested in the part of the high-frequency band that is close to the midband. This is because the designer needs to estimate—and if need be modify—the value of the upper 3-dB frequency f_3 (or ω_3; $f_3 = \omega_3/2\pi$). Toward that end it should be mentioned that in many cases the zeros are either at infinity or such high frequencies as to be of little significance to the determination of ω_3. If in addition one of the poles, say ω_3, is of much lower frequency than any of the other poles, then this pole will have the greatest effect on the value of the amplifier ω_3. In other words, this pole will dominate the high-frequency response of the amplifier, and the amplifier is said to have a dominant-pole response. In such cases the function $F(s)$ can be approximated by

$$F(s) \approx \frac{1}{1 + s/\omega_3}$$ \hspace{1cm} (6.31)

which is the transfer function of a first-order (or STC) low-pass network (Appendix D). It follows that if a dominant pole exists, then the determination of ω_3 is greatly simplified;

$$\omega_3 \approx \omega_3$$ \hspace{1cm} (6.32)

This is the situation we encountered in the case of the common-source amplifier analyzed in Section 4.9 and the common-emitter amplifier analyzed in Section 5.9. As a rule of thumb, a dominant pole exists if the lowest-frequency pole is at least two octaves (a factor of 4) away from the nearest pole or zero.

If a dominant pole does not exist, the 3-dB frequency ω_3 can be determined from a plot of $|F(j\omega)|$. Alternatively, an approximate formula for ω_3 can be derived as follows: Consider, for simplicity, the case of a circuit having two poles and two zeros in the high-frequency band; that is,

$$F(s) = \frac{(1 + s/\omega_1)(1 + s/\omega_2)}{(1 + s/\omega_{-1})(1 + s/\omega_{-2})}$$ \hspace{1cm} (6.33)

Substituting $s = j\omega$ and taking the squared magnitude gives

$$|F(j\omega)|^2 = \frac{(1 + \omega^2/\omega_1^2)(1 + \omega^2/\omega_2^2)}{(1 + \omega^2/\omega_{-1}^2)(1 + \omega^2/\omega_{-2}^2)}$$

At this point we assume that the reader is familiar with the subject of s-plane analysis and the notions of transfer-function poles and zeros as well as Bode plots. A brief review of this material is presented in Appendix E.
By definition, at \(\omega = \omega_h \left| P(s) \right|^2 = \frac{1}{2} \), thus,

\[
\frac{1}{2} = \frac{1}{(1 + \omega_h^2/\omega_p^2)(1 + \omega_h^2/\omega_z^2)}\left(1 + \frac{1}{\omega_h^2/\omega_p^2} + \frac{1}{\omega_h^2/\omega_z^2}\right) + \frac{1}{(1 + \omega_h^2/\omega_p^2)(1 + \omega_h^2/\omega_z^2)}\left(1 + \frac{1}{\omega_h^2/\omega_p^2} + \frac{1}{\omega_h^2/\omega_z^2}\right)\left(1 + \frac{1}{\omega_h^2/\omega_p^2} + \frac{1}{\omega_h^2/\omega_z^2}\right)
\]

(6.34)

Since \(\omega_h \) is usually smaller than the frequencies of all the poles and zeros, we may neglect the terms containing \(\omega_h \) and solve for \(\omega_h \) to obtain

\[
\omega_h = \sqrt{\frac{1}{\omega_p^2} + \frac{1}{\omega_z^2}} - \frac{P_1}{P_2} - \frac{P_3}{P_4} - \cdots - \frac{P_n}{P_m}
\]

(6.35)

This relationship can be extended to any number of poles and zeros as

\[
\omega_h = \sqrt{\frac{1}{\omega_p^2} + \frac{1}{\omega_z^2}} + \cdots + \frac{1}{\omega_p^2} + \cdots + \frac{1}{\omega_z^2}
\]

(6.36)

Note that if one of the poles, say \(P_1 \), is dominant, then \(\omega_h \approx \omega_p \), \(\omega_z \), \(\omega_p \), \(\omega_z \), \(\omega_p \), \(\omega_z \), \(\omega_p \), \(\omega_z \), and Eq. (6.38) reduces to Eq. (6.32).

EXAMPLE 6.5

The high-frequency response of an amplifier is characterized by the transfer function

\[
F_h(s) = \frac{1 - \omega/s - 10^3}{(1 + \omega/s)(1 + j/10^3)}
\]

Determine the 3-dB frequency approximately and exactly.

Solution

Noting that the lowest-frequency pole at \(10^3 \) rad/s is two octaves lower than the second pole and a decade lower than the zero, we find that a dominant-pole situation almost exists and \(\omega_h = 10^3 \) rad/s. A better estimate of \(\omega_h \) can be obtained using Eq. (6.35), as follows:

\[
\omega_h = \sqrt{\frac{1}{\omega_p^2} + \frac{1}{\omega_z^2}} - \frac{P_1}{P_2} - \frac{P_3}{P_4} - \cdots - \frac{P_n}{P_m}
\]

\[
= \sqrt{9800} = 9800 \text{ rad/s}
\]

The exact value of \(\omega_h \) can be determined from the given transfer function as 9537 rad/s. Finally, we show in Fig. 6.13 a Bode plot and an exact plot for the given transfer function. Note that this is a plot of the high-frequency response of the amplifier normalized relative to its midband gain. That is, if the midband gain is, say, 100 dB, then the entire plot should be shifted upward by 100 dB.

6.4.3 Using Open-Circuit Time Constants for the Approximate Determination of \(f_h \)

If the poles and zeros of the amplifier transfer function can be determined easily, then we can determine \(f_h \) using the techniques above. In many cases, however, it is not a simple matter to determine the poles and zeros by quick hand analysis. In such cases an approximate value for \(f_h \) can be obtained using the following method.

Consider the function \(F_h(s) \) (Eq. 6.30), which determines the high-frequency response of the amplifier. The numerator and denominator factors can be multiplied out and \(F_h(s) \) expressed in the alternative form

\[
F_h(s) = \frac{1 + b_1s + b_2s^2 + \cdots + b_ns^n}{1 + h_1s + h_2s^2 + \cdots + h_ls^l}
\]

(6.37)

where the coefficients \(a \) and \(b \) are related to the frequencies of the zeros and poles, respectively. Specifically, the coefficient \(b_1 \) is given by

\[
b_1 = \frac{1}{\omega_p} + \frac{1}{\omega_z} + \cdots + \frac{1}{\omega_m}
\]

(6.38)

It can be shown [Gray and Searle (1969)] that the value of \(b_1 \) can be obtained by considering the various capacitances in the high-frequency equivalent circuit at a time while reducing all other capacitors to zero (or, equivalently, replacing them with open circuits). That is, to obtain the contribution of capacitance \(C \), we reduce all other capacitances to zero.
reduce the input signal source to zero, and determine the resistance R_g seen by C_g. This process is then repeated for all other capacitors in the circuit. The value of b_i is computed by summing the individual time constants, called open-circuit time constants,

$$b_i = \sum C_i R_{in}$$ \hspace{1cm} (6.39)

where we have assumed that there are n capacitors in the high-frequency equivalent circuit.

This method for determining b_i is exact; the approximation comes about in using the value of b_i to determine α_i. Specifically, if the zeros are not dominant and if one of the poles, say P_0, is dominant, then from Eq. (6.38),

$$b_i = \frac{1}{\alpha_i}$$ \hspace{1cm} (6.40)

But, also, the upper 3-dB frequency will be approximately equal to ω_0, leading to the approximation

$$\omega_0 = \frac{1}{\sqrt{C_i R_{in}}}$$ \hspace{1cm} (6.41)

Here it should be pointed out that in complex circuits we usually do not know whether or not a dominant pole exists. Nevertheless, using Eq. (6.41) to determine ω_0 normally yields remarkably good results\(^7\) even if a dominant pole does not exist. The method will be illustrated by an example.

Example 6.6

Figure 6.14(a) shows the high-frequency equivalent circuit of a common-source MOSFET amplifier. The amplifier is fed with a signal generator V_{sig} having a resistance R_{sg}. Resistance R_{gs} is due to the biasing network, Resistance R_{gd} is the parallel equivalent of the load resistance R_{L}, and R_{gs} is the MOSFET internal capacitances. For $R_{L} = 100$ kΩ, $R_{sg} = 420$ kΩ, $C_{gs} = C_{gd} = 1 \times 10^{-12}$ F, $\beta = 4$ mA/V, and $R_{gd}^{*} = 3.33$ kΩ, find the midband voltage gain, $A_{m} = V_{gs}/V_{sig}$ and the upper 3-dB frequency, f_{3}.

Solution

The midband voltage gain is determined by assuming that the capacitors in the MOSFET model are perfect open circuits. This results in the midband equivalent circuit shown in Fig. 6.14(b), from which we find

$$A_{m} = \frac{V_{gs}}{V_{sig}} = \frac{R_{gs}}{R_{gs} + R_{gd}^{*}} (K \beta R_{L})$$

$$= \frac{420}{420 + 100} \times 4 \times 3.33 \times 10^{-9} \text{V/V}$$

We shall determine ω_0 using the method of open-circuit time constants. The resistance R_{gs} seen by C_{gs} is found by setting $C_{gs} = 0$ and short-circuiting the signal generator V_{sig}. This results in the circuit of Fig. 6.14(c), from which we find

$$R_{gs} = R_{gd}^{*} R_{gd} / (R_{gd}^{*} + R_{gd}) = 420 \Omega \times 420 \Omega / 420 \Omega + 420 \Omega = 80.8 \text{k}\Omega$$

Thus the open-circuit time constant of C_{gs} is

$$\tau_{gs} = C_{gs} R_{gs} = 1 \times 10^{-12} \times 80.8 \times 10^{3} = 80.8 \text{ ns}$$

The resistance R_{gs} seen by C_{gs} is found by setting $C_{gs} = 0$ and short-circuiting V_{sig}. The result is the circuit in Fig. 6.14(d), to which we apply a test current I_{s}. Writing a node equation at G gives

$$I_{s} = -\frac{V_{sig}}{R_{gs} + R_{gd}^{*}}$$

Thus,

$$V_{sig} = -I_{s} R_{gd}^{*}$$ \hspace{1cm} (6.42)
that the voltage at node 2 is related to that at node 1 by an impedance \(Z \) connected between node 2 and ground, where

\[
Z_2 = Z/(1 - K) \tag{6.44a}
\]

and

\[
Z_3 = Zf \left[\frac{1}{K} \right] \tag{6.44b}
\]

to obtain the equivalent circuit shown in Fig. 6.15(b).

The proof of Miller’s theorem is achieved by deriving Eq. (6.44) as follows: In the original circuit of Fig. 6.15(a), the only way that node 1 “feels the existence” of impedance \(Z \) is through the current \(I \) that \(Z \) draws away from node 1. Therefore, to keep this current unchanged in the equivalent circuit, we must choose the value of \(Z_1 \) so that it draws an equal current,

\[
I_1 = \frac{V_1}{Z_1} = I = \frac{V_1 - KV_2}{Z} \tag{6.44c}
\]

which yields the value of \(Z_1 \) in Eq. (6.44a). Similarly, to keep the current into node 2 unchanged, we must choose the value of \(Z_2 \) so that

\[
I_2 = 0 = \frac{V_2}{Z_2} = 0 - KV_3 = I = \frac{V_1 - KV_1}{Z} \tag{6.44d}
\]

which yields the expression for \(Z_2 \) in Eq. (6.44b).

Although not highlighted, the Miller equivalent circuit derived above is valid only as long as the rest of the circuit remains unchanged; otherwise the ratio of \(V_1 \) to \(V_2 \) might change. It follows that the Miller equivalent circuit cannot be used directly to determine the output resistance of an amplifier. This is because in determining output resistances it is implicitly assumed that the source signal is reduced to zero and that a test-signal source (voltage or current) is applied to the output terminals—obviously a major change in the circuit, rendering the Miller equivalent circuit no longer valid.

6.4.4 Miller’s Theorem

In our analysis of the high-frequency response of the common-source amplifier (Section 4.9), and of the common-emitter amplifier (Section 5.9), we employed a technique for replacing the bridging capacitance \(C_{ds} \) or \(C_{es} \) by an equivalent input capacitance. This very useful and effective technique is based on a general theorem known as Miller’s theorem, which we now present.

Consider the situation in Fig. 6.15(a). As part of a larger circuit that is not shown, we have isolated two circuit nodes, labeled 1 and 2, between which an impedance \(Z \) is connected. Nodes 1 and 2 are also connected to other parts of the circuit, as signified by the broken lines emanating from the two nodes. Furthermore, it is assumed that somehow it has been determined that the voltage at node 2 is related to that at node 1 by

\[
V_2 = KV_1 \tag{6.45}
\]
Figure 6.16(a) shows an ideal voltage amplifier having a gain of -100 V/V with an impedance \(Z \) connected between its output and input terminals. Find the Miller equivalent circuit when \(Z \) is (a) a 1-MΩ resistance, and (b) a 1-pF capacitance. In each case, use the equivalent circuit to determine \(\frac{V_o}{V_{in}} \).

Solution

(a) For \(Z = 1 \) MΩ, employing Miller's theorem results in the equivalent circuit in Fig. 6.16(b), where

\[
Z_1 = \frac{Z}{1-K} = \frac{1000 \text{ kΩ}}{1 + 100} = 9.9 \text{ kΩ}
\]

\[
Z_2 = \frac{Z}{1-K} = \frac{1 \text{ MΩ}}{1 + 100} = 0.99 \text{ MΩ}
\]

(b) For \(Z \) as a 1-pF capacitance—that is, \(Z = 1/\omega C = 1/2\pi \times 1 \times 10^{-12} \)—applying Miller's theorem allows us to replace \(Z \) by \(Z_1 \) and \(Z_2 \), where

\[
Z_1 = \frac{Z}{1-K} = \frac{1/\omega C}{1 + 100} = \frac{1}{2\pi \times 101 C}
\]

\[
Z_2 = \frac{Z}{1-K} = \frac{1}{101 C} = \frac{1}{2\pi \times 101 C}
\]

It follows that \(Z_1 \) is a capacitance 101 C = 101 pF and that \(Z_2 \) is a capacitance 101 C = 1.01 pF.

The resulting equivalent circuit is shown in Fig. 6.16(c), from which the voltage gain can be found as follows:

\[
\frac{V_o}{V_{in}} = \frac{V_o}{V_{in}} = \frac{-100}{1 + \frac{1}{2\pi \times 101 C \times 1 \times 10^{-12}}}
\]

This is the transfer function of a first-order low-pass network with a dc gain of -100 and a 3-dB frequency \(f_{3dB} \) of

\[
f_{3dB} = \frac{1}{2\pi \times 101 \times 10^{-12}} = 157.6 \text{ kHz}
\]

From Example 6.7, we observe that the Miller replacement of a feedback or bridging resistance results, for a negative \(K \), in a smaller resistance [by a factor \((1-K) \)] at the input. If the feedback element is a capacitance, its value is multiplied by \((1-K) \) to obtain the equivalent capacitance at the input side. The multiplication of a feedback capacitance by \((1-K) \) is referred to as Miller multiplication or Miller effect. We have encountered the Miller effect in the analysis of the CS and CE amplifiers in Sections 4.9 and 5.9, respectively.
6.2 The high-frequency response of an amplifier is characterized by two zeros at \(s = \infty \) and two poles at \(s = \omega_c \) and \(s = \omega_2 \). For \(\omega_c = 10 \omega_2 \), find the value of \(\omega_c \) that results in the exact value of \(\omega_2 \), being 0.999 \(\omega_2 \). Repeat for \(\omega_c = 0.999 \omega_2 \).
\[\text{Ans. 2.78, 9.83} \]

6.1 For the amplifier described in Exercise 6.10, find the exact and approximate values (using Eq. 6.36) of \(\Omega_2 \) and \(\Omega_2' \). For \(\Omega_2 = 1 \), find the value of \(\Omega_2 \) that results in \(H(j\omega) = 180 \text{ kHz} \). Find the new values of the midband gain and of the gain-bandwidth product.

- **Ans.** \(H(j\omega) = 180 \text{ kHz} \). Find the new values of the midband gain and of the gain-bandwidth product.

6.12 For the amplifier in Example 6.6, find the gain-bandwidth product in megahertz. Find the value of \(R' \).

- **Ans.**

6.13 Use Miller's theorem to investigate the performance of the inverting op-amp circuit shown in Fig. E6.13.

- **Ans.**

6.14 Find \(A_0 \) for an NMOS transistor fabricated in a 0.4-\(\mu \text{m} \) CMOS process for which \(L = 500 \mu \text{m}^2 \) and \(V_d = 10 \text{ V/mm} \). The transistor has a 0.4-\(\mu \text{m} \) channel length and is operated with an overdrive voltage of 0.05 \(\text{ V/mm} \). What must \(W \) be for the NMOS transistor to operate in \(I_p = 100 \mu \text{A/mm} \)? Find the values of \(\omega_c \) and \(\omega_2 \). Repeat for \(W = 0.8 \mu \text{m} \).

- **Ans.**

6.5 THE COMMON-SOURCE AND COMMON-EMITTER AMPLIFIERS WITH ACTIVE LOADS

6.5.1 The Common-Source Circuit

Figure 6.17(a) shows the basic IC MOS amplifier. It consists of a grounded-source MOS transistor with the drain resistor \(R_D \) replaced by a constant-current source \(I_d \). As we shall see shortly, the current-source load can be implemented using a PMOS transistor and is therefore called an active load, and the CS amplifier of Fig. 6.17(a) is said to be active-loaded.

Before considering the small-signal operation of the active-loaded CS amplifier, a word on its dc bias design is in order. Obviously, \(Q_1 \) is biased at \(V_D = I_d \), but what determines the dc voltages at the drain and at the gate? Usually, this circuit will be part of a larger circuit in which negative feedback is utilized to fix the values of \(V_D \) and \(V_D \). We shall encounter examples of such circuits in later chapters. For the time-being, however, we shall assume that the MOSFET is biased to operate in the saturation region.

Small-signal analysis of the current-source-loaded CS amplifier is straightforward and is illustrated in Fig. 6.17(b). Here, along with the equivalent circuit model, we show the transistor with its \(r_{ns} \) extracted and displayed separately and with the analysis performed directly on the circuit. From Fig. 6.17(b) we see that for this CS amplifier,

\[R_L = \omega_r r_{ns} \]
(6.45a)

We note that \(|A_0| \) in Eq. (6.45b) is the maximum voltage gain available from a common-source amplifier, namely the intrinsic gain of the MOSFET.

\[A_0 = \omega_r r_{ns} \]
(6.46)

Recall that in Section 6.2 we discussed in some detail the intrinsic gain \(A_0 \) and presented in Table 6.3 formulas for its determination.

6.5.2 CMOS Implementation of the Common-Source Amplifier

A CMOS circuit implementation of the common-source amplifier is shown in Fig. 6.18(a).

This circuit is based on that shown in Fig. 6.17(a) with the load current-source \(I_d \) implemented using transistor \(Q_3 \). The latter is the output transistor of the current mirror formed by \(Q_1 \) and \(Q_2 \) and fed with the bias current \(I_{bias} \). We shall assume that \(Q_1 \) and \(Q_2 \) are matched, thus the}

CHAPTER 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

6.5 THE COMMON-SOURCE AND COMMON-EMITTER AMPLIFIERS WITH ACTIVE LOADS

We urge the reader to carefully study the transfer characteristic and its various details.

Before proceeding to determine the small-signal voltage gain of the amplifier, it is instructive to examine its transfer characteristic, v_0 versus i_T. This can be determined using the graphical construction shown in Fig. 6.18(c). Here we have sketched the i_T-v_{DS} characteristic of the amplifying transistor Q_2 and superimposed the load curve on them. The latter is simply the i_T-v_{DS} curve in Fig. 6.18(b) "flipped around" and shifted V_{DD} volts along the horizontal axis. Now, since v_{DS}, v_{GS}, each of the i_T-v_{DS} curves corresponds to a particular value of v_{GS}. The intersection of each particular curve with the load curve gives the corresponding value of v_{DS}, which is equal to v_{GS}. Thus, in this way, we can obtain the v_{GS}-v_{DS} characteristic, point by point. The resulting transfer characteristic is sketched in Fig. 6.18(d). As indicated, it has four distinct segments, labeled I, II, III, and IV, each of which is obtained for one of the four combinations of the modes of operation of Q_1 and Q_2, which are also indicated in the diagram. Note also that we have labeled two important breakpoints on the transfer characteristic (A and B) in correspondence with the intersection points (A and B) in Fig. 6.18(c).

The CMOS common-source amplifier can be designed to provide voltage gains of 15 to 100. It exhibits a very high input resistance; however, its output resistance is also high.

FIGURE 6.18 The CMOS common-source amplifier: (a) circuit; (b) i_T-v_{DS} characteristic of the active-load Q_2; (c) graphical construction to determine the transfer characteristic; and (d) transfer characteristic.
Two final comments need to be made before leaving the common-source amplifier:

1. The circuit is not affected by the body effect since the source terminals of both Q_1 and Q_2 are at signal ground.

2. The circuit is usually part of a larger amplifier circuit (as will be shown in Chapters 7 and 9), and negative feedback is utilized to ensure that the circuit in fact operates in region III of the amplifier transfer characteristic.

EXAMPLE 6.6

Consider the CMOS common-source amplifier in Fig. 6.18(a) for the case $V_{DS} = 3 \, \text{V}$, $V_{in} = V_{GS} = 0.6 \, \text{V}$, $V_C = 200 \, \mu\text{A}/\text{V}^2$, and $V_C = 65 \, \mu\text{A}/\text{V}^2$. For all transistors, $L = 0.4 \, \mu\text{m}$ and $W = 4 \, \mu\text{m}$. Also, $V_{DS} = 20 \, \text{V}$, $V_{in} = 10 \, \text{V}$, and $I_{DS} = 100 \, \mu\text{A}$. Find the small-signal voltage gain.

Also, find the coordinates of the extremities of the amplifier region of the transfer characteristic—those is points A and B.

Solution

For all transistors, $V_C = 387 \, \mu\text{A}/\text{V}$, $r_{p1} = 0.6 \, \text{k}\Omega$, and the voltage gain $A_V = 38.7 \, \text{V/V}$. For all transistors, $r_{p1} = 20 \, \text{k}\Omega$, and the corresponding output range is $V_O = 0.6 + 0.53 = 1.13 \, \text{V}$. To determine the coordinates of B, we note that they are related by $y = -2.14 \, \text{V}$, the equation of segment III of the transfer characteristic. Although it includes V_C, the reader should not be alarmed: Because region III is very narrow, V_C changes very little, and the characteristic is nearly linear. Substituting numerical values, we obtain

$$V_C = 0.05 \, \text{V}, \quad V_{IB} = 0.33 \, \text{V}.$$

Thus, the "large-signal" voltage gain is

$$A_V = -2.14 \, \text{V/V}$$

and the corresponding output range is

$$V_O = 0.6 + 0.05 = 0.65 \, \text{V}$$

which is very close to the small-signal value of -42, indicating that segment III of the transfer characteristic is quite linear.
Consider the active-loaded CE amplifier when the constant-current source is implemented with \(V \) for both the transistor. Let \(i = 0.1 \mu A \) and \(V = 50 \) and the \(pnp = 100 \). Find \(i \),

\[
\begin{align*}
V & = 2000 \text{V} \\
i & = 1000 \text{A} \\
R & = 0.5 \Omega \\
C & > 100 \text{m} \\
\text{m} & , (for each transistor),
\end{align*}
\]

and the amplifier voltage gain.

6.5.3 The Common-Emitter Circuit

The active-loaded common-emitter amplifier, shown in Fig. 6.19(a), is similar to the active-loaded common-source circuit studied above. Here also, the bias-stabilizing circuit is not shown. Small-signal analysis is similar to that for the MOS case and is illustrated in Fig. 6.19(b).

The results are

\[
\begin{align*}
R_i &= r_e \\
A_v &= -g_m r_e \\
R_o &= r_c
\end{align*}
\]

which except for the rather low input resistance \(r_e \) are similar to the MOSFET case. Recall, however, from the comparison of Section 6.2 that the intrinsic gain \(g_m r_e \) of the BJT is much higher than that for the MOSFET. This advantage, however, is counterbalanced by the practically infinite input resistance of the common-source amplifier. Further comparisons of the two amplifier types were presented in Section 6.2.

EXERCISE

6.5 Consider the active-loaded CE amplifier when the constant-current source \(I \) is implemented with a npn transistor. Let \(I = 0.1 \mu A \), \(V = 50 \text{V} \) (for both the npn and the pnp transistors), and \(\beta = 100 \). Find \(R_i \), \(r_e \), \(r_c \), and \(A_v \).

6.6 HIGH-FREQUENCY RESPONSE OF THE CS AND CE AMPLIFIERS

We now consider the high-frequency response of the active-loaded common-source and common-emitter amplifiers. Figure 6.20 shows the high-frequency equivalent circuit of the common-source amplifier. This equivalent circuit applies equally well to the CE amplifier with a simple relabeling of components: \(C_{gs} \) would be replaced by \(C_{v} \), \(C_{gd} \) by \(C_{v} \), and obviously \(V_{gs} \) by \(V_{ce} \).

The input-signal source is represented by \(V_{gs} \) and \(R_{sig} \). In some cases, however, \(V_{gs} \) and \(R_{sig} \) would be modified values of the signal-source voltage and internal resistance, taking into account other resistive components such as a bias resistor \(R_B \) or \(R_B \), the BJT resistances \(r_e \) and \(r_c \), etc. We have seen examples of this kind of circuit simplification in Sections 4.9 and 5.9. The load resistance \(R_L \) represents the combination of an actual load resistance (if one is connected) and the output resistance of the current-source load. To avoid loss of gain, \(R_L \) is usually on the same order as \(r_c \). We combine \(R_L \) with \(r_c \) and denote their parallel equivalent \(R' \). The load capacitance \(C_L \) represents the total capacitance between drain (or collector) and ground; it includes the drain-to-body capacitance \(C_{db} \) (collector-to-substrate capacitance), the input capacitance of a succeeding amplifier stage, and in some cases, as we shall see in later chapters, a deliberately introduced capacitance. In IC MOS amplifiers, \(C_L \) can be relatively substantial.

6.6.1 Analysis Using Miller's Theorem

In situations when \(R_{sig} \) is relatively large and \(C_L \) is relatively small, Miller's theorem can be used to obtain a quick but approximate estimate of the 3-dB frequency \(f_o \). We have already done this in Section 4.9 for the CS amplifier and in Section 5.9 for the CE amplifier. Therefore, here we will only state the results. Figure 6.21 shows the approximate equivalent circuit obtained for the CS case, from which we see that the amplifier has a dominant pole formed.
by R_{eq} and C_{eq}. Thus,

$$\frac{V_s}{V_{gs}} = \frac{A_v}{1 + \frac{1}{\omega_0}}$$

(6.53)

where

$$A_v = -g_m R'_L$$

and the 3-dB frequency $f_H = \frac{1}{2\pi \omega_0}$ is given by

$$f_H = \frac{1}{2\pi C_{eq} R_{eq}}$$

(6.54)

where

$$C_{eq} = C_{gs} + C_{gd}(1 + g_m R'_L)$$

(6.55)

6.6.2 Analysis Using Open-Circuit Time Constants

The method of open-circuit time constants presented in Section 6.4.3 can be directly applied to the CS equivalent circuit of Fig. 6.20, as illustrated in Fig. 6.22, from which we see that the resistance seen by C_{gs}, $R_{gs} = R_{eq}$ and that seen by C_{L} is R'_L. The resistance R_{gd} seen by C_{gd} can be found by analyzing the circuit in Fig. 6.22(b) with the result that

$$R_{gd} = R_{eq}(1 + g_m R'_L) + R'_L$$

(6.56)

Thus the effective time-constant τ or τ_0 can be found as

$$\tau = C_{eq} R_{eq} + C_{gs} R_{gs} + C_{gd} R'_{gd}$$

(6.57)

and the 3-dB frequency f_H is

$$f_H = \frac{1}{2\pi \omega_0}$$

(6.58)

For situations in which C_{gd} is substantial, this approach yields a better estimate of f_H than that obtained using the Miller equivalence (simply because in the latter case we completely neglected C_{gd}).

6.6.3 Exact Analysis

The approximate analysis presented above provides insight regarding the mechanism by which and the extent to which the various capacitances limit the high-frequency gain of the CS (and CE) amplifiers. Nevertheless, given that the circuit of Fig. 6.20 is relatively simple, it is instructive to also perform an exact analysis. This is illustrated in Fig. 6.23. A node equation at the drain provides

$$s C_{eq} (V_s - V_d) = g_m V_d + \frac{V_s}{R'_L}$$

which can be manipulated to the form

$$V_d = -\frac{V_s}{s C_{eq} + g_m R'_L} + \frac{V_s}{R'_L}$$

(6.59)

A loop equation at the input yields

$$V_{gs} = I_d R_{eq} + V_p$$

in which we can substitute for I_d from a node equation at G,

$$I_d = s C_{eq} V_s + s C_{gs} (V_s - V_d)$$

Thus the high-frequency equivalent circuit is

$$\text{FIGURE 6.23 Analysis of the CS high-frequency equivalent circuit.}$$

"Exact" only in the sense that we are not making approximations in the circuit-analysis process. The reader is reminded, however, that the high-frequency model itself represents an approximation of the device performance.
We can now substitute this equation for \(V_{io} \) from Eq. (6.59) to obtain an equation in \(V_i \) and \(V_{io} \) that can be arranged to yield the amplifier gain as

\[
V_{io} = V_i \left[1 + s(C_{gd} + C_{gs})R_{db} \right] - sC_{gd}R_{db}V_i
\]

The transfer function in Eq. (6.60) indicates that the amplifier has a second-order denominator, and hence two poles. Now, since the numerator is of the first order, it follows that one of the two transmission zeros is at infinite frequency. This is readily verifiable by noting that as \(s \) approaches \(-g_mR'\), \(K/V_{sig} \) approaches the dc gain \(m \), that is, the pole at \(\omega_0 \) is dominant—we can approximate \(D(s) \) as

\[
D(s) \approx 1 + \frac{s}{\omega_0} - \frac{s^2}{\omega_0^2}
\]

where the approximation is that involved in Eq. (6.66). Note that the expression in Eq. (6.66) is identical to the result obtained using open-circuit time constants and a little different from the result obtained using the Miller equivalence, the difference being the term \((C_{cg} + C_{gd})R_{db} \) related to the capacitance at the output, which was ignored in the original (simple) Miller derivation. Equating the coefficients of \(s^2 \) in Eqs. (6.60) and (6.65) and using Eq. (6.66) gives the frequency of the second pole:

\[
\omega_0 = \frac{1}{(C_{cg} + C_{gd})R_{db} + (C_{cg} + C_{gd})R_{db}}
\]

Before considering the poles, we should note that in Eq. (6.60), as \(s \) goes toward zero, \(V_i/V_{io} \) approaches the dc gain \((-g_m R_d)\) as should be the case. Let's now take a closer look at the denominator polynomial. First, we observe that the coefficient of the \(s \) term is equal to the

\[
(D(s) = 1 + \frac{1}{\omega_0} - \frac{s}{\omega_0})
\]

Now, if \(\omega_2 \approx \omega_0 \)—that is, the pole at \(\omega_0 \) is dominant—we can approximate \(D(s) \) as

\[
(D(s) \approx 1 + \frac{1}{\omega_0} - \frac{s}{\omega_0})
\]

Again, this should have been expected since it is the basis for the open-circuit time-constants method (Section 6.4.3). Next, denoting the frequencies of the two poles \(\omega_1 \) and \(\omega_2 \), we can express the denominator polynomial \(D(s) \) as

\[
D(s) = 1 + \frac{1}{\omega_1} - \frac{s}{\omega_1} + \frac{s^2}{\omega_2}
\]

EXAMPLE 6.9

A CMOS common-source amplifier of the type shown in Fig. 6.18(a) has \(W/L = 7.2 \mu\text{m} \times 0.36 \mu\text{m} \) for all transistors, \(\mu C_{ov} = 387 \mu \text{A/V}^2 \), \(\mu C_{ov} = 86 \mu \text{A/V}^2 \), \(I_{IH} = 100 \mu\text{A} \), \(V_{dd} = 5 \text{Vpp} \), and \(V_{dd} = 6 \text{Vpp} \). For \(Q_0 \), \(C_{gg} = 20 \text{fF} \), \(C_{gd} = 5 \text{fF} \), \(C_{gs} = 22 \text{fF} \), and \(R_{oi} = 10 \text{k}\Omega \). Assume that \(C_{gs} \) includes all the capacitances introduced by \(Q_0 \) at the output node. Find \(f_T \) using both the Miller equivalence and the open-circuit time constants. Also, determine the exact values of \(f_T, f_P, f_P \) and \(f_T \) and hence provide another estimate for \(f_T \).

Solution

\[
I_B = I_{IH} = 100 \mu\text{A} = \frac{1}{2} \mu C_{ov} \frac{(W/L)^2}{V_{dd}^2}
\]

Thus,

\[
100 = \frac{1}{2} \times 387 \times (\frac{7.2}{0.36})^2 V_{dd}^2
\]

which results in

\[
V_{dd} = 0.15 \text{V}
\]
Thus,

\[
\begin{align*}
K_n &= \frac{I_0}{V_{in}/2} = \frac{100 \mu A}{0.16 \text{V}} = 625 \text{ mA/V} \\
\tau_n &= \frac{V_{in}}{I_0} = \frac{5 \times 10^{-3}}{0.1} = 50 \text{ ps} \\
\tau_{17} &= \frac{V_{in}}{I_0} = \frac{6 \times 10^{-3}}{0.1} = 600 \text{ ps} \\
R'_L &= R_{in} + \tau_{17} = 18 \Omega + 600 \Omega = 126 \Omega \\
\Delta V &= -g_m R'_L = -1.25 \times 9.82 = -12.3 \text{ V/V}
\end{align*}
\]

Using the Miller equivalence,

\[
\begin{align*}
C_a &= C_g + C_{ja}(1 + g_m R'_L) \\
&= 20 \times (1 + 12.3) \\
&= 286.6 \text{ pF} \\
f_a &= \frac{1}{2\pi C_a R_a} \\
&= \frac{1}{2\pi \times 286.6 \times 10^{-12} \times 10 \Omega} = 184 \text{ MHz}
\end{align*}
\]

Using the open-circuit time-constants method:

\[
\begin{align*}
R_{pd} &= R_{in} = 10 \Omega \\
R_{ja} &= R_{ja}(1 + g_m R'_L) = 10(1 + 12.3) \\
&= 142.8 \text{ kΩ} \\
R_C &= R'_L = 9.82 \text{ kΩ}
\end{align*}
\]

Thus,

\[
\begin{align*}
\tau_a &= C_g R_{pd} = 20 \times 10^{-15} \times 10 \Omega = 200 \text{ ps} \\
\tau_{ja} &= C_{ja} R_{ja} = 5 \times 10^{-15} \times 142.8 \text{ kΩ} = 714 \text{ ps} \\
\tau_C &= C_C R_C = 25 \times 10^{-15} \times 9.82 \text{ kΩ} = 246 \text{ ps}
\end{align*}
\]

which can be summed to obtain \(\tau_n\) as

\[
\tau_n = \tau_a + \tau_{ja} + \tau_C = 1160 \text{ ps}
\]

from which we find the 3-dB frequency \(f_n\),

\[
\begin{align*}
\frac{1}{2\pi f_n} &= \frac{1}{2\pi \times 1160 \times 10^{-15}} = 137 \text{ MHz}
\end{align*}
\]

We note that this is about 25% lower than the estimate obtained using the Miller equivalence. The discrepancy is mostly a result of neglecting \(C_j\) in the Miller approach. Note that \(C_j\) here has a substantial magnitude and that its contribution to \(\tau_n\) is significant (246 ps of the total 1160 ps, or 21%).

6.6.4 Adapting the Formulas for the Case of the CE Amplifier

Adapting the formulas presented above to the case of the CE amplifier is straightforward. First, note from Fig. 6.25 how \(V_{in}\) and \(R_{in}\) are modified to take into account the effect of \(r_s\) and \(r_i\).

\[
\begin{align*}
V_{in} &= V_a R_{eq} = \frac{r_m}{r_s} f_m \\
R_{eq} &= r_s (R_{in} + r_i)
\end{align*}
\]
Thus the dc gain is now given by

\[A_{\text{dc}} = \frac{r_e}{r_{1e} + r_e} \] (6.70)

Using Miller's theorem we obtain

\[C_{\text{in}} = C_e + C_e(1 + g_m R'_L) \] (6.71)

Correspondingly, the 3-dB frequency \(f_H \) can be estimated from

\[f_H = \frac{1}{2\pi C_{\text{in}} R'_L} \] (6.72)

Alternatively, using the method of open-circuit time constants yields

\[f_H = C_e R'_L + C_e(1 + g_m R'_L) \]

\[= C_e R'_L + C_e(1 + g_m R'_L) \]

\[= C_e R'_L + C_e R'_L \] (6.73)

from which \(f_H \) can be estimated as

\[f_H = \frac{1}{2\pi C_e R'_L} \] (6.74)

The exact analysis yields the following zero frequency:

\[f_z = \frac{1}{2\pi C_e} \] (6.75)

Thus, while the dc gain and the frequency of the zero do not change, the high-frequency response is now determined by a pole formed by \(C_e \) and \(C_e R'_L \). Thus the 3-dB frequency is now given by

\[f_H = \frac{1}{2\pi (C_e + C_e R'_L)} \] (6.76)

For \(f_H \) is thus

\[f_H = \frac{1}{2\pi C_e} \]

\[f_H = \frac{1}{2\pi C_e} \]

The exact analysis yields the following zero frequency:

\[f_z = \frac{1}{2\pi C_e} \] (6.75)
FIGURE 6.26 (a) High-frequency equivalent circuit of a CS amplifier fed with a signal source having a very low (effectively zero) resistance. (b) The circuit with V_{in} reduced to zero. (c) Bode plot for the gain of the circuit in (a).

Gain (dB)

\[
\frac{20 \log |A_{m}|}{20 \text{ dB/decade}} = \frac{f_s}{f_n} = 20 \log R'_L = \frac{1}{2\pi (C_L + C_{gd}) R'_L}
\]

Thus,

\[
f_s = \frac{|A_{m}| R'_L}{2\pi (C_L + C_{gd}) R'_L}
\]

Figure 6.26(c) shows a sketch of the high-frequency gain of the CS amplifier.

6.6 HIGH-FREQUENCY RESPONSE OF THE CS AND CE AMPLIFIERS

Consider the CS amplifier specified in Example 6.9 when fed with a signal source having a negligible resistance (i.e., $R_{sig} = 0$). Find A_M, f_M, f_z, and f_2. If the amplifying transistor is to be operated at twice the original overdrive voltage while W and L remain unchanged, what value of I_{Sat} is needed? What are the new values of A_M, f_M, f_z, and f_2?

Solution

In Example 6.9 we found that

\[A_M = -12.3 \text{ V/V}\]

The 3-dB frequency can be found using Eq. (6.79),

\[
f_B = \frac{1}{2\pi (C_L + C_{gd}) R'_L}
\]

\[
= \frac{1}{2\pi (25 + 5) \times 10^{-12} \times 0.48 \times 10^3}
\]

\[= 540 \text{ MHz}\]

and the unity-gain frequency, which is equal to the gain-bandwidth product, can be determined as

\[f_t = \frac{A_M}{f_B} = 12.3 \times 540 = 6.6 \text{ GHz}\]

The frequency of the zero is

\[f_z = 1.25 \times 10^{-5} \times 40 \text{ GHz} = 5 \times 10^{-7} \text{ GHz}\]

Now, to increase V_{OV} from 0.16 V to 0.32 V, I_{DP} must be quadrupled by changing I_{Sat} to

\[I_{Sat} = 400 \mu A\]

The new values of g_n, r_{on}, r_{o2}, and R'_L can be found as follows:

\[
g_n = \frac{I_{DP}}{V_{OC}/2} = 400 \times 0.32/2 = 2.5 \text{ mA}\]

\[r_{on} = 5 \times 0.36 = 4.3 \text{ k} \Omega\]

\[r_{o2} = 6 \times 0.36 = 5.4 \text{ k} \Omega\]

\[R'_L = (4.5 \times 5.4) = 24.5 \text{ k} \Omega\]

Then the new value of A_M becomes

\[A_M = -g_n R'_L = -2.5 \times 2.45 = -6.15 \text{ V/V}\]
That of f_H becomes

$$f_H = \frac{1}{2\pi C_L (C_{gd} + C_L)} = \frac{1}{2\pi (25 + 5) \times 10^{-15} \times 2.45 \times 10^3} = 2.16 \text{ GHz}$$

and the unity-gain frequency (i.e., the gain-bandwidth product) becomes

$$f_* = 6.15 \times 2.16 = 13.3 \text{ GHz}$$

We note that doubling V_{os} results in reducing the dc gain by a factor of 2 and increasing the bandwidth by a factor of 4. Thus, the gain-bandwidth product is doubled—a good bargain!

EXERCISES

D6.21 For the CS amplifier considered in Example 6.10 operating at the original values of V_{os} and I_D, (i.e., $V_{os} = 0.16 \text{ V}$ and $I_D = 100 \mu\text{A}$), find the value I_{oo} which C_L should be increased to place f_* at 2 GHz.

Ans. 44.4 mA

D6.22 Show that the CS amplifier when fed with $R^* = 0$ has a transfer-function zero whose frequency is related to f_* by

$$\frac{1}{2\pi C_L (C_{gd} + C_L)} = \frac{1}{2\pi (25 + 5) \times 10^{-15} \times 2.45 \times 10^3} = 2.16 \text{ GHz}$$

Taking the body effect into account in the analysis of the CG circuit is a very simple matter. To see how this can be done, recall that the body terminal acts, in effect, as a second gate for the MOSFET. Thus, just as a signal voltage v_{gs} between the gate and the source gives rise to a drain current signal $g_m v_{gs}$, a signal voltage v_{bs} between the body and the source gives rise to a drain current signal $g_{mb} v_{bs}$. Thus the drain signal current becomes

$$I_D = (g_m + g_{mb}) v_{gs}$$

where g_{mb} is a small fraction of g_m and $g_{mb} = \% g_m$ and $\% = 0.1$ to 0.2.

6.7 THE COMMON-GATE AND COMMON-BASE AMPLIFIERS WITH ACTIVE LOADS

6.7.1 The Common-Gate Amplifier

Figure 6.27(a) shows the basic IC MOS common-gate amplifier. The transistor has its gate grounded and its drain connected to an active load, shown as an ideal constant-current source I. The input signal source v_{sig} with a generator resistance R_s is connected to the source terminal. Since the MOSFET source is not connected to the substrate, we show the substrate terminal, B, explicitly and indicate that it is connected to the lowest voltage in the circuit, in this case ground. Finally, observe that except for showing the current-source I, which determines the dc bias current I_D of the transistor, we have not shown any other bias detail. How the dc voltage V_{GS} will be established and how V_{DS} is determined are not of concern to us here. As mentioned before, however, bias stability is usually assured through the application of negative feedback to the larger circuit of which the CG amplifier is a part. For our purposes here, we shall assume that the MOSFET is operating in the saturation region and concentrate exclusively on its small-signal operation.

The Body Effect Since the substrate (i.e., body) is not connected to the source, the body effect plays a role in the operation of the common-gate amplifier. It turns out, however, that

Rather than using R_{eq} to denote the resistance of the signal source, we use R_s since the resistance is in series with the source terminal of the MOSFET.
Now, since in the CG circuit of Fig. 6.27(a) both the gate and the body terminals are
grounded to ground, \(v_i = v_{gs} \) and the signal current in the drain becomes \((g_m + g_{mb})i_o\).
It follows that the body effect in the common-gate circuit can be fully accounted for by
simply replacing \(g_{mb} \) of the MOSFET by \((g_m + g_{mb})\). As an example, Fig. 6.27(b) shows
the MOSFET T model modified in this fashion.

Small-Signal Analysis: The small-signal analysis of the CG amplifier can be performed
either on an equivalent circuit obtained by replacing the MOSFET with its T model of
Fig. 6.27(b) or directly on the circuit diagram with the model used implicitly. We shall opt
for the latter approach in order to gain greater insight into circuit operation. Figure 6.27(c)
shows the CG circuit prepared for small-signal analysis. Note that we have “extracted” \(r_e\)
of the MOSFET and shown it separately from the device. As well, we have indicated the resis-
tance \(1/(g_m + g_{mb})\), which appears in effect between gate and source looking into the source.
Finally, note that a resistance \(R_L\) is shown at the output; it is assumed to include the output
resistance of the current source \(I_t\) as well as any load resistance if one is connected.

We now proceed to analyze the circuit of Fig. 6.27(c) to determine the various parameters
that characterize the CG amplifier. At this point we strongly urge the reader to consult Table 6.3
for a review of the definitions of amplifier characteristic parameters. This is especially useful
here because the CG amplifier is not a unilateral circuit; the resistance \(r_e\) connects the output
node to the input node, thus destroying unilaterality. As a result we should expect the amplifier
input resistance \(R_{in}\) to depend on \(R_L\) and the output resistance \(R_{out}\) to depend on \(r_e\).

Input Resistance: To determine the input resistance \(R_{in}\), we must find a way to express \(i_o\)
in terms of \(v_i\). Inspection of the circuit in Fig. 6.27(c) reveals a key observation. The input cur-
rent \(i_o\) splits at the source node into two components: the source current \(i = (g_m + g_{mb})V_i\) and
the current through \(r_e\), \(i_o\). These two components combine at the drain to constitute the current
\(i_o\) supplied to \(R_L\); that is, \(i_o = i + i_o\). Now we can write at the source node
\[i = (g_m + g_{mb})i_o + i_o \]
and express \(i_o\) as
\[i_o = \frac{v_i - v_o}{r_e} \]
Equations (6.81) and (6.82) can be combined to yield
\[i_o = \frac{v_i - v_o}{r_e} = \frac{v_i - i_o R_L}{r_e} \]
from which the input resistance \(R_{in}\) can be found as
\[R_{in} = \frac{v_i}{i_o} = \frac{r_e + R_L}{1 + (g_m + g_{mb})r_e} \]
Observe that for \(r_e = \infty\), \(R_{in}\) reduces to \(1/(g_m + g_{mb})\), which is indeed the input resistance
that we found for the discrete CG amplifier analyzed in Section 4.7.5 with \(r_e\) neglected (there we
also neglected \(g_{mb}\). When \(r_e\) is taken into account, this value of input resistance is obtained
approximately only for \(R_L = 0\). For the usual case of \(R_L = r_e\), \(R_{in} = 2/(g_m + g_{mb})\). Interest-
ingly, for large values of \(R_L\) approaching infinity, \(R_{in} = \infty\). This somewhat surprising result
will be illustrated next.

Operation with \(R_L = \infty\): Figure 6.27(d) shows the CG amplifier with \(R_L\) removed; that is,
\(R_L = \infty\) and the amplifier is operating with the output open-circuited. We immediately
note that since \(i_o = 0\), \(i_o\) must also be zero; the current \(i = (g_m + g_{mb})v_i\) simply flows via the drain through \(r_e\) and back to the source node. It follows
that the input resistance with no load, \(R_{in}\), is infinite:
\[R_{in} = \infty \]
We can also use the circuit in Fig. 6.27(d) to determine the open-circuit voltage gain \(A_{vo}\)
between the input (source) and output (drain) terminals as follows:
\[A_{vo} = \frac{i_o}{v_i} = \frac{(g_m + g_{mb})R_L}{(g_m + g_{mb})r_e} \]
Thus,
\[A_{vo} = 1 + (g_m + g_{mb})r_e \]
This is a very important quantity that appears in almost all formulas that characterize the CG
amplifier. We observe that \(A_{vo}\) differs from the intrinsic gain of the MOSFET in two minor
respects: First, there is an additional term of unity, and second, \(g_{mb}\) is added to \(g_m\). Typically
\(g_{mb}\) is 10% to 20% larger than \(g_m\).

We should also note that the gain of the CG circuit is positive. That is, unlike the CS
amplifier, the CG amplifier is noninverting.

Utilizing Eqs. (6.83) and (6.85), we can express the input resistance of the CG amplifier
in the compact and attractive form
\[R_{in} = \frac{r_e + R_L}{R_{vo}} \]
That is, the CG circuit divides the total resistance \((r_e + R_L)\) by the open-circuit voltage gain,
which is approximately equal to the intrinsic gain of the MOSFET. Furthermore, since
\[A_{vo} = (g_m + g_{mb})r_e \]
the expression for \(R_{in}\) can be simplified to
\[R_{in} = \frac{1}{g_m + g_{mb}} \]
This expression simply says that taking \(r_e\) into account adds a component \((R_{in})\) to the
input resistance. This additional component becomes significant only when \(R_L\) is large.

Another interesting result follows directly from the fact that \(i_o = 0\) in the circuit of
Fig. 6.27(d): The voltage drop across \(R_L\) will be zero. Thus \(v_o = v_{in}\) and the open-circuit
overall voltage gain, \(v_o/v_{in}\), will be equal to \(A_{vo}\).

Voltage Gain: The voltage gains \(A_{vo}\) and \(G_{vo}\) of the loaded CG amplifier of Fig. 6.27(c)
can be obtained in a number of ways. The most direct approach is to make use, once more,
of the fact that \(i_o = 0\), and express \(i_o\) as
\[i_o = i_o R_L = \frac{i_o R_L}{R_{in}} \]
The voltage \(v_i\) can be expressed in terms of \(i_o\) as
\[v_i = i_o R_{in} \]
Dividing Eq. (6.89) by Eq. (6.90) yields, for the voltage gain A_v:

$$ A_v = \frac{v_0}{v_s} = \frac{R_1}{R_{1s}} \tag{6.91} $$

Substituting for R_s from Eq. (6.88) provides

$$ A_v = A_v = \frac{R_1}{R_{1s}} \tag{6.92} $$

In a similar way we can derive an expression for the overall voltage gain, $G_v = v_o/v_s$.

$$ v_o = i_s R_s = i_s R_{s} \tag{6.86} $$

Thus,

$$ v_o = i_s R_s = i_s R_{s} \tag{6.86} $$

Substituting for R_s from Eq. (6.86) provides

$$ R_s = \frac{R_1}{R_{1s}} + r_{ss} \tag{6.93} $$

Thus, we can substitute for R_s from Eq. (6.86) to obtain

$$ G_v = rac{R_1}{R_{1s} + r_{ss}} \tag{6.94} $$

Recalling that $G_v = A_v$, we can express G_v as

$$ G_v = rac{R_1}{R_{1s} + r_{ss} + A_v r_{ss}} \tag{6.95} $$

Output Resistance

To complete our characterization of the CG amplifier, we find its output resistance. From the study of amplifier characterization in Section 4.7.2 (Table 4.3), we recall that there are two different output resistances: R_o, which is the output resistance when v_s is set to zero, and R_{out}, which is the output resistance when v_s is set to zero. Both are illustrated in Fig. 6.28. Obviously, R_o can be obtained from the expression for R_{out} by setting $R_o = 0$. It is important to be clear on the application of R_o and of R_{out}.

When v_s is set to zero, R_o is the output resistance when the amplifier is fed with an ideal source v_s, it follows that it is the applicable output resistance for determining A_v from G_v.

$$ A_v = \frac{R_1}{R_{1s} + R_o} \tag{6.96} $$

On the other hand, R_{out} is the output resistance when the amplifier is fed with v_{ss} and its resistance R_o; thus it is the applicable output resistance for determining G_v from G_v.

$$ G_v = \frac{R_1}{R_{1s} + R_{out}} \tag{6.97} $$

Returning to the circuit in Fig. 6.28(a), we see by inspection that

$$ R_o = r_o \tag{6.98} $$

A quick verification of this result is achieved by substituting $R_o = r_o$ in Eq. (6.96) and then observing that the resulting expression for A_v is identical to that in Eq. (6.92), which we derived directly from circuit analysis.

An expression for R_{out} can be derived using the circuit in Fig. 6.28(b) where a test voltage v_s is applied at the output. Our goal is to find the current i_s drawn from v_s. Toward that end note that the current through R_o is equal to i_s; thus we can express the voltage v at the MOSFET source as

$$ v = i_s R_o \tag{6.99} $$

Utilizing the analysis indicated on the circuit diagram in Fig. 6.28(b), we can write for v_s:

$$ v_s = \frac{v_s}{i_s} = v + R_o v \tag{6.100} $$

Equations (6.99) and (6.100) can be combined to eliminate v_s and obtain v_s in terms of i_s and hence $R_{out} = v_s/i_s$.

$$ R_{out} = r_o + 1 + (g_m + g_{ds} + g_{ds}) R_x \tag{6.101} $$

We recognize the term multiplying R_x as the open-circuit voltage gain A_{oc}; thus R_{out} can be expressed in an alternative, more compact form as

$$ R_{out} = r_o + A_{oc} R_x \tag{6.102} $$

A quick verification of the formula for R_{out} in Eq. (6.102) can be obtained by substituting it in Eq. (6.97). The result will be seen to be identical to the gain expression in Eq. (6.95), which we derived by direct circuit analysis.

The expressions for R_{out} in Eqs. (6.101) and (6.102) are very useful results that we will employ frequently throughout the rest of this book. These formulas give the output resistances not only of the CG amplifier but also of a CS amplifier with a resistance R_x in the emitter.

We will have more to say about this shortly. At this point, however, it is useful to interpret Eqs. (6.101) and (6.102). A first interpretation, immediately available from Eq. (6.102), is that the CG transistor increases the output resistance by adding to r_o a component $A_{oc} R_x$. In many cases, the latter component would dominate, and one can think of the CG MOSFET...
as multiplying the resistance \(R_s \) in its source by \(A_v0 \), which is approximately equal to \(g_m r_0 \). Note that this action is the complement of what we saw earlier in regard to \(R_iB \), where the MOSFET acts to divide \(R_L \) by \(A_v0 \). This impedance transformation action of the CG MOSFET is illustrated in Fig. 6.29 and is key to a number of applications of the CG circuit. One such application involves the use of the CG amplifier as a current buffer. Figure 6.30 shows an equivalent circuit that is suitable for such an application. The reader is urged to show that the overall short-circuit current gain \(G_{out} \) is given by

\[
G_{out} = G_{in} R_s \left(g_m r_0 \right) \]

The near-unity current gain together with the low input resistance and high output resistance are all characteristics of a good current buffer.

Yet another interpretation of the formula for \(R_{out} \) can be obtained by expressing Eq. (6.101) in the form

\[
R_{out} = R_i + \left(g_m + g_{mb} \right) R_s r_0
\]

Thus placing a resistance \(R_s \) in the source lead results in multiplying the transistor output resistance \(r_o \) by a factor that we recognize from our discussion of the effect of source degeneration in Section 4.7.4. We will have more to say about Eq. (6.104) later.

High-Frequency Response

Figure 6.31(a) shows the CG amplifier with the MOSFET internal capacitances \(C_{gs} \) and \(C_{gd} \) indicated. For generality, a capacitance \(C_L \) is included at the output node to represent the input capacitance of a succeeding amplifier stage. Capacitance \(C_L \) also includes the MOSFET capacitance \(C_{db} \). Note the \(C_L \) appears in effect in parallel with \(C_{gd} \); therefore, in the following discussion we will lump the two capacitances together. It is important to note at the output that each of the three capacitances in the circuit of Fig. 6.31(a) has a grounded node. Therefore none of the capacitances undergoes the Miller-multiplication effect observed in the CS stage. It follows that the CG circuit can be designed to have a much wider bandwidth than that of the CS circuit, especially when the resistance of the signal generator is large.

In this expression the second term often dominates, enabling the following approximation:

\[
R_{out} \approx \left(1 + g_{mb} R_s \right) r_0
\]

This placing a resistance \(R_s \) in the source lead results in multiplying the transistor output resistance \(r_o \) by a factor that we recognize from our discussion of the effect of source degeneration in Section 4.7.4. We will have more to say about Eq. (6.104) later.

Figure 6.29 The impedance transformation property of the CG configuration.

Figure 6.30 Equivalent circuit of the CG amplifier illustrating its application as a current buffer. \(R_s \) and \(R_{out} \) are given in Fig. 6.29, and \(G_{in} = A_v0 (R_s / R_{in}) = 1 \).

Figure 6.31 (a) The common-gate amplifier with the transistor internal capacitances shown. A load capacitance \(C_L \) is also included. (b) Equivalent circuit for the case in which \(r_o \) is neglected.
Analysis of the circuit in Fig. 6.31(a) is greatly simplified if r_0 can be neglected. In such a case the input side is isolated from the output side, and the high-frequency equivalent circuit takes the form shown in Fig. 6.31(b). We immediately observe that there are two poles: one at the input side with a frequency f_{P1}

$$f_{P1} = \frac{1}{2\pi C_{gs}\left(\frac{1}{R_s} + r_{ab}\right)}$$ (6.105)

and the other at the output side with a frequency f_{P2}

$$f_{P2} = \frac{1}{2\pi (C_{gd} + C_L)R_L}$$ (6.106)

The relative locations of the two poles will depend on the specific situation. However, f_{P2} is usually lower than f_{P1}; thus f_{P1} can be dominant. The important point to note is that both f_{P1} and f_{P2} are usually much higher than the frequency of the dominant input pole in the CS stage.

In situations when r_0 has to be taken into account (because R_s and R_L are large), the method of open-circuit time constants can be employed to obtain an estimate for the 3-dB frequency f_H.

Figure 6.32 shows the circuits for determining the resistances R_{gs} and R_{gd} seen by C_{gs} and $(C_{gd} + C_L)$, respectively. By inspection we obtain

$$R_{gs} = R_s$$ (6.107)

and

$$R_{gd} = R_L$$ (6.108)

which can be used to obtain f_H

$$f_H = \frac{1}{2\pi (C_{gs}R_{gs} + (C_{gd} + C_L)R_{gd})}$$ (6.109)

We note that this circuit performs well as a current buffer, raising the resistance level from $R_s = 4$ kΩ to $R_o = 300$ kΩ and having an overall short-circuit current gain of 0.94 A/A. Because of the high output resistance, the amplifier bandwidth is determined primarily by the capacitance at the output node. Thus additional load capacitance can lower the bandwidth significantly.

EXERCISES

6.23 For the CG amplifier considered in Example 6.11, find the value of f_H when a capacitance $C_L = 5$ fF is connected at the output.

Ans. $f_H = 1.06$ MHz

6.24 Repeat the problem in Example 6.11 for the case $R_s = 1$ kΩ and $R_L = 10$ kΩ.

Ans. $f_H = 1.06$ MHz

EXAMPLE 6.11

Consider a common-gate amplifier specified as follows: $W/L = 7.2 \mu m/0.36 \mu m$, $\mu_C = 387 \mu A/V^2$, $r_o = 18$ kΩ, $I_d = 100$ mA, $V_T = 1.25$ mV, $g_m = 0.2$, $R_s = 10$ kΩ, $R_L = 100$ kΩ, $C_p = 20$ fF, $C_{gd} = 5$ fF, and $C_L = 0$. Find f_{PL}, f_{PS}, G_m, G_v, G_{iso}, and f_H.

Solution

$$f_{PS} = \frac{1}{2\pi C_{gs}\left(\frac{1}{R_s} + r_{ab}\right)} = 28 \text{ V/V}$$

$$A_{vo} = 1 + (g_{m} + g_{mb})r_0 = 1 + 1.5 \times 18 = 28 \text{ V/V}$$

$$R_{in} = r_o + A_{vo}r_0 = 18 + 28 \times 10 = 298 \text{ kΩ}$$

$$R_{out} = \frac{1}{G_vR_L} = \frac{1}{0.94 \times 100} = 7 \text{ V/V}$$

$$G_v = 1 - \frac{R_{out}}{R_L} = 0.94 - \frac{298}{100} = 0.47 \text{ A/V}$$

$$R_{iso} = \frac{A_{vo}}{G_v} = \frac{28}{0.94} = 29.5 \text{ kΩ}$$

$$f_H = \frac{1}{2\pi R_{iso} C_L} = \frac{1}{2\pi \times 29.5 \times 3.75 \times 10^{-12}} = 366 \text{ MHz}$$

We note that this circuit performs well as a current buffer, raising the resistance level from $R_s = 4$ kΩ to $R_o = 300$ kΩ and having an overall short-circuit current gain of 0.94 A/A. Because of the high output resistance, the amplifier bandwidth is determined primarily by the capacitance at the output node. Thus additional load capacitance can lower the bandwidth significantly.
6.7.2 The Common-Base Amplifier

Analysis of the common-base amplifier parallels that of the common-gate circuit that we analyzed previously, with one major exception: The BJT has a finite \(\beta \) and its base conducts signal current, which gives rise to the resistance \(r_b \) between base and emitter, looking into the base. Figure 6.33(a) shows the basic circuit for the active-loaded common-base amplifier without the bias details. Note that resistance \(R_L \) represents the combination of a load resistance, if any, and the output resistance of the current source that realizes the active load \(I_e \).

Figure 6.33(b) shows the small-signal analysis performed directly on the circuit with the T model of the BJT used implicitly. The analysis is very similar to that for the MOS case except that, as a result of the finite base current, \(v_i/r_e \), the current \(i_l \) is related to \(i_0 \) by

\[
i_l = i_0 - V_i/r_e
\]

The reader can show that, neglecting \(r_x \), the input resistance at the emitter \(R_{in} \) is given by

\[
R_{in} = r_e + \frac{r_e}{\beta + 1} \left(1 + \frac{r_e}{R_L} \right)
\]

We immediately observe that setting \(\beta = \infty \) reduces this expression to that for the MOS case (Eq. 6.83) except that here \(g_{m0} = 0 \). Note that for \(\beta = \infty \), \(r_x = 1/g_m = 1/\beta \), and

With a slight approximation, the expression in Eq. (6.111) can be written as

\[
R_{in} = r_e + \frac{r_e + R_L}{\beta + 1}
\]

Note that setting \(r_x = 0 \) yields \(R_{in} = r_e \), which is consistent with what we found in Section 5.7.5. Also, for \(R_L = 0, R_{in} = r_e \). The value of \(R_{in} \) increases as \(r_e \) is raised, reaching a maximum of \((\beta + 1)r_e \) for \(R_L = 0 \), that is, with the amplifier operating open-circuited (see Fig. 6.33(c)). For \(R_L/(\beta + 1) \ll r_e \), Eq. (6.112) can be approximated as

\[
R_{in} \approx r_e + \frac{R_{in}}{\beta}
\]

where \(A_0 \) is the intrinsic gain \(g_m r_e \). This equation is very similar to Eq. (6.87) in the MOSFET case.

The open-circuit voltage gain and input resistance can be easily found from the circuit in Fig. 6.33(c) as

\[
A_{oc} = 1 + g_m r_e = 1 + A_0
\]

which is identical to Eq. (6.85) for the MOSFET except for the absence of \(g_m \). The input resistance with no load, \(r_e \), is

\[
r_e = r_e (6.115)
\]

as we have already found out from Eq. (6.112).

As in the MOSFET case, the output resistance \(R_o \) is given by

\[
R_o = r_e
\]

The output resistance including the source resistance \(R_s \) can be found by analysis of the circuit in Fig. 6.34 to be

\[
R_{out} = r_e + (1 + g_m r_e) R_s
\]

where \(R_s = R_s + R_e \).

Note that the formula in Eq. (6.117a) is very similar to that for the MOS case, namely Eq. (6.101). However, there are two differences: First, \(g_{m0} \) is missing, and second, \(R_s = R_s + r_e \).
CHAPTER 6
SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

FIGURE 6.34 Analysis of the CB circuit to determine R_{in}. Observe that the current i_x that enters the transistor must equal the sum of the two currents v/R_e and v/R, that leave the transistor; that is, $i_x = v/R_e + v/R$.

The reason r_e appears in the BJT formula is the finite β of the BJT. The expression in Eq. (6.117a) can also be written in terms of the open-circuit voltage gain A_v, as

$$R_{\text{in}} = R_e + (1 + g_m R_e) r_e \text{ (6.117b)}$$

which is the BJT counterpart of the MOS expression in Eq. (6.102). Another useful form for R_{in} can be obtained from (6.117a),

$$R_{\text{in}} = R_e + (1 + g_m R_e) r_e \text{ (6.117c)}$$

which is the BJT counterpart of the MOS expression in Eq. (6.103). In Eq. (6.117c) the second term is much larger than the first, resulting in the approximate expression

$$R_{\text{in}} \approx (1 + g_m R_e) r_e \text{ (6.118)}$$

which corresponds to Eq. (6.104) for the MOS case. Equation (6.118) clearly indicates that the inclusion of an emitter resistance R_e increases the CB output resistance by the factor $(1 + g_m R_e)$. Thus, as R_e is increased from 0 to ∞, the output resistance increases from r_e to $(1 + g_m R_e) r_e = (1 + \beta r_e) r_e$. This upper limit is the value of R_{out}, dictated by the finite β of the BJT, has no counterpart in the MOS case. Finally, we note that for $R_e < r_e$, Eq. (6.118) can be approximated by

$$R_{\text{in}} \approx (1 + g_m R_e) r_e \text{ (6.119)}$$

A useful summary of the formulas for R_{in} and R_{out} is provided in Fig. 6.35.

The results above can be used to obtain the overall voltage gain G_v as

$$G_v = \frac{R_{\text{in}}}{R_{\text{out}}} \text{ (6.120)}$$

where

$$G_v = \frac{R_{\text{in}}}{R_{\text{out}}} A_v = \frac{r_e}{r_e + R_e} A_v \text{ (6.121)}$$

The high-frequency response of the common-base circuit can be evaluated in a manner similar to that used for the MOSFET.

EXERCISE

6.23 Consider the CB amplifier of Fig. 6.33(a) for the case $I = 1 \text{ mA}$, $\beta = 100$, $V_A = 100 \text{ V}$, $R_i = 1 \Omega$, and $R_L = 0.33 \text{ k}\Omega$. Find R_{in}, A_v, R_{out}, and G_v. Also, find v_o if v_i is a 5-mV peak sine wave.

Ans. 250Ω, 400 V/V; $100 \text{ k}\Omega$; 3637 V/V; $2.97 \text{ M}\Omega$; 722 V/V; 3.61 V/peak

6.73 A Concluding Remark

The common-gate and common-base circuits have open-circuit voltage gains A_v almost equal to those of the common-source and common-emitter circuits. Their input resistance, however, is much smaller and their output resistance much larger than the corresponding values for the CS and CE amplifiers. These two properties, though not usually desirable in voltage amplifiers, make the CG and CB circuits suitable as current buffers. The absence of the Miller effect makes the high-frequency response of the CG and CB circuits far superior to that of the CS and CE amplifiers. The most significant application of the CG and CB circuits is in a configuration known as the cascode amplifier, which we shall study next.

6.8 THE CASCODE AMPLIFIER

By placing a common-gate (common-base) amplifier stage in cascade with a common-source (common-emitter) amplifier stage, a very useful and versatile amplifier circuit results. It is known as the cascode configuration and has been in use for nearly three quarters of a century, obviously in a wide variety of technologies.

The name cascode dates back to the days of vacuum tubes and is a shortened version of "cascaded cathode" since, in the tube version, the output (anode) of the first tube feeds the cathode of the second.
The basic idea behind the cascode amplifier is to combine the high input resistance and large transconductance achieved in a common-source (common-emitter) amplifier with the current-buffering property and the superior high-frequency response of the common-gate (common-base) circuit. As will be seen shortly, the cascode amplifier can be designed to obtain a wider bandwidth but equal dc gain as compared to the common-source (common-emitter) amplifier. Alternatively, it can be designed to increase the dc gain while leaving the gain-bandwidth product unchanged. Of course, there is a continuum of possibilities between these two extremes.

Although the cascode amplifier is formed by cascading two amplifier stages, in many applications it is thought of and treated as a single-stage amplifier. Therefore it belongs in this chapter.

6.8.1 The MOS Cascode

Figure 6.36(a) shows the MOS cascode amplifier. Here transistor Q_1 is connected in the common-source configuration and provides its output to the input terminal (i.e., source) of transistor Q_2. Transistor Q_2 has a constant dc voltage, V_{GS2}, applied to its gate. Thus the signal voltage at the gate of Q_2 is zero, and Q_2 is operating as a CG amplifier with a constant-current load, I. Obviously both Q_1 and Q_2 will be operating at dc drain currents equal to I.

As in previous cases, feedback in the overall circuit that incorporates the cascode amplifier establishes an appropriate dc voltage at the gate of Q_1 so that its drain current is equal to I. Also, the value of V_{GS1} has to be chosen so that both Q_1 and Q_2 operate in the saturation region at all times.

Small-Signal Analysis

We begin with a qualitative description of the operation of the cascode circuit. In response to the input signal voltage v_i, the common-source transistor Q_1 conducts a current signal i_{ds1} in its drain terminal and feeds it to the source terminal of the common-gate transistor Q_2, called the cascode transistor. Transistor Q_2 passes the signal current i_{ds2} on to its drain, where it is supplied to a load resistance R_L (not shown in Fig. 6.36) at a very high output resistance, R_{out}. The cascode transistor Q_2 acts in effect as a buffer, presenting a low input resistance to the drain of Q_1 and providing a high resistance at the amplifier output.

Next we analyze the cascode amplifier circuit to determine its characteristic parameters. Toward that end Fig. 6.36(b) shows the cascode circuit prepared for small-signal analysis and with a resistance R_s shown at the output. R_s is assumed to include the output resistance of the cascode transistor Q_2, r_{ds2}.

Looking "upward," we see the input resistance of the CG transistor Q_2,

$$R_{in2} = \frac{1}{g_{m2} + R_s} + \frac{R_s}{A_{in2}}$$

(6.122)

where

$$A_{in2} = 1 + (g_{ds2} + g_{m2})r_{ds2}$$

(6.123)

Thus the total resistance between the drain of Q_1 and ground is

$$R_{in1} = r_{ds1} \left[\frac{1}{g_{ds2} + g_{m2}} + \frac{R_s}{A_{in2}} \right]$$

(6.124)

Figure 6.36(b) also indicates that the output resistance of the cascode amplifier, R_{out}, is given by

$$R_{out} = r_{ds2} + A_{in2}r_{ds1}$$

(6.125)

which has been obtained using the formula in Eq. (6.102) and noting that the resistance R_s in the source of the CG transistor Q_2 is the output resistance r_{ds2} of Q_2. Substituting for
which confirms the value obtained earlier in the qualitative analysis.

\[V_{\text{out}} = V_{\text{in}} \]
\[A_0 = \frac{R_{\text{in}}}{R_{\text{out}}} \]
\[\frac{V_{\text{in}}}{V_{\text{out}}} = A_0 \]

Thus, we conclude that cascoding increases the magnitude of the open-circuit voltage gain from the CS amplifier to \(20 \times A \) to \(0 \times A \). The signal \(v_{\text{in}} \) will be amplified by the open-circuit voltage gain \(A_{\text{out}} \) of the CG transistor \(Q_1 \) to obtain

\[v_{\text{out}} = A_{\text{out}} v_{\text{in}} \]

which for the usual case of equal intrinsic gains becomes

\[A_{\text{out}} = -A_0^2 \]

The gain of the CS stage is important because its value determines the Miller effect in that stage. From the equivalent circuit in Fig. 6.37(c),

\[\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_r}{A_0} \]

We immediately see that if we are to realize the large gain of which the cascode is capable, the resistance \(R_r \) should be large. At the very least, \(R_r \) should be of the order of \(A_0^2 R_{\text{in}} \). For \(R_r = A_0 R_{\text{in}}, \) \(A_0 = -\sqrt{2} \).

The sum of the cascode amplifier is now apparent. In response to \(v_{\text{in}} \), the CS transistor provides a drain current \(I_{\text{ds}} \), which the CG transistor passes on to \(R_r \) and, in the process, increases the output resistance by \(R_{\text{in}} \). It is the increase in \(R_{\text{in}} \) to \(A_0 R_{\text{in}} \) that reduces the open-circuit voltage gain to \((g_m A_0 R_{\text{in}}) = A_0 \). Figure 6.37 provides a useful summary of the operation: Two output equivalent circuits are shown in Fig. 6.37(a) and (b), and an equivalent circuit for determining the voltage gain of the CS stage \(Q_1 \) is presented in Fig. 6.37(c). The voltage gain \(A_0 \) can be found from either of the two equivalent circuits in Fig. 6.37(a) and (b). Using that in Fig. 6.37(a) gives

\[A_0 = -\frac{R_r}{R_{\text{in}}} \]

We immediately see that if we are to realize the large gain of which the cascode is capable, the resistance \(R_r \) should be large. At the very least, \(R_r \) should be of the order of \(A_0^2 R_{\text{in}} \). For \(R_r = A_0 R_{\text{in}}, \) \(A_0 = -\sqrt{2} \).

The gain of the CS stage is important because its value determines the Miller effect in that stage. From the equivalent circuit in Fig. 6.37(c),

\[\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_r}{A_0} \]

For \(R_r = A_0 R_{\text{in}} \),

\[\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_r}{A_0} \]

Thus, the cascode transistor raises the level of output resistance by a factor equal to its intrinsic input resistance of the amplifier causes \(v_{\text{in}} \) to be amplified by the open-circuit voltage gain \(A_{\text{out}} \) of the cascode amplifier, which for the usual case of equal intrinsic gains becomes

\[A_{\text{out}} = -A_0^2 \]

Another observation to make on the cascode amplifier circuit in Fig. 6.36(b) is that when a signal source \(v_{\text{sig}} \) is connected to the input, the infinite input resistance of the amplifier causes

\[v_{\text{in}} = v_{\text{sig}} \]

Thus, we conclude that cascoding increases the magnitude of the open-circuit voltage gain from the CS amplifier to \(20 \times A \) to \(0 \times A \). The signal \(v_{\text{in}} \) will be amplified by the open-circuit voltage gain \(A_{\text{out}} \) of the CG transistor \(Q_1 \) to obtain

\[v_{\text{out}} = A_{\text{out}} v_{\text{in}} \]

which for the usual case of equal intrinsic gains becomes

\[A_{\text{out}} = -A_0^2 \]

The open-circuit voltage gain \(A_{\text{out}} \) of the cascode amplifier can be easily determined from the circuit in Fig. 6.36(c), which shows the amplifier operating with the output open-circuited. Since \(R_{\text{out}} \) will be infinite, the gain of the CS stage \(Q_1 \) will be

\[\frac{V_{\text{out}}}{V_{\text{in}}} = -A_0 \]

The signal \(v_{\text{in}} \) will be amplified by the open-circuit voltage gain \(A_{\text{out}} \) of the CG transistor \(Q_1 \) to obtain

\[v_{\text{out}} = A_{\text{out}} v_{\text{in}} \]

Thus,

\[v_{\text{out}} = \frac{-A_0 A_{\text{in}2}}{R_{\text{in}}} \]

Substituting for \(A_{\text{in}2} \) from Eq. (6.123) and for \(R_{\text{in}} \) from Eq. (6.125) gives, for \(G_{\text{in}} \),

\[G_{\text{in}} = \frac{A_0 A_{\text{in}2}}{r_{\text{in}} + A_{\text{in}2} r_{\text{in}}} \]

which confirms the value obtained earlier in the qualitative analysis.
Thus we see that when \(R_L \) is large and the cascode amplifier is realizing a substantial gain, a good part of the gain is obtained in the CS stage. This is not good news considering the Miller effect, as we shall see shortly. To keep the gain of the CS stage relatively low, \(R_L \) has to be lowered. For instance, for \(R_L = r_o \), Eq. (6.132) indicates that
\[
\frac{\omega_c}{2} = -g_{m} r_o \left(\frac{1}{g_m} + \frac{1}{g_d} \right)
\]
\[
\approx -2 \text{ V/V}
\]
Unfortunately, however, in this case the dc gain of the cascode is drastically reduced, as can be seen by substituting \(R_L = r_o \) in Eq. (6.131).
\[
A_o = -A_{m2} \frac{r_o}{r_o + A_{d2} r_o} \approx -A_{m2}
\]
That is, the gain of the cascode becomes equal to that realized in a single CS stage! Does this mean that the cascode configuration (in this case) is not useful? Not at all, as we shall now see.

6.8.2 Frequency Response of the MOS Cascode

Figure 6.38 shows the cascode amplifier with all transistor internal capacitances indicated. Also included is a capacitance \(C_{gs} \) at the output node to represent the combination of \(C_{gds} \), the input capacitance of a succeeding amplifier stage (if any), and a load capacitance (if any). Note that \(C_{gs1} \) and \(C_{gs2} \) appear in parallel and will be combined.

Similarly, \(C_{dl1} \) and \(C_{dl2} \) appear in parallel and will be combined.

The easiest and, in fact, quite insightful approach to determining the 3-dB frequency \(f_H \) is to employ the open-circuit time-constants method. We shall do so and, in the process, utilize the formulas derived in Sections 6.6.2 and 6.7.1 for the various resistances:

1. Capacitance \(C_{gs1} \) sees a resistance \(R_{dl1} \).
2. Capacitance \(C_{gs2} \) sees a resistance \(R_{dl2} \), which can be obtained by adapting the formula in Eq. (6.56) to
\[
R_{dl2} = (1 + g_{m2} R_{ds2}) R_{ds2} + R_{s2}
\]
where \(R_{s2} \), the total resistance at \(D_{s2} \), is given by Eq. (6.124).

![Figure 6.38](image)

\[\text{FIGURE 6.38 The cascode circuit with the various transistor capacitances included.} \]

3. Capacitance \((C_{gs1} + C_{gs2}) \) sees a resistance \(R_{ds2} \).
4. Capacitance \((C_{s1} + R_{s1}) \) sees a resistance \((R_L \parallel R_{ds2}) \).

With the resistances determined, the effective time constant \(\tau_o \) can be computed as
\[
\tau_o = C_{gs1} R_{ds2} + C_{gs2} ((1 + g_{m2} R_{ds2}) R_{ds2} + R_{s2}) + (C_{gs1} + C_{gs2}) R_{s2} + (C_{s1} + C_{s2})(R_L \parallel R_{ds2})
\]
and the 3-dB frequency \(f_H \) as
\[
f_H = \frac{1}{2 \pi \tau_o}
\]

To gain insight regarding what limits the high-frequency gain of the MOS cascode amplifier, we rewrite Eq. (6.136) in the form
\[
t_o = R_{ds2} C_{gs1} + C_{gs2} ((1 + g_{m2} R_{ds2}) R_{ds2} + R_{s2}) + (R_L \parallel R_{ds2}) (C_{s1} + C_{s2})
\]
and
\[
f_H = \frac{1}{2 \pi C_{gs1} + C_{gs2}}
\]

In the case of a large \(R_{ds2} \), the first term can dominate, especially if the Miller multiplier \((1 + g_{m2} R_{ds2}) \) is large. This in turn happens when the load resistance \(R_L \) is large (on the order of \(A_{d2} r_o \)), causing \(R_{ds2} \) to be large and requiring the first stage, \(Q_1 \), to provide a large proportion of the gain. It follows that when \(R_{ds2} \) is large, to extend the bandwidth we have to lower \(R_L \) to the order of \(r_o \). This in turn lowers \(R_{ds2} \) and hence \(R_{s2} \), and renders the Miller effect insignificant. Note, however, that the dc gain of the cascode will then be \(A_{m2} \). Thus, while the dc gain will be the same as (or a little higher than) that achieved in a CS amplifier, the bandwidth will be greater.

In the case when \(R_{ds2} \) is small, the Miller effect in \(Q_1 \) will not be of concern. A large value of \(R_L \) (on the order of \(A_{d2} r_o \)) can then be used to realize the large dc gain possible with a cascode amplifier—that is, a dc gain on the order of \(A_{d2} \). Equation (6.137) indicates that in this case the third term will usually be dominant. To pursue this point a little further, consider the case \(R_{ds2} = 0 \), and assume that the middle term is much smaller than the third term. It follows that
\[
t_o = (C_{gs1} + C_{gs2})(R_L \parallel R_{ds2})
\]
and the 3-dB frequency becomes
\[
f_H = \frac{1}{2 \pi C_{gs1} + C_{gs2}}
\]
which is of the same form as the formula for the CS amplifier with \(R_{ds2} = 0 \) (Eq. 6.79).

Here, however, \((R_L \parallel R_{ds2}) \) is larger than \(R_L \) by a factor of about \(A_{d2} \). Thus the \(f_H \) of the cascode will be lower than that of the CS amplifier by the same factor \(A_{d2} \). Figure 6.39 shows a sketch of the frequency response of the cascode and of the corresponding common-source amplifier. We observe that in this case cascoding increases the dc gain by a factor \(A_{d2} \) while keeping the unity-gain frequency unchanged at
\[
A_{d2} = \frac{1}{2 \pi C_{gs1} + C_{gs2}}
\]

Assume all MOSFETs have $g_{m} = 1.25 \text{ mA/V}$ and are operating at $I_{D} = 100 \mu A$, $g_{m} = 1.25 \text{ mA/V}$, $x = 0.2$, $r_{s} = 20 \text{ kQ}$, $C_{\text{ds}} = 5 \text{ fF}$, $C_{\text{gs}} = 5 \text{ fF}$, and C_{gs} (including C_{ox}) = 5 fF. For case (a), let $R_{L} = r_{s} = 20 \text{ kQ}$ for the CS amplifier and $R_{L} = R_{\text{eq}}$ for the cascode amplifier. For all cases, determine A_{out}, f_{u}, and f_{T}.

Example 6.12

This example illustrates the advantages of cascoding by comparing the performance of a cascode amplifier with that of a common-source amplifier in two cases:

a. The resistance of the signal source is significant. $R_{\text{eq}} = 10 \text{ kQ}$.

b. R_{eq} is negligibly small.

Assume all MOSFETs have $W/L = 7.2 \mu m/36 \mu m$ and are operating at $I_{D} = 100 \mu A$, $g_{m} = 1.25 \text{ mA/V}$, $x = 0.2$, $r_{s} = 20 \text{ kQ}$, $C_{\text{ds}} = 5 \text{ fF}$, $C_{\text{gs}} = 5 \text{ fF}$, and C_{gs} (including C_{ox}) = 5 fF. For case (a), let $R_{L} = r_{s} = 20 \text{ kQ}$ for the CS amplifier and $R_{L} = R_{\text{eq}}$ for the cascode amplifier. For all cases, determine A_{out}, f_{u}, and f_{T}.

Solution

(a) For the CS amplifier:

\[A_{\text{out}} = g_{m}r_{s} = 1.25 \times 20 = 25 \text{ V/V} \]

\[A_{u} = -r_{d}r_{s} \approx -g_{m}r_{s} \]

\[= -\frac{1}{2}A_{\text{out}} = -12.5 \text{ V/V} \]

\[f_{T} = \frac{C_{\text{gs}}r_{s} + C_{\text{gs}}(1 + g_{m}r_{s})r_{s} + r_{d}}{1 + (C_{\text{gs}} + C_{\text{os}})r_{d}} \]

where

\[R'_{L} = r_{d}r_{s} = r_{s} \]

\[f_{T} = 20 \times 10 + 5[1 + 12.5]10 + 10(5 + 5)10 \]

\[= 200 + 725 + 100 = 1025 \text{ ps} \]

Thus,

\[f_{T} = \frac{1}{2\pi \times 1025 \times 10^{-12}} = 155 \text{ MHz} \]

\[f_{u} = |A_{u}|f_{T} = 12.5 \times 155 = 1.94 \text{ GHz} \]

For the cascode amplifier:

\[A_{\text{out,cas}} = g_{m}(r_{s} + r_{d}) = 1.25 \times 20 = 25 \text{ V/V} \]

\[A_{u,cas} = 1 + (g_{m} + g_{m})r_{s} = 1 + (1.25 + 0.2)10 = 1.3 \times 20 = 31 \text{ V/V} \]

\[R_{\text{eq}} = r_{s} = 20 \text{ kQ} \]

\[R_{L} = \frac{1}{g_{m} + g_{mb}} + \frac{R_{L}'}{1 + g_{m}r_{s}} = \frac{1}{1.3} + \frac{20}{31} = 1.3 k\Omega \]

\[f_{u,cas} = |A_{u,cas}|f_{T} = |1.22| \times 1025 \times 10^{-12} = 155 \text{ MHz} \]

\[f_{u,cas} = |A_{u,cas}|f_{T} = 1.22 \times 1.94 \times 10^{9} \text{ MHz} \]

\[= 23.5 x 653 = 155 \text{ MHz} \]

\[f_{u,cas} = |A_{u,cas}|f_{T} = 1.22 \times 10^{9} \text{ MHz} \]

\[= 7.73 \times 10^{9} \text{ MHz} \]

Thus, cascoding has increased f_{u} by a factor of about 3.
(b) For the CS amplifier:

\[A_v = -12.5 \ \text{V/V} \]

\[f_T = \left(\frac{C_{gd} + C_L + C_{db}}{2\pi \times 150 \times 10^{-12}} \right) = 1.06 \ \text{GHz} \]

\[f_r = 12.5 \times 1.06 = 13.3 \ \text{GHz} \]

For the cascode amplifier:

\[A_v = A_v \cdot R_L + R_{out} = -25 \times 31 \times \frac{640}{640 + 640} = -388 \ \text{V/V} \]

\[f_T = \frac{1}{2 \pi \times 150 \times 10^{-12}} = 31.2 \ \text{MHz} \]

\[f_r = 388 \times 31.2 = 12.1 \ \text{GHz} \]

Thus cascoding increases the dc gain from 12.5 to 388 V/V. The unity-gain frequency (i.e., gain-bandwidth product), however, remains nearly constant.

EXERCISES

6.26 What is the minimum value of \(V_{in,\text{max}} \) required for a cascode amplifier operating at \(I = 100 \ \mu A \)? Let \(\mu, C_{on} = 300 \ \mu \text{A/V}^2, W/L = 10, \text{and } V_{ds} = 0.6 \ \text{V}. \)

Ans. 1.12 V.

6.27 Consider a cascode amplifier operating at a bias current \(I = 100 \ \mu A \) and for which all transistors have \(W/L = 8 \ \mu \text{m}/0.5 \ \mu \text{m}, V_{gs} = 3 \ \text{V}, \mu, C_{on} = 300 \ \mu \text{A/V}^2, \chi = 0.2, C_{gd} = 2 \ \text{fF}, \text{and } C_{db} = 3 \ \text{fF}, \text{for } R_m = 10 \ \text{k} \Omega, R_i = 0 \ \text{k} \Omega \text{ and } C_j = 5 \ \text{pF} (\text{excluding } C_{ds}) \text{, find } A_v, A_{out}, R_m, R_{out}, R_{in}, R_{i}, R_j, \text{and } \beta. \) (Hint: Use the approximate formula for \(f_r \) in Eq. 6.139, but remember to add \(C_{ds} \)).

Ans. 62 V/V, 75 V/V, -4550 V/V, 100 k \Omega, 103 k \Omega, 50.7 k \Omega, 7.6 MQ, -2325 V/V, 9.8 GHz, 4.2 MHz.

FIGURE 6.40

(a) The BJT cascode amplifier. (b) The circuit prepared for small-signal analysis with various input and output resistances indicated. Note that \(r_1 \) is neglected. (c) The cascode with the output open-circuited.

6.8.3 The BJT Cascode

Figure 6.40(a) shows the BJT cascode amplifier. The circuit is very similar to the MOS cascode, and the small-signal analysis follows in a similar fashion, as indicated in Fig. 6.40(b). Here we have shown the various input and output resistances. Observe that unlike the MOSFET cascode, which has an infinite input resistance, the BJT cascode has an input resistance of \(r_4 \) (neglecting \(r_1 \)). The formula for \(R_{in} \) is the one we found in the analysis.
of the common-base circuit (Eq. 6.112). The output resistance \(R_{oa} = \beta r_e C \) is found by substituting \(R_o = r_e C \) in Eq. 6.119 and making the approximation that \(\beta r_e C \ll \beta C \). Recall that \(\beta r_e C \) is the largest output resistance that a CB transistor can provide.

The open-circuit voltage gain \(A_v \) and the no-load input resistance \(R_i \) can be found from the circuit in Fig. 6.40(c), in which the output is open-circuited. Observe that \(R_{ov} = r_e C \), which is usually much smaller than \(r_e a \). As a result the total resistance between the collector of \(Q_1 \) and ground is approximately \(r_e a \); thus the voltage gain realized in the CE transistor \(Q_2 \) is \(-\frac{1}{g_{m}C_{s}} \). Recalling that the open-circuit voltage gain of a CB amplifier is \(\frac{1}{g_{m2}C_{s}} \), we see that the voltage gain \(A_v \) is

\[
A_v = -\beta r_e C \tag{6.140}
\]

Punting all of these results together we obtain for the BJT cascode amplifier the equivalent circuit shown in Fig. 6.41(a). Note that compared to the common-emitter amplifier, cascading increases both the open-circuit voltage gain and the output resistance by a factor equal to the transistor \(\beta \). This should be contrasted with the factor \(A_0 \) encountered in the MOS cascode. The equivalent circuit can be easily converted to the transconductance form shown in Fig. 6.41(b). It shows that the short-circuit transconductance \(g_{m2} \) of the cascode amplifier is equal to the transconductance \(g_{m1} \) of the BJTs. This should have been expected since \(Q_1 \) provides a current \(g_{m1} \) to the emitter of the cascode transistor \(Q_2 \), which in turn passes the current on (assuming \(g_{m1} \) is large) to its collector and to the load resistance \(R_L \). In the process the cascode transistor raises the resistance level from \(r_e a \) to the collector of \(Q_1 \) to \(\beta r_e a \) at the collector of \(Q_2 \). This is the by-now-familiar current-buffering action of the common-base transistor.

The voltage gain of the CE transistor \(Q_2 \) can be determined from the equivalent circuit in Fig. 6.41(c). The resistance between the collector of \(Q_1 \) and ground is the parallel equivalent circuit for determining the gain of the CE stage, \(Q_2 \):

\[
A_v = -\beta r_e C \tag{6.140}
\]

![FIGURE 6.41](image)

FIGURE 6.41 (a) Equivalent circuit for the cascode amplifier in terms of the open-circuit voltage gain \(A_v = -\beta r_e C \). (b) Equivalent circuit in terms of the overall short-circuit transconductance \(g_{m2} \). (c) Equivalent circuit for determining the gain of the CE stage, \(Q_2 \).

EXERCISE

6.8.4 A Cascode Current Source

As mentioned above, to realize the high voltage gain of which the cascode amplifier is capable, the load resistance \(R_L \) must be at least on the order of \(A_v r_e a \) for the bipolar cascode. Recall, however, that \(R_L \) includes the output resistance of the circuit that implements the current-source load \(I \). It follows that the current-source must have an output resistance that is at least \(A_v r_e a \) for the MOS case (\(r_e a \) for the BJT case). This rules out using the simple current-source circuits of Section 6.2 since their output resistances are...
equal to \(r_o \). Fortunately, there is a conceptually simple and effective solution—namely, applying the cascoding principle to the current-source implementation. The idea is illustrated in Fig. 6.43, where \(Q_1 \) is the current-source transistor and \(Q_2 \) is the cascode transistor. The dc voltage \(V_{\text{BIAS}1} \) is chosen so that \(Q_1 \) provides the required value of \(I \). \(V_{\text{BIAS}2} \) is chosen to keep \(Q_2 \) and \(Q_1 \) in saturation at all times. While the resistance looking into the drain of \(Q_1 \) is \(r_o \), the cascode transistor \(Q_2 \) multiplies this resistance by \((g_m r_o^2) \) and provides an output resistance for the current source given approximately by

\[R_o = (g_m r_o^2) r_o \tag{6.141} \]

A similar arrangement can be used in the bipolar case. We will study a greater variety of current sources and current mirrors with improved performance in Section 6.12.

6.8.5 Double Cascoding

The essence of the operation of the MOS cascode is that the CG cascode transistor \(Q_2 \) multiplies the resistance in its source, which is \(r_o \) of the CS transistor \(Q_1 \), by its intrinsic gain \(A_{g_m} \) to provide an output resistance \(A_{g_m} r_o^2 \). It follows that we can increase the output resistance further by adding another level of cascoding, as illustrated in Fig. 6.44. Here another CG transistor \(Q_3 \) is added, with the result that the output resistance is increased by the factor \(A_{g_m} \).

Thus the output resistance of this double-cascode amplifier is \(A_{g_m} r_o^2 \). Note that an additional bias voltage has to be generated for the additional cascode transistor \(Q_3 \).

A drawback of double cascoding is that an additional transistor is now stacked between the power supply rails. Furthermore, since we are now dealing with output resistances on the order of \(A_{g_m} r_o^2 \), the current source \(I \) will also need to be implemented using a double cascode, which adds yet one more transistor to the stack. The difficulty posed by stacking additional transistors is appreciated by recalling that in modern CMOS process technologies \(V_{DD} \) is only a little more than 1 V.

Finally, note that since the largest output resistance possible in a bipolar cascode is \(B r_o \), adding another level of cascoding does not provide any advantage.

6.8.6 The Folded Cascode

To avoid the problem of stacking a large number of transistors across a low-voltage power supply, one can use a PMOS transistor for the cascode device, as shown in Fig. 6.45. Here, as before, the NMOS transistor \(Q_1 \) is operating in the CS configuration, but the CG stage is implemented using the PMOS transistor \(Q_2 \). An additional current-source \(I_2 \) is needed to bias \(Q_2 \) and provide it with its active load. Note that \(Q_1 \) is now operating at a bias current of \((I_1 + I_2) \).

Finally, a dc voltage \(V_{\text{BIAS}3} \) is needed to provide an appropriate dc level for the gate of the cascode transistor \(Q_2 \). Its value has to be selected so that \(Q_2 \) and \(Q_1 \) operate in the saturation region.

The small-signal operation of the circuit in Fig. 6.45 is similar to that of the NMOS cascode. The difference here is that the signal current \(g_m v_i \) is folded down and made to flow into the source terminal of \(Q_2 \), which gives the circuit the name folded cascode.\(^\text{12}\) The folded cascode is a very popular building block in CMOS amplifiers.

\[V_{SS} \]

\[\ldots \]

\[V_{DD} \]

FIGURE 6.44 Double cascoding.

\[V_{BIAS} \]

\[\ldots \]

\[V_{BIAS} \]

FIGURE 6.45 The folded cascode.

\(^{12}\) The circuit itself can be thought of as having been folded. In this same vein, the regular cascode is sometimes referred to as a telescopic cascode because the stacking of transistors resembles the extension of a telescope.
Consider the folded-cascode amplifier of Fig. 6.45 for the case: $V_{dd} = 1.8 \text{V}$, $L_2 = W_2', V_{n} = -V_{p} = 0.5 \text{V}$. To operate Q_1 and Q_2 in their linear region, $I_{1} = 2I_{2}$ and $V_{1} = V_{2}$. Current mirror f_2 is implemented using the simple circuit studied in Section 6.2, current-source f_2 is realized using a cascoded circuit (i.e., the nMOS version of the circuit in Fig. 6.43). The transistors f_2's base-emitter voltages are selected so that each operates at an overdrive voltage of 0.2V.

(a) What must the relationship of $(W/L)_{1}$ to $(W/L)_{2}$ be?
(b) What is the minimum dc voltage required for the proper operation of current-source f_2?
(c) What is the allowable range of signal swing at the output?

Exercise

6.29 BICMOS Cascades

As mentioned before, if the technology permits, the circuit designer can combine bipolar and MOS transistors in circuit configurations that take advantage of the unique features of each. As an example, Fig. 6.46 shows two possibilities for the BICMOS implementation of the cascode amplifier. In the circuit of Fig. 6.46(a) a MOSFET is used for the input device, thus providing the cascode with an infinite input resistance. On the other hand, a bipolar transistor is used for the cascode device, thus providing a larger output resistance than is possible with a MOSFET cascade. This is because β of the BJT is usually larger than A_v of the MOSFET and, more importantly, because r_e of the BJT is much larger than r_o of modern submicron MOSFETs. Also, the bipolar CB transistor provides a lower input resistance R_{in} than is usually obtained with a CG transistor, especially when R_e is low. The result is a lower total resistance between the drain of Q_1 and ground and hence a reduced Miller effect in Q_1.

The circuit in Fig. 6.46(b) utilizes a MOSFET to implement the second level of cascoding in a bipolar cascode amplifier. The need for a MOSFET stems from the fact that while the maximum possible output resistance obtained with a BJT is βr_e, there is such a limit with the MOSFET, and indeed, Q_2 raises the output resistance by the factor A_v.

6.87 BICMOS Cascades

As mentioned before, if the technology permits, the circuit designer can combine bipolar and MOS transistors in circuit configurations that take advantage of the unique features of each. As an example, Fig. 6.46 shows two possibilities for the BICMOS implementation of the cascode amplifier. In the circuit of Fig. 6.46(a) a MOSFET is used for the input device, thus providing the cascode with an infinite input resistance. On the other hand, a bipolar transistor is used for the cascode device, thus providing a larger output resistance than is possible with a MOSFET cascade. This is because β of the BJT is usually larger than A_v of the MOSFET and, more importantly, because r_e of the BJT is much larger than r_o of modern submicron MOSFETs. Also, the bipolar CB transistor provides a lower input resistance R_{in} than is usually obtained with a CG transistor, especially when R_e is low. The result is a lower total resistance between the drain of Q_1 and ground and hence a reduced Miller effect in Q_1.

The circuit in Fig. 6.46(b) utilizes a MOSFET to implement the second level of cascoding in a bipolar cascode amplifier. The need for a MOSFET stems from the fact that while the maximum possible output resistance obtained with a BJT is βr_e, there is such a limit with the MOSFET, and indeed, Q_2 raises the output resistance by the factor A_v.

Exercise

6.30 For $I = 100 \mu\text{A}$ and $V_{dd} = 5 \text{V}$, and the open-circuit voltage gain A_{oc} of the BICMOS cascode amplifiers in Fig. 6.46, for the BJTs, $V_{n} = 50 \text{V}$ and $\beta = 100$. For the MOSFETs, $V_{p} = 5 \text{V}$, $I_{dd} = 200 \mu\text{A}$, and $W/L = 25$.

(a) For the circuit in Fig. 6.46(a): 1mA/V, 50Ω, $-5 \times 10^{-7} \text{V/V}$; for the circuit in Fig. 6.46(b): 5mA/V, 2500Ω, -10^{-7}V/V.

6.9 THE CS AND CE AMPLIFIERS WITH SOURCE (EMITTER) DEGENERATION

Inserting a relatively small resistance r_e (i.e., a small multiple of $1/g_m$) in the source of a CS amplifier (the emitter of a common-emitter amplifier) introduces negative feedback into the amplifier stage. As a result this resistance provides the circuit designer with an additional parameter that can be effectively utilized to obtain certain desirable properties as a trade-off for the gain reduction that source (emitter) degeneration causes. We have already seen some of this in Sections 4.7 and 5.7. In this section we consider source and emitter degeneration in IC amplifiers where r_e and g_m have to be taken into account. We also demonstrate the use of source (emitter) degeneration to extend the amplifier bandwidth.

6.9.1 The CS Amplifier with a Source Resistance

Figure 6.47(a) shows an active-loaded CS amplifier with a source resistance R_s. Note that a signal v_o will develop between body and source, and hence the body effect should be taken into account in the analysis. The circuit, prepared for small-signal analysis and with a resistance R_s shown at the output, is presented in Fig. 6.47(b). To determine the output resistance R_{out}, we reduce v_o to zero, which makes the circuit identical to that of a CG amplifier. Therefore, we can obtain R_{out} by using Eq. (6.101) as

$$R_{out} = r_e + (1 + g_m + g_{m2}) r_e R_s$$

which for the usual situation $g_m + g_{m2} r_e > 0$ reduces to

$$R_{out} = r_e (1 + g_m + g_{m2}) R_s$$

The open-circuit voltage gain can be found from the circuit in Fig. 6.47(c); noting that the current in R_s must be zero, the voltage at the source, v_s, will be zero and thus $v_p = V_B$ and $v_n = 0$, resulting in

$$i = g_m v_n$$

![Figure 6.46: BICMOS Cascades](image-url)
6.9 THE CS AND CE AMPLIFIERS WITH SOURCE (EMITTER) DEGENERATION

The effect of R_s is thus obvious: R_s reduces the amplifier transconductance and increases its output resistance by the same factor:

$$ A_v = -\frac{1}{1 + (g_m + g_{ma})R_s} \left(1 + g_m R_s \right) A_v_o $$

Thus, if R_s is kept unchanged, A_v will decrease, which is the price paid for the performance improvements obtained when R_s is introduced. One such improvement is in the linearity of the amplifier. This comes about because only a fraction v_{gs} of the input signal v_i now appears between gate and source. Derivation of an expression for v_{gs} is significantly complicated by the inclusion of r_o. The derivation should be done with the MOSFET equivalent-circuit model explicitly used. The result is

$$ \frac{v_{gs}}{v_i} = \frac{1}{1 + (g_m + g_{ma})R_s} \left(1 + g_m R_s \right) $$

Thus the value of R_s can be used to control the magnitude of v_{gs} so as to obtain the desired linearity—at the expense, of course, of gain reduction.

Frequency Response

Another advantage of source degeneration is the ability to broaden the amplifier bandwidth. Figure 6.48(a) shows the amplifier with the internal capacitances C_{gs} and C_{gd} indicated. A capacitance C_L that includes the MOSFET capacitance C_{db} is also shown at the output. The method of open-circuit time constants can be employed to obtain an estimate of the 3-dB frequency f_{3dB}. Toward that end we show in Fig. 6.48(b) the circuit for determining R_{GD}, which is the resistance seen by C_{GD}. We observe that R_{GD} can be determined by simply adapting the formula in Eq. (6.56) to the case with source degeneration as follows:

$$ R_{GD} = R_{sig} \left(1 + G \frac{R_s}{R_i} + R_s \right) $$

The formula for R_{CL} can be seen to be simply

$$ R_{CL} = R_s R_f $$

The formula for R_{GS} is the most difficult to derive, and the derivation should be performed with the hybrid-π model explicitly utilized. The result is

$$ R_{GS} = \frac{R_{sig} + R_s}{1 + (g_m + g_{ma})R_s} \left(1 + g_m R_s \right) $$

The formula for R_{GS} is relatively large, the frequency response will be dominated by the Miller multiplication of C_{gs}. Another way for saying this is that $C_{gs} R_{gs}$ will be the largest of the
CHAPTER 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

FIGURE 6.48 (a) The CS amplifier circuit, with a source resistance R_S connected to the capacitor C_{gs}, enabling us to approximate T_H as

$$T_H = C_{gs} R_{gs}$$

and correspondingly to obtain f_H as

$$f_H = \frac{1}{2\pi C_{gs} R_{gs}}$$

Now, as R_S is increased, f_H increase, causing f_H to decrease (EQ. 6.148), which in turn causes f_H to increase. To highlight the trade-off between gain and bandwidth, we can solve for R_S in Eq. (6.148) by assuming that $G_m R_S > 1$ and $G_m R_{ss} >> 1$.

$$R_S = \frac{G_m R_S}{R_{ss}} - |A_{dd}| R_{ss}$$

which can be substituted in Eq. (6.154) to obtain

$$f_H = \frac{1}{2\pi C_{gs} R_{ss} |A_{dd}|}$$

which very clearly shows the gain-bandwidth trade-off. The gain-bandwidth product remains constant at

Gain–bandwidth product, $f_H = |A_{dd}| f_H = \frac{1}{2\pi C_{gs} R_{ss}}$

In practice, however, the other capacitances will play a role in determining f_H, and f_H will decrease somewhat as R_S is increased.

EXERCISE

6.31 Consider a CS amplifier having $g_m = 2 mA/V$, $r_o = 20 k\Omega$, $R_L = 20 k\Omega$, $C_{gs} = 100 f\Omega$, $C_{gd} = 50 f\Omega$, and $C_L = 50 f\Omega$. (a) Find the voltage gain A_{dd} and the 3-dB frequency f_H using the method of open-circuit time constants and hence the gain-bandwidth product. (b) Repeat (a) for the case in which a resistance R_S is connected in series with the source terminal with a value selected so that $(g_m + g_m R_S) = 2$. Ans. (a) $20 V/V, 61.2 MHz, 1.22 GHz$; (b) $10 V/V, 109.1 MHz, 1.1 GHz$

6.9.2 The CE Amplifier with an Emitter Resistance

Emitter degeneration is even more useful in the CE amplifier than source degeneration is in the CS amplifier. This is because emitter degeneration increases the input resistance of the CE amplifier. The input resistance of the CS amplifier is, of course, practically infinite to start with. Figure 6.49(a) shows an active-loaded CE amplifier with an emitter resistance R_e, usually in the range of 1 to 5 times r_e. Figure 6.49(b) shows the circuit for determining the
input resistance R_i, which due to the presence of r_e will depend on the value of R_e. With the aid of the analysis shown in Fig. 6.49(b), we can express the output voltage v_o as

$$v_o = \left(1 - \frac{r_e}{R_e}\right)v_i$$

Alternatively, we can express v_o as

$$v_o = (1 - r_e/r_e) - \left[\frac{v_i - (r_e/Re)}{R_i}\right]$$

Equating these two expressions of v_o yields an equation in v_i and i, which can be rearranged to obtain

$$R_i = \frac{v_i}{i/(\beta + 1)}$$

$$= (\beta + 1)r_e + \frac{R_e}{\beta + 1}$$

$$= \frac{(\beta + 1)r_e + R_e}{\beta + 1}$$ (6.157)

Usually R_i is on the order of r_e, thus $R_i/(\beta + 1) \ll r_e$. Also, $R_i \ll r_e$. Taking account of these two conditions enables us to simplify the expression for R_i to

$$R_i \approx (\beta + 1)r_e + (\beta + 1)R_e \frac{1}{1 + R_i/r_e}$$ (6.158)

This expression indicates that the presence of r_e reduces the effect of R_i on increasing R_e. This is because r_e shunts away some of the current that would have flowed through R_i. For example, for $R_e = r_e$, $R_i = (\beta + 1)(r_e + 0.5r_e)$.

To determine the open-circuit voltage gain A_{OC}, we utilize the circuit shown in Fig. 6.49(c). Analysis of this circuit is straightforward and can be shown to yield

$$A_{OC} = -g_{mb}$$ (6.159)

That is, the open-circuit voltage gain obtained with a relatively small R_e (i.e., on the order of r_e) remains very close to the value without R_e.

The output resistance R_o is identical to the value of R_{OC} that we derived for the CB circuit (Eq. 6.118),

$$R_o \equiv r_o(1 + g_{mb}R_e)$$ (6.160)

where $R'_o = R_{OC}$, Since R_e is on the order of r_e, R_o is much smaller than r_o and $R'_o \ll r_o$.

Thus,

$$R_o \equiv r_o(1 + g_{mb}R_e)$$ (6.161)

The expressions for R_{OC}, A_{OC}, and R_o in Eqs. (6.158), (6.159), and (6.161), respectively, can be used to determine the overall voltage gain for given values of source resistance and load resistance. Finally, we should mention that A_{OC} and R_o can be used to find the effective short-circuit transconductance g_{ma} of the emitter-degenerated CE amplifier as follows:

$$g_{ma} = \frac{A_{OC}}{R_o}$$

Thus,

$$g_{ma} = \frac{r_o}{1 + g_{mb}R_e}$$ (6.162)

which is identical to the expression we found for the discrete case in Section 5.7.

The high-frequency response of the CE amplifier with emitter degeneration can be found in a manner similar to that presented above for the CS amplifier.

In summary, including a relatively small resistance R_e (i.e., a small multiple of r_e) in the emitter of the active-loaded CE amplifier reduces its effective transconductance by the factor $(1 + g_{mb}R_e)$ and increases its output resistance by the same factor, thus leaving the open-circuit voltage gain approximately unchanged. The input resistance R_i is increased by a factor that depends on R_i, and that is somewhat lower than $(1 + g_{mb}R_e)$. Also, including R_e reduces the severity of the Miller effect and correspondingly increases the amplifier bandwidth. Finally, an emitter-degeneration resistance R_e increases the linearity of the amplifier.

Exercise

6.32 Consider the active-loaded CE amplifier with emitter degeneration. Let $I = 1$ mA, $V_a = 100$ V, and $B = 100$. Find V_o, R_o, and G_v, and the overall voltage gain V_o/V_i when $R_e = 75 \Omega$, $R_d = 3 \times 10^3 \Omega$, and $R_i = 10 \Omega$.

Ans. $V_o = 400$ V; $R_o = 400$ kΩ; $V_o/V_i = -4000$ V/V; 30 mA/V; -667 V/V

6.10 THE SOURCE AND EMMITTER FOLLOWERS

The discrete-circuit source follower was presented in Section 4.7.6, and the discrete-circuit emitter follower in Section 5.7.6. In the following discussion we consider their IC versions, paying special attention to their high-frequency response.

6.10.1 The Source Follower

Figure 6.50(a) shows an IC source follower biased by a constant-current source I. This is usually implemented using an NMOS current mirror. The source follower would generally be part of a larger circuit that determines the dc voltage at the transistor gate. We will encounter such circuits in the following chapters. Here we note that v_i is the input signal appearing at the gate and that R_i represents the combination of a load resistance and the output resistance of the current-source I.

The low-frequency small-signal model of the source follower is shown in Fig. 6.50(b). Observe that v_i appears in parallel with R_f and thus can be combined with it. Also, the controlled current-source $g_{ma}v_{sb}$ feeds its current into the source terminal, where the voltage is $-v_m$. Thus we can use the source-absorption theorem (Appendix C) to replace the current source with a resistance $1/g_{ma}$ between the source and ground, this can then be combined with R_f and v_m. With these two simplifications the equivalent circuit takes the form shown in Fig. 6.50(c), where

$$R_f' \equiv R_f || R_e \| \frac{1}{g_{ma}}$$ (6.163)

We now can write for the output voltage v_o:

$$v_o = g_{ma}v_i R_f'$$ (6.164)

and for v_e:

$$v_e = v_o - v_m$$ (6.165)
CHAPTER 6
SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

FIGURE 6.50 (a) An IC source follower, (b) Small-signal equivalent-circuit model of the source follower, (c) A simplified version of the equivalent circuit, (d) Determining the output resistance of the source follower.

Equations (6.164) and (6.165) can be combined to obtain the voltage gain

\[A_v = \frac{v_o}{v_i} = -\frac{g_m R'_L}{1 + sC_{gs}R'_L} \]

which, as expected, is less than unity. To obtain the open-circuit voltage gain, we set \(R_L \) in Eq. (6.163) to \(\infty \), which reduces \(R'_L \) to \(r_L \). Substituting this value for \(R'_L \) in Eq. (6.166) gives

\[A_v = \frac{g_m}{1 + sC_{gs}r_L} \]

which, for the usual case where \(g_m + sC_{gs}r_L \gg 1 \), simplifies to

\[A_v \approx \frac{g_m}{r_L} = \frac{g_m}{sC_{gs}} \]

Thus, the highest value possible for the voltage gain of the source follower is limited to \(1/(1+Z) \), which is typically 0.8 V/V to 0.9 V/V.

Finally, we can find the output resistance \(R_o \) of the source follower either using the equivalent circuit of Fig. 6.50(c) or by inspection of the circuit in Fig. 6.50(d) as

\[R_o = \frac{1}{g_m + sC_{gs}} \]

which can be approximated as

\[R_o \approx 1/(1 + Z)g_m \]

Similar to the discrete source follower, the IC source follower can be used as the output stage of a multistage amplifier to provide a low output resistance for driving low-impedance loads. It is also used to shift the dc level of the signal by an amount equal to \(V_{GS} \).

EXERCISE

6.33 A source follower for which \(R_o = 2 \times 10^6 \) \(\Omega \), \(V_o = 20 \text{mV}, V_T = 0.7 \text{V}, g_m = 1 \text{mS}, B = 20 \text{db}, \) and \(R_L = 10 \text{k}\Omega \) is required to provide a dc level shift of 0.9 V. What must the bias current I be? Find \(R_{\text{in}}, R_o, A_v, \) and \(g_m, g_{mB} \). Also, find the voltage gain when a load resistance of 1 k\Omega is connected to the output.

Ans. 360 \(\mu \text{A}, 2.4 \text{mA/V}, 0.48 \text{mA/V}, 0.82 \text{V/V}, 34 \text{k}\Omega, 0.61 \text{V/V} \)

6.10.2 Frequency Response of the Source Follower

A major advantage of the source follower is its excellent high-frequency response. This comes about because, as we shall now see, none of the internal capacitances suffers from the Miller effect. Figure 6.51(a) shows the high-frequency equivalent circuit of a source follower fed with a signal \(V_{\text{sig}} \) from a source having a resistance \(R_{\text{sig}} \). In addition to the MOSFET capacitances \(C_{gs} \) and \(C_{gd} \), a capacitance \(C_L \) is included between the output node and ground to account for the source-to-body capacitance \(C_{sb} \) as well as any actual load capacitance.

The simplifications performed above on the low-frequency equivalent circuit can be applied to the high-frequency model of Fig. 6.51(a) to obtain the equivalent circuit in Fig. 6.51(b), where \(R'_L \) is given by Eq. (6.163). Although one can derive an expression for the transfer function of this circuit, the resulting expression will be too complicated to yield insight regarding the role that each of the three capacitances plays. Rather, we shall first determine the location of the transmission zeros and then use the method of open-circuit time constants to estimate the 3-dB frequency, \(f_{3dB} \).

Although there are three capacitances in the circuit of Fig. 6.51(b), the transfer function is of the second order. This is because the three capacitances form a continuous loop. To determine the location of the two transmission zeros, refer to the circuit in Fig. 6.51(b), and note that \(V_o \) is zero at the frequency at which \(C_L \) has a zero impedance and thus acts as a short circuit across the output, which is at \(s = \infty \). Also, \(V_o \) will be zero at the value of \(s \) that causes the current into the impedance \(R'_L + R_{\text{in}} \) to be zero. Since this current is \((g_m + sC_{gs})V_{\text{sig}}\), the transmission zero will be at \(s = -\frac{g_m}{C_{gs}} \).

That is, the zero will be on the negative real-axis of the \(s \)-plane with a frequency

\[f_z = \frac{1}{2\pi \sqrt{L_m C_{gs}}} \]

6.10 THE SOURCE AND Emitter FOLLOWERS

Finally, we can find the output resistance \(R_o \) of the source follower either using the equivalent circuit of Fig. 6.50(c) or by inspection of the circuit in Fig. 6.50(d) as

\[R_o = \frac{1}{g_m + sC_{gs}} \]

which can be approximated as

\[R_o \approx 1/(1 + Z)g_m \]

Similar to the discrete source follower, the IC source follower can be used as the output stage of a multistage amplifier to provide a low output resistance for driving low-impedance loads. It is also used to shift the dc level of the signal by an amount equal to \(V_{GS} \).
CHAPTER 6 SINGLE-STAGE INTEGRATED-CIRCUIT AMPLIFIERS

We note that the factor \((1 + g_m R'_L)\) in the denominator will result in reducing the effective resistance with which \(C_p\) interacts. In the absence of the two other capacitances, \(C_g\), together with \(R'_L\), introduce a pole with frequency \(1/2 \pi C_p R'_L\).

Finally, it is easy to see from the circuit in Fig. 6.51(b) that \(C_L\) interacts with \(R_L\) and \(R'_L\) that is,
\[
R_{eq} = R_L + R'_L
\]

Usually, \(R_L\) (Eq. 6.169) is low. Thus \(R_{eq}\) will be low, and the effect of \(C_L\) will be small. Nevertheless, all three time constants can be added to obtain \(T_0\) and hence \(f_0\).

\[
f_0 = \frac{1}{2\pi T_0} = 1/2\pi (C_{gs} R_{eq} + C_p R'_L + C_L R_L)
\]

EXERCISE 6.3 Consider a source follower specified as follows: \(I_D = 7.2 \mu A\), \(r_o = 100 \Omega\), \(R_p = 1.25 \text{ mV/\mu A}\), \(A_{Cp} = 0.9, r_c = 20 \Omega, R'_L = 20 \Omega, R_L = 10 \Omega, R' = 10 \Omega, C_g = 20 \text{ pF}, C_p = 5 \text{ pF}, C_L = 15 \text{ pF}, \text{ Find } A_{Cp}, A_{R'_L}, \text{ and } f_0\). Also, find \(R_{eq}\), \(R'_L\), \(R_{eq, \text{eff}}\), and hence the time constant associated with each of the three capacitances \(C_g, C_p\), and \(C_L\). Find \(f_0\) and the percentage contribution to \(f_0\) from each of the three capacitances. Find \(f_0\).

Ans. 6.76 V/V, 8 GHz, 10 GHz, 20 kHz, 2.45 kHz, 0.61 kHz, 109 ps, 109 ps, 9 ps, 218 ps, 409 ps, 509 ps, 750 MHz

6.10.3 The Emitter Follower

Figure 6.52(a) shows an emitter follower suitable for IC fabrication. It is biased by a constant-current source \(I_1\). However, the circuit that sets the dc voltage at the base is not shown. The emitter follower is fed with a signal \(V_{in}\) from a source with resistance \(R_{in}\). The resistance \(R_1\), shown at the output, includes the output resistance of current source \(I_1\) as well as any actual load resistance.

Analysis of the emitter follower of Fig. 6.52(a) to determine its low-frequency gain, input resistance, and output resistance is identical to that performed on the capacitively coupled version in Section 5.7.6. Indeed, the formulas given in Table 5.6 can be easily adapted for the circuit in Fig. 6.52(a). Therefore we shall concentrate here on the analysis of the high-frequency response of the circuit.

Figure 6.52(b) shows the high-frequency equivalent circuit. Lumping \(r_o\) together with \(R_L\) and \(r_c\) together with \(R'_L\), and making a slight change in the way the circuit is drawn results in the simplified equivalent circuit shown in Fig. 6.52(c). We will follow a procedure for the analysis of this circuit similar to that used above for the source follower. Specifically, to obtain the location of the transmission zero, note that \(V_o\) will be zero at the frequency \(f_z\) for which the current fed to \(R'_L^e\) is zero:

\[
r_o V_{in} + V_o + s_z C_p = 0
\]

Thus,

\[
s_z = -\frac{(1 + r_o)}{C_p} = -\frac{1}{C_p r_o}
\]
which is on the negative real-axis of the s-plane and has a frequency
\[\omega_n = \frac{1}{\sqrt{C_r r_o}} \]
(6.178)

This frequency is very close to the unity-gain frequency \(\omega_u \) of the transistor. The other transmission zero is at \(s = -\infty \). This is because at this frequency, \(C_r \) acts as a short circuit, making \(V_i \) zero, and hence \(V_o \) will be zero.

Next, we determine the resistances seen by \(C_r \) and \(C_u \). For \(C_r \), the reader should be able to show that the resistance it sees, \(R_r \), is the parallel equivalent of \(R_{r_0} \) and the input resistance looking into \(B' \) that is,
\[R_r = R_{r_0} \parallel \left(r_o + (\beta + 1) R_{r_0} \right) \]
(6.179)

Equation (6.179) indicates that \(R_r \) will be smaller than \(R_{r_0} \), and since \(C_u \) is usually very small, the time constant \(C_u R_r \) will be correspondingly small.

The resistance \(R_u \) seen by \(C_u \) can be determined using an analysis similar to that employed for the determination of \(R_{r_0} \) in the MOSFET case. The result is
\[R_u = \frac{R_{r_0} + R_{r_0}}{1 + \frac{R_{r_0}}{r_o}} \]
(6.180)

We observe that the term \(R_{r_0}/r_o \), will usually make the denominator much greater than unity, thus rendering \(R_{r_0}/r_o \) rather low. Thus, the time constant \(C_u R_r \) will be small. The end result is that the 3-dB frequency \(f_u \) of the emitter follower,
\[f_u = \frac{1}{2\pi \left[C_r R_u + C_u R_r \right]} \]
(6.181)

will usually be very high. We urge the reader to solve the following exercise to gain familiarity with typical values of the various parameters that determine \(f_u \).

EXERCISE

6.35 For an emitter follower biased at \(I_C = 1 \) mA and having \(R_{r_0} = R_o = 3 \) k\(\Omega \), \(r_o = 100 \) k\(\Omega \), \(\beta = 100 \), \(C_u = 2 \) \(\mu \)F, and \(f_T = 400 \) MHz, find the low-frequency gain, \(f_p = \beta, f_u, R_u, R_r \), and \(f_u \).

Ans. \(0.965 \) V/V; 458 MHz; 1.09 k\(\Omega \); 51 \(\Omega \); 55 MHz

6.11 SOME USEFUL TRANSISTOR PAIRINGS

The cascode configuration studied in Section 6.8 combines CS and CG MOS transistors (CE and CB bipolar transistors) to great advantage. The key to the superior performance of the resulting combination is that the transistor pairing is done in a way that maximizes the advantages and minimizes the shortcomings of each of the two individual configurations. In this section we study a number of other such transistor pairings. In each case the transistor pair can be thought of as a compound device; thus the resulting amplifier may be considered as a single stage.

6.11.1 The CD-CS, CC-CE and CD-CE Configurations

Figure 6.53(a) shows an amplifier formed by cascading a common-drain (source-follower) transistor \(Q_1 \) with a common-source transistor \(Q_2 \). As should be expected, the voltage gain of the circuit will be a little lower than that of the CS amplifier. The advantage of this circuit

FIGURE 6.53 (a) CD-CS amplifier, (b) CC-CE amplifier, (c) CD-CE amplifier.
configuration, however, lies in its bandwidth, which is much wider than that obtained in a CS amplifier. To see how this comes about, note that the CS transistor Q_2 will still exhibit a Miller effect that results in a large input capacitance, C_{in2}, between its gate and ground. However, the resistance that this capacitance interacts with will be much lower than R_{sig}; the buffering action of the source follower causes a relatively low resistance, approximately equal to $g_m + g_{mb}$, to appear between the source of Q_Y and ground across C_{in2}.

The bipolar counterpart of the CD-CS circuit is shown in Fig. 6.53(b). Beside achieving a wider bandwidth than that obtained with a CE amplifier, the CC-CE configuration has an important additional advantage: The input resistance is increased by a factor equal to $(\beta + 1)$. Finally, we show in Fig. 6.53(c) the BiCMOS version of this circuit type. Observe that Q_1 provides the amplifier with an infinite input resistance. Also, note that Q_2 provides the amplifier with a high g_m as compared to that obtained in the MOSFET circuit in Fig. 6.53(a) and hence high gain.

EXAMPLE 6.13

Consider a CC-CE amplifier such as that in Fig. 6.53(b) with the following specifications: $I_x = I_2 = 1$ mA and identical transistors with $\beta = 100$, $f_T = 400$ MHz, and $C_p = 2$ pF. Let the amplifier be fed with a source having a resistance $R_{sig} = 4$ kΩ, and assume a load resistance of 4 kΩ. Find the voltage gain A_M, and estimate the 3-dB frequency, f_H.

To determine f_H we use the method of open-circuit time constants. Figure 6.54(b) shows the circuit with V_{sig} set to zero and the four capacitances indicated. Capacitance C_{in} sees a resistance $R_{sig}/\beta = 0.09 \times 0.98 = 0.88$ V/V.

Thus,

$$A_M = \frac{V_{out}}{V_{sig}} = -40 \times 4 = -160 \text{ V/V}$$

To determine f_H, use the method of open-circuit time constants. Figure 6.54(b) shows the circuit with V_{sig} set to zero and the four capacitances indicated. Capacitance C_{in} sees a resistance $R_{sig}/\beta = 0.09 \times 0.98 = 0.88$ V/V.

Consider a CC-CE amplifier such as that in Fig. 6.53(b) with the following specifications: $I_x = I_2 = 1$ mA and identical transistors with $\beta = 100$, $f_T = 400$ MHz, and $C_p = 2$ pF. Let the amplifier be fed with a source having a resistance $R_{sig} = 4$ kΩ, and assume a load resistance of 4 kΩ. Find the voltage gain A_M, and estimate the 3-dB frequency, f_H. Compare the results with those obtained with a CE amplifier operating under the same conditions. For simplicity, neglect r_e and r_x.

Solution

At an emitter bias current of 1 mA, Q_x and Q_2 have

$$r_e = \frac{\beta}{I_x} = \frac{100}{1 \text{ mA}} = 25 \Omega$$

$$r_x = \frac{\beta + 1}{I_x} = \frac{101}{1 \text{ mA}} = 100 \Omega$$

$$C_{in} = \frac{2}{2\pi f_T} = \frac{2}{2\pi \times 400 \times 10^6} = 15.9 \text{ pF}$$

$$C_p = 2 \text{ pF}$$

$$C_{in} = 13.9 \text{ pF}$$

The voltage gain A_M can be determined from the circuit shown in Fig. 6.54(a) as follows:

$$R_{in2} = r_x = 100 \Omega$$

$$R_{in} = (\beta + 1)(r_x + R_{in2})$$

$$= 1010(0.025 + 2.5) = 225 \Omega$$

$$V_{in} = \frac{R_{in}}{R_{in} + R_{in2}} = \frac{225}{225 + 4} = 0.98 \text{ V/V}$$

$$V_{in2} = \frac{R_{in2}}{R_{in2} + r_x} = \frac{2.5}{2.5 + 0.025} = 0.99 \text{ V/V}$$

FIGURE 6.54 Circuits for Example 6.13: (a) The CC-CE circuit prepared for low-frequency small-signal analysis; (b) the circuit at high frequencies, with V_{sig} set to zero to enable determination of the open-circuit time constants; and (c) a CE amplifier for comparison.
To find the resistance \(R_{nl} \) seen by capacitance \(C_Kl \) we refer to the analysis of the high-frequency response of the emitter follower in Section 6.10.3. Specifically, we adapt Eq. (6.180) to the situation here as follows:

\[
R_{nl} = \frac{R_{in} \cdot R_{out}}{1 + \frac{R_{in}}{R_{out}}} = \frac{4000 \cdot 2500}{1 + \frac{4000}{2500}} = 63.4 \, \Omega
\]

Capacitance \(C_Kl \) sees a resistance \(R_{n2} \).

\[
R_{n2} = \frac{R_{in} \cdot R_{out}}{1 + \frac{R_{in}}{R_{out}}} = \frac{2500 \cdot 4000}{1 + \frac{2500}{4000}} = 63 \, \Omega
\]

Capacitance \(C_K2 \) sees a resistance \(R_{n2} \). To determine \(R_{n2} \) we refer to the analysis of the frequency response of the CE amplifier in Section 6.6 to obtain

\[
R_{n2} = \frac{1 + g_m \cdot R_L}{2 \pi f_H} = \frac{63 + 4000}{2 \pi \times 37.8 \times 10^6} = 3.94 \, \text{k}\Omega
\]

Thus,

\[
\tau_H = C_Kl \cdot R_{n2} = 14.1 \, \text{ns}
\]

We can now determine \(f_H \) from

\[
f_H = \frac{1}{2 \pi \tau_H} = \frac{1}{2 \pi \times 37.8 \times 10^6} = 0.21 \, \text{MHz}
\]

Thus, including the buffering transistor \(Q_x \) increases the gain, \(|A_m| \), from 61.5 V/V to 155 V/V—a factor of 2.5—and increases the bandwidth from 303 kHz to 4.2 MHz—a factor of 13.9! The gain-bandwidth product is increased from 18.63 MHz to 651 MHz—a factor of 35!

6.11.2 The Darlington Configuration

Figure 6.55(a) shows a popular BJT circuit known as the Darlington configuration. It can be thought of as a variation of the CC-CE circuit with the collector of \(Q_2 \) connected to that of \(Q_1 \). Alternatively, the Darlington pair can be thought of as a composite transistor with \(\beta = \beta_1 \beta_2 \). It can therefore be used to implement a high-performance voltage follower, as illustrated in Fig. 6.55(b). Note that in this application the circuit can be considered as the cascade connection of two common-collector transistors (i.e., a CC-CC configuration).
6.36 For the Darlington voltage follower in Fig. 6.55(b), show that:

\[B_1 = B \frac{I}{V} = 5 \text{ mA}, \]

evaluate \(B_2 \) and \(V_{mi} \) for the case \(\beta = 100 \). \(R_1 = 1 \text{ k} \Omega \) and \(R_2 = 100 \text{ k} \Omega \).

6.11.3 The CC-CB and CD-CG Configurations

Cascading an emitter follower with a common-base amplifier, as shown in Fig. 6.56(a), results in a circuit with a low-frequency gain approximately equal to that of the CB but with the problem of the low input resistance of the CB solved by the buffering action of the CC stage. Since neither the CC nor the CB amplifier suffers from the Miller effect, the CC-CB configuration has excellent high-frequency performance. Note that the biasing current sources shown in Fig. 6.56(a) ensure that each of \(Q_1 \) and \(Q_2 \) is operating at a bias current \(I \).

We are not showing, however, how the dc voltage at the base of \(Q_2 \) is set or the circuit that determines the dc voltage at the collector of \(Q_2 \). Both issues are usually looked after in the larger circuit of which the CC-CB amplifier is part.

An interesting version of the CC-CB configuration is shown in Fig. 6.56(b). Here the CB stage is implemented with a pnp transistor. Although only one current source is now needed, observe that we also need to establish an appropriate voltage at the base of \(Q_2 \). This circuit is part of the internal circuit of the popular 741 op amp, which will be studied in Chapter 9.

The MOSFET version of the circuit in Fig. 6.56(a) is the CD-CG amplifier shown in Fig. 6.56(c).

We now briefly analyze the circuit in Fig. 6.56(a) to determine its gain \(A_{so} \) and its high-frequency response. The analysis applies directly to the circuit in Fig. 6.56(b) and, with appropriate change of component and parameter names, to the MOSFET version in Fig. 6.56(c). For simplicity we shall neglect \(r_1 \) and \(r_2 \) of both transistors. The input resistance \(R_{in} \) is given by

\[R_{in} = \left(\beta_1 + \beta_2 \right) \frac{I}{V} \]

which for \(\beta_1 = \beta_2 = \beta \) becomes

\[R_{in} = 2r_e \]

If a load resistance \(R_{L} \) is connected at the output, the voltage gain \(V_r / V_a \) will be

\[V_r = \frac{R_{L}}{R_{in} + r_e} \]

Now, if the amplifier is fed with a voltage signal \(V_{sig} \) from a source with a resistance \(R_{sig} \), the overall voltage gain will be

\[V_r = \frac{R_{L}}{2 \left(R_{in} + r_e \right)} \]
6.12 CURRENT-MIRROR CIRCUITS WITH IMPROVED PERFORMANCE

As we have seen throughout this chapter, current sources play a major role in the design of IC amplifiers. The constant-current source is used both in biasing and as active load. Simple forms of both MOS and bipolar current sources and, more generally, current mirrors were studied in Section 6.3. The need to improve the characteristics of the simple sources and mirrors has already been demonstrated. Specifically, two performance parameters need to be addressed: the accuracy of the current transfer ratio of the mirror and the output resistance of the current source.

The reader will recall from Section 6.3 that the accuracy of the current transfer ratio suffers particularly from the finite β of the BJT. The output resistance, which in the simple circuits is limited to r_e of the MOSFET and the BJT, also reduces accuracy and, much more seriously, severely limits the gain available from cascode amplifiers. In this section, we study MOS and bipolar current mirrors with more accurate current transfer ratios and higher output resistances.

6.12.1 Cascode MOS Mirrors

A brief introduction to the use of the cascoding principle in the design of current sources was presented in Section 6.8.4. Figure 6.58 shows the basic cascode current mirror. Observe that in addition to the diode-connected transistor Q_3, which forms the basic mirror Q_1-Q_2, another diode-connected transistor Q_0, is used to provide a suitable bias voltage for the gate of the cascode transistor Q_3. To determine the output resistance of the cascode mirror at the drain of Q_3, we set i_{ds3} to zero. Also, since Q_0 and Q_3 have a relatively small incremental resistance, each of approximately $1/g_m$, the incremental voltages across them will be small, and we can assume that the voltage of Q_3 and Q_0 are both grounded. Thus, the output resistance R_o will be that of the CG transistor Q_3, which has a resistance r_o in its source. Equation (6.101) can be adapted to obtain

$$ R_o = r_o + \frac{1}{1 + \left(\frac{g_m}{r_o}\right)R} $$

Thus, as expected, cascoding raises the output resistance of the current source by the factor $g_m^2 r_o$, which is the intrinsic gain of the cascode transistor.

![FIGURE 6.58 A cascode MOS current mirror.](image)
6.38. For a cascode MOS mirror utilizing devices with $V_{gs} = 0.5$ V, $V_{bs} = 387 \mu A/\sqrt{2}$, $V_{th} = 5 \text{V}$, $W/L = 2.6 \mu m / 0.36 \mu m$, and $I_{ref} = 500 \mu A$, find the minimum dc voltage required at the output and the output resistance.

Ans. 0.95 V; 285 kΩ

6.12.2 A Bipolar Mirror with Base-Current Compensation

Figure 6.59 shows a bipolar current mirror with a current transfer ratio that is much less dependent on β than that of the simple current mirror. The reduced dependence on β is achieved by including transistor Q_3, the emitter of which supplies the base currents of Q_1 and Q_2. The sum of the base currents is then divided by $(\beta + 1)$, resulting in a much smaller error current that has to be supplied by I_{ref}. Detailed analysis is shown on the circuit diagram; it is based on the assumption that Q_1 and Q_2 are matched and thus have equal collector currents, I_C. A node equation at the node labeled x gives

$$I_x = \frac{1 + \frac{2}{\beta} \beta (1 + 1)}{1 + \frac{2}{\beta} \beta (1 + 1)}$$

Since

$$I_{ref} = I_C \left[1 + \frac{2}{\beta} \beta (1 + 1) \right]$$

the current transfer ratio of the mirror will be

$$I_{ref} = \frac{1}{1 + \beta + \beta (1 + 1)}$$

which means that the error due to finite β has been reduced from $2/\beta$ in the simple mirror to $2/\beta^2$, a tremendous improvement. Unfortunately, however, the output resistance remains approximately equal to that of the simple mirror, namely r_o. Finally, note that if a reference current I_{ref} is not available, we simply connect node x to the power supply V_{cc} through a resistance R. The result is a reference current given by

$$I_{ref} = \frac{V_{cc} - V_{be} - V_{be3}}{\beta R}$$

6.12.3 The Wilson Current Mirror

A simple but ingenious modification of the basic bipolar mirror results in both reducing the β dependence and increasing the output resistance. The resulting circuit, known as the Wilson mirror after its inventor, George Wilson, an IC design engineer working for Tektronix, is shown in Fig. 6.60(a). The analysis to determine the effect of finite β on the current transfer

![FIGURE 6.60. The Wilson bipolar current mirror: (a) circuit showing analysis to determine the current transfer ratio and (b) determining the output resistance. Note that the current i_3 that enters Q_3 must equal the sum of the currents that leave Q_2, i_2.](image)
EXERCISE

6.12.4 The Wilson MOS Mirror

Figure 6.61(a) shows the MOS version of the Wilson mirror. Obviously there is no β error to reduce here, and the advantage of the MOS Wilson lies in its enhanced output resistance. The analysis shown in Fig. 6.61(b) provides

$$R_o = \frac{r_o}{2}$$ (6.194)

Finally, we note that the Wilson mirror is preferred over the cascode circuit because the latter has the same dependence on β as the simple mirror. However, like the cascode mirror, the Wilson mirror requires an additional V_{BE} drop for its operation; that is, for proper operation we must allow for 1 V or so across the Wilson-mirror output.

6.12.5 The Widlar Current Source

Our final current-source circuit, known as the Widlar current source, is shown in Fig. 6.62. It differs from the basic current mirror circuit in an important way: A resistor R_E is included in the emitter lead of Q_2. Neglecting base currents we can write

$$V_{BE} = V_b \ln \left(\frac{I_c}{I_b} \right)$$ (6.195)
The design and advantages of the Widlar current source are illustrated in the following example.

EXAMPLE 6.14

Figure 6.63 shows two circuits for generating a constant current \(I_0 = 10\mu A \) which operate from a 10-V supply. Determine the values of the required resistors assuming that \(V_{BE} \) is 0.7 V at a current of 1 mA and neglecting the effect of finite \(\beta \).

Solution

For the basic current-source circuit in Fig. 6.63(a) we choose a value for \(I_0 \) to result in \(I_{0} = 10\mu A \). At this current, the voltage drop across \(Q_1 \) will be

\[
V_{Q1} = 0.7 + V_T \ln \left(\frac{10 \mu A}{10 \mu A} \right) = 0.58 \text{ V}
\]

Thus, the output resistance is increased above \(r_a \) by a factor that can be significant.
EXERCISE

6.13 SPICE SIMULATION EXAMPLES

We conclude this chapter by presenting two SPICE simulation examples. In the first example, we will use SPICE to investigate the operation of the CS amplifier circuit (studied in Section 6.5.2). In the second example, we will use SPICE to compare the high-frequency response of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier (studied in Section 6.8.6).

EXAMPLE 6.13

THE CMOS CS AMPLIFIER

In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifier whose Capture schematic is shown in Fig. 6.64. We will assume a 5-μm CMOS technology for the MOSFETs and use parts NMOS5P0 and PMOS5P0 whose SPICE level-1 parameters are listed in Table 4.8. To specify the dimensions of the MOSFETs in PSpice, we will use the multiplicative factor m, together with the channel length L and the channel width W. In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier (studied in Section 6.8.6).

PARAMETERS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>10 V</td>
</tr>
<tr>
<td>M1, M2, M3</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>W</td>
<td>37.5 μm</td>
</tr>
<tr>
<td>L (M1, M2, M3)</td>
<td>6 μm</td>
</tr>
</tbody>
</table>

FIGURE 6.64 Capture schematic of the CS amplifier in Example 6.13.

3.13 SPICE SIMULATION EXAMPLES

We conclude this chapter by presenting two SPICE simulation examples. In the first example, we will use SPICE to investigate the operation of the CS amplifier circuit (studied in Section 6.5.2). In the second example, we will use SPICE to compare the high-frequency response of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier (studied in Section 6.8.6).

EXAMPLE 6.13

THE CMOS CS AMPLIFIER

In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifier whose Capture schematic is shown in Fig. 6.64. We will assume a 5-μm CMOS technology for the MOSFETs and use parts NMOS5P0 and PMOS5P0 whose SPICE level-1 parameters are listed in Table 4.8. To specify the dimensions of the MOSFETs in PSpice, we will use the multiplicative factor m, together with the channel length L and the channel width W. In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier (studied in Section 6.8.6).

PARAMETERS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>10 V</td>
</tr>
<tr>
<td>M1, M2, M3</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>W</td>
<td>37.5 μm</td>
</tr>
<tr>
<td>L (M1, M2, M3)</td>
<td>6 μm</td>
</tr>
</tbody>
</table>

FIGURE 6.64 Capture schematic of the CS amplifier in Example 6.13.

1.3 SPICE SIMULATION EXAMPLES

We conclude this chapter by presenting two SPICE simulation examples. In the first example, we will use SPICE to investigate the operation of the CS amplifier circuit (studied in Section 6.5.2). In the second example, we will use SPICE to compare the high-frequency response of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier (studied in Section 6.8.6).

EXAMPLE 6.13

THE CMOS CS AMPLIFIER

In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifier whose Capture schematic is shown in Fig. 6.64. We will assume a 5-μm CMOS technology for the MOSFETs and use parts NMOS5P0 and PMOS5P0 whose SPICE level-1 parameters are listed in Table 4.8. To specify the dimensions of the MOSFETs in PSpice, we will use the multiplicative factor m, together with the channel length L and the channel width W. In this example, we will use PSpice to compute the dc transfer characteristic of the CS amplifier (studied in Section 6.6) to that of the folded-cascode amplifier (studied in Section 6.8.6).

PARAMETERS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>10 V</td>
</tr>
<tr>
<td>M1, M2, M3</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>W</td>
<td>37.5 μm</td>
</tr>
<tr>
<td>L (M1, M2, M3)</td>
<td>6 μm</td>
</tr>
</tbody>
</table>

FIGURE 6.64 Capture schematic of the CS amplifier in Example 6.13.
However, because of the high resistance at the output node (or, equivalently, because of the high voltage gain), this value of V_{OUT} is highly sensitive to the effect of process and temperature variations on the characteristics of the transistors. To illustrate this point, consider what happens when the width of W_1 (i.e., W_x which is normally 12.5 μm) changes by $\pm 15\%$. The corresponding dc transfer characteristics are shown in Fig. 6.66(b). Accordingly, when $V_m = 1.5$ V, V_{OUT} will drop to 0.84 V if W_1 increases by 15% and will rise to 9.0 V if W_1 decreases by 15%. In practical circuit implementations, this problem is circumvented by using negative feedback to accurately set the dc bias voltage at the output of the amplifier and, hence, to reduce the sensitivity of the circuit to process variations. The topic of negative feedback will be studied in Chapter 8.

EXAMPLE 6.16

FREQUENCY RESPONSE OF THE CS AND THE FOLDED-CASCODE AMPLIFIERS

In this example, we will use PSpice to compute the frequency response of both the CS and the folded-cascode amplifiers whose Capture schematics are shown in Figs. 6.67 and 6.69, respectively. We will assume that the dc bias levels at the output of the amplifiers are stabilized using negative feedback. However, before performing a small-signal analysis (an ac-analysis simulation) in SPICE to measure the frequency response, we will perform a dc analysis (a bias-point simulation) to verify that all MOSFETs are operating in the saturation region and, hence, ensure that the amplifier is operating in its linear region.

PARAMETERS:
- $C_{load} = 0.5 \mu F$
- $C_x = 1$
- $I_{ref} = 100uA$
- $M = 4$
- $M1 = 18$
- $R_{sig} = 100$
- $VDD = 3.3 V$
- $M = \{M\}$
- $W = 5 \mu m$
- $L = 0.6 \mu m$
- $M3\ M2$
- $VDD = 3.3 V$
- $M = \{M\}$
- $W = 5 \mu m$
- $L = 0.6 \mu m$
- $R_{sig} = 100$
- $VDD = 3.3 V$
- $M = \{M\}$
- $W = 12.5 \mu m$
- $L = 0.6 \mu m$
- $I_{ref} = 100uA$
- $VDD = 3.3 V$
- $M3\ M2$
- $VDD = 3.3 V$
- $M = \{M\}$
- $W = 5 \mu m$
- $L = 0.6 \mu m$
- $R_{sig} = 100$
- $VDD = 3.3 V$
- $M = \{M\}$
- $W = 12.5 \mu m$
- $L = 0.6 \mu m$

FIGURE 6.66

(a) Voltage transfer characteristic of the CS amplifier in Example 6.15. (b) Expanded view of the transfer characteristic in the high-gain region. Also shown are the transfer characteristics where process variations cause the width of transistor M_1 to change by $\pm 15\%$ from its normal value of $W_1 = 12.5 \mu m$.

The voltage gain G_v, i.e., the slope of the linear segment of the dc transfer characteristic, is approximately -112 V/V, which is reasonably close to the value obtained by hand analysis.

Note, from the dc transfer characteristic in Fig. 6.66(b), that for an input dc bias of $V_m = 1.5$ V, the output dc bias is $V_{OUT} = 4.88$ V. This choice of V_m maximizes the available signal swing at the output by setting V_{OUT} at the middle of the linear segment of the dc transfer characteristic.
THE CS AMPLIFIER

The CS amplifier circuit in Fig. 6.67 is identical to the one shown in Fig. 6.18, except that a current source is connected to the source of the input transistor M_1 to set its drain current I_{DD} independently of its drain voltage V_{DD}. Furthermore, in our PSpice simulations, we used an impractically large bypass capacitor C_{bb} of 1 F. This sets the source of M_1 at approximately signal ground during the ac-analysis simulation. Accordingly, the CS amplifier circuits in Figs. 6.18 and 6.67 are equivalent for the purpose of frequency-response analysis. In Chapter 7, we will find out, in the context of studying the differential pair, how the goals of this biasing approach for the CS amplifier are realized in practical IC implementations.

The CS amplifier in Fig. 6.67 is designed assuming a reference current $I_{DD} = 100$ mA and $V_{DD} = 3.3$ V. The current-mirror transistors, M_1 and M_2, are sized for $V_{DD} = 0.3$ V, while the input transistor M_0 is sized for $V_{DD} = 0.15$ V. Unit-size transistors are used with $W/L = 1.25$ μm/0.6 μm for the NMOS devices and $W/L = 5$ μm/0.6 μm for the PMOS devices. Thus, using Eq. (6.201) together with the 0.5-um CMOS process parameters in Table 4.8, we find $m_1 = 18$ and $m_2 = m_0 = 4$. Furthermore, Eq. (6.202) gives $G_0 = -44.4$ V/V for the CS amplifier.

In the PSpice simulation of the CS amplifier in Fig. 6.67, the dc bias voltage of the signal source is set such that the voltage at the source terminal of M_1 is $V_s = 1.3$ V. This requires the dc level of V_{DD} to be $V_{DD} + V_s = 2.45$ V because V_{DD} is 1 V as a result of the body effect on M_1. The reasoning behind this choice of V_{DD} is that, in a practical circuit implementation, the current source that feeds the source of M_1 is realized using a cascode current mirror such as the one in Fig. 6.58. In this case, the minimum voltage required across the current source (i.e., the minimum V_{DD}) is $V_{DD} + V_s = 1.3$ V, assuming $V_{DD} = 0.3$ V for the current-mirror transistors. A bias-point simulation is performed in PSpice to verify that all MOSFETs are biased in the saturation region. Next, to compute the frequency response of the amplifier, we set the ac voltage of the signal source to 1 V, perform an ac-analysis simulation, and plot the output voltage magnitude versus frequency. Figure 6.68(a) shows the resulting frequency response for $R_{m} = 100$ Ω and $R_{m} = 1$ MΩ. In both cases, a load capacitance of $C_{load} = 0.5$ pF is used. The corresponding values of the 3-dB frequency f_{3} of the amplifier are given in Table 6.4.

Observe that f_{3} drops when R_{m} is increased. This is anticipated from our study of the high-frequency response of the CS amplifier in Section 6.6. Specifically, as R_{m} increases, the pole

$$ f_{3} = \frac{1}{2\pi R_{m} C_{m}} \quad (6.203) $$

formed at the amplifier input will have an increasingly significant effect on the overall frequency response of the amplifier. As a result, the effective time constant f_{3} in Eq. (6.57) increases and f_{3} decreases. When R_{m} becomes very large, so is f_{3} when $R_{m} = 1$ MΩ, a dominant pole is formed by R_{m} and C_{m}. This results in

$$ f_{3} \approx f_{3,m} \quad (6.204) $$

To estimate $f_{3,m}$, we need to calculate the input capacitance C_{m} of the amplifier. Using Miller's theorem, we have

$$ C_{m} = C_{m} + C_{out}(1 + \beta_{m},R_{m}) $$

$$ \approx (\beta_{m},W/L),C_{m} + C_{m,OV} + \beta_{m},R_{m}(1 + \beta_{m},R_{m}) \quad (6.205) $$

where $R_{m} = \frac{1}{2\pi f_{3}}$. Thus, C_{m} can be calculated using the values of $C_{m,OV}$ and $C_{m,OV}$ which are computed by PSpice and can be found in the output file of the bias-point simulation. Alternatively, C_{m} can be found using Eq. (6.205) with the values of the overlap capacitances $C_{m,OV}$ and $C_{m,OV}$ calculated using the
process parameters in Table 4.8 (as described in Eqs. 4.170 and 4.171), that is:

\[C_{gs, ref} = m_i W_i C_{GSO} \]
\[C_{ds, ref} = m_i W_i C_{GDO} \]

This results in \(C_u = 0.53 \text{ pF} \) when \(|G_u| = g_m R_o = 33.2 \text{ V/V} \). Accordingly, using Eqs. (6.203) and (6.204) \(f = 300.3 \text{ kHz} \) when \(R_{eq} = 1 \text{ M\Omega} \), which is close to the value computed by PSPice.

The Folded-Cascode Amplifier

The folded-cascode amplifier circuit in Fig. 6.69 is equivalent to the one in Fig. 6.45, except that a current source is placed in the source of the input transistor \(M_3 \) (for the same dc-biasing purpose as in the case of the CS amplifier). Note that, in Fig. 6.69, the PMOS current mirror \(M_3 - M_4 \) and the NMOS current mirror \(M_5 - M_6 \) are used to realize, respectively, current sources \(I_h \) and \(I_t \) in the circuit of Fig. 6.45. Furthermore, the current transfer ratio of mirror \(M_3 - M_4 \) is set to 2 (i.e., \(m_3/m_2 \)). This results in \(I_{ds} = 2 I_{ds} \). Hence, transistor \(M_3 \) is biased at \(I_{ds} = I_{ds} \).

The gate bias voltage of transistor \(M_3 \) is generated using the diode-connected transistors \(M_2 \) and \(M_4 \). Thus, the drain current of these transistors are set equal to those of transistor \(M_3 \). Therefore, ignoring the body effect,

\[V_{ds} = V_{dd} - V_{DS} - V_{DS} = \frac{1}{2} (|V_{ds}| + |V_{GS}|) \]

where \(V_{ds} \) is the overdrive voltage of the PMOS transistors in the amplifier circuit. These transistors have the same overdrive voltage because their \(I_{ds}/m \) is the same. Thus, such a biasing configuration results in \(V_{dd} = \frac{1}{2} (|V_{ds}| + |V_{GS}|) \) as desired, while setting \(V_{dd} = \frac{1}{2} (|V_{ds}| + |V_{GS}|) \) to improve the bias matching between \(M_3 \) and \(M_4 \).

The folded-cascode amplifier in Fig. 6.69 is designed assuming a reference current \(I_{ref} = 100 \mu A \) and \(V_{dd} = 3.3 \text{ V} \) (similar to the case of the CS amplifier). All transistors are sized for an overdrive voltage of 0.3 V, except for the input transistor \(M_3 \) which is sized for \(V_{dd} = 0.15 \text{ V} \). Thus, using Eq. (6.201), all the MOSFETS in the amplifier circuit are designed using \(m = 4 \), except for \(m = 18 \).

The midband voltage gain of the folded-cascode amplifier in Fig. 6.69 can be expressed using Eq. (6.130) as

\[G_u = -g_m R_{oa} \]

where

\[R_{oa} = R_{oa} \]

is the output resistance of the amplifier. Here, \(R_{oa} \) is the resistance seen looking into the drain of the cascode transistor \(M_3 \), while \(R_{oa} \) is the resistance seen looking into the drain of the current-mirror transistor \(M_4 \). Using Eq. (6.127), we have

\[R_{oa} = (g_m R_{ds}) R_{ds} \]

where

\[R_{ds} = r_o \]

is the effective resistance at the source of \(M_3 \). Furthermore,

\[R_{oa} = r_o \]

Thus, for the folded-cascoded amplifier in Fig. 6.69,

\[R_{oa} = r_o \]
and
\[G_{12} = \frac{1}{(1 + \frac{1}{\tau_{12}})} = -\frac{2}{\tau_{12} V_{DD}} \] (6.215)

Using the 0.5-μm CMOS parameters, this gives \(R_{12} = 100 \Omega \) and \(G_{12} = -133 \text{ V/V} \). Therefore, \(R_{12} \) and, hence, \(|G_{12}| \), of the folded-cascode amplifier in Fig. 6.69 are larger than those of the CS amplifier in Fig. 6.67 by a factor of 3.

Figure 6.69(b) shows the frequency response of the folded-cascode amplifier as computed by PSpice for the cases of \(R_{12} = 100 \Omega \) and \(R_{12} = 1 \text{ MΩ} \). The corresponding values of the 3-dB frequency \(f_p \) of the amplifier are given in Table 6.4. Observe that, when \(R_{12} = 100 \Omega \), \(f_p \) of the folded-cascode amplifier is lower than that of the CS amplifier by a factor of approximately 2 but, approximately equal to the factor by which the gain is increased. This is because, when \(R_{12} \) is small, the frequency response of both amplifiers is dominated by the pole formed at the output node, that is,
\[f_p = f_{p,\text{max}} = \frac{1}{2 \pi R_{12} C_{12}} \] (6.216)

Since the output resistance of the folded-cascode amplifier is larger than that of the CS amplifier (by a factor of approximately 3, as found through the hand analysis above) while their output capacitances are approximately equal, the folded-cascode amplifier has a lower \(f_p \) in this case.

On the other hand, when \(R_{12} \) is large, \(f_p \) of the folded-cascode amplifier is much higher than that of CS amplifier. This is because, in this case, the effect of the pole at \(f_{p,\text{max}} \) on the overall frequency response of the amplifier becomes significant. Since, due to the Miller effect, \(C_{12} \) of the CS amplifier is much larger than that of the folded-cascode amplifier in its \(f_p \) is much lower in this case.

To confirm this point, observe that \(C_{12} \) of the folded-cascode amplifier can be estimated by replacing \(R_{12} \) in Eq. (6.205) with the total resistance \(R_{23} \) between the drain of \(M_2 \) and ground. Here,
\[R_{23} = R_{21} || R_{22} \] (6.217)

where \(R_{23} \) is the input resistance of the common-gate transistor \(M_2 \) and can be obtained using an approximation of the relationship in Eq. (6.81) as
\[R_{23} = \frac{r_{ds,2} + r_{ds,1}}{2 \pi C_{gs,1} V_{th}} \] (6.218)

Thus,
\[f_p = f_{p,\text{max}} = \frac{1}{2 \pi R_{23} C_{12}} \] (6.219)

Therefore, \(f_p \) is much smaller than \(f_{p,\text{max}} \) in Eq. (6.206). Hence, \(C_{12} \) of the folded-cascode amplifier in Fig. 6.69 is indeed much smaller than that of the CS amplifier in Fig. 6.67. This confirms that the folded-cascode amplifier is much less impacted by the Miller effect and, therefore, can achieve a much higher \(f_p \) when \(R_{12} \) is large.

The midband gain of the folded-cascode amplifier can be significantly increased by replacing the current mirror \(M_2 \rightarrow M_3 \) with a current mirror having a larger output resistance, such as the cascode current mirror in Fig. 6.58 whose output resistance is approximately \(2 g_{ds,1} \).

In this case, however, \(R_{23} \) and, hence \(R_{12} \), increase, causing an increased Miller effect and a corresponding reduction in \(f_p \).

Finally, it is interesting to observe that the frequency response of the folded-cascode amplifier, shown in Fig. 6.69(b), drops beyond \(f_p \) at approximately -20 dB/decade when \(R_{12} = 100 \Omega \) and at approximately -40 dB/decade when \(R_{12} = 1 \text{ MΩ} \). This is because, when \(R_{12} \) is small, the frequency response is dominated by the pole \(f_{p,\text{max}} \) and both poles contribute to the gain rolloff.

SUMMARY

- Integrated-circuit fabrication technology offers the circuit designer many exciting opportunities, the most important of which is large numbers of inexpensive small-area MOS transistors. An ever-present concern for IC designers, however, is the minimization of chip area or "silicon real estate." As a result, large-valued resistors and capacitors are virtually absent.

- A review and comparison of the characteristics of the MOSFET and the BJT is presented in Section 6.2. Of particular interest is the summary provided in Table 6.3.

- Biasing in integrated circuits utilizes current sources. Typically an accurate and stable reference current is generated and then replicated to provide bias currents for the various amplifier stages on the chip. The heart of the current-steering circuitry utilized to perform this function is the current mirror. The basic MOS and bipolar mirrors are studied in Section 6.3. Improved mirror circuits with more precise current transfer ratios, reduced dependence on the value of the BJT, and higher output resistances are studied in Section 6.12.

- If amplifiers are usually direct-coupled, then their midband gain \(A_{\text{m,9}} \) extends to zero frequency \((\omega_0)\). Their high-frequency response is limited by the transistor internal capacitances, mainly \(C_{gs} \) and \(C_{gd} \) in the MOSFET and \(C_{be} \) and \(C_{bc} \) in the BJT. There usually is also a capacitance \(C_{c} \) between the output node and ground. These capacitances cause the amplifier gain (or transfer function) to acquire a zero at a frequency \(f_z \) on the negative or positive real-axis, with the remaining transmission zeros at infinite frequency.

- The low-frequency pole is at least two octaves away from the nearest zero pole or zero, this pole, say at frequency \(f_p \), will play a dominant role in determining the high-frequency response, and the 3-dB frequency \(f_p \) is the same. However, on the other pole, none of the poles is dominant, an estimate of \(f_p \) can be obtained from
\[f_p = f_0 \left(\frac{1}{1 + \frac{2}{f_0}} \right) \]

- If the poles and zeros cannot be easily determined, one can use the open-circuit time constants to obtain an estimate of \(f_p \) as follows:
\[f_p = \frac{1}{\tau_{12}} \]

- \(R_{c} = \sum C_{i} R_{i} \)

where \(R_{c} \) and the capacitances \(C_{i} \) are in a capacitance ladder that determines the high-frequency response of the amplifier and \(R_{c} \) is the resistance that capacitances \(C_{i} \) "see." To determine \(R_{c} \), take \(V_{th} \) and all capacitances to zero. Then apply a signal \(v_{in} \) between the terminals to which \(C_{i} \) was connected, determine the current \(i_{in} \), and calculate
\[R_{c} = \frac{v_{in}}{i_{in}} \]

- Miller's theorem states that an impedance \(Z \) connected between two circuit nodes and \(Z \), whose voltages are regulated by \(V \), can be replaced by two impedances: \(Z' = Z/(1/\tau_{2}) \) between node 1 and ground and \(Z'' = Z/(1/\tau_{2}) \) between node 2 and ground. Miller's theorem is very useful in the analysis of the high-frequency response of the CS and CE amplifiers.

- IC amplifiers employ current-source current sources in place of the resistances \(R_{2}(R_{1}) \) that connect the drain (collector) to the power supply. These active loads enable the realization of reasonably large voltage gains while using low-voltage supplies (as low as 1 V or so).

- The largest voltage gain available from a CS or CE amplifier is equal to the intrinsic gain of the transistor \(A_{\text{m,9}} \), which for a BJT is 2000 to 4000 V/V and for a MOSFET is 20 to 100 V/V. Recall, however, that the CS amplifier has an infinite input resistance while the input resistance of the CS amplifier is limited by the finite \(r_{d} \) to \(r_{d} \). Both CS and CE amplifiers have output resistances equal to the transistor \(r_{d} \).

- The high-frequency response of the CS amplifier is usually limited by the Miller multiplication of the current source, which results in an input capacitance \(C_{in} \),
\[C_{in} = C_{gs} + C_{gd} \]

which interacts with the resistance \(R_{1} \) of the signal source to form a dominant pole; thus \(\tau_{12} = 1/2C_{in}R_{1} \).

- Alternatively, the method of open-circuit time constants can be used to obtain an estimate of \(f_p \) as \(1/2C_{in}R_{1} \), where \(R_{1} \) is the resistance of the CS amplifier.

- Exact analysis of the high-frequency response of the CS amplifier yields the second-order transfer function given by Eq. (6.60), which can be used to determine the poles and zeros and hence \(f_p \).

- The high-frequency response of the CE amplifier is usually limited by the Miller multiplication of the current mirror, which results in an input capacitance \(C_{in} \),
\[C_{in} = C_{gs} + C_{gd} \]

which interacts with the resistance \(R_{1} \) of the signal source to form a dominant pole. Thus \(\tau_{12} = 1/2C_{in}R_{1} \).

- Alternatively, the Miller's theorem can be used to obtain an estimate of \(f_p \) as \(1/2C_{in}R_{1} \), where \(R_{1} \) is the resistance of the CE amplifier.

- When the CS amplifier is fed with a low-resistance signal source, it has the frequency response shown in Fig. 6.26(c).
0.25-μm process specified in Table 6.1. If both devices are to
length modulation.

find the |

ov

For each of the CMOS technologies specified in Table 6.1,
constant, by what amount must
BE
V
I
transistor as a
is obtained in an

difference of 0.25 V is required to have a
equal to that of an
npn

cascode.

Excellence high-frequency response. In situations where
channel-

Transistor operating? If it is required to double f,
what must
BE
V
I
m

be obtained from
J
0
/2πC
D
B
C
D
I
p
A.

small signal at the drain (collector) of g, and hence a re-

get in return for gain reduction (a trade-off characteristic of

negative feedback).

The source and emitter followers are free of the
negative effects of Miller capacitance multiplication and thus
achieve very wide bandwidths.

Combining a source (or emitter) follower with a CS (or CE)
amp results in amplifiers with gain equal to (or greater than)
but of the CS (or CE) amplifier alone and, most importantly,
widely bandwidth. The latter is a result of the buffering action of the input follower and the attenu-
duction in the Miller effect that takes place at the
input of the CS (or CE) stage.

Both the cascode and the Wilson MOS current mirrors achieve an increase in output resistance by a factor of

The Wilson bipolar mirror increases the output res-

determines

f

D

m

BE
V
I
m

pm

pm

= 0.3 V.

of 5

pm,

= 250

pA/V

g

pm

= 6

pm,

V,

= 0.5 V, and

of 5

pA/V

are matched with channel lengths of Q^/mi, channel widths
and bias current
I
W

operate at

and

pm, 100 μA, what must their
WR

ratios be?

Consider NMOS and PMOS transistors fabricated in the
0.25-μm process specified in Table 6.1. If the two devices are to
be operated at equal drain currents, what must the ratio of
(WR/2W) to (2W/WR) be to achieve equal values of
g

An NMOS transistor fabricated in the 0.18-μm CMOS
process specified in Table 6.1 is operated at VP = 0.2 V.
Find the required WR and BD to obtain a gm of 10 mA/V. At
what value of BD must an nmos transistor be operated to achieve this value of gm?

For each of the CMOS process technologies specified in
Table 6.1, find the gm, C

m

and C

i

m

and

m

bias voltage.

Consider NMOS and PMOS devices fabricated in the
0.25-μm process specified in Table 6.1. If both devices are to
operate at

and

pm, 100 μA, what must their
WR

ratios be?

Consider NMOS and PMOS transistors fabricated in the
0.25-μm process specified in Table 6.1. If the two devices are to
be operated at equal drain currents, what must the ratio of
(WR/2W) to (2W/WR) be to achieve equal values of
g

An NMOS transistor fabricated in the 0.18-μm CMOS
process specified in Table 6.1 is operated at VP = 0.2 V.
Find the required WR and BD to obtain a gm of 10 mA/V. At
what value of BD must an nmos transistor be operated to achieve this value of gm?

For each of the CMOS process technologies specified in
Table 6.1, find the gm, C

m

and C

i

m

and

m

bias voltage.

Consider NMOS and PMOS devices fabricated in the
0.25-μm process specified in Table 6.1. If both devices are to
operate at

and

pm, 100 μA, what must their
WR

ratios be?

Consider NMOS and PMOS transistors fabricated in the
0.25-μm process specified in Table 6.1. If the two devices are to
be operated at equal drain currents, what must the ratio of
(WR/2W) to (2W/WR) be to achieve equal values of
g

An NMOS transistor fabricated in the 0.18-μm CMOS
process specified in Table 6.1 is operated at VP = 0.2 V.
Find the required WR and BD to obtain a gm of 10 mA/V. At
what value of BD must an nmos transistor be operated to achieve this value of gm?
current of 100 μA nominal value. To simplify matters, assume that the nominal value of the output current is obtained at VD = VDD/2. It is further required that the circuit operate for VD between 10 V to VDD and that the change in ID, over this range be limited to 5% of the nominal value of ID. Find the required value of β and the device dimensions. As in the fabrication-process technology utilized, μCA = 200 μA/V², V T = 0.6 V, and V DD = 5 V.

6.23 Sketch the p-channel counterpart of the current-source circuit of Fig. 6.4. Note that while the circuit of Fig. 6.4 should more appropriately be called a current sink, the corresponding NMOS circuit is a current source. Let VDD = 1.8 V, |V T | = 0.6 V, and |V DD | = 0.8 V. Find the device (W/L) ratios and the value of the resistor that sets the value of ISA so that a nominally 80-μA output current is obtained. The current source is required to operate for |V DD | as high as 1.6 V. Neglect channel-length modulation.

6.24 Consider the current-mirror circuit of Fig. 6.5 with two transistors having equal channel lengths but with Q2 having a width four times that of Q1, if |V DD | = 20 μA and the transistors are operating at an overdrive voltage of 0.3 V, what |V DD | results? What is the minimum allowable value of |V DD | for proper operation of the current source? If |V DD | = 0.5 V, at what value of |V DD | will the nominal value of |V DD | be obtained? If |V DD | becomes by 1 V, what is the corresponding increase in |V DD |? Let |V DD | = 25 V.

6.25 For the current-steering circuit of Fig. P6.25, find f IA in terms of f IO and device (W/L) ratios.

6.26 The current-steering circuit of Fig. P6.26 is fabricated in a CMOS technology for which μCA = 200 μA/V², μCA = 20 μA/V², |V DD | = 0.6 V, |V DD | = 0.6 V, |V DD | = 10 V/m, and |V DD | = 20 μA/m. If all devices have |V DD | = 0.8 μA/m, design the circuit so that |V DD | = 20 μA, |V DD | = 100 μA, |V DD | = |V DD | = 20 μA, and |V DD | = 100 μA. Use the minimum possible device widths while achieving proper operation of the current source Q2 for voltages at its drain as high as +1.3 V and proper operation of the current sink Q1 with voltages at its drain as low as −1.3 V. Specify the widths of all devices and the value of R. Find the output resistance of the current source Q1 and the output resistance of the current sink Q2.

6.27 A PMOS current mirror consists of three PMOS transistors, one diode-connected and two used as current outputs. All transistors have |V T | = 0.6 V, |V DD | = 0.8 μA/V², and W = 1.0 μm but three different widths, namely 10 μm, 20 μm, and 40 μm. When the diode-connected transistor is supplied from a 100-μA source, how many different output currents are available? Repeat with two of the transistors diode-connected and the third used to provide current output. For each possible input diode combination, give the values of the output currents and of the RDS that results.

6.28 Although this far we have focussed only on the application of current mirrors in dc biasing, they can also be used as signal-current amplifiers. One such application is illustrated in Fig. P6.28. Here Q1, a common-source amplifier fed with v IN = V IN + v S, where V IN is the gate-source dc bias voltage of Q1 and v S is a small signal to be amplified. Find the signal component of the output voltage v OUT and hence the small-signal voltage gain a vFIA, a.
6.35 For the circuit in Fig. 6.35, let $V_{PB} = 0.7 \text{ V}$ and $\beta = 60$. Find I_T, V_{BE}, V_1, and V_2 for (a) $R = 100 \text{ kQ}$ and (b) $R = 100 \text{ kQ}$.

6.37 The circuit shown in Fig. 6.37 is known as a current conveyor.

6.38 A direct-coupled amplifier has a low-frequency gain of 40 dB, poles at 1 MHz and 10 MHz, and a zero on the negative real-axis at 100 MHz, and another zero at infinite frequency. Express the amplifier gain function in the form of Eqs. (6.29) and (6.30), and sketch a Bode plot for the gain magnitude. What do you estimate the 3-dB frequency f_3 to be?

6.39 An amplifier with a 6-dB gain has a single-pole high-frequency response with a 3-dB frequency of 10 kHz.

(a) Give an expression for the gain function $A(s)$.
(b) Sketch Bode diagrams for the gain magnitude and phase.
(c) What is the gain-bandwidth product?
(d) What is the unity-gain frequency?
(e) Find the midband voltage gain, the open-circuit time constants, and an estimate of the 3-dB frequency.

6.40 A FET amplifier resembling that in Example 6.6, for which the value of g_{m} is given by $g_{m} = 5 \text{ mA/V}$, $R_{L} = 10 \text{ kQ}$, $C_{gs} = 0.2 \text{ pF}$, and $C_{gs'} = 0.1 \text{ pF}$. Estimate the midband gain and the 3-dB frequency.

6.41 The high-frequency response of a direct-coupled amplifier having a g_{m} gain of -100 V/V incorporates zeros at $s = -10^6 \text{ rad/s}$ and $s = -10^5 \text{ rad/s}$ (one at each frequency). Write an expression for the amplifier transfer function. Find a_{0} using:
(a) the dominant-pole approximation.
(b) the root-sum-of-squares approximation (Eq. 6.36).

6.42 A direct-coupled amplifier has a dominant pole at 60° and three complex poles at a much higher frequency. These nondominant poles cause the phase lag of the amplifier at high frequencies to exceed the 90° angle due to the dominant pole. It is required to limit the excess phase at $s = 10^6 \text{ rad/s}$ to 90° (i.e., to limit the total phase angle to 120°). Find the corresponding frequency of the nondominant poles.

6.43 Refer to Example 6.6. Give an expression for a_{0} in terms of C_{gs}, R_{L} (note that $R = R_{L} \cong R_{CH}$), C_{gs}, and g_{m}.
If all component values except for the generator resistance R_{L} are left unchanged, to what value must R_{L} be reduced in order to raise the gain to 150 kHz?

6.44 In a particular amplifier design, two internal nodes having the minimum equivalent of 400 kQ and 400 kQ are expected to have node capacitances (to ground) of 5 pF and 2 pF, respectively, due to component and wiring capacitances. However, when the circuit is manufactured in a modular form, connections associated with each node add capacitive effects of 10 pF to each. What are the associated pole frequencies and overall 3-dB frequency in Hz for both the original and the manufactured design?

6.45 A direct-coupled amplifier has a dominant pole at 6.46 A FET amplifier resembling that in Example 6.6, $g_{m} = 5 \text{ mA/V}$, $R_{L} = 100 \text{ kQ}$, $C_{gs} = 0.2 \text{ pF}$, and $C_{gs'} = 0.1 \text{ pF}$. Estimate the midband gain and the 3-dB frequency.

6.47 A common-source MOSFET amplifier whose equivalent circuit resembles that in Fig. 6.44(a) is to be evaluated for its high-frequency response. For this particular design, $R_{L} = 1 \text{ MQ}$, $R'_{L} = 5 \text{ MQ}$, $R_{P} = 100 \text{ kQ}$, $C_{gs} = 0.2 \text{ pF}$, $C_{gs'} = 0.1 \text{ pF}$, and $g_{m} = 0.3 \text{ mA/V}$. Estimate the midband gain and the 3-dB frequency.

6.48 For a particular amplifier modeled by the circuit of Fig. 6.14(a), $g_{m} = 5 \text{ mA/V}$, $R_{L} = 100 \text{ kQ}$, $R_{P} = 0.5 \text{ MQ}$, $R'_{L} = 5 \text{ MQ}$, and $C_{gs} = 0.2 \text{ pF}$. There is also an output wiring capacitance of 3 pF. Find the resulting midband voltage gain, the open-circuit time constants, and an estimate of the 3-dB frequency.

6.49 Consider the high-frequency response of an amplifier consisting of two identical stages, each with an input resistance of 10 kQ and an output resistance of 2 kQ. The two-stage amplifier is driven from a 5 kQ source and drives a 1 kQ load. Associated with each stage is a parasitic input capacitance (to ground) of 10 pF and a parasitic output capacitance (to ground) of 2 pF. Parasitic capacitances of 5 pF and 7 pF are also associated with the signal-source and load connections, respectively. For this arrangement, find the three poles and the estimate the 3-dB frequency.

6.50 Using the method of open-circuit time constants, a set of amplifiers are found to be characterized by the following time constants and/or frequencies. For each case, estimate the 3-dB cutoff frequency in rad/s and in Hz.

(a) 20 ns, 5 ns, 1 ns.
(b) 50 MHz, 200 MHz, 1 GHz.
(c) 50 MHz, 200 MHz, 1 GHz.
(d) 1 ps, 200 ns, 200 ns.
(e) 1 ps, 64 ps.
(f) 1 ps, 200 ns, 150 ns.
(g) 1 GHz, 2 GHz, 5 GHz, 5 GHz.
SECTION 6.5: THE COMMON-SOURCE AND COMMON-Emitter AMPLIFIERS WITH ACTIVE LOADS

D6.55 Find the intrinsic gain of an NMOS transistor fabricated in a process for which \(k' = 125 \text{ mA/V}^2 \) and \(V_{ถ} = 10 \text{ V/m} \). The transistor has a 1-\(\mu \text{m} \) channel length and is operated at \(V_{DS} = 0.2 \text{ V} \). If a 2-mA/V transconductance is required, what must \(I_D \) and \(W \) be?

D6.56 An NMOS transistor fabricated in a certain process is found to have an intrinsic gain of 100 \(\text{V/V} \) when operated at \(I_D = 100 \mu \text{A} \). Find the intrinsic gain for \(I_D = 25 \mu \text{A} \) and \(I_D = 400 \mu \text{A} \). For each of these currents, find the ratio by which \(I_D \) changes from its value at \(I_D = 100 \mu \text{A} \).

D6.57 The NMOS transistor in the circuit of Fig. P6.57 has \(V_I = 0.5 \text{ V} \), \(k'W/L = 2 \text{ mA/V}^2 \), and \(V_{GS} = 20 \text{ V} \).

\[\begin{align*} \text{FIGURE P6.57} & \text{ FIGURE P6.56} \\
\end{align*} \]

(a) Neglecting the dc currents in the feedback network and the effect of \(r_{see} \), find \(V_{fG} \) and \(V_{fD} \). Now, find the dc currents in the feedback network, and verify that you were justified in neglecting them.

(b) Find the small-signal voltage gain, \(A_{\text{vss}} \). What is the peak of the largest output sine-wave signal that is possible while the NMOS remains in saturation? What is the corresponding input signal?

(c) Find the small-signal input resistance, \(R_{in} \).

D6.58 Consider the CMOS amplifier of Fig. 6.18(a) when fabricated with a process for which \(kW' = 2.5 \text{ mA/V}^2 \), \(V_T = 250 \text{ mV} \), \(|V_s| = 0.6 \text{ V} \), and \(|V_{sat}| = 10 \text{ V} \). Find \(I_{D2} \) and \((R'/R) \), so obtain a voltage gain of \(40 \text{ V/V} \) and an output resistance of \(100 \Omega \). If \(Q_1 \) and \(Q_2 \) are to be operated at the same overdrive voltage as \(Q_0 \), what is their \(W/L \) ratio?

D6.59 Consider the CMOS amplifier analyzed in Example 6.8.

\[\begin{align*} \text{FIGURE P6.61} & \text{ FIGURE P6.60} \\
\end{align*} \]

(a) For \(G \) and \(D \) open, what are the drain currents \(I_{D1} \) and \(I_{D2} \)?

(b) For \(r_{se} \approx \infty \), what is the value of the output swing of the amplifier?

(c) For finite \(r_{se} \), what is the voltage swing from \(G \) to \(D \)?

D6.60 The power supply of the CMOS amplifier analyzed in Example 6.8 is increased to 5 \(\text{V} \). What will be the extent of the linear region at the output become?

D6.61 Figure P6.61 shows an IC MOS amplifier formed by cascading two common-source stages. Assuming that \(V_{fG} = 0 \) and the biasing current-sources have output resistances equal to those of \(Q_1 \) and \(Q_2 \), find an expression for the overall voltage gain in terms of \(r_{se} \) and \(r_i \) of \(Q_1 \) and \(Q_2 \).

\[\begin{align*} \text{FIGURE P6.62} & \text{ FIGURE P6.63} \\
\end{align*} \]

D6.62 Consider the circuit shown in Fig. 6.18(a), using a 3.3-V supply and transistors for which \(|V_s| = 0.8 \text{ V} \) and \(L = 1 \mu \text{m} \). For \(Q_0 \), \(kW' = 100 \text{ mA/V}^2 \), \(V_T = 10 \text{ V} \), and \(W = 20 \mu \text{m} \). For \(Q_1 \) and \(Q_2 \), \(kW' = 50 \text{ mA/V}^2 \) and \(|V_s| = 50 \text{ V} \). For \(Q_3 \), \(W = 40 \mu \text{m} \). For \(Q_4 \), \(W = 10 \mu \text{m} \).

(a) If \(Q_0 \) is to be biased at 100 \(\mu \text{A} \), find \(I_{D1} \). For simplicity, ignore the effect of \(I_{D2} \).

(b) What are the extreme values of \(v_{o} \) for which \(Q_1 \) and \(Q_2 \) just remain in saturation?

(c) What is the large-signal voltage gain?

(d) Find the slope of the transfer characteristic at \(v_{o} = V_{sat}/2 \).

(e) For operation as a small-signal amplifier around a bias point at \(v_{o} = V_{sat}/2 \), find the small-signal voltage gain and output resistance.

\[\begin{align*} \text{FIGURE P6.64} & \text{ FIGURE P6.65} \\
\end{align*} \]

D6.63 Consider the active-loaded CE amplifier circuit of Fig. 6.19(a) for the case \(I = 1 \text{ mA} \), \(\beta = 100 \) and \(V_T = 10 \text{ V} \). Find \(R_1 \), \(A_{\text{vss}} \), and \(R_2 \). If it is required to raise \(R_2 \) by a factor of \(4 \) by changing the bias current, what value of \(I \) is required assuming that \(\beta \) remains unchanged? What are the new values of \(A_{\text{vss}} \) and \(R_1 \)? If the amplifier is fed with a signal source having \(R_{in} = 5 \text{k}\Omega \) and is connected to a load of \(100 \text{k}\Omega \) resistance, find the overall voltage gain \(a_V/v_{o} \) in both cases.

D6.64 Transistor \(Q_0 \) in the circuit of Fig. 6.18(a) is operating as a CE amplifier with an active load provided by transistor \(Q_2 \), which is the output transistor in a current mirror formed by \(Q_1 \) and \(Q_2 \). (Note that the biasing arrangement for \(Q_0 \) is not shown.)

\[\begin{align*} \text{FIGURE P6.66} \\
\end{align*} \]

(a) For \(G \) and \(D \) open, what are the drain currents \(I_{D1} \) and \(I_{D2} \)?

(b) For \(r_{se} \approx \infty \), what is the output swing of the amplifier?

(c) For finite \(r_{se} \), what is the voltage swing from \(G \) to \(D \)?

D6.65 Consider the circuit shown in Fig. 6.19(a), using a 3.3-V supply and transistors for which \(|V_s| = 0.8 \text{ V} \) and \(L = 1 \mu \text{m} \). For \(Q_0 \), \(kW' = 100 \text{ mA/V}^2 \), \(V_T = 10 \text{ V} \), and \(W = 20 \mu \text{m} \). For \(Q_1 \) and \(Q_2 \), \(kW' = 50 \text{ mA/V}^2 \) and \(|V_s| = 50 \text{ V} \). For \(Q_3 \), \(W = 40 \mu \text{m} \). For \(Q_4 \), \(W = 10 \mu \text{m} \).

(a) If \(Q_0 \) is to be biased at 100 \(\mu \text{A} \), find \(I_{D1} \). For simplicity, ignore the effect of \(I_{D2} \).

(b) What are the extreme values of \(v_{o} \) for which \(Q_1 \) and \(Q_2 \) just remain in saturation?

(c) What is the large-signal voltage gain?

(d) Find the slope of the transfer characteristic at \(v_{o} = V_{sat}/2 \).

(e) For operation as a small-signal amplifier around a bias point at \(v_{o} = V_{sat}/2 \), find the small-signal voltage gain and output resistance.

\[\begin{align*} \text{FIGURE P6.67} \\
\end{align*} \]

D6.66 Consider the active-loaded CE amplifier circuit of Fig. 6.19(a) for the case \(I = 1 \text{ mA} \), \(\beta = 100 \) and \(V_T = 10 \text{ V} \). Find \(R_1 \), \(A_{\text{vss}} \), and \(R_2 \). If it is required to raise \(R_2 \) by a factor of \(4 \) by changing the bias current, what value of \(I \) is required assuming that \(\beta \) remains unchanged? What are the new values of \(A_{\text{vss}} \) and \(R_1 \)? If the amplifier is fed with a signal source having \(R_{in} = 5 \text{k}\Omega \) and is connected to a load of \(100 \text{k}\Omega \) resistance, find the overall voltage gain \(a_V/v_{o} \) in both cases.

D6.67 Transistor \(Q_0 \) in the circuit of Fig. 6.18(a) is operating as a CE amplifier with an active load provided by transistor \(Q_2 \), which is the output transistor in a current mirror formed by \(Q_1 \) and \(Q_2 \). (Note that the biasing arrangement for \(Q_0 \) is not shown.)

\[\begin{align*} \text{FIGURE P6.68} \\
\end{align*} \]
6.66 A CS amplifier that can be represented by the equivalent circuit of Fig. 6.20 has $C_g = 2 \text{ pF}, C_p = 0.1 \text{ pF}, C_L = 1 \text{ pF}, g_g = 5 \text{ mA/V},$ and $R_p = R'_{g} = 20 \text{ k\Omega}.$ Find the midband gain $A_{\text{mid}}.$ the input capacitance $C_{\text{in}},$ the Miller equivalence, and hence an estimate of the 3-dB frequency $f_3.$

6.67 A CS amplifier that can be represented by the equivalent circuit of Fig. 6.20 has $C_g = 2 \text{ pF}, C_p = 0.1 \text{ pF}, C_L = 1 \text{ pF}, g_g = 5 \text{ mA/V},$ and $R_p = R'_{g} = 20 \text{ k\Omega}.$ Find the midband gain $A_{\text{mid}}.$ the input capacitance $C_{\text{in}},$ the Miller equivalence, and hence an estimate of the 3-dB frequency $f_3.$

6.68 A CS amplifier represented by the equivalent circuit of Fig. 6.20 has $C_g = 2 \text{ pF}, C_p = 0.1 \text{ pF}, C_L = 1 \text{ pF}, g_g = 5 \text{ mA/V},$ and $R_p = R'_{g} = 20 \text{ k\Omega}.$ Find the exact values of $f_3, f_{\text{mid}},$ and f_{m} using Eqs. (6.66) and (6.67). (Note that this is the same amplifier considered in Problem 6.66; if you have solved Problem 6.66, compare your results.)

6.69 A CS amplifier represented by the equivalent circuit of Fig. 6.20 has $C_g = 2 \text{ pF}, C_p = 0.1 \text{ pF}, C_L = 1 \text{ pF}, g_g = 5 \text{ mA/V},$ and $R_p = R'_{g} = 20 \text{ k\Omega}.$ It is required to find $A_{\text{in}}, f_3,$ and the gain-bandwidth product for each of the following values of $C_g, 5 \text{ k\Omega}, 10 \text{ k\Omega},$ and $20 \text{ k\Omega}.$ Use the approximate expression for f_3 in Eq. (6.66). However, in each case, also evaluate f_{mid} and f_3 to ensure that a dominant pole exists, and in each case, state whether the unity-gain frequency is equal to the gain-bandwidth product. Present your results in tabular form, and comment on the gain-bandwidth trade-off.

6.70 A common-emitter amplifier that can be represented by the equivalent circuit of Fig. 6.25(a) has $C_g = 10 \text{ pF}, C_p = 0.5 \text{ pF}, C_L = 2 \text{ pF}, g_g = 20 \text{ mA/V},$ $\beta = 100, r_e = 200 \Omega,$ $R_p = 5 \text{ k\Omega},$ and $R_L = 1 \text{ k\Omega}.$ Find the midband gain $A_{\text{mid}},$ and an estimate of the 3-dB frequency f_3 using the Miller equivalence.

6.71 A common-emitter amplifier that can be represented by the equivalent circuit of Fig. 6.25(a) has $C_g = 10 \text{ pF}, C_p = 0.5 \text{ pF}, C_L = 2 \text{ pF}, g_g = 20 \text{ mA/V},$ $\beta = 100, r_e = 200 \Omega,$ $R_p = 5 \text{ k\Omega},$ and $R_L = 1 \text{ k\Omega}.$ Find $A_{\text{mid}}, f_3,$ and f_3.

SECTION 6.6: HIGH-FREQUENCY RESPONSE OF THE CS AND CE AMPLIFIERS

6.72 Refer to Fig. 6.72. Utilizing the BJT high-frequency hybrid-pi model with $r_e = 0$ and $r_o = 0,$ derive an expression for $Z(s)$ as a function of r_c and $C_c.$ Find the frequency at which the impedance has a phase angle of 45° for the case in which the BJT has $r_f = 400 \text{ MHz}$ and the bias current is negligibly small.

6.73 For the current mirror in Fig. P6.73, derive an expression for the current transfer function $I_2(s)/I_1(s)$ taking into account the BIJT internal capacitances and neglecting r_e and $r_c.$ Assume the BJT's to be identical. Observe that a signal source and operating with $V_{\text{CC}} = 0.015 \text{ pF}$, find the low-frequency gain, the 3-dB frequency, and the frequency of the zero.

FIGURE P6.72

FIGURE P6.73

FIGURE P6.75

D**6.76 This problem investigates the use of MOSFETs in the design of wideband amplifiers (Stiuering, 1990). Such amplifiers can be realized by cascading low-gain stages.

(a) Show that for the case $C_g \ll C_p$ and the gain of the common-source amplifier is low so that the Miller effect is negligible, the MOSFET can be modeled by the approximate equivalent circuit shown in Fig. P6.76(a), where g_m is the unity-gain frequency of the MOSFET.

(b) Figure P6.76(b) shows an amplifier stage suitable for the realization of low gain and wide bandwidth. Transistors Q_1 and Q_2 have the same channel length L, but different widths W_1 and $W_2.$ They are biased at the same V_{GS} and have the same $g_m.$ Use the MOSFET equivalent circuit of Fig. P6.76(a) to model this amplifier stage assuming that its output is connected to the input of an identical stage. Show the voltage gain V_{21}/V_{1} is given by

\[V_{21} = G_0 \frac{V_{1}}{1 + sC_s R_s} \]

where

\[G_0 = \frac{g_m}{1 + sC_s R_s} \]

(c) For $L = 0.5 \text{ mm}, W_2 = 25 \text{ mm}, f_t = 12 \text{ GHz},$ and $\mu C_v = 200 \text{ MV/V}^2,$ design the circuit to obtain a gain of 3 V/V per stage. Design the MOSFETs at $V_{\text{GS}} = 0.3 \text{ V}.$ Specify the required values of W_1 and L. What is the 3-dB frequency achieved?

FIGURE P6.76

6.77 Consider an active-loaded common-emitter amplifier. Let the amplifier be fed with an ideal voltage source V_{CC} and neglect the effect of $r_c.$ Assume that the bias current source has a very high resistance and that there is a capacitance C_{p} present between the output node and ground. This capacitance represents the sum of the input capacitance of the subsequent stage and the inevitable parasitic capacitance between collector and ground. Show that the voltage gain is given by

\[V_{2} = \frac{V_1}{sC_s R_s + 1 + sC_p R_p} \]

6.78 A common-source amplifier fed with a low-resistance signal source and operating with $r_e = 1 \text{ k\Omega}$ has a unity-gain frequency of 2 GHz. What additional capacitance must be connected to the drain node to reduce f_3 to 1 GHz?
SECTION 6.7: THE COMMON-GATE AND COMMON-BASE AMPLIFIERS WITH ACTIVE LOADS

6.79 Consider a CG amplifier for which \(k' = 160 \, \mu A/V^2 \), \(A = 0.1 \, V^2/W^2 \), \(W_2 = 50 \, \mu m, 0.5 \, \mu m \), \(\lambda = 0.2 \), \(f = 0.5 \, mA/V \), and \(R_1 = R_s = \infty \). Find \(g_{ds} \), \(r_e \), \(R_m \), \(A_{in} \), \(A_{out} \), \(I_{sig} \), \(v_i / v_o \), and \(v_0 / v_i \). If the amplifier is instead fed with a current source \(I' \), find \(v_i / v_o \) and \(I_{sig} \), equal to that of the NMOS transistor.

Design the circuit to obtain \(r_e = 100 \, V/V \) and \(R_e = 1 \, k\Omega \). Assume \(|v_2| = 20 \, V \), \(\lambda = 0.2 \), and \(k'_s = 100 \, \mu A/V^2 \). Specify \(I \) and \(V \) of the NMOS transistor.

6.80 Consider an NMOS CG amplifier for which the current-source load is implemented with a PMOS transistor having an output resistance \(r_e \) equal to that of the NMOS transistor. The amplifier is fed with a current source \(I' \), and the load resistance \(R_s = 2 \, k\Omega \). Find \(v_i / v_o \) under the condition \(|v_2| = 20 \, V \), \(\lambda = 0.2 \), and \(k'_s = 100 \, \mu A/V^2 \). For this amplifier, \(A_{in} = 0 \), \(A_{out} = 100 \), and \(G_m = 1 \, mA/V \). Present your results in tabular form.

6.81 Derive an expression for the overall short-circuit current gain of a CG amplifier, \(A_{sig} = \frac{I_{sig}}{I_{in}} \), in terms of \(A_{in} \) and \(r_e \). Under what condition does \(A_{sig} \) become close to unity? (Hint: Refer to the equivalent circuit in Fig. 6.30.)

6.82 What is the approximate input resistance \(R_{in} \) of a CG amplifier loaded by a resistance \(R_L = A_{in} r_e A_{sig} \)?

6.83 The MOSFET current-source shown in Fig. P6.83 is required to deliver a current of 1 mA with \(V_{ds} = 0.8 \, V \). If the MOSFET has \(V_T = 0.55 \, V \), \(V_C = 20 \, V \), and the body transconductance factor \(\lambda = 0.2 \), find the value of \(R_L \) that results in a current-source output resistance of 200 \, k\Omega. Also, determine the required dc voltage \(V_{ds} \).

6.84 Figure P6.84 shows the CG amplifier with the output short-circuited. Use this circuit to obtain an expression for \(I_{sig} \) in terms of \(I_{in} \) and verify that this result is the same as that obtained using \(G_m \) and \(R_e \) (i.e., using \(I_{sig} = G_m (v_i / v_o) \)).

In the common-source amplifier circuit of Fig. 6.85, \(Q_1 \) and \(Q_2 \) are matched, \(I_{ds} (W_2) = I_{ds} (W_1) = 4 \, mA/V^2 \), and all transistors have \(|v_2| = 0.8 \, V \) and \(|v_1| = 20 \, V \).

6.85 In the common-gate amplifier circuit of Fig. 6.85, \(Q_1 \) and \(Q_2 \) are matched, \(I(W_2) = I(W_1) = 4 \, mA/V^2 \), and all transistors have \(|v_2| = 0.8 \, V \) and \(|v_1| = 20 \, V \). We wish to determine the low-frequency voltage gain \(v_i / v_o \) and the input resistance \(R_{in} \), and feeding a load resistance \(R_L \) in parallel with a capacitance \(C \).

(a) Show that for \(r_e = \infty \), the circuit can be separated into two parts: an input part that produces a current at \(f_M \) and \(R \), and an output part that forms a pole at \(f_p = \frac{1}{2\pi R C} \).

(b) Calculate the value of \(f_M \) and \(f_p \) for the case \(C = 1 \, pF, R = 1 \, k\Omega \), and \(R = 10 \, k\Omega \). Also, find \(f_p \) of the transistor.

(c) Find the open-circuit voltage gain \(A_{voc} = v_0 / v_i \).

(d) In the case of the CB amplifier.

For the constant-current source circuit shown in Fig. P6.96, find the collector current \(I \) and the output resistance. The BJT is specified to have \(\beta = 100 \) and \(V_T = 0.1 \, V \). If the collector voltage undergoes a change of 10 \, V while the BJT remains in the active mode, what is the corresponding change in collector current?

6.90 Consider an active-load BJT connected in the common-base configuration with \(f = 1 \, mA \). If the intrinsic gain of the BJT is 200, what value of \(R_e \) causes the input resistance \(R_{in} \) to be double the value of \(r_e \)?

6.91 Use Fig. 6.34 to derive the expression in Eq. (6.117a).

6.92 Use Fig. 6.33(b) together with Eq. (6.110) to derive expressions in Eqs. (6.105) and (6.106).

6.93 As mentioned in the text, the CB amplifier functions as a current buffer. That is, when fed with a current signal, it enables the collector and supplies the output collector current at a high output resistance. Figure P6.93 shows a CB amplifier fed with a signal current \(i_{sig} \) having a source resistance \(R_s = 10 \, k\Omega \). The BJT is specified to have \(\beta = 100 \) and \(V_T = 50 \, V \). (Note that the bias arrangement is not shown.) The output at the collector is represented by its Norton equivalent circuit. Find the value of the current gain \(\beta \) and the output resistance \(R_{out} \).

6.94 Sketch the high-frequency equivalent circuit of a CB amplifier fed from a signal generator characterized by \(V_{sig} \).

6.95 For the cascode amplifier of Fig. 6.94(a), let \(Q_1 \) and \(Q_2 \) be identical with \(V_T = 0.6 \, V \), \(L = 100 \, \mu m^2 \), \(\lambda = 0.05 \, V^{-1} \), \(\gamma = 0.2 \), \(\beta = 40, \, V_T = 0.6 \, V \), and \(V_{CE} = 0.2 \, V \).

(a) What must the bias current be?

(b) Calculate the values of \(r_e, r_e, r_{be}, r_{bc}, R_s, A_{oc}, \) and \(A_{oc} \).

(c) Find the open-circuit voltage gain \(A_{oc} \).

(d) Calculate the value of the effective short-circuit transconductance, \(G_m \), of the cascode and the value of \(R_{out} \).
(a) If the constant-current source I is implemented with a cascode circuit like that in Fig. 6.43 with an output resistance of 10 kΩ, find the voltage gain A_v.

(b) Ignoring the small signal swing at the input and at the drain of Q_3, find the lowest value that V_{dd}, should have in order to operate Q_3 and Q_4 in saturation.

6.98 The cascode transistor can be thought of as providing a "shunt" for the input transistor from the voltage variations at the output. To quantify this "shunting" property of the cascode, consider the situation in Fig. 6.98. Here we have grounded the input terminal (i.e., reduced v_{in} to zero), applied a small change v_x, to the output node, and denoted the voltage change that results at the drain of Q_3 by v_y. By what factor is v_y smaller than v_x?

FIGURE P6.98

6.99 In this problem we investigate whether, as an alternative to cascoding, we can simply increase the channel length L of the CS MOSFET. Specifically, we wish to compare the two circuits shown in Fig. 6.99(a) and (c). The circuit in Fig. 6.99(b) is a CS amplifier in which the channel length has been quadrupled relative to that of the original CS amplifier in Fig. 6.99(a) while the drain bias current has been kept constant.

(a) Show that for this circuit V_{dd} is double that of the original circuit, g_m is half that of the original circuit, and A_v is double that of the original circuit.

(b) Compare these values to those of the cascode circuit in Fig. 6.99(c), which is operating at the same bias current and has the same minimum voltage requirement at the drain as in the circuit of Fig. 6.99(b).

6.100 (a) Consider a CS amplifier having $C_g = 0.2 \mu F$, $R_{e2} = R_2 = 20 k\Omega$, $V_x = 5 mV$, $C_{eq} = 2 \mu F$, C_i (including C_{gs}) = 1 μF, $C_{gd} = 0.2 \mu F$, and $r_i = 10 k\Omega$. Find the low-frequency gain A_v, and estimate f_v using open-circuit-time constants. Hence determine the gain-bandwidth product.

(b) If a CG stage is cascaded with the CS transistor in (a) to create a cascode amplifier, determine the new values of A_v, f_v, and gain-bandwidth product. Assume R_2 remains unchanged and $g_m = 0.2$.

6.101 It is required to design a cascode amplifier to provide a dc gain of 66 dB when driven with a low-resistance generator and utilizing NMOS transistors for which $V_T = 10 V$, $V_g = 200 \mu V$, $W/L = 10 \mu m$, $C_{gd} = 0.1 \mu F$, and $C_{gs} = 1 \mu F$. Assuming that $R_e = R_{e2}$, determine the overdrive voltage and the drain current at which the MOSFETs should be operated. Neglect the body effect. Find the unity-gain frequency and the 3-dB frequency. If the cascode transistor is removed and g_m remains unchanged, what will the dc gain become? (Hint: The result is different than what can be inferred from Fig. 6.39. Be careful.)

6.102 Consider a bipolar cascode amplifier in which the constant-current source load is implemented with a circuit having an output resistance of R_{e2}. Let $\beta = 100$, $|V_x| = 100 V$, and $f = 1 mV$. Find R_2, g_m, r_{e2}, and v_{be}. Also, find the gain of the CS stage.

6.103 Consider a bipolar cascode amplifier biased at a current of 1 mA. The transistors used have $\beta = 100$, $r_e = 100 k\Omega$, $C_e = 14 pF$, $C_{be} = 2 pF$, $C_{bc} = 0$, and $r_{bc} = 50 \Omega$. The amplifier is fed with a signal source having $R_{in} = 4 k\Omega$. The load resistance $R_2 = 2.4 k\Omega$. Find the low-frequency gain A_v, and estimate the value of the 3-dB frequency f_v.

6.104 In this problem we consider the frequency response of the bipolar cascode amplifier in the case that r_e can be neglected.

(a) Refer to the circuit in Fig. 6.42, and note that the total resistance between the collector of Q_1 and ground will be equal to O_R, which is usually very small. It follows that the pole introduced at this node will typically be at a very high frequency and thus will have negligible effect on f_v. It also follows that at the frequencies of interest the gain from the base to the collector of Q_1 will be $g_{m1}r_e = 1$. Use this to find the capacitance at the input of Q_1, and hence show that the pole introduced at the input node will have a frequency $f_v = \frac{1}{2\pi f_{m1}C_e}$.

Then show that the pole introduced at the output node will have a frequency $f_v = \frac{1}{2\pi f_{m1}(C_{es} + C_{oe})}$.

6.105 Design the circuit of Fig. 6.43 to provide an output current of 100 μA. Use $V_{dd} = 3.3 V$, and assume the PMOS transistors to have $\mu_{p}C_{ox} = 60 \mu A/V^2$, $V_{dd} = 10 V$, $V_{dd} = 10 V$, and $|V_g| = 5 V$. The current source is to have the highest possible signal swing at its output. Design for $V_{dd} = 3 V$, and specify the values of the transistor W/L ratios and of V_{dd}.

What is the highest allowable voltage at the output? What is the value of R_2?

6.106 Find the output resistance of a double-cascoded PMOS current source operating at $I_{ds} = 0.2 mA$ with each transistor having $V_{dd} = 0.25 V$. The PMOS transistors are specified to have $V_{dd} = 5 V$.

6.107 Figure P6.107 shows four possible realizations of the folded-cascode amplifier. Assume that for the BITs $\beta = 200$ and $V_{dd} = 100 V$ and for the MOSFETs $W/L = 2 \mu m$.;}
The amplifier is specified to have $k = \text{degeneration resistance}$.

The table should have entries $s_k = \frac{g_m L}{R_s}$ where $m_b = \text{corresponding value of } A_{\text{out}}$.

For the CS amplifier with a source-degeneration resistance R_s, the new values of H_m, f_1, and the gain-bandwidth product are:

- $H_m = 20 \text{kD}$, $R_s = 40 \text{kD}$, $R_i = 20 \text{kD}$, $C_{\text{sig}} = 2 \text{pF}$, $C_p = 0.1 \text{pF}$, and $G_m = 1 \text{pF}$.

To find A_{out}, R_s, and $f_{1/2}$, find the value needed for R_i and the corresponding value of A_{out}.

For the source follower, the term $C_m(R_s L R_i)$ is usually very small and can be neglected in the determination of R_s. If this is the case and, in addition, $R_{\text{in}} > R$, show that:

$$f_{1/2} = \frac{1}{2 \pi R_{\text{in}} C_m + \frac{1}{1 + g_m R_i R_s}}$$

For given values of C_m, G_m, and R_{in}, $f_{1/2}$ can be increased by reducing the term involving C_p. This in turn can be done by increasing $g_m R_i$.

If 0.5mA has an emitter-degeneration resistance of 110 Ω, $R_s = 2 \Omega$, $g_m = 2 \text{mA/V}$, determine $R_{\text{in}}, R_s, R_i, C_{\text{sig}}$, and A_{out}, and the overall gain voltage $V_{\text{out}}/V_{\text{in}}$ when $R_{\text{in}} = 10 \text{kD}$.

In this problem we investigate the effect of emitter degeneration on the frequency response of a common-emitter amplifier.

Consider a source follower for which the NMOS transistor has $|V_T| = 1.6 \text{mV}$, $\lambda = 0.05 \mu \text{A/V}^2$, $\chi = 0.2$, $W/L = 100$, and $|V_{IN}| = 0.5 \text{V}$. Also, let $|V_{IN}| = 0.7 \text{V}$, $\lambda = 200, C_{\text{sig}} = 0.8 \text{pF}, \text{and } G_m = 6 \text{mA/V}$. For an emitter follower biased at $I_C = 1 \text{mA}$ and $R_s = 2 \text{kHz}$, $f_1 = 2 \text{GHz}$. The MOSFET amplifier has $V_{IN} = 1 \text{V}, \text{and } V_{OUT} = 2 \text{V}$. Evaluate $A_{\text{out}}, R_{\text{in}}, \text{and } f_1$.

For the CS amplifier with a source-degeneration resistance R_s, the new values of H_m, f_1, and the gain-bandwidth product are:

- $H_m = 20 \text{kD}$, $R_s = 40 \text{kD}$, $R_i = 20 \text{kD}$, $C_{\text{sig}} = 2 \text{pF}$, $C_p = 0.1 \text{pF}$, and $G_m = 1 \text{pF}$.

To find A_{out}, R_s, and $f_{1/2}$, find the value needed for R_i and the corresponding value of A_{out}.

For the source follower, the term $C_m(R_s L R_i)$ is usually very small and can be neglected in the determination of R_s. If this is the case and, in addition, $R_{\text{in}} > R$, show that:

$$f_{1/2} = \frac{1}{2 \pi R_{\text{in}} C_m + \frac{1}{1 + g_m R_i R_s}}$$

For given values of C_m, G_m, and R_{in}, $f_{1/2}$ can be increased by reducing the term involving C_p. This in turn can be done by increasing $g_m R_i$.

If 0.5mA has an emitter-degeneration resistance of 110 Ω, $R_s = 2 \Omega$, $g_m = 2 \text{mA/V}$, determine $R_{\text{in}}, R_s, R_i, C_{\text{sig}}$, and A_{out}, and the overall gain voltage $V_{\text{out}}/V_{\text{in}}$ when $R_{\text{in}} = 10 \text{kD}$.

In this problem we investigate the effect of emitter degeneration on the frequency response of a common-emitter amplifier.

Consider a source follower for which the NMOS transistor has $|V_T| = 1.6 \text{mV}$, $\lambda = 0.05 \mu \text{A/V}^2$, $\chi = 0.2$, $W/L = 100$, and $|V_{IN}| = 0.5 \text{V}$. Also, let $|V_{IN}| = 0.7 \text{V}$, $\lambda = 200, C_{\text{sig}} = 0.8 \text{pF}, \text{and } G_m = 6 \text{mA/V}$. For an emitter follower biased at $I_C = 1 \text{mA}$ and $R_s = 2 \text{kHz}$, $f_1 = 2 \text{GHz}$. The MOSFET amplifier has $V_{IN} = 1 \text{V}, \text{and } V_{OUT} = 2 \text{V}$. Evaluate $A_{\text{out}}, R_{\text{in}}, \text{and } f_1$.

For the CS amplifier with a source-degeneration resistance R_s, the new values of H_m, f_1, and the gain-bandwidth product are:

- $H_m = 20 \text{kD}$, $R_s = 40 \text{kD}$, $R_i = 20 \text{kD}$, $C_{\text{sig}} = 2 \text{pF}$, $C_p = 0.1 \text{pF}$, and $G_m = 1 \text{pF}$.

To find A_{out}, R_s, and $f_{1/2}$, find the value needed for R_i and the corresponding value of A_{out}.

For the source follower, the term $C_m(R_s L R_i)$ is usually very small and can be neglected in the determination of R_s. If this is the case and, in addition, $R_{\text{in}} > R$, show that:

$$f_{1/2} = \frac{1}{2 \pi R_{\text{in}} C_m + \frac{1}{1 + g_m R_i R_s}}$$

For given values of C_m, G_m, and R_{in}, $f_{1/2}$ can be increased by reducing the term involving C_p. This in turn can be done by increasing $g_m R_i$.

If 0.5mA has an emitter-degeneration resistance of 110 Ω, $R_s = 2 \Omega$, $g_m = 2 \text{mA/V}$, determine $R_{\text{in}}, R_s, R_i, C_{\text{sig}}$, and A_{out}, and the overall gain voltage $V_{\text{out}}/V_{\text{in}}$ when $R_{\text{in}} = 10 \text{kD}$.

In this problem we investigate the effect of emitter degeneration on the frequency response of a common-emitter amplifier.

Consider a source follower for which the NMOS transistor has $|V_T| = 1.6 \text{mV}$, $\lambda = 0.05 \mu \text{A/V}^2$, $\chi = 0.2$, $W/L = 100$, and $|V_{IN}| = 0.5 \text{V}$. Also, let $|V_{IN}| = 0.7 \text{V}$, $\lambda = 200, C_{\text{sig}} = 0.8 \text{pF}, \text{and } G_m = 6 \text{mA/V}$. For an emitter follower biased at $I_C = 1 \text{mA}$ and $R_s = 2 \text{kHz}$, $f_1 = 2 \text{GHz}$. The MOSFET amplifier has $V_{IN} = 1 \text{V}, \text{and } V_{OUT} = 2 \text{V}$. Evaluate $A_{\text{out}}, R_{\text{in}}, \text{and } f_1$.

For the CS amplifier with a source-degeneration resistance R_s, the new values of H_m, f_1, and the gain-bandwidth product are:

- $H_m = 20 \text{kD}$, $R_s = 40 \text{kD}$, $R_i = 20 \text{kD}$, $C_{\text{sig}} = 2 \text{pF}$, $C_p = 0.1 \text{pF}$, and $G_m = 1 \text{pF}$.

To find A_{out}, R_s, and $f_{1/2}$, find the value needed for R_i and the corresponding value of A_{out}.

For the source follower, the term $C_m(R_s L R_i)$ is usually very small and can be neglected in the determination of R_s. If this is the case and, in addition, $R_{\text{in}} > R$, show that:

$$f_{1/2} = \frac{1}{2 \pi R_{\text{in}} C_m + \frac{1}{1 + g_m R_i R_s}}$$

For given values of C_m, G_m, and R_{in}, $f_{1/2}$ can be increased by reducing the term involving C_p. This in turn can be done by increasing $g_m R_i$.

If 0.5mA has an emitter-degeneration resistance of 110 Ω, $R_s = 2 \Omega$, $g_m = 2 \text{mA/V}$, determine $R_{\text{in}}, R_s, R_i, C_{\text{sig}}$, and A_{out}, and the overall gain voltage $V_{\text{out}}/V_{\text{in}}$ when $R_{\text{in}} = 10 \text{kD}$.
neglected in this process.) Then use Miller's theorem on \(R_G \) to determine the amplifier input resistance \(R_{in} \). Finally, determine the overall voltage gain \(V_{out}/V_{sig} \).

\(\text{FIGURE P6.123} \)

6.125 For the amplifier in Fig. 6.56(a), let \(I_{in} = 1 \text{ mA, } f_T = 120 \text{ MHz, } C_{gs} = 0.5 \text{ pF, and neglect } r_o \text{ and } r_e \). Assume that a load resistance of 10 k\(\Omega \) is connected to the output terminal. If the amplifier is fed with a signal \(V_{sig} \) having a source resistance \(R_{sig} = 10 \text{ k}\Omega \), find \(A_M \) and \(f_H \).

6.126 Consider the CD-CG amplifier of Fig. 6.56(c) for the case \(g_m = 5 \text{ mA/V, } C_{gs} = 2 \text{ pF, } C_{gs} = 0.1 \text{ pF, } C_{g}(\text{at the output node}) = 1 \text{ pF, and } R_{Ag} = R_L = 20 \text{ k}\Omega \). Neglecting \(r_o \) and the body effect, find \(A_M \) and \(f_H \).

6.127 In each of the six circuits in Fig. 6.127, let \(\beta = 100, C_s = 2 \text{ pF, } f_s = 400 \text{ MHz, and neglect } r_e \). Calculate the midband gain \(A_M \) and the 3-dB frequency \(f_H \).

SECTION 6.12: CURRENT-MIRROR CIRCUITS WITH IMPROVED PERFORMANCE

6.128 For the cascode current mirror of Fig. 6.58 with \(V_T = 0.5 \text{ V, } \mu C/W = 4 \text{ mA/V}^2, V_c = 8 \text{ V, } I_{mF} = 80 \text{ \mu A}, \text{ and } V_o = -5 \text{ V, what value of } I_{F0} \text{ results? Specify the output resistance and the minimum allowable voltage at the output.} \)

6.129 In a particular cascoded current mirror, such as that shown in Fig. 6.58, all transistors have \(V_T = 0.6 \text{ V, } \mu C/W = 200 \text{ \mu A/V}^2, L = 1 \text{ \mu m, and } V_{oc} = 20 \text{ V.} \) Widths \(W_1 = W_2 = \text{ 2 \mu m, and } W_3 = W_4 = 40 \text{ \mu m.} \) The reference current \(I_{mF} \) is 25 \(\mu A \). What output current results? What are the voltages at the gates of \(Q_2 \) and \(Q_3 \)? When is the lowest voltage at the output for which current-source operation is possible? What are the values of \(g_m \) and \(r_e \) of \(Q_2 \) and \(Q_3 \)? What is the output resistance of the mirror?
In terms of I_p. Assume all transistors to be matched with $0.2 \, \text{mA}$. What are the actual values of the currents generated I_0.

What is the lowest voltage at the output for which proper current source) is approximately $2 \, \text{T}/I_m$ in V_R.

Evaluate

What is V_R when $I_0 = 1 \, \text{mA}$?

Find Q_1 and Q_2.

For the BJT, $\beta = 100$. For $I_p = 100 \, \text{pA}$, what value of I_{REF} results? If the circuit is modified to that in Fig. 6.61(c), what value of I_{REF} results?

(a) Utilizing a reference current of $100 \, \text{pA}$, design a Widlar current source to provide an output current of $10 \, \text{pA}$. Let the BJT's have $V_{BE} = 0.7 \, \text{V}$ at $1 \, \text{mA}$ current, and assume β to be high.

(b) If $\beta = 200$ and $V_T = 100 \, \text{V}$, find the value of the output resistance, and find the change in output current corresponding to a $5 \, \text{V}$ change in output voltage.

Design three Widlar current sources, each having a $100\,\text{pA}$ reference current: one with a current transfer ratio of 0.9, one with a ratio of 0.10, and one with a ratio of 0.01, all assuming high β. For each, find the output resistance, and contrast it with r_o, the basic unity-gain source for which $R_E = 0$. Let the $\beta = \infty$ and $V_T = 100 \, \text{V}$.

The BJT in the circuit of Fig. P6.143 has $V_{BE} = 0.7 \, \text{V}$, $\beta = 100$ and $V_T = 100 \, \text{V}$. Find R_o.

The reference current is $20 \, \text{V}$. $I_{REF} = 100 \, \mu\text{A}$. What value of I_0 results? If the circuit is modified to that in Fig. 6.61(c), what value of I_{REF} results?

(b) For the design in (a), find Q_1 and Q_2 to be matched and Q_3, Q_4, and Q_5 to be matched. Find the value of R that yields a current $I_T = 10 \, \mu\text{A}$. For the BJT, $V_{BE} = 0.7 \, \text{V}$ at $I_T = 1 \, \text{mA}$.

(a) For the circuit in Fig. P6.144, assume BJT's with high β and $V_T = 0.7 \, \text{V}$ at $1 \, \text{mA}$. Find the value of I_T that will yield $I_{REF} = 10 \, \mu\text{A}$.

(b) For the design in (a), find R, assuming $\beta = 100$ and $V_T = 100 \, \text{V}$.

FIGURE P6.144

FIGURE P6.145

FIGURE P6.146

FIGURE P6.147

FIGURE P6.130 Find the output resistance of the double-cascode current mirror of Fig. P6.130.

FIGURE P6.131 For the base-current-compensated mirror of Fig. 6.59, let the three transistors be matched and specified to have a collector current of $1 \, \text{mA}$ at $V_{CC} = 0.7 \, \text{V}$. For $I_{REF} = 100 \, \mu\text{A}$ and assuming $\beta = 200$, what will the voltage at node x be? If I_{REF} is increased to $1 \, \text{mA}$, what is the change in V_x? What is the value of I_x, obtained with $V_C = V_T$, in both cases? Give the percentage difference between the actual and ideal value of I_x. What is the lowest voltage at the output for which proper current-source operation is maintained?

FIGURE P6.132 Extend the current-mirror circuit of Fig. 6.59 to n outputs. What is the resulting current transfer ratio from the input to each output, I_0/I_{REF}? If the deviation from unity is to be kept at 0.1% or less, what is the maximum possible number of outputs for BJT's with $\beta = 100$?

FIGURE P6.133 For the base-current-compensated mirror of Fig. 6.59, show that the incremental input resistance (seen by the reference current source) is approximately $2V/I_{REF}$. Evaluate R_o for $I_{REF} = 100 \, \mu\text{A}$.

FIGURE P6.134 Use the pnp version of the Wilson current mirror to design a 0.1-mA current source. The current source is required to operate with the voltage at its output terminal at least as low as $-5 \, \text{V}$. If the power supplies available are $\pm 5 \, \text{V}$, what is the highest voltage possible at the output terminal?

FIGURE P6.135 For the Wilson current mirror of Fig. 6.60, show that the incremental input resistance seen by I_{REF} is approximately $2V/I_{REF}$. Neglect the Early effect in this derivation. Evaluate R_o for $I_{REF} = 100 \, \mu\text{A}$.

FIGURE P6.136 Consider the Wilson current-mirror circuit of Fig. 6.60 when supplied with a reference current I_{REF} of 1 mA. What is the change in I_o, corresponding to a change of $+10 \, \text{V}$ in the voltage at the collector of Q_3? Give both the absolute value and the percentage change. Let $\beta = \infty$, $V_T = 100 \, \text{V}$, and recall that the output resistance of the Wilson circuit is βr_o.

FIGURE P6.137 For the Wilson current mirror of Fig. 6.61(a), all transistors have $V_T = 0.6 \, \text{V}$, $L = 2 \, \mu\text{m}$, and $W = 20 \, \text{V}$. Width $W_x = 2 \, \mu\text{m}$, and $W_y = 40 \, \mu\text{m}$. The reference current is $25 \, \mu\text{A}$. What output current results? What are the voltages at the gates of Q_2 and Q_3? What is the lowest value of V_C for which current-source operation is possible? What are the values of g_m and r_o of Q_2 and Q_3? What is the output resistance of the mirror?

FIGURE P6.138 Show that the input resistance of the Wilson current mirror of Fig. 6.61(a) is approximately equal to $2/r_o$, under the assumption that Q_2 and Q_3 are identical devices.

FIGURE P6.139 A Wilson current mirror, such as that in Fig. 6.61(a), uses devices for which $V_T = 0.6 \, \text{V}$, $L/W = 2 \, \mu\text{m}/\mu\text{m}$, and $W/L = 4 \, \mu\text{m}/\mu\text{m}$. What value of I_0 is required to obtain a current of $10 \, \mu\text{A}$ at $V_T = 0.7 \, \text{V}$? What value of V_{BE} is required to supply a current of $10 \, \mu\text{A}$ at $V_T = 0.7 \, \text{V}$? What is the maximum possible value of I_{REF} for $\beta = 200$? If $I_{REF} = 100 \, \mu\text{A}$, what is the maximum possible value of I_0? What is the maximum possible value of I_0 for $\beta = 200$? If $I_{REF} = 100 \, \mu\text{A}$, what is the maximum possible value of I_0? What is the maximum possible value of I_0 for $\beta = 200$? If $I_{REF} = 100 \, \mu\text{A}$, what is the maximum possible value of I_0? What is the maximum possible value of I_0 for $\beta = 200$? If $I_{REF} = 100 \, \mu\text{A}$, what is the maximum possible value of I_0?
Differential and Multistage Amplifiers

INTRODUCTION

The differential-pair or differential-amplifier configuration is the most widely used building block in analog integrated-circuit design. For instance, the input stage of every op amp is a differential amplifier. Also, the BJT differential amplifier is the basis of a very-high-speed logic circuit family, studied briefly in Chapter 11, called emitter-coupled logic (ECL).

Initially invented for use with vacuum tubes, the basic differential-amplifier configuration was subsequently implemented with discrete bipolar transistors. However, it was the advent of integrated circuits that has made the differential pair extremely popular in both bipolar and MOS technologies. There are two reasons why differential amplifiers are so well suited for IC fabrication: First, as we shall shortly see, the performance of the differential pair depends critically on the matching between the two sides of the circuit. Integrated-circuit fabrication is capable of providing matched devices whose parameters track over wide ranges of changes in environmental conditions. Second, by their very nature, differential amplifiers utilize more components (approaching twice as many) than single-ended circuits. Here again, the reader will recall from the discussion in Section 6.1 that a significant
advantage of integrated circuit technology is the availability of large numbers of transistors at relatively low cost.

We assume that the reader is familiar with the basic concept of a differential amplifier as presented in Section 2.1. Nevertheless, it is worthwhile to answer the question: Why differential? Basically, there are two reasons for using differential in preference to single-ended amplifiers. First, differential circuits are much less sensitive to noise and interference than single-ended circuits. To appreciate this point, consider two wires carrying a small differential signal as the voltage difference between the two wires. Now, assume that there is an interference signal that is coupled to the two wires, either capacitively or inductively. As the two wires are physically close together, the interference voltages on the two wires (i.e., between each of the two wires and ground) will be equal. Since, in a differential system, only the difference signal between the two wires is sensed, it will contain no interference component!

The second reason for preferring differential amplifiers is that the differential configuration enables us to bias the amplifier and to couple amplifier stages together without the need for bypass and coupling capacitors such as those utilized in the design of discrete-circuit amplifiers (Sections 4.7 and 5.7). This is another reason why differential circuits are ideally suited for IC fabrication where large capacitors are impossible to fabricate economically.

The major topic of this chapter is the differential amplifier in both its MOS and bipolar implementations. As will be seen, the design and analysis of differential amplifiers make extensive use of the material on single-stage amplifiers presented in Chapter 6. We will follow the study of differential amplifiers with examples of multistage amplifiers, again in both MOS and bipolar technologies. The chapter concludes with two SPICE circuit simulation examples.

7.1 THE MOS DIFFERENTIAL PAIR

Figure 7.1 shows the basic MOS differential-pair configuration. It consists of two matched transistors, Q_1 and Q_2, whose sources are joined together and biased by a constant-current source I. The latter is usually implemented by a MOSFET circuit of the type studied in Sections 6.3 and 6.12. For the time being, we assume that the current source is ideal and that it has infinite output resistance. Although each drain is shown connected to the positive supply through a resistance R_D, in most cases active (current-source) loads are employed, as will be seen shortly. For the time being, however, we will explore the essence of the differential-pair operation utilizing simple resistive loads. Whatever type of load is used, it is essential that the MOSFETs not enter the triode region of operation.

7.1.1 Operation with a Common-Mode Input Voltage

To see how the differential pair works, consider first the case of the two gate terminals joined together and connected to a voltage V_{CM} called the common-mode voltage. That is, as shown in Fig. 7.2(a), $V_{G1} = V_{G2} = V_{CM}$. Since Q_1 and Q_2 are matched, it follows from symmetry that the current I will divide equally between the two transistors. Thus, $I/2 = I_1 = I_2$, and the voltage at the sources, V_S, will be

$$V_S = V_{CM} - V_{GS} \tag{7.1}$$

where V_{GS} is the gate-to-source voltage corresponding to a drain current of $I/2$. Neglecting channel-length modulation, V_{GS} and $I/2$ are related by

$$I/2 = \frac{1}{2} I_D \cdot \frac{W}{L}$$

or in terms of the overdrive voltage V_{OV},

$$V_{OV} = V_{GS} - V_t \tag{7.3}$$

$$V_{OV} = \frac{1}{2} I_D \cdot \frac{W}{L} \tag{7.4}$$

The voltage at each drain will be

$$V_{D1} = V_{D2} = V_{GS} - \frac{1}{2} I_D$$

Thus, the difference in voltage between the two drains will be zero.

![Figure 7.1](image-url)
Figure 7.1 The basic MOS differential-pair configuration.
Now, let us vary the value of the common-mode voltage \(v_{CM} \). Obviously, as long as \(Q_1 \) and \(Q_2 \) remain in the saturation region, the current \(I \) will divide equally between \(Q_1 \) and \(Q_2 \) and the voltages at the drains will not change. Thus the differential pair does not respond to (i.e., it rejects) common-mode input signals.

An important specification of a differential amplifier is its input common-mode range. This is the range of \(v_{CM} \) over which the differential pair operates properly. The highest value of \(v_{CM} \) is limited by the requirement that \(Q_1 \) and \(Q_2 \) remain in saturation, thus

\[
v_{CM\text{max}} = V_t + V_D\tag{7.7}
\]

The lowest value of \(v_{CM} \) is determined by the need to allow for a sufficient voltage across current source for it to operate properly. If a voltage \(V_{cs} \) is needed across the current source, then

\[
v_{CM\text{min}} = -V_s + V_{cs} + V_t + V_0\tag{7.8}
\]

Exercise 7.1

For the MOS differential pair with a common-mode voltage \(v_{CM} \) applied, as shown in Fig. 7.2, let \(V_{dd} = 1.5 \text{ V}, I_C(W/L) = 4 \text{ mA/V}, V_t = 0.5 \text{ V}, I_f = 0.4 \text{ mA}, \) and \(R_o = 2.5 \text{ k} \Omega \), and neglect channel-length modulation.

(a) Find \(V_{o1} \) and \(V_{o2} \) for each transistor.

(b) For \(v_{CM} = 0 \), find \(v_{o1} \) for \(I_f = 1 \text{ mA} \) and \(V_{CS} \).

(c) Repeat (b) for \(v_{CM} = +1 \text{ V} \).

(d) Repeat (b) for \(v_{CM} = -0.2 \text{ V} \).

(e) What is the highest value of \(v_{CM} \) for which \(Q_1 \) and \(Q_2 \) remain in saturation?

(f) If current source \(I_f \) requires a minimum voltage of 0.4 V to operate properly, what is the lowest value allowed for \(v_{CM} \) and hence for \(V_{CS} \)?
will be greater than \(i_{dQ} \) and the differential output voltage \((v_{dQ} - v_{dQ}) \) will be positive. On the other hand, when \(v_{dQ} \) is negative, \(v_{dQ} \) will be lower than \(v_{dQ} \) and correspondingly \(v_{dQ} \) will be higher than \(v_{dQ} \), in other words, the difference or differential output voltage \((v_{dQ} - v_{dQ}) \) will be negative.

From the above, we see that the differential pair responds to difference-mode or differential input signals by providing a corresponding differential output signal between the two drains. At this point, it is useful to inquire about the value of \(v_{dQ} \) that causes the entire bias current \(i \) to flow in one of the two transistors. In the positive direction, this happens when \(v_{dQ} \) reaches the value that corresponds to \(i_{dQ} = I \), and \(v_{dQ} \) is reduced to a value equal to the threshold voltage \(V_{th} \) at which point \(v_{dQ} = V_{th} \). The value of \(v_{dQ} \) can be found from

\[
I = \frac{1}{2} \left(\frac{W}{L} \right) \left(v_{dQ} - V_{th} \right)
\]

as

\[
v_{dQ1} = V_{th} + J_{2} V_{th} \left(W/L \right) = V_{th} + J_{2} V_{th}
\]

where \(V_{th} \) is the overdrive voltage corresponding to a drain current of \(I/2 \) (Eq. 7.5). Thus, the value of \(v_{dQ} \) at which the entire bias current \(i \) is steered into \(Q_{1} \) is

\[
v_{dQ1} = v_{dQ1} + s_{1} = v_{th} + J_{2} V_{th} - v_{th} = J_{2} V_{th}
\]

\[
(7.10)
\]

If \(v_{dQ} \) is increased beyond \(J_{2} V_{th} \), \(Q_{1} \) remains equal to \(I/2 \), \(v_{dQ1} \) remains equal to \(v_{dQ1} + s_{1} \), and \(v_{dQ} \) rises corresponding, thus keeping \(Q_{1} \) on. In a similar manner we can show that in the negative direction, as \(v_{dQ} \) reaches \(-J_{2} V_{th} \), \(Q_{1} \) turns off and \(Q_{2} \) conducts the entire bias current \(i \).

Thus the current \(i \) can be steered from one transistor to the other by varying \(v_{dQ} \) in the range

\[
-J_{2} V_{th} \leq v_{dQ} \leq J_{2} V_{th}
\]

which defines the range of differential-mode operation. Finally, observe that we have assumed that \(Q_{1} \) and \(Q_{2} \) remain in saturation even when one of them is conducting the entire current \(i \).

EXERCISE 7.2

For the MOS differential pair specified in Exercise 7.1 find (a) the value of \(v_{dQ} \) that causes \(Q_{1} \) to conduct the entire current \(i \), and (b) the corresponding value of \(v_{dQ} \) that causes \(Q_{2} \) to conduct the entire current \(i \), and (c) the corresponding range of the differential output voltage \((v_{dQ} - v_{dQ}) \).

Ans.

(a) \(+0.45 \, V \), \(0.5 \, V \), \(1.5 \, V \); (b) \(-0.45 \, V \), \(1.5 \, V \), \(0.5 \, V \); (c) \(-1 \, V \) to \(+1 \, V \)

To use the differential pair as a linear amplifier, we keep the differential input signal \(v_{dQ} \) small. As a result, the current in one of the transistors \(Q_{1} \) when \(v_{dQ} \) is positive) will increase by an increment \(\Delta i \) proportional to \(v_{dQ} \) to \((I/2 + \Delta i) \). Simultaneously, the current in the other transistor will decrease by the same amount to become \((I/2 - \Delta i) \). A voltage signal \(\Delta V_{th} \) develops in one of the drains and an opposite-polarity signal \(\Delta i_{th} \) develops at the other drain. Thus the output voltage taken between the two drains will be \(\Delta V_{th} + \Delta i_{th} \), which is proportional to the differential input signal \(v_{dQ} \). The small-signal operation of the differential pair will be studied in detail in Section 7.2.

7.1.3 Large-Signal Operation

We shall now derive expressions for the drain currents \(i_{dQ} \) and \(i_{dQ} \) in terms of the input differential signal \(v_{dQ} \) (Eq. 7.10). Since these expressions do not depend on the details of the circuit to which the drains are connected we do not show these connections in Fig. 7.5; we simply assume that the circuit maintains \(Q_{1} \) and \(Q_{2} \) out of the triode region of operation at all times.

To begin with, we express the drain currents of \(Q_{1} \) and \(Q_{2} \) as

\[
i_{dQ1} = \frac{1}{2} \left(\frac{W}{L} \right) \left(v_{dQ1} + s_{1} \right)
\]

\[
i_{dQ2} = \frac{1}{2} \left(\frac{W}{L} \right) \left(v_{dQ2} + s_{2} \right)
\]

(7.11)

(7.12)

Taking the square roots of both sides of each of Equations (7.11) and (7.12), we obtain

\[
\sqrt{i_{dQ1}} = \frac{1}{2} \sqrt{W/L} (v_{dQ1} + s_{1})
\]

\[
\sqrt{i_{dQ2}} = \frac{1}{2} \sqrt{W/L} (v_{dQ2} + s_{2})
\]

(7.13)

(7.14)

Subtracting Eq. (7.14) from Eq. (7.13) and substituting

\[
v_{dQ1} = v_{dQ1} - v_{dQ2} = v_{dQ}
\]

results in

\[
\sqrt{i_{dQ1} - i_{dQ2}} = \frac{1}{2} \sqrt{W/L} \sqrt{v_{dQ}}
\]

(7.15)

The constant-current bias imposes the constraint

\[
i_{dQ1} + i_{dQ2} = I
\]

(7.17)
Equations (7.16) and (7.17) are two equations in the two unknowns \(i_{Q_1} \) and \(i_{Q_2} \) and can be solved as follows: Squaring both sides of (7.16) and substituting for \(i_{Q_1} + i_{Q_2} = I \) gives

\[
2i_{Q_1}/i_{Q_2} = I - 1 - \frac{W}{L} \frac{v_i}{2}.
\]

Substituting for \(i_{Q_2} \) from Eq. (7.17) as \(i_{Q_2} = I - i_{Q_1} \) and squaring both sides of the resulting equation provides a quadratic equation in \(i_{Q_1} \) that can be solved to yield

\[
i_{Q_1} = \left(\frac{I}{2} + \frac{W}{L} \frac{v_i}{2} \right) \left(\frac{I}{2} - \frac{W}{L} \frac{v_i}{2} \right)^2.
\]

Now since the increment in \(i_{Q_1} \) above the bias value of \(I/2 \) must have the same polarity as \(v_i \), only the root with the “+” sign in the second term is physically meaningful; thus

\[
i_{Q_1} = \left(\frac{I}{2} + \frac{W}{L} \frac{v_i}{2} \right) \left(\frac{I}{2} - \frac{W}{L} \frac{v_i}{2} \right)^2.
\]

The corresponding value of \(i_{Q_2} \) is found from \(i_{Q_2} = I - i_{Q_1} \) as

\[
i_{Q_2} = \left(\frac{I}{2} - \frac{W}{L} \frac{v_i}{2} \right) \left(\frac{I}{2} - \frac{W}{L} \frac{v_i}{2} \right)^2.
\]

At the bias (quiescent) point, \(v_i = 0 \), leading to

\[
i_{Q_1} = i_{Q_2} = \frac{I}{2}.
\]

Correspondingly,

\[
v_{Q_1} = v_{Q_2} = V_{GS}
\]

where

\[
i = \frac{1}{2} \frac{W}{L} \frac{v_i}{V_{GS}^2} = \frac{1}{2} \frac{v_i^2}{V_{GS}^2}.
\]

This relationship enables us to replace \(k_n(W/L) \) in Eqs. (7.18) and (7.19) with \(1/V_{GS} \) to express \(i_{Q_1} \) and \(i_{Q_2} \) in the alternative form

\[
i_{Q_1} = \frac{I}{2} \left(\frac{V_{GS}}{V_{GS}^2} - \frac{V_{GS}}{v_i^2} \right) \left(\frac{v_i}{V_{GS}} \right)^2
\]

\[
i_{Q_2} = \frac{I}{2} \left(\frac{V_{GS}}{V_{GS}^2} - \frac{V_{GS}}{v_i^2} \right) \left(\frac{v_i}{V_{GS}} \right)^2
\]

These two equations describe the effect of applying a differential input signal \(v_i \) on the currents \(i_{Q_1} \) and \(i_{Q_2} \). They can be used to obtain the normalized plots, \(i_{Q_1}/I \) and \(i_{Q_2}/I \) versus \(v_i/V_{GS} \), shown in Fig. 7.6. Note that at \(v_i = 0 \), the two currents are equal to \(I/2 \). Making \(v_i \) positive causes \(i_{Q_1} \) to increase and \(i_{Q_2} \) to decrease by equal amounts so as to keep the sum constant, \(i_{Q_1} + i_{Q_2} = I \). The current is steered entirely into \(Q_1 \) when \(v_i \) reaches the value \(-2V_{GS} \), as we found out earlier. For \(v_i \) negative, identical statements can be made by interchanging \(i_{Q_1} \) and \(i_{Q_2} \). In this case, \(i_{Q_2} = -2V_{GS} \) steers the current entirely into \(Q_2 \).
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

FIGURE 7.7 The linear range of operation of the MOS differential pair can be extended by operating the transistor at a higher value of \(V_{ov} \).

The normalized plot of Fig. 7.6, though compact, masks this design degree of freedom. Figure 7.7 shows plots of the transfer characteristics \(|i_m|/i \) versus \(v_{id} \) for various values of \(V_{ov} \), assuming that the current \(I \) is kept constant. These graphs clearly illustrate the linearity-transconductance trade-off obtained by changing the value of \(V_{ov} \). The linear range of operation can be extended by operating the MOSFETs at a higher \(V_{ov} \) (by using smaller \(W/L \) ratios) at the expense of reducing \(g_m \) and hence the gain. This trade-off is based on the assumption that the bias current \(I \) is kept constant. The bias current can, of course, be increased to obtain a higher \(g_m \). The expense for doing this, however, is increased power dissipation, a serious limitation in IC design.

EXERCISE

7.2 SMALL-SIGNAL OPERATION OF THE MOS DIFFERENTIAL PAIR

In this section we build on the understanding gained of the basic operation of the differential pair and consider in some detail its operation as a linear amplifier.

7.2 SMALL-SIGNAL OPERATION OF THE MOS DIFFERENTIAL PAIR

In this section we build on the understanding gained of the basic operation of the differential pair and consider in some detail its operation as a linear amplifier.

7.2.1 Differential Gain

Figure 7.8(a) shows the MOS differential amplifier with input voltages

\[
V_{in1} = V_{CM} + \frac{1}{2}V_{id}
\]

and

\[
V_{in2} = V_{CM} - \frac{1}{2}V_{id}
\]

Here, \(V_{CM} \) denotes a common-mode dc voltage within the input common-mode range of the differential amplifier. It is needed in order to set the dc voltage of the MOSFET gates.

\(V_{CM} = V_{gs2} - V_{ss} \)

[FIGURE 7.8 Small-signal analysis of the MOS differential amplifier. (a) The circuit with a common-mode voltage applied to set the dc bias voltage at the gates and with \(v_{id} \) applied in a complementary (or balanced) manner. (b) The circuit prepared for small-signal analysis. (c) An alternative way of looking at the small-signal operation of the circuit.]

\[V_{GS2} = V_{CM} - \frac{1}{2}V_{id} \]

\[V_{GS2} = -V_{ss} \]

\[V_{GS2} = V_{CM} + \frac{1}{2}V_{id} \]

\[V_{GS2} = V_{CM} - \frac{1}{2}V_{id} \]
Typically V_{CM} is at the middle value of the power supply. Thus, for our case, where two complementary supplies are utilized, V_{CM} is typically 0 V.

The differential input signal v_{id} is applied in a complementary (or balanced) manner, that is, v_{id} is increased by $v_{ov}/2$ and v_{id} is decreased by $v_{ov}/2$. This would be the case, for instance, if the differential amplifier were fed from the output of another differential amplifier stage. Sometimes, however, the differential input is applied in a single-ended fashion, as we saw earlier in Fig. 7.4. The difference in the performance resulting is too subtle a point for our current needs.

As indicated in Fig. 7.8(a) the amplifier output can be taken either between one of the drains and ground or between the two drains. In the first case, the resulting single-ended outputs v_{D1} and v_{D2} will be riding on top of the dc voltages at the drains (V_{DD} or $-V_{DD}$). This is not the case when the output is taken between the two drains; the resulting differential output v_{ov} (having a 0 V dc component) will be entirely a signal component. We will see shortly that there are other significant advantages to taking the output voltage differentially.

Our objective now is to analyze the small-signal operation of the differential amplifier of Fig. 7.8(a) to determine its voltage gain in response to the differential input signal v_{id}. Toward that end we show in Fig. 7.8(b) the circuit with the power supplies removed and V_{CM} eliminated. For the time being we will neglect the effect of the MOSFET r_{ds}, and as we have been doing since the beginning of this chapter, continue to neglect the body effect (i.e., continue to assume that $x = 0$). Finally note that each of Q_1 and Q_2 is biased at a dc current of $I/2$ and is operating at an overall drain voltage V_{OV}.

From the symmetry of the circuit as well as because of the balanced manner in which v_{id} is applied, we observe that the signal voltage at the joint source connection must be zero, acting as a sort of virtual ground. Thus Q_1 has a gate-to-source voltage signal $v_{gs1} = v_{ov}/2$ and Q_2 has $v_{gs2} = -v_{ov}/2$. Assuming $v_{id}/2 < V_{OV}$, the condition for the small-signal approximation, the changes resulting in the drain currents of Q_1 and Q_2 will be proportional to v_{gs1} and v_{gs2}, respectively. Thus Q_1 will have a drain current increment $g_m(v_{gs1}/2)$ and Q_2 will have a drain current decrement $g_m(v_{gs2}/2)$, where g_m denotes the equal transconductances of the two devices.

$$g_m = \frac{2I_o}{V_{OV}} = \frac{2(1/2)}{V_{OV}} = \frac{1}{V_{OV}} \quad (7.30)$$

These results correspond to those obtained earlier using the large-signal transfer characteristics and imposing the small-signal condition, Eqs. (7.25) to (7.27).

It is useful at this point to observe again that a signal ground is established at the source terminals of the transistors without resorting to the use of a large bypass capacitor, clearly a major advantage of the differential pair configuration.

The essence of differential-pair operation is that it provides complementary current signals in the drains; what we do with the resulting pair of complementary current signals is, in a sense, a separate issue. Here, of course, we are simply passing the two current signals through a pair of matched resistors, R_D, and thus obtaining the drain voltage signals

$$v_{D1} = g_m \frac{V_{ov}}{2} R_D \quad (7.31)$$

and

$$v_{D2} = -g_m \frac{V_{ov}}{2} R_D \quad (7.32)$$

If the output is taken in a single-ended fashion, the resulting gain becomes

$$\frac{v_{D1}}{v_{id}} = -\frac{1}{2} g_m R_D$$

or

$$\frac{v_{D2}}{v_{id}} = \frac{1}{2} g_m R_D$$

Alternatively, if the output is taken differentially, the gain becomes

$$A_v = \frac{v_{D1} - v_{D2}}{v_{id}} = g_m R_D$$

Thus, another advantage of taking the output differentially is an increase in gain by a factor of 2 (6 dB). It should be noted, however, that although differential outputs are preferred, a single-ended output is needed in some applications. We will have more to say about this later.

An alternative and useful way of viewing the operation of the differential pair in response to a differential input signal v_{id} is illustrated in Fig. 7.8(c). Here we are making use of the fact that the resistance between gate and source of a MOSFET, looking into the source, is $1/g_m$. As a result, between G_1 and G_2 we have a total resistance, in the source circuit, of $2/g_m$. It follows that we can obtain the current i_{D1} simply by dividing v_{id} by $2/R_D$, as indicated in the figure.

Effect of the MOSFET's r_{ds} Next we refine our analysis by considering the effect of the finite output resistance r_{ds} of each of Q_1 and Q_2. As well, we make the realistic assumption that the bias current source I has a finite output resistance R_I. The resulting differential-pair circuit, prepared for small-signal analysis, is shown in Fig. 7.9(a). Observe that the circuit remains perfectly symmetric, and as a result the voltage signal at the common source

![Figure 7.9](image-url)
connection will be zero. Thus the signal current through \(R_{ss} \) will be zero and \(R_{ss} \) plays no role in determining the differential gain.

The virtual ground on the common source connection enables us to obtain the equivalent circuit shown in Fig. 7.9(b). It consists of two identical common-source amplifiers, one fed with \(+v_{id}/2 \) and the other fed with \(-v_{id}/2 \). Obviously we need only one of the two circuits to perform any analysis we wish (including finding the frequency response, as we shall do shortly). Thus, either of the two common-source circuits is known as the differential half-circuit.

From the equivalent circuit in Fig. 7.9(b) we can write

\[
U_o2 = \frac{m}{R_D} \left(\frac{v_{id}}{2} \right)
\]

(7.36)

\[
U_o1 = \frac{m}{R_D} \left(\frac{v_{id}}{2} \right)
\]

(7.37)

\[
v_o = v_o2 - v_o1 = \frac{m}{R_D} \left(\frac{v_{id}}{2} \right)
\]

(7.38)

Exercise

7.4 A MOS differential pair is operated at a total bias current of 0.8 mA, using transistors with a \(W/L \) ratio of 100, \(\mu_C = 0.2 \) mV/\(\mu \)A, \(V_B = 20 \) V, and \(R_D = 5 \) k\(\Omega \). Find \(V_{ov} \), \(g_m R_{ss} \), and \(A_d \).

Ans. 0.2 V; 4 mA/V; 50 k\(\Omega \); 18.2 V/V

7.2.2 Common-Mode Gain and Common-Mode Rejection Ratio (CMRR)

We next consider the operation of the MOS differential pair when a common-mode input signal \(v_{icm} \) is applied, as shown in Fig. 7.10(a). Here \(v_{icm} \) represents a disturbance or interference signal that is coupled somehow to both input terminals. Although not shown, the dc voltage of the input terminals must still be defined by a voltage \(V_{CM} \) as we have seen before.

The symmetry of the circuit enables us to break it into two identical halves, as shown in Fig. 7.10(b). Each of the two halves, known as a CM half-circuit, is a MOSFET biased at \(1/2 \) and having a source degeneration resistance \(2R_{ss} \). Neglecting the effect of \(r_o \), we can express the voltage gain of each of the two identical half-circuits as

\[
\frac{v_{o1}}{v_{icm}} = \frac{v_{o2}}{v_{icm}} = \frac{R_D}{1 + 2R_{ss}}
\]

(7.39)

Usually, \(R_{ss} \gg 1/g_m \) enabling us to approximate Eq. (7.39) as

\[
\frac{v_{o1}}{v_{icm}} = \frac{v_{o2}}{v_{icm}} = \frac{R_D}{2R_{ss}}
\]

(7.40)

Now, consider two cases:

(a) The output of the differential pair is taken single-endedly;

\[
|A_{ov}| = \frac{R_D}{2R_{ss}}
\]

(7.41)

\[
|A_d| = \frac{1}{2} g_m R_{ss}
\]

(7.42)

Thus, the common-mode rejection ratio is given by

\[
CMRR = \frac{|A_d|}{|A_{ov}|} = g_m R_{ss}
\]

(7.43)

(b) The output is taken differentially:

\[
A_{ov} = \frac{V_{o1} - V_{o2}}{V_{icm}} = 0
\]

(7.44)

\[
A_d = \frac{v_{o2} - v_{o1}}{v_{icm}} = \frac{R_D}{2R_{ss}}
\]

(7.45)

Thus,

\[
CMRR = \infty
\]

(7.46)

Thus, even though \(r_o \) is finite, taking the output differentially results in an infinite CMRR. However, this is true only when the circuit is perfectly matched.

Effect of \(R_D \) Mismatch on CMRR

When the two drain resistances exhibit a mismatch of \(\Delta R_D \), as they inevitably do, the common-mode rejection ratio will be finite even if the output is taken differentially. To see how this comes about, consider the circuit in Fig. 7.10(b) for the case the load of \(Q_1 \) is \(R_D \) and that of \(Q_2 \) is \((R_D + \Delta R_D) \). The drain signal voltages arising from \(v_{icm} \) will be

\[
v_{o1} = \frac{R_D}{2R_{ss}} v_{icm}
\]

(7.47)

\[
v_{o2} = \frac{R_D + \Delta R_D}{2R_{ss}} v_{icm}
\]

(7.48)

Thus,

\[
v_{o2} - v_{o1} = \frac{\Delta R_D}{2R_{ss}} v_{icm}
\]

(7.49)
In other words, the mismatch in R_D causes the common-mode input signal v_{cm} to be converted into a differential output signal; clearly an undesirable situation! Equation (7.49) indicates that the common-mode gain will be

$$A_{cm} = \frac{A R_D}{2 R_s}$$

which can be expressed in the alternative form

$$A_{cm} = -\frac{R_D}{2 R_s} \left(\frac{\Delta R}{R_D} \right)$$

(7.51)

Since the mismatch in R_D will have a negligible effect on the differential gain, we can write

$$A_d = -\frac{g_m R_D}{2 R_s}$$

(7.52)

and combine Eqs. (7.51) and (7.52) to obtain the CMRR resulting from a mismatch ($\Delta R_D/R_D$) as

$$CMRR = \frac{A_d}{A_{cm}} = \left(\frac{g_m R_s}{R_D} \right)^2$$

(7.53)

Exercise

7.5 A MOS differential pair operated at a bias current of 0.8 mA employs transistors with $W/L = 100$ and $g_m, g_m' = 0.2$ mA/V2; using $R_D = 5$ kΩ and $R_s = 25$ kΩ.

(a) Find the differential gain, the common-mode gain, and the common-mode rejection ratio (in dB) if the output is taken single-ended and the circuit is perfectly matched.

(b) Repeat (a) when the output is taken differentially.

(c) Repeat (a) when the output is taken differentially but the drain resistances have a 1% mismatch.

Ans.

(a) 10 V/V, 0.1 V/V, 40 dB

(b) 20 V/V, 0 V/V, $\infty \text{ dB}$

(c) 20 V/V, 0.001 V/V, 86 dB

Effect of g_m Mismatch on CMRR Next we inquire into the effect of a mismatch between the values of the transconductance g_m of the two MOSFETs on the CMRR of the differential pair. Since the circuit is no longer matched, we cannot employ the common-mode half-circuit. Rather, we refer to the circuit shown in Fig. 7.11, and write

$$i_{d1} = g_{m1} v_{gs1}$$

(7.54)

$$i_{d2} = g_{m2} v_{gs2}$$

(7.55)

Since $v_{gs1} = v_{gs2}$ we can combine Eqs. (7.54) and (7.55) to obtain

$$\frac{i_{d1}}{i_{d2}} = \frac{g_{m1}}{g_{m2}}$$

(7.56)

The two drain currents sum together in R_D to provide

$$v_i = (i_{d1} + i_{d2}) R_D$$

Thus

$$i_{d1} + i_{d2} = \frac{v_i}{R_D}$$

(7.57)

Since Q_1 and Q_2 are in effect operating as source followers with a source resistance R_{ss} that is typically much larger than $1/g_{m}$,

$$v_i = v_{in}$$

(7.58)

enabling us to write Eq. (7.57) as

$$i_{d1} + i_{d2} = \frac{v_{in}}{R_{ss}}$$

(7.59)

We can now combine Eqs. (7.56) and (7.59) to obtain

$$i_{d1} = \frac{g_{m1} v_{in}}{g_{m1} + g_{m2} R_{ss}}$$

(7.60)

$$i_{d2} = \frac{g_{m2} v_{in}}{g_{m1} + g_{m2} R_{ss}}$$

(7.61)

If g_{m1} and g_{m2} exhibit a small mismatch Δg_m (i.e., $g_{m1} - g_{m2} = \Delta g_m$), we can assume that $g_{m1} = g_{m2} = g_m$, where g_m is the nominal value of g_{m1} and g_{m2}; thus

$$i_{d1} = \frac{g_m v_{in}}{2 g_m R_{ss}}$$

(7.62)

and

$$i_{d2} = \frac{g_m v_{in}}{2 g_m R_{ss}}$$

(7.63)

The differential output voltage can now be found as

$$v_{o1} - v_{o2} = -i_{d1} R_D + i_{d2} R_D$$

$$= R_D (i_{d1} - i_{d2}) = \frac{\Delta g_m R_D v_{in}}{2 g_m R_{ss}}$$

Figure 7.11 Analysis of the MOS differential amplifier to determine the common-mode gain resulting from a mismatch in the g_m values of Q_1 and Q_2.

from which the common-mode gain can be obtained as

\[A_{cm} = \left(\frac{R_{SS}}{\Delta g_m} \right) \]

Since the \(g_m \) mismatch will have a negligible effect on \(A_d \), and the CMRR resulting will be

\[CMRR = A_d \cdot \frac{\Delta g_m}{R_{DS}} \]

The similarity of this expression to that resulting from the \(R_D \) mismatch (Eq. 7.52) should be noted.

EXERCISE

7.6 For the MOS amplifier specified in Exercise 7.5 with the output taken differentially compute CMRR that results from a 1% mismatch in \(g_m \).

Ans. 4.2

7.3 THE BJT DIFFERENTIAL PAIR

Figure 7.12 shows the basic BJT differential-pair configuration. It is very similar to the MOSFET circuit and consists of two matched transistors, \(Q_1 \) and \(Q_2 \), whose emitters are joined together and biased by a constant-current source \(I \). The latter is usually implemented by a transistor circuit of the type studied in Sections 6.3 and 6.12. Although each collector is shown connected to the positive supply voltage \(V_{CC} \) through a resistance \(R_c \), this connection is not essential to the operation of the differential pair—that is, in some applications the two collectors may be connected to other transistors rather than to resistive loads. It is essential, though, that the collector circuits be such that \(Q_1 \) and \(Q_2 \) never enter saturation.

7.3.1 Basic Operation

To see how the BJT differential pair works, consider first the case of the two bases joined together and connected to a common-mode voltage \(v_{CM} \). That is, as shown in Fig. 7.13(a),

\[V_B = V_B = V_{CM} \]

Since \(Q_1 \) and \(Q_2 \) are matched, and assuming an ideal bias current source \(I \) to be ideal (i.e., it has an infinite output resistance) and thus \(I \) remains constant with the change in \(v_{CM} \), \(V_B = V_B = V_{CM} \).

\[v_{BE} = v_{BE} = V_{BE} \]

Note that we have assumed the bias current source \(I \) to be ideal (i.e., it has an infinite output resistance) and thus \(I \) remains constant with the change in \(v_{CM} \).
approximately 0.7 V) corresponding to an emitter current of 1/2. The voltage at each collector will be \(V_{cc} - \frac{1}{2} \alpha V_T \), and the difference in voltage between the two collectors will be zero.

Now let us vary the value of the common-mode input signal \(V_{CM} \). Obviously, as long as \(Q_1 \) and \(Q_2 \) remain in the active region the current \(I \) will still divide equally between \(Q_1 \) and \(Q_2 \), and the voltages at the collectors will not change. Thus the differential pair does not respond to \(i_c \) (i.e., it rejects) common-mode input signals.

As another experiment, let the voltage \(V_{CM} \) be set to a constant value, say, zero (by grounding \(B_2 \), and let \(V_{CM} = +1 \) V (see Fig. 7.13b). With a bit of reasoning it can be seen that \(Q_2 \) will be on and conducting all of the current \(I \) and that \(Q_1 \) will be off. For \(Q_1 \) to be on (with \(V_{CC} = 0.7 \) V), the emitter has to be at approximately +0.3 V, which keeps the EBJ of \(Q_1 \) reverse-biased. The collector voltages will be \(V_1 = V_{CC} - \alpha B R_e \), and \(V_2 = V_{CC} \).

Let us now change \(V_{CM} \) to -1 V (Fig. 7.13c). Again with some reasoning it can be seen that \(Q_1 \) will turn off, and \(Q_2 \) will carry all the current \(I \). The common emitter will be at -0.7 V, which means that the EBJ of \(Q_2 \) will be reverse-biased by 0.3 V. The collector voltages will be \(V_1 = V_{CC} \) and \(V_2 = V_{CC} - \alpha B R_e \).

From the foregoing, we see that the differential pair certainly responds to large differential-mode (or differential) signals. In fact, relatively small differential voltages are able to steer the entire base current from one side of the pair to the other. This current-steering property of the differential pair allows it to be used in logic circuits, as will be demonstrated in Section 11. Indeed, the reader can easily see that the differential pair implements a single-pole double-throw switch that we employed in the realization of the current-mode inverter of Fig. 13.3.

To use the BJT differential pair as a linear amplifier we apply a very small differential signal (a few millivolts), which will result in one of the transistors conducting a current \(I \) and the other transistor being cut off. As another experiment, let the voltage \(V_{CM} \) be set to a constant value, say, zero (by grounding \(B_2 \)), and let \(V_{CM} = +1 \) V (see Fig. 7.13b). With a bit of reasoning it can be seen that \(Q_1 \) will be on and conducting all of the current \(I \), and \(Q_2 \) will be off. For \(Q_1 \) to be on (with \(V_{CC} = 0.7 \) V), the emitter has to be at approximately +0.3 V, which keeps the EBJ of \(Q_1 \) reverse-biased. The collector voltages will be \(V_1 = V_{CC} - \alpha B R_e \), and \(V_2 = V_{CC} \).

The fundamental operation of the differential amplifier is illustrated by Eqs. (7.72) and (7.73). First, note that the amplifier responds only to the difference voltage \(V_{Diff} \) and that this is much smaller than the corresponding voltage \(V_{CM} \). This is the essence of differential-amplifier operation, which also gives rise to its name.

Another important observation is that relatively small difference voltage \(V_{Diff} \) will cause the current \(I \) to flow almost entirely in one of the two transistors. Figure 7.14 shows a plot of the two collector currents (assuming \(\alpha = 1 \)) as a function of the differential input signal. This is a normalized plot that can be used universally. Note that a difference voltage of about 0.7 V is sufficient to switch the current almost entirely to one side of the BJT pair. Note that this is much smaller than the corresponding voltage for the MOS pair, \(\frac{1}{2} V_T \). The fact that such a small signal can switch the current from one side of the BJT differential pair to the other means that the BJT differential pair can be used as a fast current switch. Another reason for the high speed of operation of the differential device as a switch is that neither of the transistors saturates. The reader will recall from Chapter 5 that a saturated transistor stores charge in its base that must be removed before the device can turn off, generally a slow process that results in
slow inverter. The absence of saturation in the normal operation of the BJT differential pair makes the logic family based on it the fastest form of logic circuits available (see Chapter 11). The nonlinear transfer characteristics of the differential pair, shown in Fig. 7.14, will not be utilized any further in this chapter. Rather, in the following we shall be interested specifically in the application of the differential pair as a small-signal amplifier. For this purpose the difference input signal is limited to less than about $\frac{V_T}{2}$ in order that we may operate on a linear segment of the characteristics around the midpoint x (in Fig. 7.14).

Before leaving the large-signal operation of the differential BJT pair, we wish to point out an effective technique frequently employed to extend the linear range of operation. It consists of including two equal resistances R_e in series with the emitters of Q_1 and Q_2, as shown in Fig. 7.15(a). The resulting transfer characteristics for three different values of R_e are sketched in Fig. 7.15(b). Observe that expansion of the linear range is obtained at the expense of reduced g_m (which is the slope of the transfer curve at $v_{id} = 0$) and hence reduced gain. This result should come as no surprise; R_e here is performing in exactly the same way as the emitter resistance R_e does in the CE amplifier with emitter degeneration (see Section 6.9.2). Finally, we also note that this linearization technique is in effect the bipolar counterpart of the technique employed for the MOS differential pair (Fig. 7.7). In the latter case, however, V_{ov} was varied by changing the transistors' W/L ratio, a design tool with no counterpart in the BJT.

EXERCISE

7.8 For the BJT differential pair of Fig. 7.12, find the value of input differential signal which is sufficient to cause $\alpha = 0.99$.

Ans. 135 mV

Recall that saturation of a BJT means something completely different from saturation of a MOSFET!

FIGURE 7.14 Transfer characteristics of the BJT differential pair of Fig. 7.12 assuming $\alpha = 1$.

FIGURE 7.15 The transfer characteristics of the BJT differential pair (a) can be linearized (b) (i.e., the linear range of operation can be extended) by including resistances in the emitters.

7.3 Small-Signal Operation

In this section we shall study the application of the BJT differential pair in small-signal amplification. Figure 7.16 shows the BJT differential pair with a difference voltage signal v_{id} applied between the two bases. Implied is that the dc level at the input—that is, the common-mode input voltage—has been somehow established. For instance, one of the two input terminals can be grounded and v_{id} applied to the other input terminal. Alternatively, the differential amplifier may be fed from the output of another differential amplifier. In the latter case, the voltage at one of the input terminals will be $V_{CM} + v_{id}/2$ while that at the other input terminal will be $V_{CM} - v_{id}/2$. We will consider common-mode operation subsequently.
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

7.1. The currents and voltages in the differential-amplifier when a small differential input signal v_{id} is applied.

Figure 7.16 The currents and voltages in the differential amplifier when a small differential input signal v_{id} is applied.

The Collector Currents When v_{id} Is Applied

For the circuit of Fig. 7.16, we may use Eqs. (7.72) and (7.73) to write

$$i_c = \frac{aI}{1 + e^{-v_{id}/2V_T}}$$

Multiplying the numerator and the denominator of the right-hand side of Eq. (7.74) by $e^{v_{id}/2V_T}$ gives

$$i_c = \frac{aI e^{v_{id}/2V_T}}{1 + v_{id}/2V_T}$$

Assume that $v_{id} < 2V_T$. We may thus expand the exponential $e^{v_{id}/2V_T}$ in a series, and retain only the first two terms:

$$i_c = \frac{aI(1 + v_{id}/2V_T)}{1 + v_{id}/2V_T + 1 - v_{id}/2V_T}$$

Thus

$$i_c = \frac{aI + aI v_{id}}{2V_T}$$

(7.77)

Similar manipulations can be applied to Eq. (7.75) to obtain

$$i_c = \frac{aI v_{id}}{2V_T}$$

(7.78)

Equations (7.77) and (7.78) tell us that when $v_{id} = 0$, the bias current I divides equally between the two transistors of the pair. Thus each transistor is biased at an emitter current of $I/2$. When a "small-signal" v_{id} is applied differentially (i.e., between the two bases), the collector current of Q_x increases by an increment i_c and that of Q_2 decreases by an equal amount. This ensures that the sum of the total currents in Q_x and Q_2 remains constant, as constrained by the current-source bias. The incremental (or signal) current component i_c is given by

$$i_c = \frac{aI v_{id}}{2V_T}$$

(7.79)

Equation (7.79) has an easy interpretation. First, note from the symmetry of the circuit (Fig. 7.16) that the differential signal v_{id} should divide equally between the base-emitter junctions of the two transistors. Thus the total base-emitter voltages will be

$$v_{be1} = V_{be} - \frac{v_{id}}{2}$$

$$v_{be2} = V_{be} + \frac{v_{id}}{2}$$

where V_{be} is the dc BE voltage corresponding to an emitter current of $I/2$. Therefore, the collector current of Q_x will increase by $g_m v_{id}/2$ and the collector current of Q_2 will decrease by $g_m v_{id}/2$. Here g_m denotes the transconductance of Q_x and of Q_2, which are equal and given by

$$g_m = \frac{I_e}{V_T} = \frac{aI}{V_T}$$

Thus Eq. (7.79) simply states that $i_c = g_m v_{id}/2$.

An Alternative Viewpoint

There is an extremely useful alternative interpretation of the results above. Assume the current source I to be ideal. Its incremental resistance then will be infinite. Thus the voltage v_{id} appears across a total resistance of $2r_e$, and

$$i_c = \frac{aI v_{id}}{2r_e}$$

(7.82)

Correspondingly there will be a signal current i_e, as illustrated in Fig. 7.17, given by

$$i_e = \frac{aI v_{id}}{2r_e}$$

(7.83)

Thus the collector of Q_x will exhibit a current increment i_c and the collector of Q_2 will exhibit a current decrement i_c:

$$i_c = \frac{aI v_{id}}{2r_e} = g_m \frac{v_{id}}{2}$$

(7.85)

Note that in Fig. 7.17 we have shown signal quantities only. It is implied, of course, that each transistor is biased at an emitter current of $I/2$.

This method of analysis is particularly useful when resistances are included in the emitters, as shown in Fig. 7.18. For this circuit we have

$$i_e = \frac{aI v_{id}}{2r_e + 2r_e}$$

(7.84)

Input Differential Resistance

Unlike the MOS differential amplifier, which has an infinite input resistance, the bipolar differential pair exhibits a finite input resistance, a result of the finite β of the BJT.
FIGURE 7.17 A simple technique for determining the signal currents in a differential amplifier excited by a differential voltage signal v_{id}; dc quantities are not shown.

The input differential resistance is the resistance seen between the two bases; that is, it is the resistance seen by the differential input signal v_{id}. For the differential amplifier in Figs. 7.16 and 7.17 it can be seen that the base current of Q_1 shows an increment i_b and the base current of Q_2 shows an equal decrement,

$$i_b = \frac{i_c}{\beta + 1} = \frac{v_{id}}{2r_e} \frac{\beta + 1}{\beta + 1}$$ \hspace{1cm} (7.85)

Thus the differential input resistance R_{id} is given by

$$R_{id} = \frac{v_{id}}{i_b} = \frac{\beta + 1}{2r_e} = 2 \frac{r_e}{\beta + 1}$$ \hspace{1cm} (7.86)

This result is just a restatement of the familiar resistance-reflection rule; namely, the resistance seen between the two bases is equal to the total resistance in the emitter circuit multiplied by $(\beta + 1)$.

Differential Voltage Gain

We have established that for small difference input voltages $v_{id} \ll 2V_C$ (i.e., v_{id} smaller than about 20 mV) the collector currents are given by

$$i_{C1} = I_c \frac{V_{cc} - I_c R_c - \frac{g_m R_c v_{id}}{2}}{v_{id}}$$ \hspace{1cm} (7.88)

$$i_{C2} = I_c \frac{V_{cc} - I_c R_c + \frac{g_m R_c v_{id}}{2}}{v_{id}}$$ \hspace{1cm} (7.89)

Thus the total voltages at the collectors will be

$$v_{C1} = \frac{V_{cc} - I_c R_c - \frac{g_m R_c v_{id}}{2}}{v_{id}}$$ \hspace{1cm} (7.90)

$$v_{C2} = \frac{V_{cc} - I_c R_c + \frac{g_m R_c v_{id}}{2}}{v_{id}}$$ \hspace{1cm} (7.90)

The quantities in parentheses are simply the dc voltages at each of the two collectors.

As in the MOS case, the output voltage signal of a bipolar differential amplifier can be taken either differentially (i.e., between the two collectors) or single-endedly (i.e., between one collector and ground). If the output is taken differentially, then the differential gain (as opposed to the common-mode gain) of the differential amplifier will be

$$A_d = \frac{v_{C2} - v_{C1}}{v_{id}} = -g_m R_c$$ \hspace{1cm} (7.91)

On the other hand, if we take the output single-endedly (say, between the collector of Q_1 and ground), then the differential gain will be given by

$$A_d = \frac{v_{C2}}{v_{id}} = -\frac{1}{2} g_m R_c$$ \hspace{1cm} (7.92)

For the differential amplifier with resistances in the emitter leads (Fig. 7.18) the differential gain with the output taken differentially is given by

$$A_d = \frac{\alpha(2R_e)}{2r_e + 2R_e} = \frac{R_e}{r_e + R_e}$$ \hspace{1cm} (7.93)

This equation is a familiar one: It states that the voltage gain is equal to the ratio of the total resistance in the collector circuit ($2R_e$) to the total resistance in the emitter circuit ($2r_e + 2R_e$).
CHAPTER 7
DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

(a) (b)

FIGURE 7.19 Equivalence of the BJT differential amplifier in (a) to the two common-emitter amplifiers in (b). This equivalence applies only for differential input signals. Either of the two common-emitter amplifiers in (b) can be used to find the differential gain, differential input resistance, frequency response, and so on, of the differential amplifier.

Equivalence of the Differential Amplifier to a Common-Emitter Amplifier. The analysis and results on the previous page are quite similar to those obtained in the case of a common-emitter amplifier stage. That the differential amplifier is in fact equivalent to a common-emitter amplifier is illustrated in Fig. 7.19. Figure 7.19(a) shows a differential amplifier fed by a differential signal v_{id} which is applied in a complementary (push-pull or balanced) manner. That is, while the base of Q_1 is raised by $v_{id}/2$, the base of Q_2 is lowered by $v_{id}/2$. We have also included the output resistance R_{EE} of the bias current source. From symmetry, it follows that the signal voltage at the emitters will be zero. Thus the circuit is equivalent to the two common-emitter amplifiers shown in Fig. 7.19(b), where each of the two transistors is biased at an emitter current of $1/2$. Note that the finite output resistance R_{EE} of the current source will have no effect on the operation. The equivalent circuit in Fig. 7.19(b) is valid for differential operation only.

In many applications the differential amplifier is not fed in a complementary fashion; rather, the input signal may be applied to one of the input terminals while the other terminal is grounded, as shown in Fig. 7.20. In this case the signal voltage at the emitters will not be zero, and thus the resistance R_{EE} will have an effect on the operation. Nevertheless, if R_{EE} is large ($R_{EE} > r_e$), as is usually the case, v_{id} will still divide equally (approximately) between the two junctions, as shown in Fig. 7.20. Thus the operation of the differential amplifier in this case will be almost identical to that in the case of symmetric feed, and the common-emitter equivalence can still be employed.

Since in Fig. 7.19 $v_{c2} = -v_{cl}$, the two common-emitter transistors in Fig. 7.19(b) yield similar results about the performance of the differential amplifier. Thus only one is needed to analyze the differential small-signal operation of the differential amplifier, and it is known as the differential half-circuit. If we take the common-emitter transistor fed with $+v_{id}/2$ in the differential half-circuit and replace the transistor with its low-frequency equivalent circuit model, the circuit in Fig. 7.21 results. In evaluating the model parameters r_e, r_n, and R_{EE}, we must recall that the half-circuit is biased at $1/2$. The voltage gain of the differential amplifier (with the output taken differentially) is equal to the voltage gain of the half-circuit—that is, $v_{cl}/v_{id}/2$. Here, we note that including r_e will modify the gain expression in Eq. (7.69) to

$$A_d = -g_m \left(\frac{R_c}{r_e} \right) \tag{7.96}$$

The input differential resistance of the differential amplifier is twice that of the half-circuit—that is, $2r_n$. Finally, we note that the differential half-circuit of the amplifier of Fig. 7.18 is a common-emitter transistor with a resistance R_{EE} in the emitter lead.

Common-Mode Gain and CMRR Figure 7.22(a) shows a differential amplifier fed by a common-mode voltage signal v_{cm}. The resistance R_{EE} is the incremental output resistance of the bias current source. From symmetry it can be seen that the circuit is equivalent to that shown in Fig. 7.22(b), where each of the two transistors Q_1 and Q_2 is biased at an emitter current $I/2$ and has a resistance $2R_{EE}$ in its emitter lead. Thus the common-mode output voltage v_{cm} will be

$$v_{cm} = -\frac{aR_c}{2R_{EE} + r_e} = -v_{cm} \frac{aR_c}{2R_{EE}} \tag{7.97}$$

At the other collector we have an equal common-mode signal v_{cm}.

$$v_{cm} = -v_{cm} \frac{aR_c}{2R_{EE}} \tag{7.98}$$
CHAPTER 7
DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

Now, if the output is taken differentially, then the output common-mode voltage \(v_{a} = (v_{1} - v_{2}) \) will be zero and the common-mode gain also will be zero. On the other hand, if the output is taken single-endedly, the common-mode gain \(A_{cm} \) will be finite and given by

\[
A_{cm} = \alpha \frac{R_{E}}{2R_{EE}} + r
\]

Since in this case the differential gain is

\[
A_{d} = \frac{1}{2} \beta_{r} \frac{R_{C}}{R_{E}}
\]

the common-mode rejection ratio (CMRR) will be

\[
CMRR = \left| \frac{A_{d}}{A_{cm}} \right| = \frac{\beta_{r}R_{E}}{r}
\]

Normally the CMRR is expressed in decibels,

\[
CMRR = 20 \log \left(\frac{A_{d}}{A_{cm}} \right)
\]

Each of the circuits in Fig. 7.22(b) is called the common-mode half-circuit.

\[\text{Fig. 7.22} \quad \text{(a)} \text{ The differential amplifier fed by a common-mode voltage signal } v_{icm} \quad \text{(b)} \text{ Equivalent "half-circuits" for common-mode calculations.}\]

The expressions in Eqs. (7.97) and (7.98) are obtained by neglecting \(r_{0} \). A detailed derivation using the results of Section 6.4 shows that the common-mode input signal will be

\[
v_{cm} = v_{1} - v_{2} = \frac{\alpha R_{C}}{2R_{EE} + r}
\]

and the common-mode gain will be

\[
A_{cm} = \frac{\alpha R_{C}}{2R_{EE} + r}
\]

This expression can be rewritten as

\[
A_{cm} = \frac{R_{C}}{2R_{EE} + r}
\]

Compare the common-mode gain in Eq. (7.103) with that for single-ended output in Eq (7.99). We see that the common-mode gain is much smaller in the case of differential output. Therefore the input differential stage of an op amp, for example, is almost always a balanced one, with the output taken differentially. This ensures that the op amp will have the lowest possible common-mode gain or, equivalently, a high CMRR.

The input signals \(v_{1} \) and \(v_{2} \) to a differential amplifier usually contain a common-mode component, \(v_{icm} \)

\[
v_{icm} = \frac{v_{1} + v_{2}}{2}
\]

and a differential component \(v_{id} \)

\[
v_{id} = v_{1} - v_{2}
\]

Thus the output signal will be given in general by

\[
v_{o} = A_{d}(v_{1} - v_{2}) + A_{cm} \left(\frac{v_{1} + v_{2}}{2} \right)
\]

\[\text{Input Common-Mode Resistance} \quad \text{The definition of the common-mode input resistance } R_{cm} \text{ is illustrated in Fig. 7.23(a). Figure 7.23(b) shows the equivalent common-mode half-circuit; its input resistance is } 2R_{cm}. \text{ The value of } 2R_{cm} \text{ can be determined using the expression we derived in Section 6.9 for the input resistance of a CE amplifier with a resistance in the emitter. Specifically, we can use Eq. (6.157) and substitute } R_{E} = 2R_{E} \text{ and } R_{L} = R_{L} \text{ to obtain for the case } R_{C} < r_{0} \text{ and } R_{L} >> r_{0} \text{ the approximate expression}
\]

\[
2R_{cm} = (1 - 1)(2R_{EE} + r)
\]
FIGURE 7.23 (a) Definition of the input common-mode resistance \(R_{icm} \). (b) The equivalent common-mode half-circuit.

Thus,

\[
R_{icm} = (\beta + 1) \left(\frac{R_{EE} + R_H}{2} \right) \tag{7.107}
\]

Equation (7.107) indicates that since \(R_{EE} \) is typically of the order of \(r_a \), \(R_{icm} \) will be very large.

EXAMPLE 7.11

The differential amplifier in Fig. 7.24 uses transistors with \(\beta = 100 \). Evaluate the following:

(a) The input differential resistance \(R_{id} \).
(b) The overall differential voltage gain \(v_{o}/v_{sig} \) (neglect the effect of \(R_0 \)).
(c) The worst-case common-mode gain if the two collector resistances are accurate to within ±1%.
(d) The CMRR, in dB.
(e) The input common-mode resistance (assuming that the Early voltage \(V_A = 100 \) V).

Solution

(a) Each transistor is biased at an emitter current of 0.5 mA. Thus

\[
r_{ee} = r_{ic} = \frac{V_T}{I_E} = \frac{25 \text{ mV}}{0.5 \text{ mA}} = 50 \Omega
\]

The input differential resistance can now be found as

\[
R_{id} = 2(\beta + 1)(r_{ee} + R_E) = 2 \times 101 \times (50 + 150) = 40 \text{ k}\Omega
\]

(b) The voltage gain from the signal source to the bases of \(Q_1 \) and \(Q_2 \) is

\[
\frac{v_{id}}{v_{sig}} = \frac{R_{id}}{R_{id} + R_E} = \frac{40}{5 + 5 + 40} = 0.8 \text{ V/V}
\]

The voltage gain from the bases to the output is

\[
\frac{v_{o}}{v_{id}} = \frac{2R_F}{R_{id} + R_E} = \frac{2 \times 150}{2(50 + 150)} = 0.5 \text{ V/V}
\]

The overall differential voltage gain can now be found as

\[
A_{o} = \frac{v_{o}}{v_{cid}} \cdot \frac{v_{cid}}{v_{sig}} = 0.8 \times 50 = 40 \text{ V/V}
\]

(c) Using Eq. (7.103),

\[
A_{cm} = \frac{R_{cm}}{R_{cm} + \Delta R_E}
\]

where \(\Delta R_E = 0.02R_E \) in the worst case. Thus,

\[
A_{cm} = \frac{100}{200} \times 0.02 = 5 \times 10^{-3} \text{ V/V}
\]
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

7.4 OTHER NONIDEAL CHARACTERISTICS OF THE DIFFERENTIAL AMPLIFIER

7.4.1 Input Offset Voltage of the MOS Differential Pair

Consider the basic MOS differential amplifier with both inputs grounded, as shown in Fig. 7.25(a). If the two sides of the differential pair were perfectly matched (i.e., Q1 and Q2 identical and $R_m = R_{D2} = R_D$), then current I would split equally between Q_1 and Q_2, and the output voltages V_{D1} and V_{D2} would be zero. Practical circuits exhibit mismatches that result in a dc output voltage V_0 even with both inputs grounded. We call V_0 the output dc offset voltage.

Thus the differential output voltage V_0 will be

$$V_0 = V_{D2} - V_{D1}$$

The corresponding input offset voltage is obtained by dividing V_0 by the gain g_{m}, to give

$$V_{OS} = \frac{V_0}{g_{m}}$$

The three factors contributing to the offset voltage are:

1. Mismatch in load resistances, mismatch in W/L, and mismatch in V_t. We shall consider the three contributing factors one at a time.
Thus the offset voltage is directly proportional to V_{ov} and, of course, to $\Delta R/R_m$. As an example, consider a differential pair in which the two transistors are operating at an overdrive voltage of 0.2 V and each drain resistance is accurate to within ±1%. It follows that the worst-case resistor mismatch will be

$$\frac{\Delta R}{R_m} = 0.02$$

and the resulting input offset voltage will be

$$V_{os} = 0.1 \times 0.02 = 2 \text{ mV}$$

Next, consider the effect of a mismatch in the W/L ratios of Q_1 and Q_2, expressed as

$$\frac{W}{L_1} = \frac{W}{L} + \frac{1}{2} \left(\frac{\Delta W}{W} \right)$$

(7.113)

\[\text{and} \quad \frac{W}{L_2} = \frac{W}{L} - \frac{1}{2} \left(\frac{\Delta W}{W} \right)\]

(7.114)

Such a mismatch causes the current I to no longer divide equally between Q_1 and Q_2. Rather, it can be shown that the currents I_1 and I_2 will be

$$I_1 = \frac{I}{2} + \frac{\Delta I}{2} \left(\frac{\Delta W}{W} \right)$$

(7.115)

$$I_2 = \frac{I}{2} - \frac{\Delta I}{2} \left(\frac{\Delta W}{W} \right)$$

(7.116)

Dividing the current increment

$$\frac{\Delta I}{2} \left(\frac{\Delta W}{W} \right)$$

by g_m gives half the input offset voltage (due to the mismatch in W/L values). Thus

$$V_{os} = \frac{\Delta V}{2} \left(\frac{\Delta W}{W} \right)$$

(7.117)

Here again we note that V_{os}, resulting from a (W/L) mismatch, is proportional to V_{ov} and, as expected, $\Delta (W/L)$.

Finally, we consider the effect of a mismatch ΔV between the two threshold voltages,

$$V_{os} = \frac{\Delta V}{2} (7.118)$$

$$V_{os} = \frac{\Delta V}{2}$$

(7.119)

The current I_1 will be given by

$$I_1 = \frac{1}{2} V_T \left(\frac{W}{L} \right) \left(V_{os} - \frac{\Delta V}{2} \right)^2$$

(7.120)

$$I_2 = \frac{1}{2} V_T \left(\frac{W}{L} \right) \left(V_{os} - \frac{\Delta V}{2} \right)^2$$

(7.121)

Similarly,

$$I_2 = \frac{1}{2} \left(\frac{W}{L} \right) \left(V_{os} - \frac{\Delta V}{2} \right)^2$$

It follows that

$$I_1 = \frac{1}{2} \left(\frac{W}{L} \right) \left(V_{os} - \frac{\Delta V}{2} \right)^2$$

and the current increment (decrement) in $Q_1 (Q_2)$ is

$$\Delta I = \frac{1}{2} \left(\frac{W}{L} \right) \left(V_{os} - \frac{\Delta V}{2} \right)^2$$

(7.122)

Dividing ΔI by g_m gives half the input offset voltage (due to ΔV). Thus,

$$V_{os} = \frac{\Delta V}{2}$$

(7.123)

a very logical result! For modern MOS technology ΔV can be costly as high as 2 mV.

Finally, we note that since the three sources for offset voltage are not correlated, an estimate of the total input offset voltage can be found as

$$V_{os} = \frac{\Delta V}{2} \left(\frac{\Delta W}{W} \right) + \frac{\Delta V}{2} \left(\frac{\Delta W}{W} \right) + \left(\frac{\Delta V}{2} \right)^2$$

(7.124)

Exercise

7.36 For the MOS differential pair specified in Exercise 7.4, find the three components of the input offset voltage. Let $\Delta R/R_m = 2\%$, $\Delta (W/L)/W = 2\%$, and $\Delta V = 2$ mV. Use Eq. (7.123) to estimate the total V_{os}.

Ans. 4 mV; 4 mV; 2 mV; 6 mV

7.4.2 Input Offset Voltage of the Bipolar Differential Pair

The offset voltage of the bipolar differential pair shown in Fig. 7.26(a) can be determined in a manner analogous to that used above for the MOS pair. Note, however, that in the bipolar case there is no analog to the V_{os} mismatch of the MOSFET pair. Here the output offset results from mismatches in the load resistances R_{c1} and R_{c2} and from junction area, B, and other mismatches in Q_1 and Q_2. Consider first the effect of the load mismatch. Let $R_{c1} = R_c - \frac{\Delta R_c}{2}$

(7.125)

and assume that Q_1 and Q_2 are perfectly matched. It follows that current I will divide equally between Q_1 and Q_2, and thus

$$V_{os} = \frac{1}{2} \left(R_c + \frac{\Delta R_c}{2} \right)$$

$$V_{os} = \frac{1}{2} \left(R_c - \frac{\Delta R_c}{2} \right)$$
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

FIGURE 7.26 (a) The BJT differential pair with both inputs grounded. Device mismatches result in a finite dc output \(V_0 \). Application of the input offset voltage \(V_0 = V_{os} \) to the input terminals with opposite polarity reduces \(V_0 \) to zero.

Thus the output voltage will be

\[V_O = V_{C2} - V_{C1} = \alpha \frac{I_o}{2} (\Delta R_c) \]

and the input offset voltage will be

\[V_{os} = \frac{\alpha I_o}{2} (\Delta R_c) \]

Substituting \(\Delta R_c = g_n R_c \) and

\[g_n = \frac{aI_o}{V_T} \]

gives

\[|V_{os}| = V_T \frac{(\Delta R_c)}{R_c} \]

An important point to note is that in comparison to the corresponding expression for the MOS pair (Eq. 7.113) here the offset is proportional to \(V_T \) rather than \(V_{os}/2 \). \(V_T \) at 25 mV is 4 to 10 times lower than \(V_{os}/2 \). Hence bipolar differential pairs exhibit lower offsets than their MOS counterparts. As an example, consider the situation where the collector resistors are accurate to within \(\pm 1\% \). Then the worst case mismatch will be

\[\Delta R_c = 0.02 \]

and the resulting input offset voltage will be

\[|V_{os}| = 25 \times 0.02 = 0.5 \text{ mV} \]

Next consider the effect of mismatches in transistors \(Q_1 \) and \(Q_2 \). In particular, let the transistors have a mismatch in their emitter-base junction areas. Such an area mismatch gives rise to a proportional mismatch in the scale currents \(I_{s1} \)

\[I_{s1} = I_{s2} + \frac{\Delta I}{2} \]

Refer to Fig. 7.26(a) and note that \(V_{BE} = V_{os} \). Thus, the current \(I \) will split between \(Q_1 \) and \(Q_2 \) in proportion to their \(I_s \) values, resulting in

\[I_{s1} = \frac{I}{2} \left(1 + \frac{\Delta I}{2I_s} \right) \]

\[I_{s2} = \frac{I}{2} \left(1 - \frac{\Delta I}{2I_s} \right) \]

It follows that the output offset voltage will be

\[V_{os} = \frac{\alpha}{2} \left(\frac{\Delta I}{I_s} \right) R_c \]

and the corresponding input offset voltage will be

\[|V_{os}| = V_T \left(\frac{\Delta I}{I_s} \right) \]

As an example, an area mismatch of 4% gives rise to \(\Delta \alpha/\alpha = 0.04 \) and an input offset voltage of 1 mV. Here again we note that the offset voltage is proportional to \(V_T \) rather than to the much larger \(V_{os} \), which determines the offset of the MOS pair due to \(\Delta W/L \) mismatch.

Since the two contributions to the input offset voltage are not correlated, an estimate of the total input offset voltage can be found as

\[|V_{os}| = V_T \left(\frac{\Delta I}{I_s} \right) \]

\[\left(V_{os} \right)^2 + \left(\frac{\Delta I}{I_s} \right)^2 \]

(7.131)

There are other possible sources for input offset voltage such as mismatches in the values of \(B \) and \(r_0 \). Some of these are investigated in the end-of-chapter problems. Finally, it should be noted that there is a popular scheme for compensating for the offset voltage. It involves introducing a deliberate mismatch in the values of the two collector resistances such that the differential output voltage is reduced to zero when both input terminals are grounded. Such an offset-nulling scheme is explored in Problem 7.57.

7.4.3 Input Bias and Offset Currents of the Bipolar Pair

In a perfectly symmetric differential pair the two input terminals carry equal dc currents; that is,

\[I_{s1} = I_{s2} = \frac{1}{2} \frac{I}{\beta + 1} \]

(7.132)

This is the input bias current of the differential amplifier.
Mismatches in the amplifier circuit and most importantly a mismatch in β make the two input dc currents unequal. The resulting difference is the input offset current, I_{OS}, given as

$$I_{OS} = |I_{1} - I_{2}|$$ \hspace{1cm} (7.133)

Let

$$\beta_1 = \beta + \frac{\Delta \beta}{2}$$
$$\beta_2 = \beta - \frac{\Delta \beta}{2}$$

then

$$I_{1} = \frac{l}{2 \beta_1 + 1 + \Delta \beta/2} = \frac{l}{2 \beta + 1} \left(1 + \frac{\Delta \beta}{2 \beta}
ight)$$ \hspace{1cm} (7.134)
$$I_{2} = \frac{l}{2 \beta_2 + 1 - \Delta \beta/2} = \frac{l}{2 \beta + 1} \left(1 - \frac{\Delta \beta}{2 \beta}
ight)$$ \hspace{1cm} (7.135)
$$I_{OS} = \frac{l}{(2 \beta + 1) \beta}$$ \hspace{1cm} (7.136)

Formally, the input bias current I_{B} is defined as follows:

$$I_{B} = \frac{l_{1} + l_{2}}{2} = \frac{l}{2 \beta + 1}$$ \hspace{1cm} (7.137)

Thus

$$I_{OS} = I_{B} \frac{\Delta \beta}{\beta}$$ \hspace{1cm} (7.138)

As an example, a 10% β mismatch results in an offset that is one-tenth the value of the input bias current. Finally note that obviously a great advantage of the MOS differential pair is that it does not suffer from a finite input bias current or from mismatches thereof.

7.4.4 Input Common-Mode Range

As mentioned earlier, the input common-mode range of a differential amplifier is the range of the input voltage V_{CM} over which the differential pair behaves as a linear amplifier for differential input signals. The upper limit of the common-mode range is determined by Q_1 and Q_2 leaving the active mode and entering the saturation mode of operation in the BJT case or the triode mode of operation in the MOS case. Thus, for the bipolar case the upper limit is approximately equal to 0.4 V above the dc collector voltage of Q_1 and Q_2. For the MOS case, the upper limit is equal to V_{DS} volts above the voltage at the drains of Q_1 and Q_2. The lower limit is determined by the transistor that supplies the biasing current I leaving its active region of operation and thus no longer functioning as a constant-current source. Current-source circuits were studied in Sections 6.3 and 6.12.

7.4.5 A Concluding Remark

We conclude this section by noting that the definitions presented here are identical to those presented in Chapter 2 for op amps. In fact, as will be seen in Chapter 9, it is the input differential stage in an op-amp circuit that primarily determines the op-amp dc offset voltage, input bias and offset currents, and input common-mode range.

EXERCISE

1. For a BJT differential amplifier utilizing transistors having $\beta = 100$, matched to 10% or better, and areas that are matched to 10% or better, find V_{OS}, I_{B}, and I_{OS}. The dc bias current I is 100 nA.

Ans. $V_{OS} = 2.55$ mV, $I_{B} = 0.5 \mu A$, $I_{OS} = 50$ nA.

7.5 THE DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

As we learned in Chapter 6, replacing the drain resistance R_D with a constant-current source results in a much higher voltage gain as well as savings in chip area. The same, of course, applies to the differential amplifier. In this section we study an inestimable circuit for implementing an active-loaded differential amplifier and at the same time converting the output from differential to single-ended. We shall study both the MOS and bipolar forms of this popular circuit.

7.5.1 Differential-to-Single-Ended Conversion

In the previous sections we found that taking the output of the differential amplifier as the voltage between the two drains (or collectors) results in double the value of the differential gain as well as a much reduced common-mode gain. In fact, the only reason a small fraction of an input common-mode signal appears between the differential output terminals is the mismatches inevitably present in the circuit. Thus if a multistage amplifier (such as an op amp) is to achieve a high CMRR, the output of its first stage must be taken differentially. Beyond the first stage, however, unless the system is fully differential, the signal is converted from differential to single-ended.

Figure 7.27 illustrates the simplest most basic approach for differential-to-single-ended conversion. It consists of simply ignoring the drain current signal of Q_1 and eliminating its drain source.
resistor altogether, and taking the output between the drain of Q_4 and ground. The obvious drawback of this scheme is that we lose a factor of 2 (or 6 dB) in gain as a result of "wasting" the drain signal current of Q_4. A much better approach would be to find a way of utilizing the drain current signal of Q_4, and that is exactly what the circuit we are about to discuss accomplishes.

7.5.2 The Active-Loaded MOS Differential Pair

Figure 7.28(a) shows a MOS differential pair formed by transistors Q_1 and Q_2, loaded in a current mirror formed by transistors Q_3 and Q_4. To see how this circuit operates consider first the quiescent state with the two input terminals connected to a dc voltage equal to the common-mode equilibrium value, in this case 0 V, as shown in Fig. 7.28(b). Assuming perfect matching, the bias current I divides equally between Q_1 and Q_2. The drain current of Q_3, $I/2$, is fed to the input transistor of the mirror, Q_3. Thus, a replica of this current is provided by the output transistor of the mirror, Q_3. Observe that at the output node the two currents $I/2$ balance each other out, leaving a zero current to flow out to the next stage or to a load (not shown). If Q_1 is perfectly matched to Q_2, its drain voltage will track the voltage at the drain of Q_1. Next, consider the circuit with a differential input signal v_{ds} applied to the input, as shown in Fig. 7.28(c). Since we are now investigating the small-signal operation of the circuit, we have removed the dc supplies (including the current source I). Also, for the time being let us ignore r_0 of all transistors. As Fig. 7.28(c) shows, a virtual ground will develop at the common-source terminal of Q_1 and Q_2. Transistor Q_4 will conduct a drain signal current i and Q_3, and transistor Q_2 will conduct an equal but opposite current i. The drain signal current i of Q_4 is fed to the input of the Q_1-Q_2 mirror, which responds by providing a replica in the drain of Q_1. Now, at the output node we have two currents, each equal to i, which sum together to provide an output current $2i$. It is this factor of 2, which is a result of the current mirror action, that makes it possible to convert the signal to single-ended form (i.e., between the output node and ground) with no loss of gain! If a load resistance is connected to the output node, the current $2i$ flows through it and thus determines the output voltage v_o. In the absence of a load resistance, the output voltage is determined by the output current $2i$ and the output resistance of the circuit, as we shall shortly see.

7.5.3 Differential Gain of the Active-Loaded MOS Pair

As we have learned in Chapter 6, the output resistance r_o of the transistor plays a significant role in the operation of active-loaded amplifiers. Therefore, we shall now take r_o into account and derive an expression for the differential gain v_o/v_i of the active-loaded MOS differential pair. Unfortunately, because the circuit is not symmetrical we will not be able to use the differential half-circuit technique. Rather, we shall perform the derivation from first principles: We will first find the short-circuit transconductance G_m and the output resistance R_o. Then, the gain will be determined as $G_m R_o$.

Determining the Transconductance G_m. Figure 7.29(a) shows the circuit prepared for determining G_m. Note that we have short-circuited the output to ground in order to find G_m as I_{ds}/v_{gs}. Although the original circuit is not perfectly symmetrical, when the output is shorted to ground, the circuit becomes almost symmetrical. This is because the voltage between the drain of Q_3 and ground is very small. This in turn is due to the low resistance between that node and ground which is almost equal to r_0. Thus, we can invoke symmetry and assume that a virtual ground will appear at the source of Q_3 and Q_4 in this way obtain the equivalent circuit shown in Fig. 7.29(b). Here we have replaced the diode-connected transistor Q_2 by its equivalent resistance $(1/g_{m2})r_o$. The voltage v_{gs} that develops at the common-gate line of the mirror can be found as

$$v_{gs} = -r_0 \left(\frac{1}{g_{m3}} \right) \left(\frac{1}{g_{m4}} \right) r_o$$

(7.139)

which for the usual case of r_o and $r_0 \gg (1/g_{m2})$ reduces to

$$v_{gs} \approx -r_0 \left(\frac{v_{gs}}{g_{m3}} \right) \left(\frac{1}{g_{m4}} \right) r_o$$

(7.140)

This voltage controls the drain current of Q_4 resulting in a current of $g_{m4}v_{gs}$. Note that the ground at the output node causes the currents in r_o and r_0 to be zero. Thus the output current

$$i_o = G_m v_{gs}$$

(7.141)
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

7.5 THE DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

FIGURE 7.30 Determining the short-circuit transconductance $G_m = i_0/v_{id}$ of the active-loaded MOS differential pair.

\[i_0 = -v_{in} g_m + v_{dd} \left(\frac{v_{in}}{2} \right) \]

(7.141)

Substituting for r_{ds} from (7.140) gives

\[i_0 = g_m \left(\frac{v_{in}}{2} \right) + r_{ds} \left(\frac{v_{in}}{2} \right) \]

Now, since $g_{m3} = g_{m4}$ and $g_{m1} = g_{m2} = g_m$, the current i_0 becomes

\[i_0 = g_m v_{in} \]

from which G_m is found to be

\[G_m = g_m \]

(7.142)

Thus the short-circuit transconductance of the circuit is equal to g_m of each of the two transistors of the differential pair. Here we should note that in the absence of the current-mirror action, G_m would be equal to $g_m/2$.

Determining the Output Resistance R_o. Figure 7.30 shows the circuit for determining R_o. Observe that the current i that enters $Q2$ must exit at its source. It then enters $Q3$ exiting at the drain to feed the $Q3-Q4$ mirror. Since for the diode-connected transistor $Q3$, $1/gm3$ is much smaller than r_{ds}, the current i will flow into the drain of $Q3$. The mirror responds by providing an equal current i in the drain of $Q4$. Now remains to determine the relationship between i and v_x. From Fig. 7.30 we see that

\[i = v_x / R_{st} \]

(7.143)

where R_{st} is the output resistance of $Q2$. Now, $Q2$ is a CG transistor and has in its source lead the input resistance of $Q3$. The latter is connected to the CG configuration with a small resistance in the drain (approximately equal to $1/gm4$), thus its input resistance is approximately $1/gm4$. We can now use Eq. (6.101) to determine R_{st} by substituting $g_m = 0$ and $R = 1/gm4$ to obtain

\[R_{st} = r_{ds} + (1 + g_m r_{ds}) (1/gm4) \]

(7.144)

which for $g_m = g_{m2} = g_m$ and $g_{m1} r_{ds} \gg 1$ yields

\[R_{st} = 2 r_{ds} \]

Returning to the circuit in Fig. 7.30, we can write at the output node

\[i = i + \frac{v_x}{r_{ds}} \]

\[= \frac{2(\frac{v_x}{r_{ds}})}{R_{st} + \frac{v_x}{r_{ds}}} = \frac{2 g_m}{r_{ds} (r_{ds} + \frac{v_x}{r_{ds}})} \]

Substituting for R_{st} from Eq. (7.144) we obtain

\[i = \frac{v_x}{r_{ds} (r_{ds} + \frac{v_x}{r_{ds}})} \]

Thus,

\[R_o = \frac{v_x}{i} = r_{ds} (r_{ds} + \frac{v_x}{r_{ds}}) \]

(7.145)

which is an intuitively appealing result.

Determining the Differential Gain. Equations (7.142) and (7.145) can be combined to obtain the differential gain A_d as

\[A_d = \frac{g_m}{r_{ds} (r_{ds} + \frac{v_x}{r_{ds}})} \]

(7.146)

For the case $r_{ds} = r_{ds} = r_{ds}$

\[A_d = \frac{1}{2 g_m r_{ds} + A_d^2} \]

(7.147)

where A_d is the intrinsic gain of the MOS transistor.
DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

CHAPTER

Although the circuit is not symmetrical and hence we cannot use the common-mode half-circuit, we can split the signals at the source terminals will be approximately equal to $\frac{v_{ss}}{2}$.

Common-Mode Gain and CMRR

Since R_{o3} is usually large, at least equal to $\frac{g_m}{v_{ss}}$, the common-mode rejection ratio (CMRR) can now be obtained by utilizing Eqs. (7.146) and (7.153),

$$CMRR = \frac{A_m}{A_{cm}} = \frac{|g_m/r_{ss}|}{|g_m/r_{ss}|} \cdot \frac{|R_{o3}|}{|2g_m R_{ss}|}$$

which for $r_{o3} = r_{o2}$ and $g_{m3} = g_{m4}$ simplifies to

$$CMRR = \frac{g_{m3} R_{o3}}{g_{m4} R_{ss}}$$

We observe that to obtain a large CMRR we select an implementation of the biasing current source I that features a high output resistance. Such circuits include the cascode current source and the Wilson current source studied in Section 6.12.

EXERCISE

7.32 An active-loaded MOS differential amplifier of the type shown in Fig. 7.31(a) is specified as follows:

- $I_V = 100 \, \mu A$, $V_{DD} = 20 \, \text{V}$, $L_{e1} = 2\, \mu \text{m}$, $L_{e2} = 0.2 \, \mu \text{m}$, $V_{TH} = 20 \, \text{V}$, $L = 0.8 \, \text{m}$, $R_{ss} = 45 \, \text{k}$

Calculate G_m, R_m, A_m, A_{cm}, and CMRR.

Ans. $A_m = 20,000, A_{cm} = 86 \, \text{dB}$

7.5 The Differential Amplifier with Active Load

The bipolar version of the active-loaded differential pair is shown in Fig. 7.32(a). The circuit structure and operation are very similar to those of its MOS counterpart except that here we have to contend with the effects of finite β and the resulting finite input resistance at the transistors.
Differential Gain

To obtain an expression for the differential gain, we apply an input differential signal v_{id} as shown in the equivalent circuit in Fig. 7.32(b). Note that the output is connected to ground in order to determine the overall short-circuit transconductance $G_m = i_0/v_{id}$.

Also, as in the MOS case, we have assumed that the circuit is sufficiently balanced so that a virtual ground develops on the common emitter terminal. This assumption is predicated on the fact that the voltage signal at the collector of Q_4 will be small as a result of the low resistance between that node and ground (approximately equal to r_e). The voltage v_{b3} can be found from

$$v_{b3} = -g_m v_{id}$$

Using Eq. (7.157) we obtain

$$i_0 = g_m v_{b4} = g_m v_{b3}$$

Since all devices are operating at the same bias current, $g_m = g_m = g_m = g_m$, where

$$g_m = 1/2 V_T$$

and $r_e = r_e = r_e = r_e$. Thus, for G_m, Eq. (7.159) yields

$$G_m = g_m$$

which is identical to the result found for the MOS pair.

Next we determine the output resistance of the amplifier utilizing the equivalent circuit shown in Fig. 7.32(c). We urge the reader to carefully examine this circuit and to note that the analysis is very similar to that for the MOS pair. The output resistance R_o of transistor Q_4 can be found using Eq. (6.160) by noting that the resistance R_e in the emitter of Q_4 is approximately equal to r_e, thus

$$R_o = r_e [1 + g_m r_e]$$

$$R_o = 2r_e$$

where we made use of the fact that corresponding parameters of all four transistors are equal.

The current i_0 can now be found as

$$i_0 = R_o v_{id} = 2r_e v_{id}$$

and the current i_e can be obtained from a node equation at the output as

$$i_e = 2i_0 = 2r_e v_{id}$$

Thus,

$$R_o = 2r_e$$

where all four transistors are equal.
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

This expression simply says that the output resistance of the amplifier is equal to the parallel equivalent of the output resistance of the differential pair and the output resistance of the current mirror; a result identical to that obtained for the MOS pair.

Equations (7.161) and (7.164) can now be combined to obtain the differential gain,

\[A_d = \frac{z_{12}}{v_{o4}} = G_r R_c = g_m(r_o + r_e) \] (7.165)

and since \(r_{c2} = r_{ce} \), we can simplify Eq. (7.165) to

\[A_d = \frac{1}{2}g_m r_e. \] (7.166)

Although this expression is identical to that found for the MOS circuit, the gain here is much larger because \(g_{m2} \), for the BJT is more than an order of magnitude greater than \(g_m \) of a MOSFET. The downside, however, lies in the low input resistance of BJT amplifiers. Indeed, the equivalent circuit of Fig. 7.32(b) indicates that, as expected, the differential gain realized in an active-loaded amplifier stage is large, when a subsequent stage is connected to the output, its inevitably low input resistance will drastically reduce the overall voltage gain.

Common-Mode Gain and CMRR

The common-mode gain \(A_{cm} \) and the common-mode rejection ratio (CMRR) can be found following a procedure identical to that utilized in the MOS case. Figure 7.33 shows the circuit prepared for common-mode signal analysis. The collector currents of \(Q_1 \) and \(Q_2 \) are given by

\[i_1 = i_2 = \frac{v_m}{2R_{EE}} \] (7.168)

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]

\[r_{c2} \]

\[-r_e \]

\[v_{o4} \]

\[v_{o4} \]

\[2R_{EE} \]

\[2R_{EE} \]

\[(g_{m1} + g_{m2}) r_e \]

\[r_{c2} \]
Differential and Multistage Amplifiers

CHAPTER 7

7.5The Differential Amplifier with Active Load

FIGURE 7.34 The active-loaded BJT differential pair suffers from a systematic input offset voltage resulting from the error in the current-transfer ratio of the current mirror.

Systematic Input Offset Voltage

In addition to the random offset voltages that result from the mismatches inevitably present in the differential amplifier, the active-loaded bipolar differential pair suffers from a systematic offset voltage. This is due to the error in the current transfer ratio of the current-mirror load caused by the finite β_p of the pnp transistors that make up the mirror. To see how this comes about, refer to Fig. 7.34. Here the inputs are grounded and the transistors are assumed to be perfectly matched. Thus, the bias current I will divide equally between Q_1 and Q_2 with the result that their two collectors conduct equal currents of $aI/2$. The collector current of Q_x is fed to the input of the current mirror. From Section 6.3 we know that the current-transfer ratio of the mirror is

$$ G_m = \frac{aI/2}{aI/2 + V_T/\beta_p} $$

where β_p is the value of β of the pnp transistors Q_3 and Q_4. Thus the collector current of Q_4 will be

$$ I_4 = \frac{aI}{1 + \frac{1}{\beta_p}} $$

which does not exactly balance the collector current of Q_2. It follows that the current difference ΔI will flow into the output terminal of the amplifier with

$$ \Delta I = \frac{aI}{1 + \frac{1}{\beta_p}} $$

To reduce this output current to zero, an input voltage V_{os} has to be applied with a value of

$$ V_{os} = -\frac{\Delta I}{G_m} $$

Substituting for G_m from Eq. (7.177) and for $G_m = G_m = (aI/2)/V_T$, we obtain for the input offset voltage the expression

$$ V_{os} = \frac{aI/2}{aI/2 + V_T/\beta_p} $$

As an example, for $\beta_p = 50$, $V_{os} = -1$ mV. To reduce V_{os}, an improved current mirror such as the Wilson circuit studied in Section 6.12 should be used. Such a circuit provides the added advantage of increased output resistance and hence voltage gain. However, to realize the full advantage of the higher output resistance of the active load, the output resistance of the differential pair should be raised by utilizing a cascode stage. Figure 7.35 shows such an arrangement: A folded cascode stage formed by pnp transistors Q_3 and Q_4 is utilized to raise the output resistance looking into the collector of Q_4 to β_4r_0. A Wilson mirror formed by transistors Q_5, Q_6, and Q_7 is used to implement the active load. From Section 6.12.3 we know that the output resistance of the Wilson mirror (i.e., looking into the collector of Q_5) is $\beta_5r_0/2$. Thus the output resistance of the amplifier...
is given by

\[R_s = \left(\beta + \frac{1}{\beta} \right) R \]

(7.179)

The transconductance \(g_m \) remains equal to \(g_m \) of \(Q_1 \) and \(Q_2 \). Thus the differential voltage gain becomes

\[A_d = \frac{g_m}{(R + \frac{1}{g_m}) \left(\frac{1}{R} + \frac{1}{R} \right)} \]

(7.180)

which can be very large. Further examples of improved-performance differential amplifiers will be studied in Chapter 9.

EXERCISE

7.1. Find \(G_m \) and \(R_{ds} \) if \(R_1 = R_2 = R \) and \(R \). The transconductance \(g_m \) remains equal to \(g_m \) of \(Q_1 \) and \(Q_2 \). Thus the differential voltage gain becomes

\[A_d = \frac{g_m}{(R + \frac{1}{g_m}) \left(\frac{1}{R} + \frac{1}{R} \right)} \]

(7.180)

which can be very large. Further examples of improved-performance differential amplifiers will be studied in Chapter 9.

EXERCISE

7.1. Find \(G_m \) and \(R_{ds} \) if \(R_1 = R_2 = R \) and \(R \). The transconductance \(g_m \) remains equal to \(g_m \) of \(Q_1 \) and \(Q_2 \). Thus the differential voltage gain becomes

\[A_d = \frac{g_m}{(R + \frac{1}{g_m}) \left(\frac{1}{R} + \frac{1}{R} \right)} \]

(7.180)

which can be very large. Further examples of improved-performance differential amplifiers will be studied in Chapter 9.

EXERCISE

7.6 FREQUENCY RESPONSE OF THE DIFFERENTIAL AMPLIFIER

In this section we study the frequency response of the differential amplifier. We will consider the variation with frequency of both the differential gain and the common-mode gain and hence of the CMRR. We will rely heavily on the study of frequency response of single-ended amplifiers presented in Chapter 6. Also, we will only consider MOS circuits; the bipolar case is a straightforward extension, as we saw on a number of occasions in Chapter 6.

7.6.1 Analysis of the Resistively Loaded MOS Amplifier

We begin with the basic, resistively loaded MOS differential pair shown in Fig. 7.36(a). Although we are showing a dc bias voltage \(V_{ds} \) at its gate, usually \(Q \) is part of a current mirror. This detail, however, is of no consequence to our present needs. Most importantly, we are interested in the total impedance between node \(S \) and ground, \(Z_{ss} \). As we shall shortly see, this impedance plays a significant role in determining the common-mode gain and the CMRR of the differential amplifier. Resistance \(R_{ss} \) is simply the output resistance of current source \(Q \). Capacitance \(C_{ss} \) is the total capacitance between node \(S \) and ground and includes \(C_{gd} \) and \(C_{ds} \) of \(Q \), as well as \(C_{gd} \) and \(C_{ds} \). This capacitance can be significant, especially if wide transistors are used for \(Q \) and \(Q \).

The differential half-circuit shown in Fig. 7.36(b) can be used to determine the frequency dependence of the differential gain \(A_d(V) \). Indeed the gain function \(A_d(V) \) of the differential amplifier will be identical to the transfer function of the common-source amplifier. We studied the frequency response of the common-source amplifier at great length in Section 6.6 and will not repeat this material here.
as we have seen in Section 7.2, \(V_{ocm} / V_{icm} \) still plays a major role in determining the common-mode gain. To be specific, consider what happens when the output is taken differentially and there is a mismatch \(\Delta R_D \) between the two drain resistances. The resulting common-mode gain was found in Section 7.2 to be (Eq. 7.51)

\[
A_{cm} = \frac{R_D}{2R_{SS}} \left(\frac{\Delta R_D}{R_D} \right) \tag{7.181}
\]

which is simply the product of \(V_{ocm} / V_{icm} \) and the per-unit mismatch \(\Delta R_D / R_D \). Similar expressions can be found for the effects of other circuit mismatches. The important point to note is that the factor \(R_D / (2R_{SS}) \) is always present in these expressions. Thus, the frequency dependence of \(A_{cm} \) can be obtained by simply replacing \(R_{SS} \) by \(Z_{SS} \) in this factor. Doing so for the expression in Eq. (7.181) gives

\[
A_{cm}(s) = \frac{R_D}{2R_{SS}} \left(\frac{\Delta R_D}{R_D} \right) \tag{7.182}
\]

from which we see that \(A_{cm} \) acquires a zero on the negative real-axis of the s-plane with frequency \(\omega_z \).

\[
\omega_z = \frac{1}{C_{SS} R_{SS}} \tag{7.183}
\]

or in hertz,

\[
f_z = \frac{\omega_z}{2 \pi} = \frac{1}{2 \pi C_{SS} R_{SS}} \tag{7.184}
\]

As mentioned above, usually \(f_z \) is much lower than the frequencies of the other poles and zeros. As a result, the common-mode gain increases at the rate of +6 dB/octave (20 dB/decade) starting at a relatively low frequency, as indicated in Fig. 7.37(a). Of course, \(A_{cm} \) drops off at high frequencies because of the other poles of the common-mode half-circuit. It is, however, \(f_z \) that is significant, for it is the frequency at which the CMRR of the differential amplifier begins to decrease, as indicated in Fig. 7.37(c). Note that if both \(A_D \) and \(A_{cm} \) are expressed and plotted in dB, then CMRR in dB is simply the difference between \(A_D \) and \(A_{cm} \).

Although in the foregoing we considered only the common-mode gain resulting from an \(R_D \) mismatch, it should be obvious that the results apply to the common-mode gain resulting from any other mismatch. For instance, it applies equally well to the case of a \(g_m \) mismatch, modifying Eq. 7.64 by replacing \(R_{SS} \) by \(Z_{SS} \), and so on.

Before leaving this section, it is interesting to point out an important trade-off found in the design of the current-source transistor \(Q_s \). In order to operate this current source with a small \(V_{DS} \) (to conserve the already low \(V_{DD} \)), we desire to operate the transistor at a low overdrive voltage \(V_{ov} \). However, this means using a large \(W/L \) ratio (i.e., a wide transistor). This in turn increases \(C_{SS} \) and hence lowers \(f_z \) with the result that the CMRR deteriorates (i.e., decreases) at a relatively low frequency. Thus there is a trade-off between the need to reduce the dc voltage across \(Q_s \) and the need to keep the CMRR reasonably high at higher frequencies.

To appreciate the need for high CMRR at higher frequencies, consider the situation illustrated in Fig. 7.38: We show two stages of a differential amplifier whose power-supply voltage \(V_{DD} \) is corrupted with high-frequency noise. Since the quiescent voltage at each of
FIGURE 7.38 The second stage in a differential amplifier is relied on to suppress high-frequency noise injected by the power supply of the first stage, and therefore must maintain a high CMRR at higher frequencies.

the drains of \(Q_2 \) and \(Q_3 \) is \(V_{DD} - (1/2)R_D \), we see that \(V_{D1} \) and \(V_{D2} \) will have the same high-frequency noise as \(V_{DD} \). This high-frequency noise then constitutes a common-mode input signal to the second differential stage, formed by \(Q_3 \) and \(Q_4 \). If the second differential stage is perfectly matched, its differential output voltage \(V_0 \) should be free of high-frequency noise. However, in practice there is no such thing as perfect matching and the second stage will have a finite common-mode gain. Furthermore, because of the zero formed by \(R_{ss} \) and \(C_{ss} \) of the second stage, the common-mode gain will increase with frequency, causing some of the noise to make its way to \(V_0 \). With careful design, this undesirable component of \(V_0 \) can be kept small.

EXERCISE 7.16 The differential amplifier specified in Exercise 7.15 has \(R_{ss} = 25 \text{ k} \text{Ω} \) and \(C_{cc} = 0.4 \text{ pF} \). Find the 3-dB frequency of the CMRR.

Ans. 15.9 kHz

7.6.2 Analysis of the Active-Loaded MOS Amplifier

We next consider the frequency response of the current-mirror-loaded MOS differential pair circuit studied in Section 7.5. The circuit is shown in Fig. 7.39(a) with two capacitances indicated: \(C_m \) which is the total capacitance at the input node of the current mirror, and \(C_L \) which is the total capacitance at the output node. Capacitance \(C_m \) is mainly formed by \(C_{gs3} \) and \(C_{gs4} \) but also includes \(C_m/g_m \), \(C_{gd2} \), and \(C_{gd3} \).

\[
C_m = C_{gs3} + C_{gs4} + C_{gd2} + C_{gd3} + C_m/g_m
\]

(7.185)

These two capacitances primarily determine the dependence of the differential gain of this amplifier on frequency. As indicated in Fig. 7.39(a) the input differential signal \(V_{id} \) is applied in a balanced fashion. Transistor \(Q_3 \) will conduct a drain current signal of \(g_m V_{id}/2 \), which flows through the diode-connected transistor \(Q_1 \) and thus through the parallel combination of \((1/g_m) \) and \(C_m \), where we have neglected the resistances \(r_0 \) and \(r_03 \) which are much larger than \(1/g_m \), thus

\[
V_{o3} = -sC_m V_{id}/2 \quad (7.186)
\]

In response to \(V_{o3} \), transistor \(Q_4 \) conducts a drain current \(I_d4 \).

\[
I_d4 = -s_{as} V_{o3} = \frac{s_{as} s_{ds} V_{id}^2}{s_{ds} + s_{cm}}
\]

(7.187)

Since \(s_{as} = s_{ds} \), this equation reduces to

\[
I_d4 = \frac{s_{as} V_{id}^2}{1 + s_{as}}
\]

(7.188)

Now, at the output node the total output current is

\[
I_o = I_d4 + I_d2
\]

\[
= \frac{s_{as} V_{id}^2}{1 + s_{as}} + s_{ds} V_{id}/2
\]

(7.189)
We recognize the first factor on the right-hand side as the dc gain of the amplifier. The second factor indicates that \(C_1 \) and \(R_1 \) form a pole with frequency \(f_{P1} \). Thus, if the output is short-circuited to ground and the short-circuit transconductance \(g_m' \) is plotted versus frequency, the plot will have the shape shown in Fig. 7.39(a).

Solution

Since \(I = 0.2 \) mA, each of the four transistors is operating at a bias current of 100 \(\mu \)A. Thus, for \(Q_1 \) and \(Q_2 \),

\[
V_{OV} = 0.16 \text{ V}
\]

which leads to

\[
V_{OV1} = 0.16 \text{ V}
\]

\[
I_{OV1} = \frac{2 \times 0.1}{0.16} = 1.25 \text{ mA/V}
\]

\[
r_{ov1} = r_{ov2} = 5 \times 0.36 = 18 \text{ kΩ}
\]

For \(Q_3 \) and \(Q_4 \) we have

\[
100 = \frac{1}{2} \times 387 \times \frac{7.2}{0.36}
\]

Thus,

\[
V_{OV3} = 0.34 \text{ V}
\]

and

\[
I_{OV3} = \frac{2 \times 0.1}{0.34} = 0.6 \text{ mA/V}
\]

\[
r_{ov3} = r_{ov4} = 6 \times 0.36 = 21.6 \text{ kΩ}
\]

The low-frequency value of the differential gain can be determined from

\[
A_v = g_m'(r_{ov1}) g_m'
\]

where \(g_m' \) is double the value available without the current mirror. Now, at high frequencies \(C_1 \) acts as a short circuit causing \(V_{OV1} \) to be zero and hence \(I_{OV} \) will be zero, reducing \(G_m \) to \(f_{P2}/2 \). Thus, the output is short-circuited to ground and the short-circuit transconductance \(g_m' \) is plotted versus frequency, the plot will have the shape shown in Fig. 7.39(a).
The low-frequency value of the common-mode gain can be determined from Eq. (7.153) as
\[
A_{cm} = -\frac{1}{2g_{m} R_g}
\]
\[
= -\frac{1}{2 \times 0.6 \times 25} = -0.033 \text{ V/V}
\]
The low-frequency value of the CMRR can now be determined as
\[
\text{CMRR} = \frac{A_{dc}}{A_{cm}} = \frac{12.3}{0.033} = 369
\]
or,
\[
20 \log 369 = 51.3 \text{ dB}
\]
To determine the poles and zero of \(A_d\) we first compute the values of the two pertinent capacitances \(C_d\) and \(C_z\). Using Eq. (7.185),
\[
C_d = C_{ds} + C_{ds} + C_{ds} + C_{ds} + C_{ds} + C_{ds} + C_{ds}
\]
\[
= 5 + 5 + 5 + 20 + 20 = 55 \text{ fF}
\]
Capacitance \(C_z\) is found using Eq. (7.186) as
\[
C_z = C_{gs} + C_{gds} + C_{gds} + C_{gds} + C_{gds} + C_{gds} + C_{gds}
\]
\[
= 5 + 5 + 5 + 5 + 25 = 45 \text{ fF}
\]
Now, the poles and zero of \(A_d\) can be found from Eqs. (7.192) to (7.194) as
\[
f_1 = \frac{1}{2\pi C_d R_a}
\]
\[
= \frac{1}{2\pi \times 55 \times 10^{-12} (18 \times 21.6) 10^3}
\]
\[
= 360 \text{ MHz}
\]
\[
f_2 = \frac{2g_{m}}{2\pi C_a}
\]
\[
= \frac{0.6 \times 10^{-7}}{2 \pi \times 55 \times 10^{-12}} = 1.74 \text{ GHz}
\]
\[
f_{d} = 2f_3 = 3.5 \text{ GHz}
\]
Thus the dominant pole is that produced by \(C_d\) at the output node. As expected, the pole and zero of the mirror are at much higher frequencies.

The dominant pole of the CMRR is at the location of the common-mode-gain zero introduced by \(C_d\) and \(R_g\), that is,
\[
f_d = \frac{1}{2\pi C_d R_g}
\]
\[
= \frac{1}{2\pi \times 0.2 \times 10^{-12} \times 25 \times 10^4}
\]
\[
= 31.8 \text{ MHz}
\]
Thus, the CMRR begins to decrease at 31.8 MHz, which is much lower than \(f_1\).

7.7 MULTISTAGE AMPLIFIERS

Practical transistor amplifiers usually consist of a number of stages connected in cascade. In addition to providing gain, the first (or input) stage is usually required to provide a high input resistance in order to avoid loss of signal level when the amplifier is fed from a high-resistance source. In a differential amplifier the input stage must also provide large common-mode rejection. The function of the middle stages of an amplifier cascade is to provide the bulk of the voltage gain. In addition, the middle stages provide such other functions as the conversion of the signal from differential mode to single-ended mode (unless, of course, the amplifier output also is differential) and the shifting of the dc level of the signal in order to allow the output signal to swing both positive and negative. These two functions and others will be illustrated later in this section and in greater detail in Chapter 9.

Finally, the main function of the last (or output) stage of an amplifier is to provide a low output resistance in order to avoid loss of gain when a low-valued load resistance is connected to the amplifier. Also, the output stage should be able to supply the current required by the load in an efficient manner—that is, without dissipating an undue large amount of power in the output transistors. We have already studied one type of amplifier configuration suitable for implementing output stages, namely, the source follower and the emitter follower. It will be shown in Chapter 14 that the source and emitter followers are not optimum from the point of view of power efficiency and that other, more appropriate circuit configurations exist for output stages that are required to supply large amounts of output power. In fact, we will encounter some such output stages in the op-amp circuit examples studied in Chapter 9.

To illustrate the circuit structure and the method of analysis of multistage amplifiers, we will present two examples: a two-stage CMOS op amp and a four-stage bipolar op amp.

7.7.1 A Two-Stage CMOS Op Amp

Figure 7.40 shows a popular structure for CMOS op amps known as the two-stage configuration. The circuit utilizes two power supplies, which can range from ±2.5 V for the 0.5-μm technology down to ±0.9 V for the 0.18-μm technology. A reference bias current \(I_{BBQ}\) is generated either externally or using on-chip circuits. One such circuit will be discussed shortly. The current mirror formed by \(Q_1\) and \(Q_2\) supplies the differential pair \(Q_3 - Q_4\) with bias current. The \(W/L\) ratio of \(Q_1\) is selected to yield the desired value for the input-stage bias current \(I_e\) for each of \(Q_1\) and \(Q_2\). The input differential pair is actively loaded with the current mirror formed by \(Q_1\) and \(Q_2\). Thus the input stage is identical to that studied in Section 7.5 (except that here the differential pair is implemented with PMOS transistors and the current mirror with NMOS).

The second stage consists of \(Q_3\), which is a common-source amplifier actively loaded with the current-source transistor \(Q_4\). A capacitor \(C_1\) is included in the negative-feedback path of the second stage. Its function is to enhance the Miller effect already present in \(Q_3\) through the action of its \(C_{gds}\) and thus provide the op amp with a dominant pole. By the careful placement of...
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

rather high. This circuit, therefore, is not suitable for driving low-impedance loads.

The dc open-loop gain of the op amp is the product of A_v and A_o.

4 circuits where the op amp needs to drive only a small capacitive load, for example, in switched-capacitor circuits (Chapter 12). The simplicity of the circuit results in an op amp of reasonable quality realized in a very small chip area.

Voltage Gain The voltage gain of the first stage was found in Section 7.5 to be given by

$$A_1 = -g_{m1}(r_{o1} || r_{in})$$

(7.197)

where g_{m1} is the transconductance of each of the transistors of the first stage, that is, Q_1 and Q_2.

The second stage is an actively loaded common-source amplifier whose low-frequency voltage gain is given by

$$A_2 = -g_{m2}(r_{o2} || r_{in})$$

(7.198)

The dc open-loop gain of the op amp is the product of A_1 and A_2.

\ast Readers who have studied Chapter 2 will recall that commercially available op amps with this uniform gain rolloff of –20 dB/decade are said to be internally compensated. Here “internal” means that the frequency compensation network is internal to the package (i.e., on chip) and need not be supplied externally by the user. The μA741 op amp is an example of an internally compensated op amp.

Consider the circuit in Fig. 7.40 with the following device geometries (in μm).

<table>
<thead>
<tr>
<th>Transistor</th>
<th>W/L</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>Q_4</th>
<th>Q_5</th>
<th>Q_6</th>
<th>Q_7</th>
<th>Q_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/L</td>
<td>20/0.8</td>
<td>20/0.8</td>
<td>5/0.8</td>
<td>5/0.8</td>
<td>40/0.8</td>
<td>40/0.8</td>
<td>40/0.8</td>
<td>40/0.8</td>
<td></td>
</tr>
</tbody>
</table>

Let $I_{Q1} = 90 \mu$A, $V_{CC} = 0.7 \text{ V}$, $V_{EE} = 0.8 \text{ V}$, $\mu_{C1} = 160 \mu \text{A/V}^2$, $\mu_{C2} = 40 \mu \text{A/V}^2$. For all devices $g_{m1} = 40 \mu \text{A/V}^2$, g_{m2}, and r_o. Also, find A_1, A_2, the dc open-loop voltage gain, the input common-mode range, and the output voltage range. Neglect the effect of V_{EE} on bias current.

Solution Refer to Fig. 7.40. Since Q_1 and Q_2 are matched, $I = I_{Q1}$. Thus Q_1, Q_2, Q_3, and Q_4 each conduct a current equal to $I/2 = 45 \mu$A. Since Q_2 is matched to Q_3, the current in Q_3 is equal to $I_{Q3} = 90 \mu$A. Finally, Q_4 conducts an equal current of 90μA.

With I_{Q1} of each device known, we use

$$I_{Q1} = \frac{(\mu_{C1})(W/L)V_{DD}^{\text{ref}}}{K_{T}}$$

to determine V_{GS} for each transistor. Then we find V_{GS} from $V_{GS} = |V_{GS}| = |V_{GS}|$. The results are given in Table 7.1.

The transconductance of each device is determined from

$$g_{m} = 2I_{Q1}/|V_{GS}|$$

The value of r_o is determined from

$$r_o = |V_{GS}|/I_{Q1}$$

The resulting values of g_{m} and r_o are given in Table 7.1.

The voltage gain of the first stage is determined from

$$A_1 = \frac{g_{m1}(r_{o1} || r_{in})}{g_{m1}(r_{o1} || r_{in})} = -0.3(222 || 222) = -33.3 \text{ V/V}$$

The voltage gain of the second stage is determined from

$$A_2 = \frac{g_{m2}(r_{o2} || r_{in})}{g_{m2}(r_{o2} || r_{in})} = -0.6(111 || 111) = -33.3 \text{ V/V}$$

<table>
<thead>
<tr>
<th>I_{Q1}(A)</th>
<th>V_{GS1}(V)</th>
<th>V_{GS2}(V)</th>
<th>V_{GS3}(V)</th>
<th>V_{GS4}(V)</th>
<th>g_{m1}</th>
<th>g_{m2}</th>
<th>r_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

TABLE 7.1

7.8 MULTISTAGE AMPLIFIERS
Thus the overall dc open-loop gain is

\[A_v = A_1 A_2 = (-33.3) \times (-33.3) = 1109 \text{ V/V} \]

or

\[20 \log 1109 = 61 \text{ dB} \]

The lower limit of the input common-mode range is the value of input voltage at which \(Q_1 \) and \(Q_2 \) leave the saturation region. This occurs when the input voltage falls below the voltage at the drain of \(Q_2 \) by \(V_{02} \) volts. Since the drain of \(Q_2 \) is at \(-2.5 + 1 = -1.5 \) V, then the lower limit of the input common-mode range is \(-2.3 \) V.

The upper limit of the input common-mode range is the value of input voltage at which \(Q_1 \) leaves the saturation region. Since \(Q_2 \) operates in saturation, the voltage across it (i.e., \(V_{02} \)) should be at least equal to the overdrive voltage at which it is operating (i.e., \(0.3 \) V), the highest voltage permitted at the drain of \(Q_2 \) should be \(-2.2 \) V. It follows that the highest value of \(V_{02} \) should be

\[V_{02} = -2 -1 + 1.1 = 1.1 \text{ V} \]

The highest allowable output voltage is the value at which \(Q_1 \) leaves the saturation region, which is \(V_{01} - V_{DS} = -2.5 - 0.3 = 2.2 \) V. The lowest allowable output voltage is the value at which \(Q_1 \) leaves saturation, which is \(-V_{DS} + V_{DS} = -2.5 + 0.3 = -2.2 \) V. Thus, the output voltage range is \(-2.2 \) V to \(+2.2 \) V.

Input Offset Voltage

The device mismatches inevitably present in the input stage give rise to an input offset voltage. The components of this input offset voltage can be calculated using the methods developed in Section 7.4.1. Because device mismatches are random, the resulting offset voltage is referred to as a random offset. This is to distinguish it from another type of input offset voltage that can be present even if all appropriate devices are perfectly matched. This predictable or systematic offset can be minimized by careful design. Although it occurs also in BJT op amps, and we have encountered it in Section 7.5.5, perfect matching is not possible. This predictable or systematic offset can be minimized by careful design. Although it occurs also in BJT op amps, and we have encountered it in Section 7.5.5,

Thus the overall open-loop gain is

\[A_v = A_1 A_2 = (-33.3) \times (-33.3) = 1109 \text{ V/V} \]

or

\[20 \log 1109 = 61 \text{ dB} \]

The lower limit of the input common-mode range is the value of input voltage at which \(Q_1 \) and \(Q_2 \) leave the saturation region. This occurs when the input voltage falls below the voltage at the drain of \(Q_2 \) by \(V_{02} \) volts. Since the drain of \(Q_2 \) is at \(-2.5 + 1 = -1.5 \) V, then the lower limit of the input common-mode range is \(-2.3 \) V.

The upper limit of the input common-mode range is the value of input voltage at which \(Q_1 \) leaves the saturation region. Since \(Q_2 \) operates in saturation, the voltage across it (i.e., \(V_{02} \)) should be at least equal to the overdrive voltage at which it is operating (i.e., \(0.3 \) V), the highest voltage permitted at the drain of \(Q_2 \) should be \(-2.2 \) V. It follows that the highest value of \(V_{02} \) should be

\[V_{02} = -2 -1 + 1.1 = 1.1 \text{ V} \]

The highest allowable output voltage is the value at which \(Q_1 \) leaves the saturation region, which is \(V_{01} - V_{DS} = -2.5 - 0.3 = 2.2 \) V. The lowest allowable output voltage is the value at which \(Q_1 \) leaves saturation, which is \(-V_{DS} + V_{DS} = -2.5 + 0.3 = -2.2 \) V. Thus, the output voltage range is \(-2.2 \) V to \(+2.2 \) V.

Frequency Response

To determine the frequency response of the two-stage CMOS op amp of Fig. 7.40, consider its simplified small-signal equivalent circuit shown in Fig. 7.41. Here \(G_{m1} \) is the transconductance of the input stage \((G_{m1} = g_{m1} = g_{m2}) \), \(R_1 \) is the output resistance of the first stage \((R_1 = r_{o1} \| r_{o2}) \), and \(C_1 \) is the total capacitance at the interface between the first and second stages

\[C_1 = C_{gs1} + C_{ds1} + C_{gs2} + C_{ds2} + C_{gd1} \]

where \(C_{gd1} \) is the load capacitance. Usually \(C_1 \) is much larger than the transistors' capacitances, with the result that \(C_1 \) is much larger than \(C_t \). Finally, note that in the equivalent circuit of Fig. 7.41, we have included \(C_{gd1} \) in parallel with \(C_t \). Usually, however, \(C_t \gg C_{gh} \), which is the reason we have neglected \(C_{gh} \).

EXERCISE

*7.17 Consider the CMOS op amp of Fig. 7.40 when fabricated in a 0.8-\(\mu \)m CMOS technology, for which \(\overline{W}/\overline{L} = 200 \).\(\overline{W}/\overline{L} = 200 \) for a particular design, \(V = 100 \text{ mA} \).

\(V_{DD} = V_{SS} = 5 \text{ V} \) and \(V_{DD} = 2 \text{ V} \) for a particular design, \(V = 100 \text{ mA} \).

(a) Find the (W/L) ratios of \(Q_1 \) and \(Q_2 \) so that \(I = 10 \text{ mA} \).

(b) Find the overdrive voltage \(V_{01} \), at which one of \(Q_1 \) and \(Q_2 \) is operating.

(c) Find the output resistance of the second stage \(R_2 = r_{o2} \| r_{o3} \) and \(C_2 = C_{gs2} + C_{ds2} + C_{gd2} + C_{gh} \)

(d) If \(V = 10 \text{ mA} \), find \(R_1 \), \(r_{o2} \), \(r_{o3} \) and \(C_2 \).

(e) Find the voltage gain \(A_1 \) and \(A_2 \), and the overall gain \(A_1 \).

\(A_1 = \frac{V_{DD} - V_{SS}}{V_{DD}} = \frac{1}{1000} \text{ V} \) and \(A_2 = \frac{V_{DD} - V_{SS}}{V_{DD}} = \frac{1}{1000} \text{ V} \). Hence, the overdrive voltage at which \(Q_1 \) and \(Q_2 \) are operating

\[V_{01} = 2 \text{ V} \]

\[V_{02} = V_{DD} - V_{SS} = 5 \text{ V} \]
The frequency of the dominant pole, \(p_1 \), can now be determined by equating the coefficients of the \(s^2 \) terms in the denominator of Eq. (7.204) and in Eq. (7.207) and substituting for \(V_2 \) in terms of \(V_0 \) and \(V_1 \) in Eq. (7.204). If the frequencies of the two poles are denoted as \(p_1 \) and \(p_2 \), then the denominator polynomial of the amplifier transfer function, which must be lower than \(z = p_1 \), is given by:

\[
G_{av} = \frac{V_0}{V_1} = \frac{1}{1 + s(C_1 R_1 + C_2 R_2 + C_3 R_3 + R_1 + R_2) + s^2(C_1 C_2 + C_1 C_3 + C_2 C_3)}
\]

(7.204)

First we note that for \(s = 0 \) (i.e., dc), Eq. (7.204) gives \(V_0/V_1 = (G_{av} R_1 G_{av} R_2) \), which is what we should have expected. Second, the transfer function in Eq. (7.204) indicates that the amplifier has a transmission zero at \(s = \alpha_0 \), which is determined from:

\[
G_{av} - j C_1 C_2 = 0
\]

(7.205)

Thus, \(\alpha_0 = \frac{G_{av}}{C_1} \)

(7.206)

Also, the amplifier has two poles that are the roots of the denominator polynomial of Eq. (7.204). If the frequencies of the two poles are denoted \(\alpha_{p1} \) and \(\alpha_{p2} \) then the denominator polynomial can be expressed as:

\[
D(s) = \left(1 + \frac{s}{\alpha_{p1}}\right)\left(1 + \frac{s}{\alpha_{p2}}\right) = 1 + s\left(\frac{1}{\alpha_{p1}} + \frac{1}{\alpha_{p2}}\right) + \frac{s^2}{\alpha_{p1}\alpha_{p2}}
\]

(7.207)

Now if one of the poles, say \(\alpha_{p1} \), is dominant, then \(\alpha_{p1} \ll \alpha_{p2} \) and Eq. (7.207) can be approximated by:

\[
D(s) \approx 1 + \frac{s}{\alpha_{p1}} + \frac{s^2}{\alpha_{p1}\alpha_{p2}}
\]

The frequency of the dominant pole, \(\alpha_{p1} \), can now be determined by equating the coefficients of the \(s^2 \) terms in the denominator in Eq. (7.204) and in Eq. (7.207),

\[
\frac{1}{\alpha_{p1}} = \frac{1}{C_1 R_1 + C_2 R_2 + C_3 R_3 + R_1 + R_2}
\]

(7.208)

We recognize the first term in the denominator as arising at the interface between the first and second stages. Here, \(R_1 \), the output resistance of the first stage, is interacting with the total capacitance at the interface. The latter is the sum of \(C_2 \) and the Miller capacitance \(C_1 (1 + G_{av} R_1) \), which results from connecting \(C_1 \) in the negative-feedback path of the second stage whose gain is \(G_{av} R_2 \). Now, since \(R_1 \) and \(R_2 \) are usually of comparable value, we see that the first term in the denominator will be much larger than the second and we can approximate \(\alpha_{p1} \) as:

\[
\alpha_{p1} = \frac{R_1}{C_1 (1 + G_{av} R_1)}
\]

(7.209)

A further approximation is possible because \(C_1 \) is usually much smaller than the Miller capacitance and \(G_{av} R_1 \), so, thus:

\[
\alpha_{p1} = \frac{1}{R_1 C_1 G_{av} R_2}
\]

(7.209)

The frequency of the second, non-dominant pole can be found by equating the coefficients of the \(s^2 \) terms in the denominator of Eq. (7.204) and in Eq. (7.207) and substituting for \(\alpha_{p1} \) from Eq. (7.209). The result is:

\[
\alpha_{p2} = \frac{G_{av} R_2}{C_1 (1 + C_1 C_2)}
\]

(7.210)

Since \(C_1 \ll C_2 \) and \(C_1 \ll C_3 \), \(\alpha_{p2} \) can be approximated as:

\[
\alpha_{p2} = \frac{G_{av} R_2}{C_2}
\]

(7.210)

In order to provide the op amp with a uniform gain rolloff of -20 dB/decade down to 0 dB, the value of the compensation capacitor \(C_c \) is selected so that the resulting value of \(\alpha_{p2} \) (Eq. 7.209) when multiplied by the dc gain \((G_{av} R_2) \) results in a unity gain frequency at least as high as \(\alpha_{p1} \) and \(\alpha_{p2} \). Specifically:

\[
\alpha_0 = (G_{av} R_1 G_{av} R_2) \alpha_{p1}
\]

\[
\alpha_0 = \frac{G_{av} R_2}{C_2}
\]

(7.211)

which must be lower than \(\alpha_{p2} = \frac{G_{av} R_2 C_2}{C_1} \) and \(\alpha_{p1} = \frac{G_{av} R_2 C_1}{C_2} \). We will have more to say about this point in Section 9.1.

EXERCISE

7.19 Consider the frequency response of the op amp analyzed in Example 7.3. Let \(R_1 = 0.1 \Omega \) and \(C_1 = 2 \mu F \)

Find the value of \(C_c \) that results in \(\alpha_0 = 10 \text{ MHz} \) and satisfy that \(\alpha_0 \) is lower than \(\alpha_{p1} \) and \(\alpha_{p2} \).

Ans. \(C_c = 0.1 \mu F \), \(f_0 = 20 \text{ MHz} \), \(f_0 = 4 \text{ kHz} \)

A Bias Circuit That Stabilizes \(g_{m} \). We conclude this section by presenting a bias circuit for the two-stage CMOS op amp. The circuit presented has the interesting and useful property of providing a bias current whose value is independent of both the supply voltage and the
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

Subtracting from both sides of this equation and using Eqs. (7.212) and (7.213) to replace l_2 and Q_{13} from the circuit, we see that the gate-source voltages of V_{GS13} results in

Thus, l_2 and Q_{13} as well as providing a bias line for Q_{13} and Q_{23} to provide a bias voltage for a matched diode-connected transistor is included.

This equation can be rearranged to yield

$$I_b = \frac{2}{\mu_m C_{ox}(W/L)_{11} R_g} \left(\frac{W/L}{1} \right)^2$$

(7.215)

from which we observe that I_b is determined by the dimensions of Q_{11}, and the value of R_g and by the ratio of the dimensions of Q_{11} and Q_{12}. Furthermore, Eq. (7.215) can be rearranged to the form

$$R_g = \frac{2}{\mu_m C_{ox}(W/L)_{11}} \left(\frac{W/L}{1} \right)$$

(7.216)

in which we recognize the factor $2\mu_m C_{ox}(W/L)_{11}$ as K_{11}, thus,

$$R_g = \frac{2}{\mu_m C_{ox}(W/L)_{11}} \left(\frac{W/L}{1} \right)$$

This is a very interesting result: K_{11} is determined solely by the value of R_g and the ratio of the dimensions of Q_{11} and Q_{12}. Furthermore, since g_m of a MOSFET is proportional to $I_b(W/L)$, each transistor biased by the circuit of Fig. 7.42; that is, each transistor whose bias current is derived from I_b will have a g_m value that is a multiple of g_{m11}. Specifically, the ith n-channel MOSFET will have

$$K_{11} = k_{11} \left[\frac{I_b(W/L)_{11}}{I_b(W/L)_{12}} \right]$$

and the ith p-channel device will have

$$K_{11} = k_{11} \left[\frac{I_b(W/L)_{11}}{I_b(W/L)_{12}} \right]$$

Finally, it should be noted that the bias circuit of Fig. 7.42 employs positive feedback, and thus care should be exercised in its design to avoid unstable performance. Instability is avoided by making Q_{23} wider than Q_{13}, as has already been pointed out. Nevertheless, some form of instability may still occur; in fact, the circuit can operate in a stable state in which all currents are zero. To get it out of this state, current needs to be injected into one of its nodes, to "kick start" its operation. Feedback and stability will be studied in Chapter 8.

EXERCISES

7.20 Consider the bias circuit of Fig. 7.42 for the case: $W/L_{11} = W/L_{12} = W/L_{13} = 20$, $W/L_{21} = 80$. Find the value of R_g that results in a bias current $I_b = 0.1 \mu A$. Also in a process technology having $\mu_m C_{ox} = 80 \mu m/V^2$, find the transconductance g_{m11}.

Ans. $4.27 \mu A$; $378 \mu m/V$

7.21 Design the bias circuit of Fig. 7.42 to operate with the CMOS op amp of Example 7.3. Use Q_{11} and Q_{21} as identical devices with Q_{12} having the dimensions given in Example 7.3. Transistors Q_{13}, Q_{23}, and Q_{14} are to be identical, with the same I_b as Q_{12} and Q_{22}. Transistor Q_{11} is to be four times as wide as Q_{12}. Find the required value of R_g. What is the voltage drop across R_g? Also give the values of the dc voltages at the gates of Q_{11}, Q_{12}, Q_{21}, and Q_{22}.

Ans. $1.67 \mu A$; $120 \mu V$; $1.5 \mu V$; $0.5 \mu V$; $1.4 \mu V$.
7.7.2 A Bipolar Op Amp

Our second example of multistage amplifiers is the four-stage bipolar op amp shown in Fig. 7.43. The circuit consists of four stages. The input stage is differential-in, differential-out and consists of transistors \(Q_1 \) and \(Q_2 \), which are biased by current source \(Q_3 \). The second stage is also a differential-input amplifier, but its output is taken single-endedly at the collector of \(Q_5 \). This stage is formed by \(Q_4 \) and \(Q_5 \), which are biased by the current source \(Q_6 \). Note that the conversion from differential to single-ended as performed by the second stage results in a loss of gain by a factor of 2. A more elaborate method for accomplishing this conversion was studied in Section 7.5; it involves using a current mirror as an active load.

In addition to providing some voltage gain, the third stage, consisting of the npn transistor \(Q_1 \), provides the essential function of shifting the dc level of the signal. Thus while the signal at the collector of \(Q_5 \) is not allowed to swing below the voltage at the base of \(Q_5 \) (+10 V), the signal at the collector of \(Q_1 \) can swing negatively (and positively, of course). From our study of op amps in Chapter 2 we know that the output terminal of the op amp should be capable of both positive and negative voltage swings. Therefore every op-amp circuit includes a level-shifting arrangement. Although the use of the complementary pnp transistor provides a simple solution to the level-shifting problem, other forms of level shifter exist, one of which will be discussed in Chapter 9. Furthermore, note that level-shifting is accomplished in the CMOS op amp we have been studying by using complementary devices for the two stages; that is, p-channel for the first stage and n-channel for the second stage.

The output stage of the op amp consists of emitter follower \(Q_6 \). As we know from our study of op amps in Chapter 2, the output operates ideally around zero volts. This and other features of the BJT op amp will be illustrated in Example 7.4.

In this example, we analyze the dc bias of the bipolar op-amp circuit of Fig. 7.43. Toward that end, Fig. 7.44 shows the circuit with the two input terminals connected to ground.

(a) Perform an approximate dc analysis (assuming \(B \gg 1, |V_{BE}| = 0.7 \text{ V} \), and neglecting the Early effect) to calculate the dc currents and voltages everywhere in the circuit. Note that \(Q_6 \) has four times the area of each of \(Q_3 \) and \(Q_4 \).

(b) Calculate the quiescent power dissipation in this circuit.

(c) If transistors \(Q_1 \) and \(Q_2 \) have \(eta = 100 \), calculate the input bias current of the op amp.

(d) What is the input common-mode range of this op amp?
CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

7.7 MULTISTAGE AMPLIFIERS

Solution

(a) The values of all dc currents and voltages are indicated in the circuit diagram. These values were calculated by ignoring the base current of every transistor—that is, by assuming β to be very high. The analysis starts by determining the current through the diode-connected transistor Q_2 to be 0.5 mA. Then we see that transistor Q_3 conducts 0.5 mA and transistor Q_4 conducts 2 mA. The current-source transistor Q_1 feeds the differential pair (Q_2, Q_3) with 0.5 mA. Thus each of Q_2 and Q_3 will be biased at 0.25 mA. The collectors of Q_2 and Q_3 will be at $[+15 - 0.25 \times 20] + 10 = 10$ V.

To calculate the power dissipated in the circuit in the quiescent state (i.e., with zero input signal) we simply evaluate the dc current that the circuit draws from each of the two power supplies.

Proceeding to the second differential stage formed by Q_4 and Q_3, we find the voltage at their emitters to be $[+10 - 0.7] = 9.3$ V. This differential pair is biased by the current-source transistor Q_5, which supplies a current of 2 mA; thus Q_4 and Q_5 will each be biased at 1 mA. We can now calculate the voltage at the collector of Q_4 as $[+15 - 1 \times 3] = +12$ V. This will cause the voltage at the emitter of the pnp transistor Q_3 to be $+12.7$ V, and the emitter current of Q_3 will be $0.5 \times 100 = 0.5$ mA. Thus each of Q_2 and Q_3 provides a current of 0.5 mA.

(b) The input bias current of the op amp is the average of the dc currents that flow in the two input terminals (i.e., in the bases of Q_2 and Q_3). These two currents are equal (because we have assumed matched devices); thus the bias current is given by

$$I_B = \frac{I_{25}}{2} = 2.5 \mu A$$

(c) The upper limit on the input common-mode voltage is determined by the voltage at which Q_4 and Q_4 leave the active mode and enter saturation. This will happen if the input voltage exceeds the collector voltage, which is $+10$ V, by about 0.4 V. Thus the upper limit of the common-mode range is $+10.4$ V.

The lower limit of the input common-mode range is determined by the voltage at which Q_4 leaves the active mode and thus ceases to act as a constant-current source. This will happen if the collector voltage of Q_4 falls below the voltage at its base, which is $+14.3$ V, by more than 0.4 V. It follows that the input common-mode voltage should not go lower than $+14.3 - 0.7 = +13.6$ V. Thus the common-mode range is $+14$ V to $+10.4$ V.

EXAMPLE 7.5

Use the dc bias quantities evaluated in Example 7.4 to analyze the circuit in Fig. 7.43, to determine the input resistance, the output voltage, and the output resistance.

Solution

The input differential resistance R_{id} is given by

$$R_{id} = r_{25} + r_{25}$$

The output differential resistance R_{od} is given by

$$R_{od} = r_{25} + r_{25}$$

The output resistance R_4 is given by

$$R_4 = (B + 1)(R_{id} + R_{od})$$

Since Q_4 is operating at an emitter current of 1 mA,

$$r_{25} = \frac{25}{1} = 25 \Omega$$

$$R_4 = 101 \times 2.325 = 234.8 \Omega$$
We can now find the gain A_2 of the second stage as the ratio of the total resistance in the collector circuit to the total resistance in the emitter circuit:

$$A_2 = \frac{\text{Total Collector Resistance}}{\text{Total Emitter Resistance}} = \frac{r_{e4} + r_{e5}}{r_{e6} + R_s} = \frac{50\ \Omega + 5\ \Omega}{50\ \Omega} = 1.1$$

To obtain the gain of the third stage, we refer to the equivalent circuit shown in Fig. 7.47, where R_{i4} is the input resistance of the output stage formed by Q_3. Using the resistance-reflection rule, we calculate the value of R_{i4} as

$$R_{i4} = \frac{(\beta + 1)r_{e3} + R_6}{1 + \beta} = \frac{50\ \Omega + 5\ \Omega}{1 + 10} = 303.5\ \text{k}\Omega$$

Finally, to obtain the gain A_4 of the output stage, we refer to the equivalent circuit in Fig. 7.48 and write

$$A_4 = \frac{v_{o3}}{v_{o2}} = \frac{R_o}{r_{e3} + R_s} = \frac{3000\ \text{V}}{3000 + 5} = 0.999 = 1$$

The overall voltage gain of the amplifier can then be obtained as follows:

$$A_{\text{total}} = A_1 A_2 A_3 A_4 = 10 \times 1.1 \times 2.325 \times 1 = 25.57$$

or 78.6 dB.

To obtain the output resistance R_o, we “grab hold” of the output terminal in Fig. 7.43 and look back into the circuit. By inspection, we find

$$R_o = R_e \frac{r_{e6} + R_s}{(\beta + 1)}$$

which gives

$$R_o = 152\ \text{Q}$$

EXERCISE

7.22 Use the results of Example 7.5 to calculate the overall voltage gain of the amplifier in Fig. 7.43 when it is connected to a source having a resistance of 10 k\Omega and a load of 1 k\Omega.

Ans. 4943 V/V
These factors can be easily evaluated and their values used to determine the voltage gain.

With a little practice, it is possible to carry out such an analysis very quickly, forgetting explicitly labeling the signal currents on the circuit diagram. One simply "walks through" the circuit, from input to output, or vice versa, determining the current-transmission factors one at a time, in a chainlike fashion.

Frequency Response The bipolar op-amp circuit of Fig. 7.43 is rather complex. Nevertheless, it is possible to obtain an approximate estimate of its high-frequency response. Figure 7.50(a) shows an approximate equivalent circuit for this purpose. Note that we have utilized the equivalent differential half-circuit concept, with Q3 representing the input stage and Q2 representing the second stage. We observe, of course, that the second stage is not symmetrical, and strictly speaking the equivalent half-circuit does not apply. Nevertheless, we use it as an approximation so as to obtain a quick pencil-and-paper estimate of the dominant high-frequency pole of the amplifier. More precise results can of course be obtained using computer simulation with SPICE (Section 7.8).

Examination of the equivalent circuit in Fig. 7.50(a) reveals that if the resistance of the source of signal V, is small, the high-frequency limitation will not occur at the input but rather at the interface between the first and the second stages. This is because the total capacitance at node A will be high as a result of the Miller multiplication of C_A. Also, the third stage, formed by transistor Q5, should exhibit good high-frequency response, since Q5 has a large emitter-degeneration resistance, R₃. The same is also true for the emitter-follower stage, Q2.

To determine the frequency of the dominant pole that is formed at the interface between Q2 and Q3, we show in Fig. 7.50(b) the pertinent equivalent circuit. The total resistance
We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.

EXAMPLE 7.6

SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting a SPICE simulation of the multistage differential amplifier whose dc bias was analyzed in Example 7.4 and whose small-signal performance was the subject of Example 7.5.

SPICE SIMULATION OF A MULTISTAGE DIFFERENTIAL AMPLIFIER

The Capture schematic of the multistage op-amp circuit analyzed in Examples 7.4 and 7.5 is shown in Fig. 7.51.\(^6\) Observe the manner in which the differential signal input \(V_d\) and the common-mode input voltage \(V_{CM}\) are applied. Such an input bias configuration for an op-amp circuit was presented and used in Example 2.9.
Table 7.2 SPICE Model Parameters of the Q2N3904 and Q2N3906 Discrete BJTs

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2N3904</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>6.734 fA</td>
</tr>
<tr>
<td>IKF</td>
<td>66.78 mA</td>
</tr>
<tr>
<td>CJC</td>
<td>3.638 pF</td>
</tr>
<tr>
<td>TR</td>
<td>239.5 nS</td>
</tr>
<tr>
<td>XT1</td>
<td>3</td>
</tr>
<tr>
<td>XT2</td>
<td>1.5</td>
</tr>
<tr>
<td>MJC</td>
<td>0.3085</td>
</tr>
<tr>
<td>TF</td>
<td>301.2 pF</td>
</tr>
<tr>
<td>Q2N3906</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>1.41 fA</td>
</tr>
<tr>
<td>IKF</td>
<td>80 mA</td>
</tr>
<tr>
<td>CJC</td>
<td>9.728 pF</td>
</tr>
<tr>
<td>MJC</td>
<td>0.5776</td>
</tr>
<tr>
<td>TR</td>
<td>33.42 nS</td>
</tr>
<tr>
<td>TF</td>
<td>179.3 pF</td>
</tr>
</tbody>
</table>

Table 7.3 DC Collector Currents of the Op-Amp Circuit in Fig. 7.51 as Computed by Hand Analysis (Example 7.4) and by PSpice

<table>
<thead>
<tr>
<th>Collector Currents (mA)</th>
<th>Hand Analysis (Example 7.4)</th>
<th>PSpice</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.25</td>
<td>0.281</td>
<td>-11.0</td>
</tr>
<tr>
<td>Q2</td>
<td>0.25</td>
<td>0.281</td>
<td>-11.0</td>
</tr>
<tr>
<td>Q3</td>
<td>0.5</td>
<td>0.567</td>
<td>-11.8</td>
</tr>
<tr>
<td>Q4</td>
<td>1.0</td>
<td>1.27</td>
<td>-21.3</td>
</tr>
<tr>
<td>Q5</td>
<td>1.0</td>
<td>1.21</td>
<td>-17.4</td>
</tr>
<tr>
<td>Q6</td>
<td>2.0</td>
<td>2.56</td>
<td>-20.0</td>
</tr>
<tr>
<td>Q7</td>
<td>1.0</td>
<td>1.27</td>
<td>-21.3</td>
</tr>
<tr>
<td>Q8</td>
<td>5.0</td>
<td>6.17</td>
<td>-18.9</td>
</tr>
<tr>
<td>Q9</td>
<td>0.5</td>
<td>0.48</td>
<td>+4.2</td>
</tr>
</tbody>
</table>

Q2N3906 is from Fairchild Semiconductor for the npn and pnp BJTs, respectively. The model parameters of these discrete BJTs are listed in Table 7.2 and are available in PSpice.

In PSpice, the common-mode input voltage V_{CM} of the op-amp circuit is set to 0 V (i.e., to the average of the dc power-supply voltages V_{CC} and V_{EE}) to maximize the available input signal swing. A bias-point simulation is performed to determine the dc operating point. Table 7.3 summarizes the values of the dc collector currents as computed by PSpice and as calculated by the hand analysis in Example 7.4. Recall that our hand analysis assumed β and the Early voltage V_A of the BJTs to be both infinite. However, our SPICE simulation (Example 5.21) indicates that the Q2N3906 has $\beta = 125$ at $I_C = 0.25$ mA. Furthermore, its forward Early voltage (SPICE parameter VAF) is 74 V, as given in Table 7.2. Nevertheless, we observe from Table 7.3 that the largest error in the calculation of the dc bias currents is on the order of 20%. Accordingly, our hand analysis (Example 7.4) is justified.

To compute the large-signal differential transfer characteristic of the op-amp circuit, we perform a dc-analysis simulation in PSpice with the differential voltage input V_{δ} swept over the range $-V_{CC} \to +V_{CC}$ and we plot the corresponding output voltage V_{OUT}. Figure 7.52(a) shows the large-signal differential transfer characteristic of the op-amp circuit in Fig. 7.51. The common-mode input voltage V_{CM} is set to 0 V. (b) An expanded view of the transfer characteristic in the high-gain region.

Figure 7.52

(a) The large-signal differential transfer characteristic of the op-amp circuit in Fig. 7.51. The common-mode input voltage V_{CM} is set to 0 V. (b) An expanded view of the transfer characteristic in the high-gain region.
resulting dc transfer characteristic. The slope of this characteristic (i.e., $\frac{dV_{\text{OUT}}}{dV_d}$) corresponds to the differential gain of the amplifier. Note that, as expected, the high-gain region is in the vicinity of $V_d = 0 \text{ V}$. However, the resolution of the input-voltage axis is too gross to yield much information about the details of the high-gain region. Therefore, to examine this region more closely, the dc analysis is repeated with V_d swept over the range $-5 \text{ mV} \rightarrow +5 \text{ mV}$ at increments of $10 \mu\text{V}$. The resulting differential dc transfer characteristic is plotted in Fig. 7.52(b).

Accordingly, the linear region of the large-signal differential characteristic is bounded approximately by $V_d = -1.5 \text{ mV}$ and $V_d = +6.5 \text{ mV}$ at $V_d = 0$ in a linear fashion. Thus, the output voltage swing for this amplifier is between -15 V and $+10 \text{ V}$, a rather symmetrical range. A rough estimate for the differential gain of this amplifier can be obtained from the boundaries of the linear region as $A_d = \left[10 \left(-15\right)\right] \text{ V}/\left(0.5 \left(-15\right)\right] \text{ mV} = 12.5 \times 10^3 \text{ V/V}$. We also observe from Fig. 7.52(b) that $V_d = +260 \mu\text{V}$ when $V_{\text{OUT}} = 0$. Therefore, the amplifier has an input offset voltage V_{IN} of $+260 \mu\text{V}$ (by convention, the negative value of the x-axis intercept of the large-signal differential transfer characteristic). This corresponds to an output offset voltage of $A_d V_{\text{IN}} = \left(12.5 \times 10^3\right) \left(260 \mu\text{V}\right) = 3.25 \text{ V}$, which is close to the value found through the bias-point simulation. It should be emphasized that this offset voltage is inherent in the design and is not the result of component or device mismatches. Thus, it is usually referred to as a systematic offset.

Next, to compute the frequency response of the op-amp circuit and to measure its differential gain A_d and its 3-dB frequency f_b in PSpice, we set the differential input voltage V_d to be a 1-V ac signal (with 0-V dc level), perform an ac-analysis simulation, and plot the output voltage magnitude $|V_{\text{OUT}}|$ versus frequency. Figure 7.53(a) shows the resulting frequency response. Accordingly, A_d is close to the value estimated using the large-signal differential transfer characteristic. An approximate value of f_b can also be obtained using the expressions derived in Section 7.6.2. Specifically,

$$f_b = \frac{1}{2 \pi R_c C_c} \quad (7.217)$$

where

$$C_c = C_{d2} + C_{d3} + C_{d3} (1 + \frac{r_d}{r_{d2} + (\beta + 1) R_1})$$

and

$$R_c = R_c || r_{d2} || r_{d3}$$

The values of the small-signal parameters as computed by PSpice can be found in the output file of a bias-point (or an ac-analysis) simulation. Using these values results in $C_c = 338 \text{ pF}$, $R_c = 2.91 \text{ k}\Omega$, and $f_b = 161.7 \text{ kHz}$. However, this approximate value of f_b is much smaller than the value computed by PSpice. The reason for this disagreement is that the following expression for f_b was derived in Section 7.6.2 using the equivalent differential half-circuit concept. However, the concept is accurate only when it is applied to a symmetrical circuit. The op-amp circuit in Fig. 7.51 is not symmetrical because the second gain stage formed by the differential pair Q_4, Q_5 has a load resistor R_1 in the collector of Q_5 only. To verify that the expression for f_b in Eq. (7.217) gives a close approximation for f_b in the case of a symmetrical circuit, we insert a resistor R_1' (whose size is equal to R_1 in the collector of Q_5. Note that this will only have a minor effect on the dc operating point. The op-amp circuit with Q_5 having a collector resistor R_1' is then simulated in PSpice. Figure 7.53(b) shows the resulting frequency response of this symmetrical op-amp circuit.
where \(f_H = 155.7 \, \text{kHz} \). Accordingly, in the case of a perfectly symmetric op-amp circuit, the value of \(f_H \) in Eq. (7.217) closely approximates the value computed by PSpice. Comparing the frequency responses of the nonsymmetric (Fig. 7.53a) and the symmetric (Fig. 7.53b) op-amp circuits, we note that the 3-dB frequency of the op-amp drops from 256.9 kHz to 155.7 kHz when resistor \(R_3 \) is inserted in the collector of \(Q_4 \) to make the op-amp circuit symmetrical. This is because, with a resistor \(R_3 \), the collector of \(Q_4 \) is no longer at signal ground and, hence, \(C_{oa} \) experiences the Miller effect. Consequently, the high-frequency response of the op-amp circuit is degraded.

Observe that in the preceding ac-analysis simulation, owing to the systematic offset inherent in the design, the op-amp circuit is operating at an output dc voltage of 3.62 V. However, in an actual circuit implementation (with \(V_{CM} = 0 \)), negative feedback is employed (see Chapters 2 and 8) and the output dc voltage is stabilized at zero. Thus, the small-signal performance of the op-amp circuit can be more accurately simulated by biasing the circuit so as to force operation at this level of output voltage. This can be easily done by applying a differential dc input of \(-V_{OS} \). Superimposed on this dc input, we can apply an ac signal to perform an ac-analysis simulation for the purpose of, for example, computing the differential gain and the 3-dB frequency.

Finally, to compute the input common-mode range of the op-amp circuit in Fig. 7.51, we perform a dc-analysis simulation in PSpice with the input common-mode voltage swept over the range \(-V_{EE} \) to \(V_{CC} \), while maintaining \(V_i \) constant at \(-V_{OS} \) in order to cancel the output offset voltage (as discussed earlier) and, thus, prevent premature saturation of the BJTs. The corresponding output voltage \(V_{OUT} \) is plotted in Fig. 7.54(a). From this common-mode dc transfer characteristic, we find that the amplifier behaves linearly over the \(V_{OUT} \) range \(-14.1 \, \text{V} \) to \(+8.9 \, \text{V} \), which is therefore the input common-mode range. In Example 7.4, we noted that the upper limit of this range is determined by \(Q_1 \) and \(Q_2 \) saturating, whereas the lower limit is determined by \(Q_3 \) saturating. To verify this assertion, we requested PSpice to plot the values of the collector-base voltages of these BJTs versus the input common-mode voltage \(V_{CM} \). The results are shown in Fig. 7.54(b), from which we note that our assertion is indeed correct (recall that an npn BIT enters its saturation region when its base-collector junction becomes forward biased, i.e., \(V_{BC} \geq 0 \)).

Summary

- The differential-pair or differential-amplifier configuration is the most widely used building block in analog IC design. The input stage of every op amp is a differential amplifier.
- There are two reasons for preferring differential to single-ended amplifiers: Differential amplifiers are insensitive to interference, and they do not need bypass and coupling capacitors.
- For a MOS (bipolar) pair biased by a current source \(I \), each device operates at a drain (collector, assuming \(a = 1 \)) current of \(I/2 \) and a corresponding overdrive voltage \(V_{ov} \) (analog in bipolar). Each device has \(g_m = I/V_{ov} \) (analog to bipolar) and \(r_o = |V_{BC}|/(I/2) \).
7.1 For an NMOS differential pair with a common-mode voltage V_{CM} applied, as shown in Fig. 7.2, let $V_{DS} = V_{DD} = 2.5 V$, $V_{LS} = 2.3 mV$; $I_{N1} = 0.7 V / 0.2 mA$, $R_{m} = 5 k\Omega$, and neglect channel-length modulation.

(a) Find V_{GS1} and V_{GS2} for each transistor.
(b) For $V_{GS1} = 0$, find I_{D1}, I_{D2}, V_{DS}, and V_{GS2}.
(c) Repeat (b) for $V_{GS2} = 0$.
(d) Repeat (a) for $V_{GS1} = 1$.
(e) What is the maximum value of V_{GS2} for which Q_1 and Q_2 remain in saturation?
(f) If current source I_f requires a minimum voltage of 0.3 V to operate properly, what is the lowest value allowed for V_{GS2} and hence for I_f?

7.2 For the PMOS differential amplifier shown in Fig. 7.2 let $V_{DD} = -0.9 V$ and $k'/W/L = 1.35 mV/nA$. Neglect channel-length modulation.

(a) For $V_{GH} = 0 V$, find V_{OL} and V_{OH} for each of Q_1 and Q_2. Also find V_{OL} and V_{OH}.
(b) If the current source requires a minimum voltage of 0.5 V, find the input common-mode range.

7.3 For the differential amplifier specified in Problem 7.1 let $\mu_{n1} = 0$ and $V_{DS} = 0$. Find the value of I_{D2} that corresponds to each of the following situations:

(a) $V_{GS1} = 0.1 mA$; (b) $I_{D1} = 0.15 mA$ and $\mu_{n1} = 0.05 mA$; (c) $I_{D1} = 0.2 mA$ and $\mu_{n1} = 0$ (output is cut off).

7.4 For the differential amplifier specified in Problem 7.2, let $I_{D2} = 0$ and $\mu_{n2} = 0$. Find the range of I_{D2} needed to steer the bias current from one side of the pair to the other.

7.5 Consider the differential amplifier specified in Problem 7.1 with I_f grounded and $V_{GS1} = V_{GS2}$. Let V_{GS} be adjusted to the value that causes $I_{D1} = 0.11 mA$ and $V_{GS2} = 0.09 mA$. Find the corresponding values of V_{DD}, V_{GS2}, V_{DS}, and hence V_{GS1}. What is the difference output voltage $V_{OL} - V_{OH}$? What is the gain voltage V_{OL}/V_{OL}? What value of V_{OL} results in $V_{OL} = 0.09 mA$ and $V_{OH} = 0.11 mA$?

7.6 The table providing the answers to Exercise 7.3 shows that as the maximum input signal to be applied to the differential pair is increased, linearity is maintained at the same level by operating at a higher V_{DD}. If $I_{D2} = 0.15 mA$, use the data in the table to determine the required V_{DD} and the corresponding values of I_{f} and μ_{n2}.

7.7 Use Eq. (7.23) to show that if the term involving $\mu_{n1}I_{D1}$ is to be kept to a maximum value of 4 then the maximum possible fractional change in the transistor current is given by

$$\frac{\Delta I_{D1}}{I_{D1}} = -2k(V_{OL} - V_{OL})$$

and the corresponding maximum value of V_{OL} is given by

$$V_{OL_{min}} = \frac{-2k}{k'}V_{OL}$$

Evaluate both expressions for $k = 0.01, 0.1$, and 0.2.

7.8 An NMOS differential amplifier utilizes a bias current of 200 mA. The devices have $V_{OL} = 0.8 V$, $W = 100 m\Omega$, and $L = 1.5 \mu m$, in a technology for which $f_{T} = 40 m\Omega^2 m$. Find V_{OL}, V_{OH}, and the value of V_{DD} for full-current switching. What value should the bias current be changed in order to double the value of V_{OH} for full-current switching?

7.9 Design the MOS differential amplifier of Fig. 7.5 to operate at $V_{DD} = 0.2 V$ and to provide a transconductance g_{m} of 1 mm/A. Specify the W/L ratios and the bias current. The technology available provides $V_{OL} = 0.8 V$ and $\mu_{n} = 90 m\Omega V^{-1}$.

7.10 Consider the NMOS differential pair illustrated in Fig. 7.5 under the conditions that $I = 100 mA$, using FETs for which $k'W/2L = 400 m\Omega m$, and $V_{OL} = 1 V$. What is the voltage on the common-source connection for $V_{OL} = 0$? What is the relation between the drain currents in each
FIGURE P7.13

FIGURE P7.14

7.15 An NMOS differential pair is biased by a current source I = 0.2 mA having an output resistance R = 10 kΩ. The amplifier has a drain resistance R = 10 kΩ, using transistors with W/L = 3 mΩ/V², and rₑ is large.

(a) If the output is taken single-endedly, find IₒD1, IₒD2, and CMRR.
(b) If the output is taken differentially and there is a 1% mismatch between the drain resistances, find |IₒD1|/|IₒD2| and CMRR.

7.16 For the differential amplifier shown in Fig. P7.12, let Q1 and Q2 have kᵣ(2 V) = 3.5 mV/², and assume that the bias current source has an output resistance of 10 kΩ.

Find VₒD, IₒD1, IₒD2, and the CMRR (in dB) obtained with the output taken differentially. The drain resistances are known to have a mismatch of 2%.

7.17 The differential amplifier in Fig. P7.17 utilizes a resistor R to establish a 1 mA dc bias current. Here, the amplifier uses a single 5-V supply and thus needs a dc bias circuit that establishes an appropriate dc voltage at the source of Q1 and Q2.

(a) Find the required value of R, that results in a differential gain of 8 V/V.
(b) Find the value of R, that results in a differential gain of 8 V/V.
(c) Find the value of R, that results in a differential gain of 8 V/V.
(d) Determine the dc voltage at the drains.
(e) Determine the common-mode gain for VₒD, where VₒD = 0 V. Assume that the differential amplifier shown in Fig. 7.17 utilizes a resistor R to establish a 1 mA dc bias current.

(a) Find the required value of R, that results in a differential gain of 8 V/V.
(b) Find the value of R, that results in a differential gain of 8 V/V.
(c) Find the value of R, that results in a differential gain of 8 V/V.
(d) Determine the dc voltage at the drains.
(e) Determine the common-mode gain for VₒD, where VₒD = 0 V. Assume that the differential amplifier shown in Fig. 7.17 utilizes a resistor R to establish a 1 mA dc bias current.

SECTION 7.3: THE BJT DIFFERENTIAL PAIR

7.20 For the differential amplifier of Fig. 7.13(a) let I = 1 mA, Vᵢᵢ = 5 V, Vᵢᵢ = -2 V, R = 3 kΩ, and β = 100.

Assume that the BJTs have a 0.7 V β = 1 mA, find the voltage at the emitters and the collector voltages.

7.21 For the circuit of Fig. 7.13(b) with an input of ±0.5 V, indicate, and with I = 1 mA, Vᵢᵢ = 5 V, R = 3 kΩ, and β = 100, find the voltage at the emitters and the collector voltages.

Assume that the BJTs have a β = 100, β = 1 mA, find the voltage at the emitters and the collector voltages.

SECTION 7.4: THE COMMON-MODE RESPONSE

7.26 For the differential amplifier of Fig. 7.13 let β = 100, β = 100, and I = 1 mA.

Find the voltage at the emitters and the collector voltages.

7.27 For the circuit of Fig. 7.13(b) with an input of ±0.5 V, find the voltage at the emitters and the collector voltages.

Assume that the BJTs have a β = 100, β = 1 mA, find the voltage at the emitters and the collector voltages.

7.28 Consider the differential amplifier of Fig. 7.12 and let the BJT β be very large.

(a) What is the largest input common-mode signal that can be applied while the BJT remain satisfactorily in the active region with iᵢᵢ = 0.05 V?
of each device? If \(v_{cc} = 0 \), find the value of \(R_2 \) for which operation is as required? Assume that the BJTs are matched and have a current gain \(a \).

\[\text{D*7.29} \quad \text{Design the circuit of Fig. 7.12 to provide a differential input resistance of at least 100 k\Omega.} \]

\[\text{D*7.31} \quad \text{A BJT differential amplifier uses a 30-mA emitter bias current. If the two BJTs are not matched, what must the value of \(R_2 \) be for the common-mode range to be at least 100 mV?} \]

\[\text{D*7.32} \quad \text{Design the basic BJT differential amplifier circuit of Fig. 7.12 to provide a differential input resistance of at least 100 k\Omega.} \]

\[\text{D*7.33} \quad \text{A BJT differential amplifier is biased from a 2-mA constant-current source and includes a 100-\Omega resistor in each emitter. If the available power supply is 10 V, determine the maximum permitted value for \(I_0 \).} \]

\[\text{D*7.34} \quad \text{A BJT differential amplifier is biased from a 2-mA constant-current source and includes a 100-\Omega resistor in each emitter. If the available power supply is 10 V, determine the maximum permitted value for \(I_0 \).} \]

\[\text{D*7.35} \quad \text{Design a BJT differential amplifier to amplify a differential input signal of 0.2 V and provide a differential output signal of 4 V.} \]

\[\text{D*7.36} \quad \text{A particular differential amplifier operates from an emitter current source whose output resistance is 1 \Omega. What resistance is associated with each common-mode half-circuit? For collector resistances of 20 \Omega, what is the resulting common-mode gain for output taken at each collector?} \]

\[\text{D*7.37} \quad \text{Find the voltage gain and the input resistance of the amplifier shown in Fig. P7.37 assuming \(\beta = 100 \).} \]

\[\text{D*7.38} \quad \text{Find the voltage gain and input resistance of the amplifier in Fig. P7.38 assuming that \(\beta = 100 \).} \]

\[\text{D*7.39} \quad \text{Derive an expression for the small-signal voltage gain \(A_v \) of the circuit shown in Fig. P7.39 in two different ways.} \]

\[\text{D*7.40} \quad \text{The differential amplifier circuit of Fig. P7.40 utilizes a resistor connected to the negative power supply to establish the bias current \(I \).} \]

\[\text{D*7.41} \quad \text{A differential amplifier uses a 300-m\AA\ bias current. What is the value of \(R_2 \) for each device? If \(I = 150 \), what is the differential input resistance?} \]

\[\text{D*7.42} \quad \text{Design the basic BJT differential amplifier circuit of Fig. 7.16 to provide a differential input resistance of at least 10 k\Omega and a differential voltage gain (with the output taken between the two collectors) of 200 V/V. The transistor \(\beta \) is specified to be at least 100. The available power supply is 10 V.} \]

\[\text{D*7.43} \quad \text{For a differential amplifier to which a total difference input signal of 10 mV is applied, what is the equivalent signal to its corresponding CE half-circuit? If the available current-source is 100 mA, what is \(v_i \), the half-circuit?} \]

\[\text{D*7.44} \quad \text{For a load resistance of 10 \kOmega\ each in collector, what is the half-circuit gain? What magnitude of signal output voltage would you expect at each collector?} \]

\[\text{D*7.45} \quad \text{A BJT differential amplifier is biased from a 2-mA constant-current source and includes a 100-\Omega resistor in each emitter. The collectors are connected to \(V_{CC} \) via 5-k\Omega resistors. A differential input signal of 0.1 V is applied between the two bases.} \]

\[\text{D*7.46} \quad \text{In a differential amplifier using a 6-m\AA\ emitter bias current, the two BJTs are not matched. Rather, one has one-and-a-half times the emitter junction area of the other. For a differential input signal of zero volts, what do the collector currents become? What differential input is needed to equalize the collector currents? Assume \(a = 1 \).} \]

\[\text{D*7.47} \quad \text{Comment on the linearity of the differential pair as an amplifier.} \]

\[\text{D*7.48} \quad \text{The differential amplifier circuit of Fig. P7.40 utilizes a resistor connected to the negative power supply to establish the bias current \(I \).} \]

\[\text{D*7.49} \quad \text{For the circuit in Fig. 7.12, determining the gain \(\Delta I / \Delta V \) for \(1 \leq I \) = 1 mA and have \(\beta = 100 \).} \]

\[\text{D*7.50} \quad \text{Use the largest possible value for \(I \) subject to the constraint that the base current of each transistor (when \(I \) = 1 mA and have \(\beta = 100 \).} \]

\[\text{D*7.51} \quad \text{Design the circuit of Fig. 7.12 to provide a differential output voltage \(i_d \).} \]

\[\text{D*7.52} \quad \text{Assume that the BJTs are matched and have a current gain \(a = 100 \).} \]

\[\text{D*7.53} \quad \text{Use Eqs. (7.73) and (7.75) to obtain \(i_d \) and \(i_{c0} \) corresponding to a differential input signal of 3 mV (i.e., \(v_{c1} = v_{c2} = 3 \text{ mV} \).} \]

\[\text{D*7.54} \quad \text{Find the maximum possible input common-mode voltage for which operation is as required? Assume \(a = 1 \).} \]

\[\text{D*7.55} \quad \text{A differential amplifier using a 5-m\AA\ emitter bias current source the two BJTs are not matched. Rather, one has one-and-a-half times the emitter junction area of the other. For a differential input signal of zero volts, what do the collector currents become? What differential input is needed to equalize the collector currents? Assume \(a = 1 \).} \]

\[\text{D*7.56} \quad \text{Comment on the linearity of the differential pair as an amplifier.} \]

\[\text{D*7.57} \quad \text{Use Eqs. (7.76) and (7.78) to find \(i_d \) and \(i_{c0} \) and hence determine \(i_{c1} \) where \(\Delta i_d = \frac{1}{2} \Delta i_{c0} \).} \]

\[\text{D*7.58} \quad \text{Assume that the BJTs are matched and have a current gain \(a = 100 \).} \]
Consider the basic differential circuit in which the input resistance would be applied.

7.43 In a differential amplifier, the bias current is 1.1 mA. For this transistor, and those used in the differential pair, \(V_C = 200 \) V and \(\beta = 50 \). What common-mode input resistance should apply?

7.44 It is required to design a differential amplifier to provide the largest possible signal to a pair of 10-kΩ load resistances. The input signal is a sinusoidal 5-V peak amplitude which is applied to one input terminal while the other input terminal is grounded. The power supply available is 10 V. To determine the bias current required, derive an expression for the total voltage at each of the collector nodes in terms of \(V_{CC} \) and \(I_I \) in the presence of the input signal. Then impose the condition that both transistors should remain well out of saturation with a maximum \(I_E \) of approximately 0 V. Thus determine the required value of \(I_I \). For this design, what differential gain is achieved? What is the magnitude of the signal voltage obtained between the two collectors? Assume \(\beta = 1 \).

7.45 Design a BJT differential amplifier that provides two single-ended outputs (at the collectors). The amplifier is to have a differential gain (as the ratio of each of the two outputs to its input) of at least 100 kΩ/V, a differential input resistance of 1 kΩ, and a common-mode gain (as each of the two outputs) no greater than 0.1 V/V. Use a 2-mA current source for biasing. Give the complete circuit with component values and notable power supplies that allow for 0.2 V swing at each collector. Specify the minimum value that the output resistance of the bias current source must have. The BJTs available have \(\beta \geq 100 \). What is the value of the input common-mode resistance when the bias source has the lowest acceptable resistance?

7.46 When the output of a BJT differential amplifier is taken differentially, in CMRR is found to be 40 dB higher than when the output is taken single-ended. If the only source of common-mode gain in the output is taken differentially is the output in common-collector resistance, what is the minimum value (in percent)?

7.47 In a particular BJT differential amplifier, a production error results in one of the transistors having a resistance \(R_{E1} \) connected to the emitter of each transistor. Let the bias current source be \(I_I \).

7.48 An NMOS differential pair is to be used in an amplifier whose drain resistances are 10 kΩ \(\pm 1 \% \). For this pair, \(V_{DD} = 4 \text{ mA/V} \). A decision is to be made concerning the bias current \(I_I \) to be used, whether 200 μA or 400 μA. For differential output, the differential gain and input offset voltage for the two possibilities.

7.49 An NMOS amplifier, whose designed operating point is at \(V_{DD} = 0.5 \text{ V} \), is suspected to have a variability of \(V_I \) of 35%, and of \(V_{DD} \) is independent of \(\% \). What is the worst-case input offset voltage you would expect to find? What is the major contribution to this total offset? If you used a variation of one of the drain resistors to reduce the output offset to zero and thereby compensate for the uncertainties (including that of the other \(R_D \)), what percentage change from nominal would you require? If by selection you reduced the contributions of the worst cause of offset by a factor of 10, what change in \(R_D \) would be needed?

7.50 An NMOS differential pair operating at a bias current of 100 μA uses transistors for which \(K = 100 \text{ μA/V}^2 \) and \(W/L = 20 \). At this bias point, \(V_{DD} = 0.5 \text{ V} \). Find the three components of input offset voltage under the conditions that \(\Delta V_{GS} / R_D = \% \), \(\Delta W / L = \% \), and \(\Delta V_{DD} = 5 \text{ V} \). In the worst case, what might the total offset be? For the usual case of the three effects being independent, what is the offset likely to be? (Hint: For the latter situation, use a root-sum-of-squares computation.)

7.51 A differential amplifier using a 600-μA emitter bias source uses two well-matched transistors but collector load resistors that are mismatched by 10%. What input offset voltage is required to reduce the differential output voltage to zero?

7.52 A differential amplifier using a 600-μA emitter bias source uses two transistors whose scale currents \(I_I \) differ by 10%. If the two collector resistors are well matched, find the resulting input offset voltage.

7.53 Modify Eq. (7.125) for the case of a differential amplifier having a resistance \(R_D \), connected to the emitter of each transistor. Let the bias current source be \(I_I \).

7.54 A differential amplifier uses transistors whose \(\beta \) values are \(\beta_I \) and \(\beta_E \). If everything else is matched, how will the emitter bias current split between the two transistors? If the output resistance of the current source is 1 MΩ and the resistance in each collector \(R_C \) is 12 kΩ, find the common-mode gain obtained when the output is taken differentially. Assume \(\beta = 1 \).

7.55 A differential amplifier uses two transistors having \(V_T \) values of 100 V and 300 V. If everything else is matched, find the resulting input offset voltage. Assume that the two transistors are identical to be biased at a \(V_{DD} \) of about 10 V.

7.56 A differential amplifier is fed in a balanced or push–pull manner with the source resistance in series with each source being \(R_S \). Show that a mismatch \(\Delta R \), between the values of the two source resistors gives rise to an input offset voltage of approximately \(\Delta R / 2 \).

7.57 One approach to "offset correction" involves the adjustment of the values of \(R_S \) and \(R_D \) so as to reduce the differential output offset voltage to zero when both input terminals are grounded. This offset-nulling process can be accomplished by varying a potentiometer in the collector circuit, as shown in Fig. P7.57. We wish to find the potentiometer setting, represented by the fraction \(x \) of its value connected in series with \(R_{ES} \), that is required for nulling the output offset voltage that results from:

(a) \(R_S \), having an area 10% larger than that of \(R_C \).

(b) \(Q \), having an area 10% larger than that of \(Q \).

7.58 A differential amplifier for which the total emitter bias current is 600 μA uses transistors for which \(\beta \) is specified to be between 80 and 200. What is the largest possible input bias current? The smallest possible input bias current? The largest possible input offset current?

7.59 A BIT differential amplifier, operating at a bias current of 500 μA, employs collector resistors of 27 kΩ each connected to a ±15-V supply. The emitter current source employs a BIT whose emitter voltage is −5 V. What are the
7.60 A current-source \(I_s = g_{m}r_{o} \) and assuming that all transistors are equal. Use small-signal analysis to find the input voltage that would restore current balance to the differential pair. Repeat using large-signal analysis and compare results. Also find the input bias and offset currents assuming \(I = 0.1 \) mA and \(V_{bb} = 100 \) mV.

7.61 A large fraction of mass-produced differential-amplifier modules employing 20-kQ collector resistors is found to have an input offset voltage ranging from -3 mV to +3 mV. If the gain of the input differential stage is 90 V/V, by what amount must one collector resistor be adjusted to reduce the input offset to zero? If this adjustment mechanism is devised that raises one collector resistor while correspondingly lowering the other, what resistance change is needed? Suggest a suitable circuit using the existing collector resistors and a potentiometer whose moving element is connected to \(V_{cc} \). What value of potentiometer resistance (specified to 1 significant digit) is appropriate?

SECTION 7.5: THE DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

7.62 In an active-loaded differential amplifier of the form shown in Fig. 7.28(a), all transistors are characterized by \(k'_{W/L} = 1.2 \) mA/V\(^2\), and \(|V_{BE}| = 20 \) V. Find the bias current \(I \) for which the gain \(A_{in} = 100 \) V/V.

7.63 In a version of the active-loaded MOS differential amplifier shown in Fig. 7.28(a), all transistors have \(|V_{TH}| = 0.2 \) mA/V\(^2\), and \(|V_{BE}| = 20 \) V. For \(V_{cc} = 5 \) V, with the input stage ground, and \(0 = 100 \mu A \) or \(400 \mu A \), calculate the linear range of \(V_{in} \), the \(a_{f} \), of \(Q_{1} \) and \(Q_{2} \), the output resistances of \(Q_{1} \) and \(Q_{2} \), the total output resistance, and the voltage gain.

7.64 Consider the active-loaded MOS differential amplifier of Fig. 7.28(c) in two cases:

(a) Current-source \(I \) is implemented with a simple current mirror.

(b) Current-source \(I \) is implemented with the modified Wilson current mirror shown in Fig. P7.64.

Recalling that for the simple mirror \(R_{C} = r_{o} \), and for the Wilson mirror \(R_{C} = r_{o} + r_{p} \), and assuming that all transistors have the same \(|V_{BE}| \) and \(|V_{TH}| \), show that for case (a)

\[
\text{CMRR} = \frac{V_{out}}{V_{in}}
\]

7.65 Consider an active-loaded differential amplifier such as that shown in Fig. 7.28(a) with the bias current source implemented with the modified Wilson mirror of Fig. P7.64 for \(I = 100 \mu A \), and \(V_{cc} = 5 \) V. The transistors have \(|V_{BE}| = 0.7 \) V and \(|V_{TH}| = 800 \mu A/V\(^2\). What is the lowest value of the total power supply \(V_{cc} + V_{es} \) that allows each transistor to operate with \(|V_{BE}| \geq V_{th} \)?

7.66 (a) Sketch the circuit of an active-loaded MOS differential amplifier in which the input transistors are cascaded, and a cascode current mirror is used for the load. (b) Show that if all transistors are operated at an overdrive voltage \(V_{os} \) and have equal input voltages \(V_{in} \), the gain is given by

\[
A_{2} = \frac{V_{os}}{V_{BE} + V_{os}}
\]

Evaluate the gain for \(V_{os} = 0.25 \) V and \(V_{os} = 20 \) V.

7.67 The differential amplifier in Fig. 7.28(a) is operated with \(I = 100 \) µA, with devices for which \(V_{cc} = 100 \) V and \(\beta = 100 \). What differential input resistance, output resistance, equivalent transconductance, and open-circuit voltage gain would you expect? What will the voltage gain be if the input resistance of the subsequent stage is 100 kΩ?

7.68 Design a circuit of a modified BJT differential amplifier for which \(V_{os} = 150 \) V and \(V_{cc} = 200 \) V. Given the expressions derived in Chapter 6 for the output resistance of a bipolar cascade and the output resistance of the Wilson amplifier, and assuming all transistors to be identical, show that the differential voltage gain \(A_{d} \) is given by

\[
A_{d} = \left(\frac{1}{1 + \frac{R_{C}}{r_{o}} + \frac{g_{m}}{r_{o}}} \right)
\]

Evaluate \(A_{d} \) for the case \(I = 0.4 \) mA, \(\beta = 100 \), and \(V_{cc} = 120 \) V.

FIGURE P7.64

FIGURE P7.74

7.69 Repeat the design of the amplifier specified in Problem 7.68 utilizing a Wilson current source (Fig. 6.62) to supply the bias current. Assume that the largest resistance available is 2 kΩ.

7.70 Modify the design of the amplifier in Problem 7.68 by connecting emitter-degeneration resistors of values that result in \(R_{C} = 100 \) kΩ. What does \(A_{d} \) become?

7.71 An active-loaded bipolar differential amplifier such as that shown in Fig. 7.32(a) has \(I = 0.5 \) mA, \(V_{cc} = 120 \) V, and \(\beta = 150 \). Find \(Q_{1}, Q_{2}, A_{o} \), and \(R_{o} \). If the bias-current source is implemented with a simple current mirror, find \(R_{C}, A_{o} \), and CMRR. If the amplifier is fed differentially with a source having a total of 10-kΩ resistance (i.e., 5 kΩ in series with the base lead of each of \(Q_{1} \) and \(Q_{2} \)), find the overall differential voltage gain.

7.72 Consider the differential amplifier circuit of Fig. 7.32(a) with the two input terminals tied together and an input common-mode signal \(V_{CM} \). Let the output resistance of the bias current source be denoted by \(R_{C} \), and let the \(1 \) of the two input transistors be denoted \(\beta \). Assuming that \(\beta \) of the input transistors is high, use the current transfer ratio of the input stage to show that there will be an output current of \(V_{CM}/R_{C} \). Thus, show that the common-mode transconductance is \(1/\beta R_{C} \). Use the result together with the differential transconductance \(g_{m} \) (derived in the text) to find an alternative measure of the common-mode rejection. Observe that this result differs from the CMRR expression in Eq. (7.174) by a factor of 2, which is equal to the ratio of the output resistance of the common-mode inputs \(r_{o} \) and the output resistance for differential inputs \(r_{p} \).

7.73 Repeat Problem 7.72 for the case in which the current mirror is replaced with a Wilson mirror. Show that in this case the output current will be \(V_{CM}/R_{C} \). Find the common-mode transconductance and the ratio \(r_{o}/g_{m} \).

7.74 Figure P7.74 shows a differential cascode amplifier with an active load formed by a Wilson current mirror. Utilizing the expressions derived in Chapter 6 for the output resistance of a bipolar cascade and the output resistance of the Wilson amplifier, and assuming all transistors to be identical, show that the differential voltage gain \(A_{d} \) is given by

\[
A_{d} = \left(\frac{1}{1 + \frac{R_{C}}{r_{o}} + \frac{g_{m}}{r_{o}}} \right)
\]

Evaluate \(A_{d} \) for the case \(I = 0.4 \) mA, \(\beta = 100 \), and \(V_{cc} = 120 \) V.

7.75 Consider the bias design of the Wilson-loaded cascode differential amplifier shown in Fig. P7.74.

(a) What is the largest signal voltage possible at the output without \(Q_{1} \) saturating? Assume that the CB junction conducts when the voltage across it exceeds 0.4 V.

(b) What should the dc bias voltage be supplied at the output (by an arrangement not shown) be in order to allow for positive output signal swing of 1.5 V?

(c) What should the value of \(V_{os} \) be in order to allow for a negative output signal swing of 1.5 V?

(d) What is the upper limit on the input common-mode voltage \(V_{CM} \)?

7.76 Figure P7.76 shows a modified cascode differential amplifier. Here, \(Q_{1} \) and \(Q_{2} \) are the cascade transistors. However, the manner in which \(Q_{1} \) is connected with its base current feeding the current mirror \(Q_{2} \), results in very interesting input properties. Note that for simplicity the circuit is shown with the base of \(Q_{2} \) grounded.
SECTION 7.6: FREQUENCY RESPONSE OF THE DIFFERENTIAL AMPLIFIER

7.80 A MOSFET differential amplifier such as that shown in Fig. 7.36(a) is biased with a current source \(I = 200 \mu A \). The transistors have \(W/L = 25 \), \(k = 128 \mu A/V^2 \), \(V_T = 20 \) V, \(C_P = 30 \) pF, \(C_E = 5 \) pF, and \(C_C = 5 \) pF. The drain resistors are 20 k\Omega
each. Also, there is a 50-fF capacitive load between each drain and ground.

(a) Find \(V_{OS} \) and \(g_m \) for each transistor.
(b) Find the differential gain \(A_d \).
(c) If the input signal source has a small resistance \(R_S \), and thus the frequency response is determined primarily by the output pole, estimate the 3-dB frequency \(f_{3dB} \).
(d) If, in a different situation, the amplifier is fed symmetrically with a signal source of 40 k\Omega\ resistance (i.e., 20 k\Omega in series with each gate terminal), use the open-circuit time-constants method to estimate \(f_{3dB} \).

7.81 The amplifier specified in Problem 7.80 has \(R_C = 100 \) k\Omega\ and \(C_P = 0.5 \) pF. Find the 3-dB frequency of the CMRR.

7.82 A BJT differential amplifier operating with a 1-mA current source uses transistors for which \(\beta = 100 \), \(f_T = 600 \) MHz, \(C_E = 0.5 \) pF, and \(r_i = 100 \) Q. Each of the collector resistors is 10 k\Omega\ and \(r_i \) is very large. The amplifier is fed in a symmetrical fashion with a source resistance of 10 k\Omega in series with each of the two input terminals.

(a) Sketch the differential half-circuit and its high-frequency equivalent circuit.
(b) Determine the low-frequency value of the overall differential gain.
(c) Use Miller's theorem to determine the input capacitance and hence estimate the 3-dB frequency \(f_{3dB} \) and the gain-bandwidth product.

7.83 The differential amplifier circuit specified in Problem 7.82 is modified by including 100-k\Omega\ resistors in each of the emitters. Determine the low-frequency value of the overall differential voltage gain. Also, use the method of open-circuit time-constants to obtain an estimate for \(f_{3dB} \). Toward the end, note that the resistance \(R_E \) seen by \(G_m \) is given by

\[
R_E = \left[R_E + r_i\right] \frac{1}{1 + \frac{G_m}{R_E}} + R_E
\]

where

\[
R_E = \left(3 + 1\right)\left[R_E + r_i\right]
\]

\[
G_m = \frac{1}{1 + \frac{r_i}{R_E}}
\]

The resistance \(R_E \) seen by \(G_m \) is given by

\[
R_E = r_i + \frac{1}{G_m}
\]

Also determines the gain-bandwidth product.

7.84 It is required to increase the 3-dB frequency of the differential amplifier specified in Problem 7.82 to 1 MHz by adding an emitter resistor \(R_e \). Use the open-circuit time-constants method to perform this design. Specifically, use the formula for \(f_{3dB} \) and \(R_E \) given in the statement for Problem 7.83 to determine the required value of the factor \(1 + \frac{G_m}{R_E} \) and hence find \(R_e \). Make appropriate approximations to simplify the calculations. What does the dc gain become? Also determine the resulting gain-bandwidth product.

7.85 A current-mirror-loaded MOS differential amplifier is biased with a current source \(I = 0.6 \) mA. The two NMOS transistors of the differential pair are operating at \(V_D = 0.3 \) V, and the PMOS devices of the mirror are operating at \(V_D = 0.5 \) V. The Early voltage \(V_A = \mid V_A \mid = 9 \) V. The total capacitance at the input node of the mirror is 0.1 pF and that at the output node of the amplifier is 0.2 pF. Find the dc value and the frequencies of the poles and zeros of the differential voltage gain.

7.86 A differential amplifier is biased by a current source having an output resistance of 1 \Omega\ and an output capacitance of 10 pF. The differential gain exhibits a dominant pole at 500 kHz. What are the poles of the CMRR?

7.87 For the differential amplifier specified in Problem 7.82, find the dc gain and \(f_{3dB} \) when the circuit is modified by eliminating the collector resistor of the left-hand-side transistor and the input signal is fed to the base of the left-hand-side transistor while the base of the other transistor in the pair is grounded. Let the source resistance be 20 k\Omega\ and neglect \(r_i \). (Hint: Refer to Fig. 6.57.)

7.88 Consider the circuit of Fig. P7.88 for the case \(I = 200 \) pA and \(V_{DD} = 0.25 \) V. \(R_S = 200 \) k\Omega\, \(R_P = 50 \) k\Omega\, \(C_P = 1 \) pF. Find the dc gain, the high-frequency poles, and an estimate of \(f_{3dB} \).

FIGURE P7.76

(a) With \(\alpha = 0 \) V dc, find the input bias current \(I_b \) assuming all transistors have equal value of \(\beta \). Compare the case without the \(Q_1-Q_2 \) connection.
(b) With \(\eta = 0 \) V dc, find the input signal current \(i_s \) and hence the input-differential resistance \(R_{i-d} \). Compare with the case without the \(Q_1-Q_2 \) connection. (Observe that \(Q_2 \) anagously that the emitter currents of \(Q_1 \) and \(Q_2 \) are very nearly the same!)

7.77 Utilizing the expression for the current transfer ratio of the Wilson mirror derived in Section 6.12.3 (Eq. 6.193) derive expressions for the systematic offset voltage of a BJT differential amplifier that utilizes a npn Wilson current mirror load. Evaluate \(V_{OS} \) for \(\beta = 50 \).

7.78 For the folded-cascode differential amplifier of Fig. 7.35, find the value of \(V_{OS} \) that results in the largest possible positive output swing, while keeping \(Q_1, Q_2, \) and the npn transistors, that realize the current sources out of saturation. Assume \(V_{CE} = V_C = 5 \) V. If the dc level at the output is 0 V, find the maximum allowable output signal swing. For \(I = 0.4 \) mA, \(I_0 = 50 \mu A \), and \(V_{DD} = 3 \) V.

7.79 For the BiCMOS differential amplifier in Fig. P7.79 let \(V_{DD} = V_{SS} = 3 \) V, \(I = 0.4 \) mA, \(k^p = 6.4 \mu A/V^2 \). For p-channel MOSFET's is 10 V, \(|V_T| \) for n-channel transistors is 120 V. Find \(G_A, R_A \) and \(A_d \)

FIGURE P7.79

for p-channel MOSFET's is 10 V, \(|V_T| \) for n-channel transistors is 120 V. Find \(G_A, R_A \) and \(A_d \).
Fig. 7.40 The designer wishes to investigate the effects of increasing the W/L ratio of both Q1 and Q2 by a factor of 4. Assuming that all other parameters are kept unchanged, refer to Example 7.3 to help you answer the following questions:
(a) Find the resulting change in V_{out}, and in V_C, of Q1 and Q2.
(b) What change results in the voltage gain of the input stage? In the overall voltage gain?
(c) What is the effect on the input offset voltage? (You might wish to refer to Section 7.4.)
(d) If is to be kept unchanged, how must C_O be changed?

SECTION 7.7: MULTISTAGE AMPLIFIERS

7.92 Consider the amplifier of Fig. 7.40, whose parameters are specified in Example 7.3. If a manufacturing error results in the W/L ratio of Q2 being 50/0.6, find the current that Q2 will now conduct. Thus find the systematic offset voltage that will appear at the output. (Use the results of Example 7.3.) Assuming that the open-loop gain will remain approximately unchanged from the value found in Example 7.3, find the corresponding value of input offset voltage, V_{io}.

7.93 Consider the input stage of the CMOS op amp in Fig. 7.40 with both inputs grounded. Assume that the two sides of the input stage are perfectly matched except that the threshold voltages of Q1 and Q2 have a mismatch of ΔV_T. Show that a current ΔI_A, which appears at the output of the first stage, is the corresponding input offset voltage. Evaluate this offset voltage for the circuit specified in Example 7.3 for ΔV_T = 2 mV. (Use the results of Example 7.3.)

7.94 A CMOS op amp with the topology in Fig. 7.40 has I_{DSQ1} = 1 mA, V_{GSQ1} = 3 mV, the total capacitance between node Q2 and ground = 0.2 pF, and the total capacitance between the output node and ground = 3 pF. Find the value of V_{C1} that results in f_i = 50 MHz and verify that f_i is lower than f_{HF} and f_{LF}.

7.95 Figure P7.95 shows a bipolar op-amp circuit that resembles the CMOS op amp of Fig. 7.40. Here, the input differential pair Q1-Q2 is loaded in a current mirror formed by Q3 and Q4. The second stage is formed by the current-source-loaded common-emitter transistor Q5. Unlike the CMOS circuit, here there is an output stage formed by the emitter follower Q6. Capacitor C_f is placed in the negative feedback path of Q5 and thus is emitter-multiplying by the gain of Q5. The resulting large capacitance forms a dominant low-frequency pole with r_f, thus providing the required uniform -20 dB/decade gain roll-off. All transistors have β = 100, |V_{GSQ1}| = 0.7 V, and r_f = w/n.

(a) For inputs grounded and output held at 0 V (by negative feedback, not shown) find the emitter currents of all transistors.
(b) Calculate the dc gain of the amplifier with R_f = 10 kΩ.
(c) With R_f as in (b), find the value of C_f to obtain a 3-dB frequency of 100 Hz. What is the voltage offset in that result?

7.96 It is required to design the circuit of Fig. 7.42 to provide a bias current I_B of 225 mA with Q1 and Q2 as matched devices having W/L = 60/0.5. Transistors Q1, Q2, and Q3 are to be identical and must have the same I_C as Q1 and Q2. Transistor Q3 is to be four times as wide as Q1. Let V_C = 34 V, r_f = 0.5 V, and V_{CEQ1} = V_{CEQ2} = 1.5 V. Find the required value of C_f. What is the voltage drop across r_f? Also specify the W/L ratios of Q1, Q2, Q3, and Q4, and give the expected dc voltages at the gates of Q1, Q2, Q3, and Q4.

7.97 A JFET differential amplifier, biased to have r_f = 50 Ω and utilizing two 100-Ω emitter resistors and 5-kΩ loads, drives a second differential stage biased to have r_f = 25 Ω. All BJTs have β = 100. What is the voltage gain of the first stage? Also find the input resistance of the first stage, and the current gain from the input of the first stage to the collectors of the second stage.

7.98 In the multistage amplifier of Fig. 7.43, emitter resistors are to be introduced—100 Ω in the emitter lead of each of the first-stage transistors and 25 Ω for each of the second-stage transistors. What is the effect on input resistance, the voltage gain of the first stage, and the overall voltage gain? Use the bias values found in Example 7.4.

7.99 Consider the circuit of Fig. 7.43 and its output resistance. Which resistor has the most effect on the output resistance? What should this resistor be changed to if the output resistance is to be reduced by a factor of 2? What will the amplifier gain become after this change? What other change can you make to restore the amplifier gain to approximately its prior value?

7.100 (a) Is the multistage amplifier of Fig. 7.43, the resistor R2 is replaced by a constant-current source = 1 mA, such that the bias situation is essentially unaffected, what does the overall voltage gain of the amplifier become?
788 CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

+10V

-10V

lOkΩ

FIGURE P7.101

Assume that the output resistance of the current source is very high. Use the results of Example 7.5.

(a) With the modification suggested in (a), what is the effect of the change on output resistance? What is the overall gain of the amplifier when loaded by 100 kΩ to ground? The original amplifier (before modification) has an output resistance of 152 kΩ and a voltage gain of 8513 V/V. What is its gain when loaded by 100 kΩ? Comment. Use β = 100.

(b) With the modification suggested in (a), what is the effect of the change on output resistance? What is the overall gain of the amplifier when loaded by 100 kΩ to ground? The original amplifier (before modification) has an output resistance of 152 kΩ and a voltage gain of 8513 V/V. What is its gain when loaded by 100 kΩ? Comment. Use β = 100.

7.101 Figure P7.101 shows a three-stage amplifier in which the stages are directly coupled. The amplifier, however, utilizes bypass capacitors, and, as such, its frequency response falls off at low frequencies. For our purposes here, we shall assume that the capacitors are large enough to act as perfect short circuits at all signal frequencies of interest.

(a) Find the dc bias current in each of the three transistors. Also find the dc voltage at the output. Assume V_BEB = 0.7 V, P = 100, and neglect the Early effect.

(b) Find the input resistance and the output resistance.

(c) Use the current-gain method to evaluate the voltage gain v_o/v_i.

(d) Find the frequency of the high-frequency pole formed at the interface between the first and the second stages. Assume C1 = 2 pF and C2 = 10 pF.

7.102 For the circuit shown in Fig. P7.102, which uses a folded cascode involving transistor Q3, all transistors have V_A = 1 V, V_T = 25 mV, g_m = 40 μA/V², [V_Csat] = 0.3 V, and L = 5 μm. Device widths are indicated on the diagram as multiples of W, where W = 5 μm.

(a) Design R to provide a 10-μA reference current.

(b) Assuming v_0 = 0 V, as established by external feedback, perform a bias analysis, finding all the labeled node voltages, V_0 and I_0 for all transistors.

(c) Provide in table form I_d, V_GS, g_m, and r_i for all devices.

(d) Calculate the voltage gain v_0/v_i, the input resistance, and the output resistance.

(e) What is the input common-mode range?

(f) What is the output signal range for no load?

(g) What is the output signal range for a load resistance (g) connected to ground? For a load resistance one-tenth of that found in (g), what is the output signal swing?
INTRODUCTION

Most physical systems incorporate some form of feedback. It is interesting to note, though, that the theory of negative feedback has been developed by electronics engineers. In his search for methods for the design of amplifiers with stable gain for use in telephone repeaters, Harold Black, an electronics engineer with the Western Electric Company, invented the feedback amplifier in 1928. Since then the technique has been so widely used that it is almost impossible to think of electronic circuits without some form of feedback, either implicit or explicit. Furthermore, the concept of feedback and its associated theory are currently used in areas other than engineering, such as in the modeling of biological systems.
Feedback can be either negative (degenerative) or positive (regenerative). In amplifier design, negative feedback is applied to effect one or more of the following properties:

1. Desensitize the gain: that is, make the value of the gain less sensitive to variations in the value of circuit components, such as might be caused by changes in temperature.
2. Reduce nonlinear distortion: that is, make the output proportional to the input (in other words, make the gain constant, independent of signal level).
3. Reduce the effect of noise: that is, minimize the contribution to the output of unwanted electric signals generated, either by the circuit components themselves, or by extraneous interference.
4. Control the input and output impedances: that is, raise or lower the input and output impedances by the selection of an appropriate feedback topology.
5. Extend the bandwidth of the amplifier.

All of the desirable properties above are obtained at the expense of a reduction in gain. It will be shown that the gain-reduction factor, called the amount of feedback, is the factor by which the circuit is desensitized, by which the input impedance of a voltage amplifier is increased, by which the bandwidth is extended, and so on. In short, the basic idea of negative feedback is to trade off gain for other desirable properties. This chapter is devoted to the study of negative-feedback amplifiers: their analysis, design, and characteristics.

Under certain conditions, the negative feedback in an amplifier can become positive and of such a magnitude as to cause oscillation. In fact, in Chapter 13 we will study the use of positive feedback in the design of oscillators and bistable circuits. Here, in this chapter, however, we are interested in the design of stable amplifiers. We shall therefore study the stability problem of negative-feedback amplifiers and their potential for oscillation.

It should not be implied, however, that positive feedback always leads to instability. In fact, positive feedback is quite useful in a number of nonregenerative applications, such as the design of active filters, which are studied in Chapter 12.

Before we begin our study of negative feedback, we wish to remind the reader that we have already encountered negative feedback in a number of applications. Almost all op-amp circuits employ negative feedback. Another popular application of negative feedback is the use of the emitter resistance R_e to stabilize the bias point of bipolar transistors and to increase the input resistance, bandwidth, and linearity of a BJT amplifier. In addition, the source follower and the emitter follower both employ a large amount of negative feedback. The question then arises about the need for a formal study of negative feedback. As will be appreciated by the end of this chapter, the formal study of feedback provides an invaluable tool for the analysis and design of electronic circuits. Also, the insight gained by thinking in terms of feedback can be extremely profitable.

8.1 THE GENERAL FEEDBACK STRUCTURE

Figure 8.1 shows the basic structure of a feedback amplifier. Rather than showing voltages and currents, Fig. 8.1 is a signal-flow diagram, where each of the quantities x can represent either a voltage or a current signal. The open-loop amplifier has a gain A, thus its output x is related to the input x_i by

$$x = Ax. \quad (8.1)$$

![Figure 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals.](image)

The output x is fed to the load as well as to a feedback network, which produces a sample of the output. This sample x_f is related to x by the feedback factor β.

$$x_f = \beta x. \quad (8.2)$$

The feedback signal x_f is subtracted from the source signal x_i, which is the input to the complete feedback amplifier, to produce the signal x, which is the input to the basic amplifier,

$$x = x_i - x_f. \quad (8.3)$$

Here we note that it is this subtraction that makes the feedback negative. In essence, negative feedback reduces the signal that appears at the input of the basic amplifier.

In the description above is that the source, the load, and the feedback network do not load the basic amplifier. That is, the gain A does not depend on any of these three networks. In practice, this will not be the case, and we shall have to find a method for analyzing a real circuit into the ideal structure depicted in Fig. 8.1. Figure 8.1 also implies that the forward transmission occurs entirely through the basic amplifier and the reverse transmission occurs entirely through the feedback network.

The gain of the feedback amplifier can be obtained by combining Eqs. (8.1) through (8.3):

$$A_f = \frac{x_f}{x_i} = \frac{A}{1 + A\beta}. \quad (8.4)$$

The quantity βA is called the loop gain, a name that follows from Fig. 8.1. For the feedback to be negative, the loop gain βA must be positive; that is, the feedback signal x_f should have the same sign as x_i. Therefore, in a small difference signal x_i, Equation (8.4) indicates that for positive β the gain-with-feedback A_f will be smaller than the open-loop gain A by the quantity $1 + A\beta$, which is called the amount of feedback.

If, as is the case in many circuits, the loop gain βA is large, $\beta A \gg 1$, then from Eq. (8.4) it follows that $A_f \approx 1 / (1 + \beta A)$, which is a very interesting result: The gain of the feedback amplifier is almost entirely determined by the feedback network. Since the feedback network usually consists of passive components, which usually can be chosen to be as accurate as one wishes, the advantage of negative feedback in obtaining accurate, predictable, and stable

1 In earlier chapters, we used the subscript "sig" for quantities associated with the signal source (e.g., v_{sig} and R_{sig}). We did that to avoid confusion with the subscript "s," which is usually used with FETs to denote quantities associated with the source terminal of the transistor. At this point, however, it is expected that readers have become sufficiently familiar with the subject that the possibility of confusion is minimal. Therefore, we will revert to using the simpler subscript "s" for signal-source quantities.
The noninverting op-amp configuration shown in Fig. E8.1 provides a direct implementation of the feedback signal x_f:

$$x_f = \frac{A\beta}{1 + A\beta} x_i \quad (8.5)$$

Thus for $A\beta \gg 1$ we see that $x_f \approx x_i$, which implies that the signal x_i at the input of the basic amplifier is reduced to almost zero. Thus if a large amount of negative feedback is employed, the feedback signal x_f becomes an almost identical replica of the input signal x_i. An outcome of this property is the tracking of the two input terminals of an op amp. The difference between x_i and x_f, which is x_t, is sometimes referred to as the "error signal." Accordingly, the input differencing circuit is often also called a comparison circuit. (It is also known as a mixer.) An expression for x_t can be easily determined as

$$x_t = \frac{1}{1 + A\beta} x_i \quad (8.6)$$

from which we can verify that for $A\beta \gg 1$, x_t becomes very small. Observe that negative feedback reduces the signal that appears at the input terminals of the basic amplifier by the amount of feedback, $(1 + A\beta)$.

EXERCISE

8.1. The noninverting op-amp configuration shown in Fig. E8.1 provides a direct implementation of the feedback loop of Fig. 8.1.

(a) Assume that the op-amp has infinite input resistance and zero output resistance. Find an expression for the feedback factor β. (b) If the open-loop voltage gain $A = 10^5$, find R/R_k to obtain a closed-loop voltage gain A_f of 10. (c) What is the amount of feedback in decibels? (d) If $V_i = 1$ V, find V_o, V_x, and V_t. (e) If A decreases by 20%, what is the corresponding decrease in A_f?

![FIGURE E8.1](image)

Ans. (a) $\beta = R/R_k$; (b) $R_k = 0.01$; (c) 60 dB; (d) 10 V, 0.999 V, 0.001 V; (e) 0.02%.

8.2 SOME PROPERTIES OF NEGATIVE FEEDBACK

The properties of negative feedback were mentioned in the Introduction. In the following, we shall consider some of these properties in more detail.

8.2.1 Gain Desensitivity

The effect of negative feedback on desensitizing the closed-loop gain was demonstrated in Exercise 8.1, where we saw that a 20% reduction in the gain of the basic amplifier gave rise to only a 0.02% reduction in the gain of the closed-loop amplifier. This sensitivity-reduction property can be analytically established as follows:

Assume that β is constant. Taking differentials of both sides of Eq. (8.4) results in

$$dA_f = \frac{dA}{A}$$

Dividing Eq. (8.7) by Eq. (8.4) yields

$$\frac{dA_f}{A_f} = \frac{1}{1 + A\beta} \frac{dA}{A}$$

which says that the percentage change in A_f (due to variations in some circuit parameter) is smaller than the percentage change in A by the amount of feedback. For this reason the amount of feedback, $1 + A\beta$, is also known as the desensitizing factor.

8.2.2 Bandwidth Extension

Consider an amplifier whose high-frequency response is characterized by a single pole. Its gain at mid and high frequencies can be expressed as

$$A(s) = \frac{A_m}{1 + s/\omega_0}$$

where A_m denotes the midband gain and ω_0 is the upper 3-dB frequency. Application of negative feedback, with a frequency-independent factor β, around this amplifier results in a closed-loop gain $A_f(s)$ given by

$$A_f(s) = \frac{A_m}{1 + s/\omega_0}$$

Substituting for $A(s)$ from Eq. (8.9) results, after a little manipulation, in

$$A_f(s) = \frac{A_m/(1 + A\beta)}{1 + s/\omega_0(1 + A\beta)}$$

Thus the feedback amplifier will have a midband gain of $A_m/(1 + A\beta)$ and an upper 3-dB frequency ω_{3dB} given by

$$\omega_{3dB} = \omega_0(1 + A\beta)$$

It follows that the upper 3-dB frequency is increased by a factor equal to the amount of feedback.

Similarly, it can be shown that if the open-loop gain is characterized by a dominant low-frequency pole giving rise to a lower 3-dB frequency ω_0, then the feedback amplifier will
have a lower 3-dB frequency \(f_{03} \):

\[
a_0/\beta = \frac{a_0}{1 + A_0 \beta}
\]

(8.12)

Note that the amplifier bandwidth is increased by the same factor by which its midband gain is decreased, maintaining the gain-bandwidth product at a constant value.

EXERCISE

8.2.3 Noise Reduction

Negative feedback can be employed to reduce the noise or interference in an amplifier or, more precisely, to increase the ratio of signal to noise. However, as we shall now explain, this noise-reduction process is possible only under certain conditions. Consider the situation illustrated in Fig. 8.2. Figure 8.2(a) shows an amplifier with gain \(A_1 \), an input signal \(V_s \), and noise or interference, \(V_n \). It is assumed that for some reason this amplifier suffers from noise, and that the noise can be assumed to be introduced at the input of the amplifier. The signal-to-noise ratio for this amplifier is

\[
\frac{S}{N} = \frac{V_s}{V_n}
\]

(8.13)

Next, consider the circuit in Fig. 8.2(b). Here we assume that it is possible to build another amplifier stage with gain \(A_2 \) that does not suffer from the noise problem. If this is the case, then we may precede our original amplifier \(A_1 \) by the clean amplifier \(A_2 \) and apply negative feedback around the overall cascade of such an amount as to keep the overall gain constant. The output voltage of the circuit in Fig. 8.2(b) can be found by superposition:

\[
V_o = V_s A_1 A_2 \left(1 + A_1 A_2 \beta \right) + V_n
\]

(8.14)

Thus the signal-to-noise ratio at the output becomes

\[
\frac{S}{N} = \frac{V_s}{V_n} A_2
\]

(8.15)

which is \(A_2 \) times higher than in the original case.

We emphasize once more that the improvement in signal-to-noise ratio by the application of feedback is possible only if one can precede the noisy stage by a (relatively) noise-free stage. This situation, however, is not uncommon in practice.

EXERCISE

8.3 Consider a power-output stage with voltage gain \(A_1 = 1 \), an input signal \(V_s = 1 \) V, and a hum \(V_h \) of 1 V. Assume that this power stage is preceded by a small-signal stage with gain \(A_2 = 100 \) V/V and that overall feedback with \(\beta = 1 \) is applied. If \(V_s \) and \(V_h \) remain unchanged, find the signal and noise voltages at the output and hence the improvement in SNR.

Ans. \(V_o = 0.99 \) V, \(100 \) (40 dB)

8.2.4 Reduction in Nonlinear Distortion

Curve (a) in Fig. 8.3 shows the transfer characteristic of an amplifier. As indicated, the characteristic is piecewise linear, with the voltage gain changing from 1000 to 100 and then to 0. This nonlinear transfer characteristic will result in this amplifier generating a large amount of nonlinear distortion.

The amplifier transfer characteristic can be considerably linearized (i.e., made less nonlinear) through the application of negative feedback. That this is possible should not be too surprising, since we have already seen that negative feedback reduces the dependence of the overall closed-loop amplifier gain on the open-loop gain of the basic amplifier. Thus large
8.3 THE FOUR BASIC FEEDBACK TOPOLOGIES

Based on the quantity to be amplified (voltage or current) and on the desired form of output (voltage or current), amplifiers can be classified into four categories. These categories were discussed in Chapter 1. In the following, we shall review this amplifier classification and point out the feedback topology appropriate in each case.

8.3.1 Voltage Amplifiers

Voltage amplifiers are intended to amplify an input voltage signal and provide an output voltage signal. The voltage amplifier is essentially a voltage-controlled voltage source. The input impedance is required to be high, and the output impedance is required to be low. Since the signal source is essentially a voltage source, it is convenient to represent it in terms of a Thévenin equivalent circuit. In a voltage amplifier the output quantity of interest is the output voltage. It follows that the feedback network should sample the output voltage. Also, because of the Thévenin representation of the source, the feedback signal \(v_f \) should be a voltage that can be mixed with the source voltage in series.

A suitable feedback topology for the voltage amplifier is the voltage-mixing voltage-sampling one shown in Fig. 8.4(a). Because of the series connection at the input and the parallel or shunt connection at the output, this feedback topology is also known as series-shunt feedback. As will be shown, this topology not only stabilizes the voltage gain but also results in a higher input resistance (intuitively, a result of the series connection at the input) and a lower output resistance (intuitively, a result of the parallel connection at the output), which are desirable properties for a voltage amplifier. The noninverting op-amp configuration of Fig. 8.8.1 is an example of series-shunt feedback.

8.3.2 Current Amplifiers

The input signal in a current amplifier is essentially a current, and thus the signal source is most conveniently represented by its Norton equivalent. The output quantity of interest is current; hence the feedback network should sample the output current. The feedback signal should be in current form so that it may be mixed in shunt with the source current. Thus the feedback topology suitable for a current amplifier is the current-mixing current-sampling topology, illustrated in Fig. 8.4(b). Because of the parallel (or shunt) connection at the input, and the series connection at the output, this feedback topology is also known as shunt-series feedback. As will be shown, this topology not only stabilizes the current gain but also results in a lower input resistance and a higher output resistance, both desirable properties for a current amplifier.

An example of the shunt-series feedback topology is given in Fig. 8.5. Note that the bias details are not shown. Also note that the current being sampled is not the output current, but the equal current flowing from the source of \(Q_2 \). This use of a surrogate is done for circuit design convenience and is quite usual in circuits involving current sampling.

The reference direction indicated in Fig. 8.5 for the feedback current \(I_f \) is such that it subtracts from \(I_i \). This reference notation will be followed in all circuits in this chapter, since it is consistent with the notation used in the general feedback structure of Fig. 8.1. In all circuits, therefore, for the feedback to be negative, the loop gain \(AB \) should be positive. The reader is urged to verify, through qualitative analysis, that in the circuit of Fig. 8.5, \(A \) is negative and \(B \) is negative.

It is of utmost importance to be able to ascertain qualitatively (and quickly) the feedback polarity (positive or negative). This can be done by "following the signal around the loop." For instance, let the current \(I_i \) in Fig. 8.5 increase. We see that the gate voltage of \(Q_1 \) will increase, and thus its drain current will also increase. That will cause the drain voltage of \(Q_2 \) (and the gate voltage of \(Q_3 \)) to decrease, and thus the drain current of \(Q_3 \), \(I_o \), will decrease. Thus the source current of \(Q_3 \), \(I_o \), decreases. From the feedback network we see that if \(I_o \) decreases, then \(I_f \) (in the direction shown) will increase. The increase in \(I_f \) will subtract from \(I_i \); causing a smaller increment to be seen by the amplifier. Hence the feedback is negative.
8.3.3 Transconductance Amplifiers

In transconductance amplifiers, the input signal is a voltage and the output signal is a current. It follows that the appropriate feedback topology is the voltage-mixing current-sampling topology, illustrated in Fig. 8.4(c). The presence of the series connection at both the input and the output gives this feedback topology the alternative name series-series feedback.

An example of this feedback topology is given in Fig. 8.6. Here, note that as in the circuit of Fig. 8.5, the current sampled is not the output current but the almost-equal emitter current of Q_3. In addition, the mixing loop is not a conventional one; it is not a simple series connection, since the feedback signal developed across R_m is in the emitter circuit of Q_1, while the source is in the base circuit of Q_1. These two approximations are done for convenience of circuit design.
8.3.4 Transresistance Amplifiers

In transresistance amplifiers the input signal is current and the output signal is voltage. It
follows that the appropriate feedback topology is of the current-mixing voltage-sampling
type, shown in Fig. 8.4(d). The presence of the parallel (or shunt) connection at both the input
and the output makes this feedback topology also known as shunt-shunt feedback.

An example of this feedback topology is found in the inverting op-amp configuration of
Fig. 8.7(a). The circuit is redrawn in Fig. 8.7(b) with the source converted to Norton’s form.

8.4 THE SERIES-SHUNT FEEDBACK AMPLIFIER

8.4.1 The Ideal Situation

The ideal structure of the series-shunt feedback amplifier is shown in Fig. 8.8(a). It consists
of a unilateral open-loop amplifier (the A circuit) and an ideal voltage-mixing voltage-
sampling feedback network (the β circuit). The A circuit has an input resistance R_I, a voltage
gain A, and an output resistance R_O. It is assumed that the source and load resistances have
been included inside the A circuit (more on this point later). Furthermore, note that the β cir-
cuit does not load the A circuit; that is, connecting the β circuit does not change the value of A
(defined as $A = V_o/V_s$).

The circuit of Fig. 8.8(a) exactly follows the ideal feedback model of Fig. 8.1. Therefore
the closed-loop voltage gain A_f is given by

$$ A_f = \frac{V_s}{V_o} = \frac{A}{1 + AB} \tag{8.16} $$

Note that A and B have reciprocal units. This in fact is always the case, resulting in a di-
ensionless loop gain AB.

The equivalent circuit model of the series-shunt feedback amplifier is shown in Fig. 8.8(b). Here R_f and R_l denote the input and output resistances with feedback. The relationship
between R_f and R_l can be established by considering the circuit in Fig. 8.8(a):

$$ R_f = \frac{V_o}{I} = \frac{V_o}{I} \tag{8.17} $$

That is, in this case the negative feedback increases the input resistance by a factor equal to
the amount of feedback. Since the derivation above does not depend on the method of sam-
pling (shunt or series), it follows that the relationship between R_f and R_l is a function only of
the method of mixing. We shall discuss this point further in later sections.

Note, however, that this result is not surprising and is physically intuitive: Since the feed-
back voltage V_f subtracts from V_s, the voltage that appears across R_s — that is, V_s — be-
comes quite small ($V_s = V_s/(1 + AB)$). Thus the input current I_f becomes correspondingly small
and the resistance seen by V_s becomes large. Finally, it should be pointed out that Eq. (8.17)
can be generalized to the form

$$ Z_{in}(s) = Z_{in}(s)[1 + A(s)\beta(s)] \tag{8.18} $$

FIGURE 8.7 (a) The inverting op-amp configuration redrew as (b) an example of shunt-shunt feedback.

FIGURE 8.8 The series-shunt feedback amplifier: (a) ideal structure and (b) equivalent circuit.
To find the output resistance, R_{of}, of the feedback amplifier in Fig. 8.8(a) we reduce V_s to zero and apply a test voltage V_t at the output, as shown in Fig. 8.9,

$$R_{of} = \frac{V_t}{I}$$

From Fig. 8.9 we can write

$$I = \frac{V_t - AV_s}{R_s}$$

and since $V_s = 0$ it follows from Fig. 8.8(a) that

$$V_t = -V_f = -\beta V_o = -\beta V_t$$

Thus

$$I = \frac{V_t + \beta V_t}{R_s}$$

leading to

$$R_{of} = \frac{R_s}{1 + \beta}$$ \hspace{1cm} (8.19)

That is, the negative feedback in this case reduces the output resistance by a factor equal to the amount of feedback. With a little thought one can see that the derivation of Eq. (8.19) does not depend on the method of mixing. Thus the relationship between R_{of} and R_0 depends only on the method of sampling. Again, this result is not surprising and is physically intuitive: Since the feedback samples the output voltage V_o, it acts to stabilize the value of V_o; that is, to reduce changes in the value of V_o by changing the current drawn from the amplifier output terminals. Thus, in effect, means that voltage-sampling feedback reduces the output resistance. Finally, we note that Eq. (8.19) can be generalized to

$$Z_{of}(s) = \frac{Z_0(s)}{1 + A(s)\beta(s)}$$ \hspace{1cm} (8.20)

8.4.2 The Practical Situation

In a practical series-shunt feedback amplifier, the feedback network will not be an ideal voltage-controlled voltage source. Rather, the feedback network is usually resistive and hence will load the basic amplifier and thus affect the values of A, R_b, and R_0. In addition, the source and load resistances will affect these three parameters. Thus the problem we have is as follows: Given a series-shunt feedback amplifier represented by the block diagram of Fig. 8.10(a), find the A circuit and the β circuit.
Our problem essentially involves representing the amplifier of Fig. 8.10(a) by the ideal structure of Fig. 8.8(a). As a first step toward that end we observe that the source and load resistances should be lumped with the basic amplifier. This, together with representing the two-port feedback network in terms of its h parameters (see Appendix B), is illustrated in Fig. 8.10(b). The choice of h parameters is based on the fact that this is the only parameter set that represents the feedback network by a series network at port 1 and a parallel network at port 2. Such a representation is obviously convenient in view of the series connection at the input and the parallel connection at the output.

Examination of the circuit in Fig. 8.10(b) reveals that the current source h21, represents the forward transmission of the feedback network. Since the feedback network is usually passive, its forward transmission can be neglected in comparison to the much larger forward transmission of the basic amplifier. We will therefore assume that |h21| < |h11|, and that omit the controlled source h21 altogether.

Compare the circuit of Fig. 8.10(b) (after eliminating the current source h21) with the ideal circuit of Fig. 8.8(a). We see that by including h11 and h22 with the basic amplifier we obtain the circuit shown in Fig. 8.10(c), which is very similar to the ideal circuit. Now, if the basic amplifier is unilateral (or almost unilateral), a situation that prevails when

\[|h_{\text{basic amplifier}}| < |h_{\text{feedback network}}| \]

then the circuit of Fig. 8.10(c) is equivalent (or approximately equivalent) to the ideal circuit. It follows then that the A circuit is obtained by augmenting the basic amplifier at the input with the source impedance \(R_s \) and the impedance \(h_{11} \) of the feedback network, and at the output with the load impedance \(R_L \) and the admittance \(h_{22} \) of the feedback network.

We conclude that the loading effect of the feedback network on the basic amplifier is represented by the components \(h_{11} \) and \(h_{22} \). From the definitions of the h parameters in Appendix B we see that \(h_{11} \) is the impedance looking into port 1 of the feedback network with port 2 short-circuited. Since port 2 of the feedback network is connected in shunt with the output port of the amplifier, short-circuiting port 2 destroys the feedback. Similarly, \(h_{22} \) is the admittance looking into port 2 of the feedback network with port 1 open-circuited. Since port 1 of the feedback network is connected in series with the amplifier input, open-circuiting port 1 destroys the feedback.

These observations suggest a simple rule for finding the loading effects of the feedback network on the basic amplifier: The loading effect is found by looking into the appropriate port of the feedback network while the other port is open-circuited or short-circuited so as to destroy the feedback. If the connection is a shunt one, we short-circuit the port; if it is a series one, we open-circuit it. In Sections 8.5 and 8.6 it will be seen that this simple rule applies also to the other three feedback topologies.

Next consider the determination of \(\beta \). From Fig. 8.10(c), we see that \(\beta \) is equal to \(h_{11} \) of the feedback network.

\[\beta = h_{11} = \frac{V_i}{V_i} \]

Thus to measure \(\beta \), one applies a voltage to port 2 of the feedback network and measures the voltage that appears at port 1 while the latter port is open-circuited. This result is intuitively appealing because the object of the feedback network is to sample the output voltage \((V_i = V_f) \) and provide a voltage signal \((V_f = V_i) \) that is mixed in series with the input source. The series connection at the input suggests that (as in the case of finding the loading effects of the feedback network) \(\beta \) should be found with port 1 open-circuited.

8.4.3 Summary

A summary of the rules for finding the A circuit and \(\beta \) for a given series-shunt feedback amplifier of the form in Fig. 8.10(a) is given in Fig. 8.11. As for using the feedback formulas in Eqs. (8.17) and (8.19) to determine the input and output resistances, it is important to note that:

1. \(R_i \) and \(R_o \) are the input and output resistances, respectively, of the A circuit in Fig. 8.11(a).
2. \(R_s \) and \(R_L \) are the input and output resistances, respectively, of the feedback amplifier, including \(R_f \) and \(R_e \) (see Fig. 8.10(a)).
3. The actual input and output resistances of the feedback amplifier usually exclude \(R_f \) and \(R_e \). These are denoted \(R_{i0} \) and \(R_{o0} \) in Fig. 8.10(a) and can be easily determined as

\[R_i = R_f - R_i \]

\[R_o = \frac{1}{\left(\frac{1}{R_f} + \frac{1}{R_e}\right)} \]

Figure 8.11 Summary of the rules for finding the A circuit and \(\beta \) for the voltage-mixing voltage-sampling case of Fig. 8.10(a).
CHAPTER 8 FEEDBACK

Figure 8.12(a) shows an op amp connected in the noninverting configuration. The op amp has an open-loop gain A_o, a differential input resistance R_{id}, and an output resistance r_o. Recall that in our analysis of op-amp circuits in Chapter 2, we neglected the effects of R_{id} (assumed it to be infinite) and of r_o (assumed it to be zero). Here we wish to use the feedback method to analyze the circuit taking both R_{id} and r_o into account. Find expressions for A, B, the closed-loop gain V_0/V_s, the input resistance R_{in} (see Fig. 8.12a), and the output resistance R_{out}. Also find numerical values, given $\mu = 10^7$, $R_{id} = 100 \, \text{kΩ}$, $r_o = 1 \, \text{MΩ}$, $R_1 = 1 \, \text{kΩ}$, $R_2 = 1 \, \text{MΩ}$, and $R_s = 10 \, \text{kΩ}$.

Solution

We observe that the feedback network consists of R_2 and R_s. This network samples the output voltage V_0 and provides a voltage signal (across R_s) that is mixed in series with the input source V_s.

The A circuit can be easily obtained following the rules of Fig. 8.11, and is shown in Fig. 8.12(b). For this circuit we can write by inspection

$$A = \frac{V_s}{V_s} = \frac{R_s}{R_s + (R_2 + R_s)}$$

For the values given, we find that $A = 6000 \, \text{V/V}$.

The circuit for obtaining B is shown in Fig. 8.12(c), from which we obtain

$$\beta = \frac{V_s}{V_s} = \frac{R_2}{R_2 + R_s} = 10^{-3} \, \text{V/V}$$

The voltage gain with feedback is now obtained as

$$A_{fb} = \frac{V_s}{V_s} = 1 + A \beta = 6000 \frac{1}{1 + 10^{-3}} = 5857 \, \text{V/V}$$

The input resistance R_{in} determined by the feedback equations is the resistance seen by the external source (see Fig. 8.12a), and is given by

$$R_{in} = R_s(1 + A \beta)$$

where R_s is the input resistance of the A circuit in Fig. 8.12(b). For the values given, $R_s = 111 \, \text{kΩ}$, resulting in

$$R_{in} = 111 \times 7 = 777 \, \text{kΩ}$$

This, however, is not the resistance asked for. What is required is R_{out} indicated in Fig. 8.12(c).

To obtain R_{out}, we subtract R_s from R_{in}:

$$R_{out} = R_{in} - R_s$$

For the values given, $R_s = 779 \, \text{kΩ}$. The resistance R_{out} given by the feedback equations is the output resistance of the feedback amplifier, including the load resistance R_L, as indicated in Fig. 8.12(a). R_{out} is given by

$$R_{out} = \frac{R_s}{1 + A \beta}$$
CHAPTER 8
FEEDBACK

where R_e is the output resistance of the A circuit. R_e can be obtained by inspection of Fig. 8.12(b) as

$$R_e = r_0 + R_L(R_2 + R_1)$$

For the values given, $R_e = 667 \, \Omega$ and

$$R_{out} = 667 \div 95.3 \, \Omega$$

The resistance asked for, R_{out}, is the output resistance of the feedback amplifier excluding R_e. From Fig. 8.12(a) we see that

$$R_{out} = R_{out}R_L$$

Thus

$$R_{out} = 100 \, \Omega$$

The circuit shown in Fig. E8.5 consists of a differential stage followed by an emitter follower, with series-shunt feedback supplied by the resistors R_x and R_2. Assuming that the dc component of V_s is zero, and that β of the BJTs is very high, find the dc operating currents of each of the three transistors and show that the dc voltage at the output is approximately zero. Then find the values of A, $A/$ and R_{out}. Assume that the transistors have $\beta = 100$.

8.5.1 The Ideal Case
As mentioned in Section 8.3, the series-series feedback topology stabilizes L/V_s and is therefore best suited for transconductance amplifiers. Figure 8.13(a) shows the ideal structure for the series-series feedback amplifier. It consists of a unilateral open-loop amplifier (the A circuit) and an ideal feedback network. Note that in this case A is a transconductance,

$$A = \frac{I_i}{V_i}$$ \hspace{1cm} (8.25)

while B is a transresistance. Thus the loop gain AB remains a dimensionless quantity, as it should always be.

In the ideal structure of Fig. 8.13(a), the load and source resistances have been absorbed inside the A circuit, and the β circuit does not load the A circuit. Thus the circuit follows the ideal feedback model of Fig. 8.1, and we can write

$$A_f = \frac{I_i}{V_i} = \frac{A}{1 + A/B}$$ \hspace{1cm} (8.26)

If the op amp of Example 8.1 has a uniform -6-dB/octave high-frequency rolloff with $f_m = 1 \, \text{kHz}$, find the 3-dB frequency of the closed-loop gain V'/V_s.

Ans.

The circuit shown in Fig. E8.5 consists of a differential stage followed by an emitter follower, with series-shunt feedback supplied by the resistors R_x and R_2. The circuit follows the ideal feedback model of Fig. 8.1, and we can write

$$A_f = \frac{I_i}{V_i} = \frac{A}{1 + A/B}$$ \hspace{1cm} (8.26)

EXERCISES

8.8 Ti the op amp of Example 8.1 has a uniform -6-dB/octave high-frequency rolloff with $f_m = 1 \, \text{kHz}$, find the 3-dB frequency of the closed-loop gain V'/V_s.

Ans.

8.9 The circuit shown in Fig. E8.5 consists of a differential stage followed by an emitter follower, with series-shunt feedback supplied by the resistors R_x and R_2. Assuming that the β component of V_s is zero, and that β of the BJTs is very high, find the dc operating currents of each of the three transistors and show that the dc voltage at the output is approximately zero. Then find the values of A, B, $A/$ and R_{out}. Assume that the transistors have $\beta = 100$.

FIGURE E8.3
Ans. 85.7 V/V; 0.1 V/V; 9.96 V/V; 191 kΩ; 19.1 Ω

FIGURE 8.13 The series-series feedback amplifier: (a) ideal structure and (b) equivalent circuit.
CHAPTER 8 FEEDBACK

FIGURE 8.14 Measuring the output resistance R_f of the series-series feedback amplifier.

This transconductance-with-feedback is included in the equivalent circuit model of the feedback amplifier, shown in Fig. 8.13(b). In this model, R_f is the input resistance with feedback. Using an analysis similar to that in Section 8.4, we can show that

$$R_f = R_i(1 + AB)$$ \hspace{1cm} (8.27)

This relationship is identical to that obtained in the case of series-shunt feedback. This confirms our earlier observation that the relationship between R_f and R_i is a function only of the method of mixing. Voltage (series) mixing therefore always increases the input resistance.

To find the output resistance R_f of the series-series feedback amplifier of Fig. 8.13(a) we reduce V_s to zero and break the output circuit to apply a test current I_f, as shown in Fig. 8.14:

$$R_f = \frac{V}{I_f}$$ \hspace{1cm} (8.28)

In this case, $V_f = -V_f = -\beta I_f = -\beta I_t$. Thus for the circuit in Fig. 8.14 we obtain

$$V = (I_f - AV_f)R_f = (I_f + \beta I_f)R_f$$

Hence

$$R_f = (1 + \beta I_f)R_f$$ \hspace{1cm} (8.29)

That is, in this case the negative feedback increases the output resistance. This should have been expected, since the negative feedback tries to make I_f constant in spite of changes in the output voltage, which means increased output resistance. This result also confirms our earlier observation: The relationship between R_f and R_i is a function only of the method of sampling. While voltage (shunt) sampling reduces the output resistance, current (series) sampling increases it.

8.5.2 The Practical Case

Figure 8.15(a) shows a block diagram for a practical series-series feedback amplifier. To be able to apply the feedback equations to this amplifier, we have to represent it by the ideal structure of Fig. 8.13(a). Our objective therefore is to devise a simple method for finding A and B. Observe the definition of the amplifier input resistance R_{in} and output resistance R_{out}. It is important to note that these are different from R_f and R_o, which are determined by the feedback equations, as will become clear shortly.

The series-series amplifier of Fig. 8.15(a) is redrawn in Fig. 8.15(b) with R_s and R_f shown closer to the basic amplifier, and the two-port feedback network represented by its z parameters (Appendix B). This parameter set has been chosen because it is the only one that provides a representation of the feedback network with a series circuit at the input and a
series circuit at the output. This is obviously convenient in view of the series connections at input and output. The input and output resistances with feedback, \(R_f \) and \(R_o \), are indicated on the diagram.

As we have done in the case of the series–shunt amplifier, we shall assume that the forward transmission through the feedback network is negligible in comparison to that through the basic amplifier; that is, the condition

\[
|Z_{in\,basic}| \gg |Z_{in\,feedback}|
\]

is satisfied. We can then dispense with the voltage source \(z_f \), in Fig. 8.15(b). Doing this, and redrawing the circuit to include \(z_f \) and \(z_{22} \) with the basic amplifier, results in the circuit in Fig. 8.15(c). Now if the basic amplifier is unilateral (or almost unilateral), a situation that is obtained when

\[
|Z_{1}| \gg |Z_{in\,basic}|
\]

then the circuit in Fig. 8.15(c) is equivalent (or almost equivalent) to the ideal circuit of Fig. 8.15(a).

It follows that the \(A \) circuit is composed of the basic amplifier augmented at the input with \(R_s \) and \(z_f \), and augmented at the output with \(R_L \) and \(z_{22} \). Since \(z_f \) and \(z_{22} \) are the impedances looking into ports 1 and 2, respectively, of the feedback network with the other port open-circuited, we see that finding the loading effects of the feedback network on the basic amplifier follows the rule formulated in Section 8.4. That is, we look into one port of the feedback network while the other port is open-circuited or short-circuited so as to destroy the feedback (open if series and short if shunt).

From Fig. 8.15(c) we see that \(\beta \) is equal to \(z_f \) of the feedback network,

\[
\beta = \frac{z_f}{z_{in\,basic}} = \frac{V_f}{I_{12}}
\]

This result is intuitively appealing. Recall that in this case the feedback network samples the output current \(I_f = I_{12} \) and provides a voltage \(V_f = V_{12} \) that is mixed in series with the input source. Again, the series connection at the input suggests that \(\beta \) is measured with port 1 open.

8.5.3 Summary

For future reference we present in Fig. 8.16 a summary of the rules for finding \(A \) and \(\beta \) for a given series–series feedback amplifier of the type shown in Fig. 8.15(a). Note that \(R_s \) is the input resistance of the \(A \) circuit, and its output resistance is \(R_o \), which can be determined by breaking the output loop and looking between \(Y \) and \(Y' \), \(R_f \) and \(R_o \) can be used in Eqs. (8.27) and (8.29) to determine \(R_f \) and \(R_o \) (see Fig. 8.15(b)). The input and output resistances of the feedback amplifier can then be found by subtracting \(R_f \) from \(R_s \) and \(\frac{1}{R_o} \) from \(\frac{1}{R_o} \).

\[
R_{eq} = R_s - R_f
\]

\[
R_{tot} = R_{eq} - R_f
\]

Employing the loading rules given in Fig. 8.16, we obtain the \(A \) circuit shown in Fig. 8.17(b). To find \(A = V_o/V_i \) we first determine the gain of the first stage. This can be written by inspection as

\[
\frac{V_o}{V_i} = \frac{-\frac{\partial V_i}{\partial (R_f + R_{eq})}}{r_{11} + \frac{\partial V_i}{\partial (R_f + R_{eq})}}
\]
Since Q_1 is biased at 0.6 mA, $r_{el} = 41.7 \Omega$. Transistor Q_2 is biased as 1 mA; thus $r_{e2} = h_{fe}/g_{m2} = 100/40 = 2.5 \Omega$. Substituting these values together with $a_1 = 0.99$, $R_{C1} = 9 \Omega$, $R_{E1} = 100 \Omega$, $R_F = 640 \Omega$, and $R_{E2} = 100 \Omega$ results in

$$\frac{V_L}{V_i} = -14.92 \text{ V/V}$$

Next, we determine the gain of the second stage, which can be written by inspection as (note that $V_{b2} = V_{c1}$)

$$\frac{V_{c2}}{V_{b2}} = \frac{g_{m2}}{r_{e3} + (R_{E2} + R_{E1})}$$

Substituting $g_{m2} = 40 \text{ mA/V}$, $R_{C2} = 5 \text{ kΩ}$, $h_{fe} = 100$, $r_{e3} = 6.25 \Omega$, $R_F = 640 \Omega$, and $R_{E1} = 100 \Omega$ results in

$$\frac{V_{c2}}{V_{b2}} = -131.2 \text{ V/V}$$

Finally, for the third stage we can write by inspection

$$\frac{I_f}{I_{b3}} = \frac{R_{E3} + R_{E1}}{R_{E2} + R_{F} + R_{E1}}$$

Combining the gains of the three stages results in

$$A = \frac{I_f}{I_i} = -14.92 \times -131.2 \times 10.6 \times 10^{-3}$$

$$= 20.7 \text{ A/V}$$

The circuit for determining the feedback factor β is shown in Fig. 8.17(c), from which we find

$$\beta = \frac{V_f}{I_f} = \frac{R_{E2}}{R_{E2} + R_F + R_{E1}}$$

The closed-loop gain A_f can now be found from

$$A_f = \frac{I_f}{V_i} = \frac{A}{1 + A\beta}$$

$$= \frac{20.7}{1 + 20.7 \times 11.9} = 83.7 \text{ mA/V}$$

The voltage gain is found from

$$\frac{V_f}{V_i} = \frac{-I_f R_{E2}}{V_i} = \frac{-I_f R_{E1}}{V_i} = -\beta R_{E2}$$

$$= -83.7 \times 10^{-3} \times 600 = -50.2 \text{ V/V}$$

The input resistance of the feedback amplifier is given by

$$R_{in} = R_F(1 + A\beta)$$

FIGURE 8.17 Circuits for Example 8.2.
where R_i is the input resistance of the A circuit. The value of R_i can be found from the circuit in Fig. 8.17(b) as follows:

$$ R_i = \left(b_i + 1 \right) \left[r_e + (R_f + R_{e2}) \right] $$

Thus,

$$ R_i = 13.65 \, \text{k} \Omega $$

To find the output resistance R_o of the A circuit in Fig. 8.17(b), we break the circuit between Y and Y'. The resistance looking between these two nodes can be found to be

$$ R_o = \left[\frac{R_e}{(R_e + R_{e1})} \right] + r_e + \frac{R_{e2}}{R_{e} + 1} $$

which, for the values given, yields $R_o = 143.9 \, \text{Q}$. The output resistance R_{of} of the feedback amplifier can now be found as

$$ R_{of} = R_o \left(1 + A/3 \right) = 143.9 \left(1 + 20.7 \times 11.9 \right) = 35.6 \, \text{k} \Omega $$

Note that the feedback stabilizes the emitter current of Q_3, and thus the output resistance that is determined by the feedback formula is the resistance of the emitter loop (i.e., between Y and Y'), which we have just found, and not the resistance looking into the collector of Q_3. This is because the output resistance r_o of Q_3 is in effect outside the feedback loop. We can, however, use the value of R_o to obtain an approximate value for R_{of}. To do this, we assume that the effect of the feedback is to place a resistance $R_o' = (35.6 \, \text{k} \Omega)$ in the emitter of Q_3, and find the output resistance from the equivalent circuit shown in Fig. 8.17(b). Using Eq. (6.117), I_{out} can be found as

$$ I_{out} = r_o \left(1 + A/3 \right) \left(25 + 1 + 160 \times 25 \right) \left(35.6 \times 0.625 \right) = 2.5 \, \text{Q} $$

Thus, the output resistance at the collector increases, but not by $(1 + A/3)$.

EXERCISE

8.6. Reconsider the circuit in Fig. 8.17(a); this time with the output voltage taken at the emitter of Q_3. In this case, the feedback can be considered to be of the voltage-sampling type. Note, however, that the loop gain remains unchanged. Find the value of $A = V_{3e}/V_s$ (from Fig. 8.17(b)), $A_f = V_{3e}/V_{s1}$, and the output resistance.

8.6. THE SHUNT-SHUNT AND SHUNT-SERIES FEEDBACK AMPLIFIERS

In this section we shall extend—without proof—the method of Sections 8.4 and 8.5 to the two remaining feedback topologies.

This important point was first brought to the authors' attention by Gordon Roberts (see Roberts and Sedra, 1992).
CHAPTER 8 FEEDBACK

FIGURE 8.19 Block diagram for a practical shunt-shunt feedback amplifier.

(a) The A circuit is

where \(R_1 \) is obtained from

and \(R_2 \) is obtained from

and the gain \(A \) is defined

(b) \(\beta \) is obtained from

\[\beta = \frac{I_1}{V_s} \]

FIGURE 8.20 Finding the A circuit and \(\beta \) for the current-mixing voltage-sampling (shunt-shunt) feedback amplifier in Fig. 8.19.

The first assumption is justified when the reverse \(y \) parameters of the basic amplifier and of the feedback network satisfy the condition

The second assumption is justified when the forward \(y \) parameters satisfy the condition

Finally, we note that once \(R_f \) and \(R_C \) have been determined using the feedback formulas (Eqs. 8.36 and 8.37), the input and output resistances of the amplifier proper (see definitions in Fig. 8.19) can be obtained as

\[R_i = \frac{1}{R_f} \left(\frac{1}{R_D} \right) \]

\[R_o = \frac{1}{R_C} \left(\frac{1}{R_D} \right) \]

EXAMPLE 8.3

We want to analyze the circuit of Fig. 8.21(a) to determine the small-signal voltage gain \(V_o/V_s \), the input resistance \(R_i \), and the output resistance \(R_o \). The transistor has \(\beta = 100 \).

Solution

First we determine the transistor dc operating point. The dc analysis is illustrated in Fig. 8.21(b), from which we can write:

\[V_C = 0.7 + (I_D + 0.07)47 = 3.99 + 477 \]

and

\[I_C = (\beta + 1)I_D = 0.07 \]

These two equations can be solved to obtain \(I_D = 0.005 \) mA, \(I_C = 1.5 \) mA, and \(V_C = 4.7 \) V.

To carry out small-signal analysis, we first recognize that the feedback is provided by \(R_f \), which samples the output voltage \(V_o \) and feeds back a current that is mixed with the source current. Thus it is convenient to use the Norton source representation, as shown in Fig. 8.21(c). The A circuit can be easily obtained using the rules of Fig. 8.20, and it is shown in Fig. 8.21(d). For the A circuit we can write by inspection:

\[V_K = I_C R_C \]

\[V_o = -g_m V_C \]

Thus

\[A = \frac{V_o}{I_c} = -g_m (R_f/R_C) (R_f/R_C) \]

\[= -358.7 \ \text{k}\Omega \]

The input and output resistances of the A circuit can be obtained from Fig. 8.21(d) as

\[R_i = R_f/R_C/R_e = 1.4 \ \text{k}\Omega \]

\[R_o = R_f/R_f = 4.27 \ \text{k}\Omega \]

The circuit for determining \(\beta \) is shown in Fig. 8.21(e), from which we obtain

\[\beta = \frac{I_f}{V_s} = \frac{1}{R_f} = \frac{1}{47 \ \text{k}\Omega} \]

Here, the \(y \) parameters (Appendix B) are used because this is the only two-port parameter set that provides a representation of the feedback network with a parallel circuit at the input and a parallel circuit at the output.
CHAPTER 8

FEEDBACK

THE SHUNT-SHUNT AND SHUNT-SERIES FEEDBACK AMPLIFIERS

8.6.2 An Important Note

The method we have been employing for the analysis of feedback amplifiers is predicated on two premises: Most of the forward transmission occurs in the basic amplifier, and most of the reverse transmission (feedback) occurs in the feedback network. For each of the three topologies considered thus far, these two assumptions were mathematically expressed as conditions on the relative magnitudes of the forward and reverse two-port parameters of the basic amplifier and the feedback network. Since the circuit considered in Example 8.3 is simple, we have a good opportunity to check the validity of those assumptions.

Reference to Fig. 8.21(d) indicates clearly that the basic amplifier is unilateral; thus all the reverse transmission takes place in the feedback network. The case with forward transmission, however, is not as clear, and we must evaluate the forward parameters. For the A circuit in Fig. 8.21(d), \(y_{22} \approx g_m \). For the feedback network it can be easily shown that \(y_{22} = -1/R_f \). Thus (for our analysis method to be valid) we must have \(g_m > 1/R_f \). For the numerical values in Example 8.3, \(g_m = 60 \text{ mS/V} \) and \(1/R_f = 0.02 \text{ mA/V} \), indicating that this assumption is more than justified. Nevertheless, in designing feedback amplifiers, care should be taken in choosing component values to ensure that the two basic assumptions are valid.

8.6.3 The Shunt-Series Configuration

Figure 8.22 shows the ideal structure of the shunt-series feedback amplifier. It is a current amplifier whose gain with feedback is defined as

\[
A_f = \frac{I_f}{I_s} = \frac{A}{1 + A} \tag{8.42}
\]

The input resistance with feedback is the resistance seen by the current source \(I_s \) and is given by

\[
R_i = \frac{R_s}{1 + A_f} \tag{8.43}
\]
CHAPTER 8 FEEDBACK

A circuit

FIGURE 8.22 Ideal structure for the shunt-series feedback amplifier.

Again we note that the shunt connection at the input reduces the input resistance. The output resistance with feedback is the resistance seen by breaking the output circuit, such as between O and O', and looking between the two terminals thus generated (i.e., between O and O'). This resistance, \(R_{of} \), is given by

\[
R_{of} = R_a (1 + AB) \tag{8.44}
\]

where we note that the increase in output resistance is due to the current (series) sampling.

Given a practical shunt-series feedback amplifier, such as that represented by the block diagram of Fig. 8.23, we follow the method given in Fig. 8.24 in order to obtain \(A \) and \(B \).

Here again the analysis method is predicated on the assumption that most of the forward transmission occurs in the basic amplifier,

\[
\beta = \left| \frac{I_{o}}{I_{i}} \right| \tag{8.45}
\]

and that most of the reverse transmission takes place in the feedback network.

Finally, we note that once \(R_{if} \) and \(R_{of} \) have been determined using the feedback equations (Eqs. 8.43 and 8.44), the input and output resistances of the amplifier proper, \(R_{in} \) and \(R_{out} \) (Fig. 8.23), can be found as

\[
R_{in} = R_a (1 + AB) \frac{1}{1 + \left(\frac{R_{if}}{R_{of}} \right)} \tag{8.46}
\]

\[
R_{out} = R_{of} - R_L \tag{8.47}
\]

EXAMPLE 8.4

Figure 8.25 shows a feedback circuit of the shunt-series type. Find \(I_{o}/I_{i}, R_{in}, R_{out} \). Assume the transistors to have \(\beta = 100 \) and \(V_A = 75 \text{ V} \).

Solution

We begin by determining the dc operating points. In this regard we note that the feedback signal is capacitively coupled; thus the feedback has no effect on dc bias. Neglecting the effect...
FIGURE 8.25 Circuits for Example 8.4.
CHAPTER 8 FEEDBACK

The feedback network samples the emitter current of \(f \) and \(E2 \) of finite transistor \(Q8 \) and \(Q2 \). The dc analysis proceeds as follows:

The feedback network using the rules of Fig. 8.24. For the A circuit we can write loop current gain \(A \), where we have neglected the effect of \(r_o \). These equations can be combined to obtain the open-loop current gain \(A \).

The amplifier equivalent circuit is shown in Fig. 8.25(b), from which we note that the feedback network “does not know” about the existence of \(R_m \). Thus, in effect, the feedback network “does not know” about the existence of \(R_m \). Since \(R_m = R_f \), it follows from Fig. 8.25(b) that \(I_o = I_s \). The current gain \(A_f \) is given by

Note that because \(A \beta \) is large, the closed-loop gain is approximately equal to \(1/\beta \).

Now, the required current gain is given by

Thus,

The output resistance \(R_o \) is given by

An estimate of the required output resistance \(R_o \) can be obtained using the technique employed in Example 8.2, namely, by considering that the effect of feedback is to place a resistance \(R_f \) in the emitter of \(Q2 \) (see Fig. 8.25c). Thus, using Eq. (6.78), we can write

Substituting, \(r_o = 75/0.4 = 187.5 \) k\(\Omega \), \(g_m = 16 \) mA/V, \(r_e = 6.25 \) k\(\Omega \), and \(Y_f = 140.1 \) k\(\Omega \), results in

Thus, while negative feedback considerably increases \(R_o \), the increase is not by the factor \(1+\beta \), simply because the feedback network samples the emitter current and not the collector current. Thus, in effect, the feedback network “does not know” about the existence of \(r_o \).
8.7 DETERMINING THE LOOP GAIN

8.7.4 Summary of Results

Table 8.1 provides a summary of the rules and relationships employed in the analysis of the four types of feedback amplifier.

8.7 DETERMINING THE LOOP GAIN

We have already seen that the loop gain \(A_{\beta} \) is a very important quantity that characterizes a feedback loop. Furthermore, in the following sections it will be shown that \(A_{\beta} \) determines whether the feedback amplifier is stable (as opposed to oscillatory). In this section, we shall describe an alternative approach to the determination of loop gain.

8.7.1 An Alternative Approach for Finding \(A_{\beta} \)

Consider first the general feedback amplifier shown in Fig. 8.1. Let the external source \(x_s \) be set to zero. Open the feedback loop by breaking the connection of \(x_a \) to the feedback network and apply a test signal \(x_t \). We see that the signal at the output of the feedback network is \(x_f = x_t / (1 + A_{\beta}) \), that at the input of the basic amplifier is \(x_t = -x_a \), and the signal at the output of the amplifier, where the loop was broken, will be \(x_a = -A_{\beta}x_t \). It follows that the loop gain \(A_{\beta} \) is given by the negative of the ratio of the returned signal to the applied test signal; that is, \(A_{\beta} = -\frac{x_a}{x_t} \). It should also be obvious that this applies regardless of where the loop is broken.

However, in breaking the feedback loop of a practical amplifier circuit, we must ensure that the conditions that existed prior to breaking the loop do not change. This is achieved by terminating the loop where it is opened with an impedance equal to that seen before the loop was broken. To be specific, consider the conceptual feedback loop shown in Fig. 8.26(a). If we break the loop at \(XX' \), and apply a test voltage \(V_t \) to the terminals thus created to the left of \(XX' \), the terminals at the right of \(XX' \) should be loaded with an impedance \(Z_t \) as shown in Fig. 8.26(b). The impedance \(Z_t \) is equal to that previously seen looking to the left of \(XX' \). The loop gain \(A_{\beta} \) is then determined from

\[
A_{\beta} = -\frac{V_t}{V_t} \tag{8.49}
\]

Finally, it should be noted that in some cases it may be convenient to determine \(A_{\beta} \) by applying a test current \(I_t \) and finding the returned current signal \(I_a \). In this case, \(A_{\beta} = -\frac{I_a}{I_t} \). An alternative equivalent method for determining \(A_{\beta} \) (see Rosenstark, 1986) that is usually convenient to employ especially in SPICE simulations is as follows: As before, the loop is broken at a convenient point. Then the open-circuit transfer function \(T_{oc} \) is determined as indicated in Fig. 8.26(c), and the short-circuit transfer function \(T_{sc} \) is determined as shown in Fig. 8.26(d). These two transfer functions are then combined to obtain the loop gain \(A_{\beta} \)

\[
A_{\beta} = -\frac{1}{T_{oc} + \frac{1}{T_{sc}}} \tag{8.50}
\]

This method is particularly useful when it is not easy to determine the termination impedance \(Z_t \).

To illustrate the process of determining loop gain, we consider the feedback loop shown in Fig. 8.27(a). This feedback loop represents both the inverting and the noninverting op-amp
A conceptual feedback loop is broken at XX' and a test voltage V_r is applied. The impedance Z is equal to that previously seen looking to the left of XX'. The loop gain $A/\phi = -V_r/V_t$, where V_r is the returned voltage. As an alternative, A/ϕ can be determined by finding the open-circuit transfer function T_{oc} as in (c), and the short-circuit transfer function T_{sc} as in (d), and combining them as indicated.

Using a simple equivalent circuit model for the op amp we obtain the circuit of Fig. 8.27(b). Examination of this circuit reveals that a convenient place to break the loop is at the input terminals of the op amp. The loop, broken in this manner, is shown in Fig. 8.27(c) with a test signal V_r applied to the right-hand-side terminals and a resistance R_{id} terminating the left-hand-side terminals. The returned voltage V_r is found by inspection as

$$V_r = -\mu V_t \left(\frac{R_t/(R_t + R_{id} + R)}{R_t/(R_t + R_{id} + R)} + \frac{R_{id}}{R_t/(R_t + R_{id} + R)} \right) + \frac{R_{id}}{R_t/(R_t + R_{id} + R)} R_{id}$$

This equation can be used directly to find the loop gain $L = A/\phi = -V_r/V_t = -V_r/V_t$.

Since the loop gain L is generally a function of frequency, it is usual to call it loop transmission and denote it by $L(s)$ or $L(j\omega)$.

8.7.2 Equivalence of Circuits from a Feedback-Loop Point of View

From the study of circuit theory we know that the poles of a circuit are independent of the external excitation. In fact the poles, or the natural modes (which is a more appropriate name), are determined by setting the external excitation to zero. It follows that the poles of a feedback amplifier depend only on the feedback loop. This will be confirmed in a later section, where we show that the characteristic equation (whose roots are the poles) is completely determined by the loop gain. Thus, a given feedback loop may be used to generate a number of circuits having the same poles but different transmission zeros. The closed-loop gain and the transmission zeros depend on how and where the input signal is injected into the loop.

As an example consider the feedback loop of Fig. 8.27(a). This loop can be used to generate the noninverting op-amp circuit by feeding the input voltage signal to the terminal of R that is connected to ground; that is, we lift this terminal off ground and connect it to V_s.

The same feedback loop can be used to generate the inverting op-amp circuit by feeding the input voltage signal to the terminal of R that is connected to ground.

Recognition of the fact that two or more circuits are equivalent from a feedback-loop point of view is very useful because (as will be shown in Section 8.8) stability is a function of the loop. Thus one needs to perform the stability analysis only once for a given loop.

In Chapter 12 we shall employ the concept of loop equivalence in the synthesis of active filters.
EXERCISES

6.4 Consider the feedback amplifier whose equivalent circuit is shown in Fig. 8.25(b). Break the feedback loop at the input to transistor Q1, that is, apply a virtual short voltage to the base of Q1, and find the returned voltage that appears across r1. Thus show that the loop gain is given (neglecting r2, to simplify the analysis) by:

\[\frac{A\beta}{R} = \frac{A(s)}{1 + A(s)\beta(s)} \]

Using the component values in Example 8.4, find the value of \(A\beta \) and compare it with the value found in Example 8.3.

Ans. 49.3 versus 52.1

6.6 Find the numerical value of \(A\beta \) for the amplifier in Exercise 6.7.

Ans. 6590 V

8.8 THE STABILITY PROBLEM

8.8.1 Transfer Function of the Feedback Amplifier

In a feedback amplifier such as that represented by the general structure of Fig. 8.1, the open-loop gain \(A(s) \) is generally a function of frequency, and it should therefore be more accurately called the open-loop transfer function, \(A(s) \). Also, we have been assuming for the most part that the feedback network is resistive and hence that the feedback factor \(\beta \) is constant, but this need not be always the case. We shall therefore assume that in the general case the feedback transfer function \(B(s) \) is \(B(s) \). It follows that the closed-loop transfer function \(A_L(s) \) is given by

\[A_L(s) = \frac{A(s)}{1 + A(s)\beta(s)} \]

(8.52)

To focus attention on the points central to our discussion in this section, we shall assume that the amplifier is direct-coupled with constant dc gain \(A_0 \) and with poles and zeros occurring in the high-frequency band. Also, for the time being let us assume that at low frequencies the loop gain \(A(s)\beta(s) \) becomes a constant, which should be a positive number; otherwise the feedback would not be negative. The question then is: What happens at higher frequencies?

For physical frequencies \(s = j\omega \), Eq. (8.52) becomes

\[A_L(j\omega) = \frac{A(j\omega)}{1 + A(j\omega)\beta(j\omega)} \]

(8.53)

Thus the loop gain \(A_L(j\omega)\beta(j\omega) \) is a complex number that can be represented by its magnitude and phase,

\[\left| A_L(j\omega)\beta(j\omega) \right| e^{j\phi(j\omega)} \]

(8.54)

It is the manner in which the loop gain varies with frequency that determines the stability or instability of the feedback amplifier. To appreciate this fact, consider the frequency at which the phase angle \(\phi(j\omega) \) becomes 180°. At this frequency, \(\omega_0 \), the loop gain \(A_L(j\omega)\beta(j\omega) \) will be a real number with a negative sign. Thus at this frequency the feedback will become positive. If \(\omega = \omega_0 \), the magnitude of the loop gain is less than unity, then from Eq. (8.53) we see that the closed-loop gain \(A_L(j\omega) \) will be greater than the open-loop gain \(A(j\omega) \), since the denominator of Eq. (8.53) will be smaller than unity. Nevertheless, the feedback amplifier will be stable.

On the other hand, if at the frequency \(\omega = \omega_0 \), the magnitude of the loop gain is equal to unity, it follows from Eq. (8.53) that \(A_L(j\omega) \) will be infinite. This means that the amplifier will have an output for zero input; this is by definition an oscillator. To visualize how this feedback loop may oscillate, consider the general loop of Fig. 8.1 with the external input \(x_1 \) set to zero. Any disturbance in the circuit, such as the closure of the power-supply switch, will generate a signal \(x(t) \) at the input to the amplifier. Such a noise signal usually contains a wide range of frequencies, and we shall now concentrate on the component with frequency \(\omega = \omega_0 \), that is, the signal \(X_1 \sin(\omega_0 t) \). This input signal will result in a feedback signal given by

\[X_f = A_L(j\omega_0)\beta(j\omega_0)X_1 = -X_1 \]

Since \(X_1 \) is further multiplied by -1 in the summer block at the input, we see that the feedback causes the signal \(X_1 \) at the amplifier input to be sustained. That is, from this point on, there will be sinusoidal signals at the amplifier input and output of frequency \(\omega_0 \). Thus the amplifier is said to oscillate at the frequency \(\omega_0 \).

The question now is: What happens if at \(\omega_0 \) the magnitude of the loop gain is greater than unity? We shall answer this question, not in general, but for the restricted yet very important class of circuits in which we are interested here. The answer, which is not obvious from Eq. (8.53), is that the circuit will oscillate, and the oscillations will grow in amplitude until some nonlinearity (which is always present in some form) reduces the magnitude of the loop gain to exactly unity, at which point sustained oscillations will be obtained. This mechanism for starting oscillations by using positive feedback with a loop gain greater than unity, and then using a nonlinearity to reduce the loop gain to unity at the desired amplitude, will be exploited in the design of sinusoidal oscillators in Chapter 13. Our objective here is just the opposite: Now that we know how oscillations could occur in a negative-feedback amplifier, we wish to find methods to prevent their occurrence.

8.8.2 The Nyquist Plot

The Nyquist plot is a formalized approach for testing for stability based on the discussion above. It is simply a polar plot of loop gain with frequency used as a parameter. Figure 8.28 shows such a plot. Note that the radial distance is \(|A(j\omega)| \) and the angle is the phase angle \(\phi \). The solid-line plot is for positive frequencies. Since the loop gain—and for that matter any gain function of a physical network—has a magnitude that is an even function of frequency and a phase that is an odd function of frequency, the \(AB \) plot for negative frequencies (shown in Fig. 8.28 as a broken line) can be drawn as a mirror image through the Re axis.

The Nyquist plot intersects the negative real axis at the frequency \(\omega_0 \). Thus, if this intersection occurs to the left of the point (-1, 0), we know that the magnitude of loop gain at this frequency is greater than unity and the amplifier will be unstable. On the other hand, if the intersection occurs to the right of the point (-1, 0) the amplifier will be stable. It follows that if (the Nyquist plot encircles the point (-1, 0) then the amplifier will be
CHAPTER 8 FEEDBACK

8.9 EFFECT OF FEEDBACK ON THE AMPLIFIER POLES

The amplifier frequency response and stability are determined directly by its poles. We shall therefore investigate the effect of feedback on the poles of the amplifier.¹

- **EXERCISE**

 8.10 Consider a feedback amplifier for which the open-loop transfer function \(A(s) \) is given by

 \[A(s) = \frac{-\beta}{1 + s/10} \]

 Let the feedback factor \(\beta \) be a constant independent of frequency. Find the frequency \(\omega_m \) at which the phase shift is 90°. Then, show that the feedback amplifier will be stable if the feedback factor \(\beta \) is less than a critical value \(\beta_c \) and find the value of \(\beta_c \).

 \[\omega_m = 5 \times 10^4 \text{ rad/sec}; \quad \beta_c = 0.008 \]

- **8.9.1 Stability and Pole Location**

 We shall begin by considering the relationship between stability and pole location. For an amplifier or any other system to be stable, its poles should lie in the left half of the \(s \) plane. A pair of complex-conjugate poles on the \(j\omega \) axis gives rise to sustained sinusoidal oscillations. Poles in the right half of the \(s \) plane give rise to growing oscillations.

 To verify the statement above, consider an amplifier with a pole pair at \(s = \alpha + j\omega \). If this amplifier is subjected to a disturbance, such as that caused by closure of the power-supply switch, its transient response will contain terms of the form

 \[v(t) = e^{\alpha t}[e^{j\omega t} + e^{-j\omega t}] = 2e^{\alpha t}\cos(\omega t) \]

 \[(8.55) \]

 This is a sinusoidal signal with an envelope \(e^{\alpha t} \). Now if the poles are in the left half of the \(s \) plane, then \(\alpha \) will be negative and the oscillations will decay exponentially toward zero, as shown in Fig. 8.29(a), indicating that the system is stable. If, on the other hand, the poles are in the right half-plane, then \(\alpha \) will be positive, and the oscillations will grow exponentially.

 ![Figure 8.29](image)

 Relationship between pole location and transient response.
that the existence of any right-half-plane poles results in instability.

8.9.3 Amplifier with a Single-Pole Response
Consider first the case of an amplifier whose open-loop transfer function is characterized by a single pole:

\[A(s) = \frac{A_0}{1 + s/\omega_p} \]

(8.57)

The closed-loop transfer function is given by

\[A_c(s) = \frac{A_0}{1 + s/\omega_p(1 + A_0B)} \]

(8.58)

Thus the feedback moves the pole along the negative real axis to a frequency \(\omega_p \):

\[\omega_p = \omega_p(1 + A_0B) \]

(8.59)

This process is illustrated in Fig. 8.30(a). Figure 8.30(b) shows Bode plots for \(|A(s)| \) and \(|A_c(s)| \). Note that while at low frequencies the difference between the two plots is 20 \(\log(1 + A_0B) \), the two curves coincide at high frequencies. One can show that this indeed is the case by approximating Eq. (8.58) for frequencies \(s \gg \omega_p(1 + A_0B) \):

\[A_c(s) \approx \frac{A_0\omega_p}{s} = A(s) \]

(8.60)

Physically speaking, at such high frequencies the loop gain is much smaller than unity and the feedback is ineffective. Figure 8.30(b) clearly illustrates the fact that applying negative feedback to an amplifier results in extending its bandwidth at the expense of a reduction in gain. Since the pole of the closed-loop amplifier never enters the right half of the \(s \) plane, the single-pole amplifier is stable for any value of \(B \). Thus this amplifier is said to be unconditionally stable.

EXERCISE

8.11 An amplifier having a single-pole roll-off at 100 Hz and a low-frequency gain of 10^3 is operated in a feedback loop with \(B = 0.01 \). What is the factor by which feedback shifts the pole? To what frequency does the pole shift? If \(B \) is changed to a value that results in a closed-loop gain of 1, to what frequency does the pole shift?

Ans. \(\text{Amp}: \) 100 Hz; 10 MHz

8.9.4 Amplifier with Two-Pole Response
Consider next an amplifier whose open-loop transfer function is characterized by two real-axis poles:

\[A(s) = \frac{A_1}{1 + s/\omega_p} \frac{A_2}{1 + s/\omega_p} \]

(8.61)

In this case, the closed-loop poles are obtained from \(1 + A(s)\beta = 0 \), which leads to

\[s^2 + x(\omega_p^2 + \omega_p^2) + (1 + A_0\beta)\omega_p^2\omega_p = 0 \]

(8.62)

That the closed-loop poles are given by

\[s = -\frac{\omega_p^2}{2} \pm \frac{i}{2}(\omega_p^2 + \omega_p^2) \pm \frac{1}{2}(\omega_p^2 + \omega_p^2)^2 - 4(1 + A_0\beta)\omega_p^2\omega_p \]

(8.63)

From Eq. (8.63) we see that as the loop gain \(A_0\beta \) is increased from zero, the poles are brought closer together. Then a value of loop gain is reached at which the poles become coincident. If the loop gain is further increased, the poles become complex conjugate and move along a vertical line. Figure 8.31 shows the locus of the poles for increasing loop gain. This plot is called a root-locus diagram, where "root" refers to the fact that the poles are the roots of the characteristic equation.
From the root-locus diagram of Fig. 8.31 we see that this feedback amplifier also is unconditionally stable. Again, this result should come as no surprise; the maximum phase shift of $A(s)$ in this case is 180° (90° per pole), but this value is reached at $\omega = \infty$. Thus there is no finite frequency at which the phase shift reaches 180°.

Another observation to make on the root-locus diagram of Fig. 8.31 is that the open-loop amplifier might have a dominant pole, but this is not necessarily the case for the closed-loop amplifier. The response of the closed-loop amplifier can, of course, always be plotted once the poles have been found from Eq. (8.63). As is the case with second-order responses generally, the closed-loop response can show a peak (see Chapter 12). To be more specific, the characteristic equation of a second-order network can be written in the standard form

$$s^2 + 2\alpha s + \omega_0^2 = 0$$ \hspace{1cm} (8.64)

where ω_0 is called the pole frequency and Q is called pole Q factor. The poles are complex if Q is greater than 0.5. A geometric interpretation for α and Q of a pair of complex-conjugate poles is given in Fig. 8.32, from which we note that α is the radial distance of the poles from the origin and that Q indicates the distance of the poles from the $j\omega$ axis. Poles on the $j\omega$ axis have $Q = \infty$.

By comparing Eqs. (8.62) and (8.64) we obtain the Q factor for the poles of the feedback amplifier as

$$Q = \frac{\sqrt{(1 + A_0)B} \omega_1 \omega_2}{\omega_1 + \omega_2}$$ \hspace{1cm} (8.65)

where ω_1 and ω_2 are the pole frequencies.

From the study of second-order network responses in Chapter 12, it will be seen that the response of the feedback amplifier under consideration shows no peaking for $Q < 0.707$. The boundary case corresponding to $Q = 0.707$ (poles at 45° angles) results in the maximally flat response. Figure 8.33 shows a number of possible responses obtained for various values of Q (or, correspondingly, various values of A_0).

Example 8.3

As an illustration of some of the ideas just discussed, we consider the positive-feedback circuit shown in Fig. 8.34(a). Find the loop transmission $L(s)$ and the characteristic equation. Sketch a root-locus diagram for varying K, and find the value of K that results in a maximally flat response, and the value of K that makes the circuit oscillate. Assume that the amplifier has infinite input impedance and zero output impedance.

Solution

To obtain the loop transmission, we short-circuit the signal source and break the loop at the amplifier input. We then apply a test voltage V_i and find the returned voltage V_o, as indicated in
8.9 EFFECT OF FEEDBACK ON THE AMPLIFIER POLES

8.9.5 Amplifiers with Three or More Poles

Figure 8.35 shows the root-locus diagram for a feedback amplifier whose open-loop response is characterized by three poles. As indicated, increasing the loop gain from zero moves the highest-frequency pole outward while the two other poles are brought closer together. As $A_L\beta$ is increased further, the two poles become coincident and then become complex and conjugate. A value of $A_L\beta$ exists at which this pair of complex-conjugate poles enters the right half of the s plane, thus causing the amplifier to become unstable.

Thus,

\[
L(s) = \frac{-s(K/CR)}{s^2 + s(3/CR) + (1/CR)^2}
\]

(8.68)

The characteristic equation is

\[1 + L(s) = 0\]

(8.69)

that is,

\[s^2 + s\left(\frac{3}{CR}\right) + \left(\frac{1}{CR}\right)^2 = 0\]

(8.70)

By comparing this equation to the standard form of the second-order characteristic equation (Eq. 8.64) we see that the pole frequency ω_p is given by

\[\omega_p = \frac{1}{\sqrt{CR}}\]

(8.71)

and the Q factor is

\[Q = \frac{\omega_p}{\omega_0} = \frac{1}{3 - K}\]

(8.72)

Thus, for $K = 0$ the poles have $Q = \frac{1}{3}$ and are therefore located on the negative real axis. As K is increased the poles are brought closer together and eventually coincide ($Q = 0$, $K = 1$). Further increasing K results in the poles becoming complex and conjugate. The root locus is then a circle because the radial distance a_0 remains constant (Eq. 8.71) independent of the value of K.

The maximally flat response is obtained when $K = 1.586$, which results when $K = 0.707$, which results when $K = 1.586$. In this case the poles are at 45° angles, as indicated in Fig. 8.34(c). The poles cross the jω axis into the right half of the s plane at the value of K that results in $Q = \infty$, that is, $K = 3$. Thus for $K \geq 3$ this circuit becomes unstable. This might appear to contradict our earlier conclusion that the feedback amplifier with a second-order response is unconditionally stable. Note, however, that the circuit in this example is quite different from the negative-feedback amplifier that we have been studying. Here we have an amplifier with a positive gain K and a feedback network whose transfer function $T(s)$ is frequency dependent. This feedback is in fact positive, and the circuit will oscillate at the frequency for which the phase of $T(j\omega_0)$ is zero.

Example 8.5 illustrates the use of feedback (positive feedback in this case) to move the poles of an RC network from their negative real-axis locations to complex-conjugate locations. One can accomplish the same task using negative feedback, as the root-locus diagram of Fig. 8.31 demonstrates. The process of pole control is the essence of active-filter design, as will be discussed in Chapter 12.
CHAPTER 8
FEEDBACK

FIGURE 8.35 Root-locus diagram for an amplifier with three poles. The arrows indicate the pole movement as A/β is increased.

This result is not entirely unexpected, since an amplifier with three poles has a phase shift that reaches -270° as ω approaches ∞. Thus there exists a finite frequency ω_{m} at which the loop gain has 180° phase shift.

From the root-locus diagram of Fig. 8.35, we observe that one can always maintain amplifier stability by keeping the loop gain A/β smaller than the value corresponding to the poles entering the right half-plane. In terms of the Nyquist diagram, the critical value of A/β is that for which the diagram passes through the $(-1, 0)$ point. Reducing A/β below this value causes the Nyquist plot to shrink and thus intersect the negative real axis to the right of the $(-1, 0)$ point, indicating stable amplifier performance. On the other hand, increasing A/β above the critical value causes the Nyquist plot to expand, thus encircling the $(-1, 0)$ point and indicating unstable performance.

For a given open-loop gain A, the conclusions above can be stated in terms of the feedback factor β. That is, there exists a maximum value for β above which the feedback amplifier becomes unstable. Alternatively, we can state that there exists a minimum value for the closed-loop gain A_f below which the amplifier becomes unstable. To obtain lower values of closed-loop gain one needs therefore to alter the loop transfer function $L(s)$. This is the process known as frequency compensation. We shall study the theory and techniques of frequency compensation in Section 8.11.

Before leaving this section we point out that construction of the root-locus diagram for amplifiers having three or more poles as well as finite zeros is an involved process for which a systematic procedure exists. However, such a procedure will not be presented here, and the interested reader should consult Haykin (1970). Although the root-locus diagram provides the amplifier designer with considerable insight, other, simpler techniques based on Bode plots can be effectively employed, as will be explained in Section 8.10.

EXERCISE

8.13 Consider a feedback amplifier whose open-loop transfer function is given by

Let the feedback factor β be frequency independent. Find the closed-loop poles as functions of β, and show that the root locus is that of Fig. 8.35. Also find the value of β at which the amplifier becomes unstable. (Note: This is the same amplifier that was considered in Exercise 8.10.)

8.10 STABILITY STUDY USING BODE PLOTS

8.10.1 Gain and Phase Margins

From Sections 8.8 and 8.9 we know that one can determine whether a feedback amplifier is or is not stable by examining its loop gain A/β as a function of frequency. One of the simplest and most effective means for doing this is through the use of a Bode plot for A/β, such as the one shown in Fig. 8.36. (Note that because the phase approaches -360°, the network examined is a fourth-order one.) The feedback amplifier whose loop gain is plotted in Fig. 8.36 will be stable, since at the frequency of 180° phase shift, ω_{m}, the magnitude of the loop gain is less than unity (negative dB). The difference between the value of A/β at ω_{m} and unity, called the gain margin, is usually expressed in decibels. The gain margin represents the amount by which the loop gain can be increased while stability is maintained. Feedback amplifiers are usually designed to have sufficient gain margin to allow for the inevitable changes in loop gain with temperature, time, and so on.

Another way to investigate the stability and to express its degree is to examine the Bode plot at the frequency for which $|A/\beta| = 1$, which is the point at which the magnitude plot crosses the 0-dB line. If at this frequency the phase angle is less (in magnitude) than 180°, then the amplifier is stable. This is the situation illustrated in Fig. 8.36. The difference between the phase angle at this frequency and 180° is termed the phase margin. On the

FIGURE 8.36

We refer to the Bode plot for the feedback amplifier whose loop gain is plotted in Fig. 8.36. The feedback factor β is frequency independent. Find the closed-loop poles as functions of β, and show that the root locus is that of Fig. 8.35. Also find the value of β at which the amplifier becomes unstable. (Note: This is the same amplifier that was considered in Exercise 8.10.)
Feedback amplifiers are normally designed with a phase margin of at least 45°. The amount of phase margin has a profound effect on the shape of the closed-loop gain response. To see this relationship, consider a feedback amplifier with a large low-frequency loop gain, \(A_0 > 1 \). It follows that the closed-loop gain at low frequencies is approximately 1/\(A_0 \).

Denoting the frequency at which the magnitude of loop gain is unity by \(\omega_0 \), we have (refer to Fig. 8.36)

\[
A(j\omega_0)B = 1 \times e^{-\theta}
\]

(8.73a)

where

\[
\theta = 180° - \text{phase margin}
\]

(8.73b)

Thus the magnitude of the gain at \(\omega_0 \) is

\[
|A(j\omega_0)| = \frac{1/\beta}{1 + e^{-\theta}}
\]

(8.76)

For a phase margin of 45°, \(\theta = 135° \); and we obtain

\[
|A(j\omega_0)| = 1.3 \beta
\]

(8.77)

That is, the gain peaks by a factor of 1.3 above the low-frequency value of 1/\(\beta \). This peaking increases as the phase margin is reduced, eventually reaching \(\infty \) when the phase margin is zero. Zero phase margin, of course, implies that the amplifier can sustain oscillations (poles on the j\(\omega \) axis; Nyquist plot passing through \((-1, 0)\)).
The open-loop gain of this amplifier can be expressed as
\[A = \frac{10^5}{(1 + jf/10^2)(1 + jf/10^3)(1 + jf/10^4)} \]
(8.79)
from which \(|A|\) can be easily determined for any frequency \(f\) (in Hz), and the phase can be obtained as
\[\phi = -\tan^{-1}(f/10^2) + \tan^{-1}(f/10^3) + \tan^{-1}(f/10^4). \]
(8.80)

The magnitude and phase graphs shown in Fig. 8.37 are obtained using the method for constructing Bode plots (Appendix E). These graphs provide approximate values for important amplifier parameters, with more exact values obtainable from Eqs. (8.79) and (8.80). For example, the frequency \(f_{\text{ao}}\) at which the phase angle is 180° can be found from Fig. 8.37 to be approximately 3.2 \times 10^4 Hz. Using this value as a starting point, a more exact value can be found by trial and error using Eq. (8.80). The result is \(f_{\text{ao}} = 3.34 \times 10^4\) Hz. At this frequency, Eq. (8.79) gives a gain magnitude of 58.2 dB, which is reasonably close to the approximate value of 60 dB given by Fig. 8.37.

Consider next the straight line labeled (a) in Fig. 8.37. This line represents a feedback factor for which \(20 \log(1/B) = 85\) dB, which corresponds to \(B = 5.023 \times 10^{-5}\) and a closed-loop gain of 83.6 dB. Since the loop gain is the difference between the \(A\) curve and the \(1/B\) line, the point of intersection \(X_1\) corresponds to the frequency at which \(|A|B = 1\). Using the graphs of Fig. 8.37, this frequency can be found to be approximately 5.6 \times 10^5 Hz. At some exact value of 4.936 \times 10^5 can be obtained using the transfer-function equations. At this frequency the phase angle is approximately 108°. Thus the closed-loop amplifier, for which \(20 \log(1/B) = 85\) dB, will be stable with a phase margin of 72°. The gain margin can be easily obtained from Fig. 8.37; it is 25 dB.

Next, suppose that we wish to use this amplifier to obtain a closed-loop gain of 50 dB nominal value. Since \(A_{\text{ao}} = 100\) dB, we see that \(A_{\text{ao}}B > 1\) and \(20 \log(A_{\text{ao}}B) = 50\) dB, resulting in \(20 \log(1/B) = 50\) dB. To see whether this closed-loop amplifier is or is not stable, we draw line (b) in Fig. 8.37 with a height of 50 dB. This line intersects the open-loop gain curve at point \(X_2\), where the corresponding phase is greater than 180°. Using the graphs of Fig. 8.37, this frequency can be found to be approximately 5.6 \times 10^5 Hz. A more exact value of 4.936 \times 10^5 can be obtained using the transfer-function equations. At this frequency the phase angle is approximately 108°. Thus the closed-loop amplifier with 50-dB gain will be unstable.

In fact, it can easily be seen from Fig. 8.37 that the minimum value of \(20 \log(1/B)\) that can be used, with the resulting amplifier being stable, is 60 dB. In other words, the minimum value of stable closed-loop gain obtained with this amplifier is approximately 60 dB. At this value of gain, however, the amplifier may still oscillate, since no margin is left to allow for possible changes in gain.

Since the 180°-phase point always occurs on the -40-dB/decade segment of the Bode plot for \(|A|\), a rule of thumb to guarantee stability is as follows: The closed-loop amplifier will be stable if the \(20 \log 1/B\) line intersects the \(20 \log |A|\) curve at a point on the -20-dB/decade segment. Following this rule ensures that a phase margin of at least 45° is obtained. For the example of Fig. 8.37, the rule implies that the maximum value of \(B\) is 10^-4, which corresponds to a closed-loop gain of approximately 80 dB.

The rule of thumb above can be generalized for the case in which \(B\) is a function of frequency. The general rule states that at the intersection of 20 \log \{1/|B(j\omega)|\} and 20 \log \{|A(j\omega)|\} the difference of slopes (called the rate of closure) should not exceed 20 dB/decade.

EXERCISE

8.36 Consider an op amp whose open-loop gain is identical to that of Fig. 8.37. Assume that the op amp is ideal except for the small leading edge distortion. Let the op amp be connected as a differentiator. Use the rule of thumb above to show that for stable performance the differentiator time constant should be greater than 159 ms. (Hint: Recall that for a differentiator, the Bode plot for \(1/|B(j\omega)|\) has a slope of +20 dB/decade and intersects the 0-dB line at 1 Hz, where \(r\) is the differentiator time constant.)

8.11 FREQUENCY COMPENSATION

In this section, we shall discuss methods for modifying the open-loop transfer function \(A(j\omega)\) of an amplifier having three or more poles so that the closed-loop amplifier is stable for any desired value of closed-loop gain.
8.11.1 Theory

The simplest method of frequency compensation consists of introducing a new pole in the function $A(s)$ at a sufficiently low frequency, f_D, such that the modified open-loop gain, $A'(s)$, intersects the $20 \log(1/\beta)$ curve with a slope difference of 20 dB/decade. As an example, let it be required to compensate the amplifier whose $A(s)$ is shown in Fig. 8.38 such that closed-loop amplifiers with β as high as 10^{12} (i.e., closed-loop gains as low as approximately 40 dB) will be stable. First, we draw a horizontal straight line at the 40-dB level to represent $20 \log(1/\beta)$, as shown in Fig. 8.38. We then locate point Y on this line at the frequency of the first pole, f_P. From there we draw a line with -20-dB/decade slope and determine the point at which this line intersects the y-axis, point Y'. This latter point gives the frequency f_D of the new pole that has to be introduced in the open-loop transfer function.

The compensated open-loop response $A'(s)$ is shown in Fig. 8.38. It has four poles: at f_P, f_D, f_{P2}, and f_{P3}. Thus $A'(s)$ begins to roll off with a slope of -20 dB/decade at f_D. At f_{P2}, the slope changes to -40 dB/decade, at f_{P3} it changes to -60 dB/decade, and so on. Since the $20 \log(1/\beta)$ line intersects the $20 \log|A'|$ curve at point Y on the -20-dB/decade segment, the closed-loop amplifier with this β value (or lower values) will be stable.

A serious disadvantage of this compensation method is that at most frequencies the open-loop gain has been drastically reduced. This means that at most frequencies the amount of feedback available will be small. Since all the advantages of negative feedback are directly proportional to the amount of feedback, the performance of the compensated amplifier has been impaired.

8.11.2 Implementation

We shall now address the question of implementing the frequency-compensation scheme discussed above. The amplifier circuit normally consists of a number of cascaded gain stages, with each stage responsible for one or more of the transfer-function poles. Through manual and/or computer analysis of the circuit, one identifies which stage introduces each of the important poles f_{P1}, f_{P2}, and so on. For the purpose of our discussion, assume that the first pole f_{P1} is introduced at the interface between the two cascaded differential stages shown in Fig. 8.39(a). In Fig. 8.39(b), we show a simple small-signal model of the circuit at this interface. Current source I_x represents the output signal current of the $Q_1 - Q_2$ stage. Resistance R_x and capacitance C_x represent the total resistance and capacitance between the two nodes B and B'. It follows that the pole f_{P1} is given by

$$ f_{P1} = \frac{1}{2\pi C_x R_x} \quad (8.81) $$

Careful examination of Fig. 8.38 shows that the gain $A'(s)$ is low because of the pole at f_D. If we can somehow eliminate this pole, then—if rather than locating point Y, drawing YY', and so on—we can start from point Z (at the frequency of the second pole) and draw the line ZZ'. This would result in the open-loop curve $A''(s)$, which shows considerably higher gain than $A'(s)$.

Although it is not possible to eliminate the pole at f_D, it is usually possible to shift that pole from $f = f_D$ to $f = f_M$. This makes the pole dominant and eliminates the need for introducing an additional lower-frequency pole, as will be explained next.
Let us now connect the compensating capacitor C_C between nodes B and B'. This will result in the modified equivalent circuit shown in Fig. 8.39c from which we see that the pole introduced will no longer be at f_P, rather, the pole can be at any desired lower frequency f_D:

$$f_D = \frac{1}{2\pi C_C R_C}$$ \hspace{1cm}(8.82)

We thus conclude that one can select an appropriate value for C_C to shift the pole frequency from f_P to the value f_D determined by point Z in Fig. 8.38.

At this juncture it should be pointed out that adding the capacitor C_C will usually result in changes in the location of the other poles (those at f_P and f_D). One might therefore need to calculate the new location of f_D and perform a few iterations to arrive at the required value for C_C.

A disadvantage of this implementation method is that the required value of C_C is usually quite large. Thus if the amplifier to be compensated is an IC op amp, it will be difficult, and probably impossible, to include this compensating capacitor on the IC chip. (As pointed out in Chapter 6 and in Appendix A, the maximum practical size of a monolithic capacitor is about 100 pF.) An elegant solution to this problem is to connect the compensating capacitor in the feedback path of an amplifier stage. Because of the Miller effect, the compensating capacitance will be multiplied by the stage gain, resulting in a much larger effective capacitance. Furthermore, as explained later, another unexpected benefit accrues.

8.11.3 Miller Compensation and Pole Splitting

Figure 8.40(a) shows one gain stage in a multistage amplifier. For simplicity, the stage is shown as a common-emitter amplifier, but in practice it can be a more elaborate circuit. In the feedback path of this common-emitter stage we have placed a compensating capacitor C_C.

Figure 8.40(b) shows a simplified equivalent circuit of the gain stage of Fig. 8.40(a). Here R_1 and C_1 represent the total resistance and total capacitance between node B and ground. Similarly, R_2 and C_2 represent the total resistance and total capacitance between node C and ground. Furthermore, it is assumed that C_1 includes the Miller component due to capacitance C_C, and C_2 includes the input capacitance of the succeeding amplifier stage. Finally, I_a represents the output signal current of the preceding stage.

FIGURE 8.40 (a) A gain stage in a multistage amplifier with a compensating capacitor connected in the feedback path and (b) an equivalent circuit. Note that although a BJT is shown, the analysis applies equally well to the MOSFET case.

In the absence of the compensating capacitor C_C, we can see from Fig. 8.40(b) that there are two poles—one at the input and one at the output. Let us assume that these two poles are f_{P1} and f_{P2} of Fig. 8.38; thus:

$$f_{P1} = \frac{1}{2\pi R_1 C_1}, \hspace{1cm} f_{P2} = \frac{1}{2\pi R_2 C_2}$$ \hspace{1cm}(8.83)

With C_C present, analysis of the circuit yields the transfer function:

$$D(s) = \frac{V_i}{i_{2K} (s C_2 + 1) (s C_1 + R_1 C_1 + R_1 + R_2) + \frac{1}{2\pi R_1 C_1} \frac{1}{s C_2}}$$ \hspace{1cm}(8.84)

The zero is usually at a much higher frequency than the dominant pole, and we shall neglect its effect. The denominator polynomial $D(s)$ can be written in the form:

$$D(s) = 1 + \frac{1}{s a'_2} \left[\frac{1}{s a'_1} \right]$$ \hspace{1cm}(8.85)

where a'_1 and a'_2 are the new frequencies of the two poles. Normally one of the poles will be dominant; $a'_1 \ll a'_2$. Thus,

$$D(s) = 1 + \frac{1}{s a'_1} + \frac{s^2}{a'_1 a'_2}$$ \hspace{1cm}(8.86)

Equating the coefficients of s in the denominator of Eq. (8.84) and in Eq. (8.86) results in:

$$a'_1 = \frac{C_1 R_1 + C_2 R_2 + \frac{1}{2\pi R_1 C_1} \frac{1}{s a'_1} \frac{1}{s a'_2}}{C_1 R_1 + C_2 R_2}$$

which can be approximated by:

$$a'_1 = \frac{1}{a'_2}$$ \hspace{1cm}(8.87)

To obtain a'_2, we equate the coefficients of s^2 in the denominator of Eq. (8.84) and in Eq. (8.86) and use Eq. (8.87):

$$a'_2 = \frac{C_1 R_1 + C_2 R_2 + \frac{1}{2\pi R_1 C_1} \frac{1}{s a'_1} \frac{1}{s a'_2}}{C_1 R_1 + C_2 R_2}$$

From Eqs. (8.87) and (8.88), we see that as C_2 is increased, a'_1 is reduced and a'_2 is increased. This action is referred to as **pole splitting**. Note that the increase in a'_2 is highly beneficial; it allows us to move point Z (see Fig. 8.38) further to the right, thus resulting in higher compensated open-loop gain. Finally, note from Eq. (8.87) that C_2 is multiplied by the Miller-effect factor $g_m R_C$, thus resulting in a much larger capacitance, $g_m R_C C_2$. In other words, the required value of C_2 will be much smaller than that of C_C in Fig. 8.39.

EXAMPLE 8.6

Consider an op amp whose open-loop transfer function is identical to that shown in Fig. 8.37. We wish to compensate this op amp so that the closed-loop amplifier with negative feedback is stable for any gain (i.e., for K up to unity). Assume that the op-amp circuit includes a stage such as that of Fig. 8.40 with $C_1 = 100 \text{ pF}$, $C_2 = 5 \text{ pF}$, and $g_m = 40 \text{ mA/V}$, so that the pole at f_P is caused by the input circuit of that stage, and that the pole at f_D is introduced by the output circuit. Find the value of the compensating capacitor for two cases: either if it is connected between the input node B and ground or in the feedback path of the transistor.
Solution

First we determine \(R_1 \) and \(R_2 \) from

\[
f_P = 0.1 \text{ MHz} = \frac{1}{2\pi \alpha R_1}
\]

Thus,

\[
R_1 = \frac{10^3}{2\pi} \Omega
\]

\[
f_P = 1 \text{ MHz} = \frac{1}{2\pi \alpha R_2}
\]

Thus,

\[
R_2 = \frac{10^3}{2\pi} \Omega
\]

If a compensating capacitor \(C_c \) is connected across the input terminals of the transistor stage, then the frequency of the first pole changes from \(f_P \) to \(f'_P \):

\[
f'_P = \frac{1}{2\pi (C_1 + C_c) R_1}
\]

The second pole remains unchanged. The required value for \(f'_P \) is determined by drawing a -20-dB/decade line from the 1-MHz frequency point on the 20 \(\log \left(\frac{1}{f} \right) \) = 20 \log 1 = 0 dB line. This line will intersect the 100-db dc gain line at 10 Hz. Thus,

\[
f'_P = 10 \text{ Hz} = \frac{1}{2\pi (C_1 + C_c) R_1}
\]

which results in \(C_c = 1 \mu F \), which is quite large and certainly cannot be included on the IC chip.

Next, if a compensating capacitor \(C_f \) is connected in the feedback path of the transistor, then both poles change location to the values given by Eqs. (8.87) and (8.88):

\[
f''_P = \frac{1}{2\pi (C_1 + C_f) R_1} \quad f''_P = \frac{g_m C_f}{2 \pi (C_f + C_1 + C_f)}
\]

To determine where we should locate the first pole, we need to know the value of \(f''_P \). As an approximation, let us assume that \(C_f \gg C_2 \), which enables us to obtain

\[
f''_P = \frac{g_m}{2 \pi (C_f + C_1 + C_f)} = 60.6 \text{ MHz}
\]

Thus it appears that this pole will move to a frequency higher than \(f''_P \) (which is 10 MHz). Let us therefore assume that the second pole will be at \(f''_P \). This requires that the first pole be located at

\[
f''_P = \frac{f''_P}{A_o} = \frac{100 \text{ Hz}}{10} = 100 \text{ Hz}
\]

Thus,

\[
f''_P = 100 \text{ Hz} = \frac{1}{2\pi \alpha R_1 C_f R_1}
\]

which results in \(C_f = 78.5 \mu F \). Although this value is indeed much greater than \(C_2 \), we can determine the location of the pole \(f''_P \) from Eq. (8.89), which yields \(f''_P = 57.2 \text{ MHz} \), confirming that this pole has indeed been moved past \(f''_P \).

We conclude that using Miller compensation not only results in a much smaller compensating capacitor but, owing to pole splitting, also enables us to place the dominant pole a decade higher in frequency. This results in a wider bandwidth for the compensated op amp.

8.12 SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of feedback circuits.

EXERCISES

8.17 A multipole amplifier having a first pole at 1 MHz and an open-loop gain of 100 dB is to be compensated for closed-loop gains as low as 20 dB by the introduction of a new dominant pole. At what frequency must the new pole be placed?

Ans. 100 Hz

8.18 For the amplifier described in Exercise 8.17, rather than introducing a new dominant pole, we can use additional capacitance at the circuit node at which the first pole is formed to reduce the frequency of the first pole. If the frequency of the second pole is 10 MHz and if it remains unchanged while additional capacitance is introduced as mentioned, find the frequency to which the first pole must be lowered so that the resulting amplifier is stable for closed-loop gains as low as 20 dB. By what factor must the capacitance at the controlling node be increased?

Ans. 1000 Hz; 1000

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of feedback circuits.

EXAMPLE 8.7

DETERMINING THE LOOP GAIN USING SPICE

This example illustrates the use of SPICE to compute the loop gain \(A_o \). To be able to compare results, we shall use the same shunt-series feedback amplifier considered in Example 8.4 and redrawn in Fig. 8.41. This, however, does not limit the generality of the methods described.

![Circuit of the shunt-series feedback amplifier in Example 8.4.](image-url)
To compute the loop gain, we set the input signal V_i to zero, and we choose to break the feedback loop between the collector of Q_1 and the base of Q_2. However, in breaking the feedback loop, we must ensure that the following two conditions that existed prior to breaking the feedback loop do not change: (1) the dc bias situation and (2) the ac signal termination.

To break the feedback loop without disturbing the dc bias conditions of the circuit, we insert a large inductor L_{break}, as shown in Fig. 8.42(a). Using a value of, say, $L_{\text{break}} = 1 \, \text{GHz}$ will ensure that the loop is opened for ac signals while keeping dc bias conditions unchanged.

To break the feedback loop without disturbing the signal termination conditions, we must load the loop output at the collector of Q_1 with a termination impedance Z_t whose value is equal to the impedance seen looking into the loop input at the base of Q_2. Furthermore, to avoid disturbing the dc bias conditions, Z_t must be connected to the collector of Q_1 via a large coupling capacitor. However, it is not always easy to determine the value of the termination impedance Z_t. So, we will describe two simulation methods to compute the loop gain without explicitly determining Z_t.

Method 1: *Using the open-circuit and short-circuit transfer functions*

As described in Section 8.7, the loop gain can be expressed as

$$\alpha_B = -\left(\frac{1}{T_{oc}} - \frac{1}{T_{sc}}\right)$$

where T_{oc} is the open-circuit voltage transfer function and T_{sc} is the short-circuit current transfer function.

The circuit for determining T_{oc} is shown in Fig. 8.42(a). Here, an ac test signal voltage V_t is applied to the loop input at the base of Q_2 via a large coupling capacitor (having a value of, say, 1 pF) to avoid disturbing the dc bias conditions. Then,

$$T_{oc} = \frac{V_{oc}}{V_t}$$

where V_{oc} is the ac open-circuit output voltage at the collector of Q_1.

In the circuit for determining T_{sc} (Fig. 8.42b), an ac test signal current I_t is applied to the loop input at the base of Q_2. Note that a coupling capacitor is not needed in this case because the ac current source appears as an open circuit at dc, and, hence, does not disturb the dc bias conditions.

The loop output at the collector of Q_1 is ac short-circuited to ground via a large capacitor C_{oc}. Then,

$$T_{sc} = \frac{I_{sc}}{I_t}$$

where I_{sc} is the ac short-circuit output current at the collector of Q_1.

Method 2: *Using a replica circuit*

As shown in Fig. 8.42, a replica of the feedback amplifier circuit can be simply used as a termination impedance. Here, the feedback loops of both the amplifies circuit and the replica circuit are broken using a large inductor L_{break} to avoid disturbing the dc bias conditions. The loop output at the collector of Q_1 in the amplifier circuit is then connected to the loop input at the base of Q_2 in the replica circuit via a large coupling capacitor C_{oc} (again, to avoid disturbing the dc bias conditions). Thus, for ac signals, the loop output at the collector of Q_1 in the amplifier circuit sees an impedance equal to that seen before the feedback loop is broken. Accordingly, we have ensured that the conditions that existed in the amplifier circuit prior to breaking the loop have not changed.
Next, to determine the loop gain \(A/3 \), we apply an ac test-signal voltage \(V_\text{test} \) via a large coupling capacitor \(C_a \) to the loop input at the base of \(Q_2 \) in the amplifier circuit. Then, as described in Section 8.7, \(V_\text{r} = -V_\text{test} \), where \(V_\text{r} \) is the ac returned signal at the loop output, at the collector of \(Q_x \) in the amplifier circuit. To compute the loop gain \(A/3 \) of the feedback amplifier circuit in Fig. 8.41 using PSpice, we choose to simulate the circuit in Fig. 8.43. In the PSpice simulations, we used part Q2N3904 (whose SPICE model is given in Table 5.9) for the BJTs, and we set \(L_{\text{break}} \) to be 1 GH and the coupling and bypass capacitors to be 1 kF. The magnitude and phase of \(A/3 \) are plotted in Fig. 8.44, from which we see that the feedback amplifier has a gain margin of 53.7 dB and a phase margin of 88.7°.

FIGURE 8.43 Circuit for simulating the loop gain of the feedback amplifier in Fig. 8.41 using the replica-circuit method.

FIGURE 8.44 (a) Magnitude and (b) phase of the loop gain \(A/3 \) of the feedback-amplifier circuit in Fig. 8.41.
PROBLEMS

SECTION 8.1: THE GENERAL FEEDBACK STRUCTURE

8.1 A negative-feedback amplifier has a closed-loop gain $A_c = 100$ and an open-loop gain $A = 10^5$. What is the feedback factor β if the manufacturing error results in a reduction of A to 10^4, what closed-loop gain results? What is the percentage change in A_c corresponding to this factor of 100 reduction in A?

8.2 Repeat Exercise 8.1, parts (b) through (e), for $A = 100$.

8.3 Repeat Exercise 8.1, parts (b) through (e), for $A_c = 10^2$. For part (d) use $V_0 = 0.01$ V.

8.4 The noninverting buffer op-amp configuration shown in Fig. P8.1 provides a direct implementation of the feedback loop of Fig. 8.1. Assuming that the op amp has infinite input resistance and zero output resistance, what is β if $A = 100$, what is the closed-loop voltage gain? What is the amount of feedback (in dB) for $V_0 = 1$ V. Find V_i and V_o. If A decreases by 10%, what is the corresponding decrease in A_c?

8.5 In a particular circuit represented by the block diagram of Fig. 8.1, a signal of 1 V from the source results in a difference of 0.7 V at the other end, and 0.50 in the middle. As the potentiometer for which B is 100, find the three values of closed-loop gain that apply.

8.6 Find the open-loop gain, the loop gain, and the amount of feedback of a voltage amplifier for which A_1 and $1/\beta$ differ by (a) 1%, (b) 5%, (c) 10%, (d) 50%.

8.7 In a particular amplifier design, the β network consists of a linear potentiometer for which $\beta = 0.001$ at one end, 1.00 at the other end, and 0.50 in the middle. As the potentiometer is adjusted, find the three values of closed-loop gain that result when the amplifier open-loop gain is (a) 1 V/V, (b) 10 V/V, (c) 100 V/V, (d) 100,000 V/V.

8.8 A newly constructed feedback amplifier undergoes a performance test with the following results. With the feedback connection removed, a source signal of 2 mV is required to provide a 10-V output to the load, with the feedback connected, a 10-V output requires a 200-nV source signal. For this amplifier, identify values of A_c, β, A_1, the closed-loop gain, and the amount of feedback (in dB).

SECTION 8.2: SOME PROPERTIES OF NEGATIVE FEEDBACK

8.9 For the negative-feedback loop of Fig. 8.1, find the loop gain A_f for which the sensitivity of closed-loop gain to open-loop gain (i.e., $(dA/fA)/(dA/fA))$ is -20. For what value of A_f does the sensitivity become 0?

8.10 It is required to design an amplifier with a gain of 100 that is accurate to within ±1%. You have available amplifier stages with a gain of 1000 that is accurate to within ±10%. Provide a design that uses a number of these gain stages in cascade, with each stage employing negative feedback of an appropriate amount. Obviously, your design should use the lowest possible number of stages while meeting specification.

8.11 In a feedback amplifier for which $A = 10^4$ and $A_c = 10^2$, what is the gain-sensitivity factor? Find A_1 exactly, and approximately using Eq. (8.8), in the two cases: (a) A drops 10% and (b) drops by 30%.

8.12 Consider an amplifier having a midband gain A_2 and a low-frequency response characterized by a pole at $s = -\omega_0$ and a zero at $s = 0$. Let the amplifier be connected in a negative-feedback loop with a feedback factor β. Find an expression for the midband gain and the lower 3-dB frequency of the closed-loop amplifier. By what factor have both changed?

8.13 It is required to design an amplifier to have a nominal closed-loop gain of 100 V/V using a feedback factor β. Find an expression for the midband gain and the lower 3-dB frequency of the closed-loop amplifier. By what factor have both changed?

8.14 A capacitively coupled amplifier has a midband gain of 100, a single high-frequency pole at 10 kHz, and a zero at $s = 100$ kHz. What is the required gain A of the single pole to ensure the required minimum gain?

8.15 What value of β must A be raised to ensure the required minimum gain?

8.16 If an amplifier is connected in a negative-feedback loop, find the loop gain and the amount of feedback for each stage having a gain of 0.9 V/V and 1 V/V output signal is applied. A closed-loop gain of 10 V/V is desired. What is the gain of a low-gain amplifier? Where should the output signal be applied, and its positive input terminal is connected to the output signal source v_s and whose negative input terminal is connected to the emitter of the following: Sketch the transfer characteristic of v_s versus v_i of the resulting feedback amplifier. What is the limit of the dead band and what are the gain and limits outside the dead band?

8.17 Design a feedback amplifier that has a closed-loop gain of 100 V/V and is relatively insensitive to change in midband gain. In particular, provide a reduction in A to 100 V/V for a reduction in A_1 to one-tenth its nominal value. What is the required loop gain? What is the amount of gain A is required? What value of β should be used? What would the closed-loop gain become if A were increased tenfold? If A were made infinite?

8.18 A feedback amplifier is to be designed using a feedback loop connected around a 3-stage amplifier. The first stage is a direct-coupled small-signal amplifier with a high upper 3-dB frequency. The second stage is a power-output stage with a bandwidth gain of 10 V/V and upper and lower 3-dB frequencies of 8 kHz and 80 Hz, respectively. The feedback amplifier should have a midband gain of 100 V/V and an upper 3-dB frequency of 40 kHz. What is the required gain of the small-signal amplifier? What value of β should be used? What other frequency of the overall amplifier becomes?

8.19 The complementary JFET follower shown in Fig. P8.19(a) has the approximate transfer characteristic shown in Fig. P8.19(b). If the output is zero. This “dead band” leads to crossover distortion (see Section 14.3). Consider this follower driven by the output of a differential amplifier of gain 100 whose positive-input terminal is connected to the output signal source v_s and whose negative-input terminal is connected to the emitter of the following: Sketch the transfer characteristic of v_s versus v_i of the resulting feedback amplifier. What are the limits of the dead band and what are the gain outside the dead band?
FIGURE P8.26

(a) For R_s, V_s, and V_o, assume very large, use direct circuit analysis (as opposed to feedback analysis) to show that the overall current gain is given by

$$A_i = \frac{I_o}{I_i} = \frac{-R_3 + R_2/RL_1}{R_1 + 1/R_m + R_2/RL_1}$$

and the input resistance is

$$R_{in} = R_1 + R_2 + A_i R_l$$

Hence, find approximate expressions for A_i and R_{in} for the case in which $R_s/R_1 > 1$ and $(1/R_m) < R_l$.

(b) Evaluate A_i and R_{in} exactly and approximately, for the case in which $R_s/R_1 = 100$, $R_l = 10 \, \text{k} \Omega$, $R_2 = 90 \, \text{k} \Omega$, and $R_m = 5 \, \text{m} \Omega$.

g) Since the negative feedback forces the input terminal of the amplifier toward ground, the value of β can be determined approximately as the current division ratio of the (R_s, R_l) network. Find β and show that the approximate expression for A_i found above is simply $1/\beta$.

8.24 A series-series feedback circuit represented by Fig. 8.4(a) and using an ideal transconductance amplifier operates with $V_s = 100 \, \text{mV}$, $V_o = 95 \, \text{mV}$, and $I_s = 10 \, \text{mA}$. What are the corresponding values of A and β^2? Include the correct units for each.

8.25 A shunt-shunt feedback circuit represented by Fig. 8.3(b) and using an ideal transconductance amplifier operates with $I_s = 100 \, \mu\text{A}$, $V_s = 95 \, \mu\text{V}$, and $V_o = 10 \, \text{V}$. What are the corresponding values of A and β^2? Include the correct units for each.

8.26 For each of the op-amp circuits shown in Fig. P8.26, identify the feedback topology and indicate the output variable being sampled and the feedback signal. In each case, assuming the op amp to be ideal, find an expression for β and hence find A_i.

8.27 A series-shunt feedback amplifier employs a basic amplifier with input and output resistances each of $1 \, \text{k} \Omega$ and gain $A = 2000 \, \text{V/V}$. The feedback factor $\beta = 0.1 \, \text{V/V}$. Find the gain A_f, the input resistance R_{in}, and the output resistance R_{out} of the closed-loop amplifier.

8.28 For a particular amplifier connected in a feedback loop in which the output voltage is sampled, measurement of the output resistance before and after the loop is connected shows a change by a factor of 80. Is the resistance with feedback higher or lower? What is the value of the loop gain A/β?

If $R_{in} = 100 \, \Omega$, what is R_{out} without feedback?

8.29 A series-series feedback circuit employs a basic voltage amplifier that has a dc gain of $10^5 \, \text{V/V}$ and an STC frequency response with a unity-gain frequency of 1 MHz. The input resistance of the basic amplifier is $10 \, \text{k} \Omega$, and its output resistance is $1 \, \text{k} \Omega$. If the feedback factor $\beta = 0.1 \, \text{V/V}$, find the input impedance Z_i and the output impedance Z_o of the feedback amplifier. Give equivalent circuit representations of these impedances. Also find the value of each impedance at 3×10^7 Hz and at 3×10^8 Hz.

8.30 A series-shunt feedback amplifier utilizes the feedback circuit shown in Fig. P8.30.

(a) Find expressions for the A parameters of the feedback circuit (see Fig. 8.10b).

(b) If $R_f = 1 \, \text{k} \Omega$ and $\beta = 0.01$, what are the values of all four A parameters? Give the units of each parameter.

8.31 A feedback amplifier utilizing voltage sampling and employing a basic voltage amplifier with a gain of $100 \, \text{V/V}$ and an output resistance of $1000 \, \Omega$ has a closed-loop output resistance of $100 \, \Omega$. What is the closed-loop gain? If the basic amplifier is used to implement a unity-gain voltage buffer, what output resistance do you expect?

8.32 In the series-shunt amplifier shown in Fig. P8.32, the transistors operate at $V_{BE} = 0.7 \, \text{V}$ with hfe of 100 and an Early voltage that is very large.

(a) Derive expressions for A, β, and R_{in}.

(b) For $I_s = 0.1 \, \text{mA}$, $I_{ce} = 1 \, \text{mA}$, $R_s = 1 \, \text{k} \Omega$, $R_f = 100 \, \text{k} \Omega$, and $R_{in} = 1 \, \text{k} \Omega$, find the dc bias voltages at the input and at the output, and find $A_f = V_{out}/V_{in}$ and R_{in}. Remember to account for the fact that I_{ce} does not pass through the output at dc.

8.33 Figure P8.33 shows a series-shunt amplifier with a feedback factor $\beta = 1$. The amplifier is designed so that $V_{out} = 0$ for $V_{in} = 0$, with small deviations in V_{in} from $0 \, \text{V}$ being minimized by the negative-feedback action. The technology utilized has $k = 2 \times 10^{-8} \, \text{C/V}^2$, $V_{BE} = 0.7 \, \text{V}$, and $V_T = 24 \, \text{V}$. The output resistance of the series-shunt feedback amplifier is $5 \, \text{m} \Omega$.
(a) With the feedback loop opened and the gate terminals of Q_1 and Q_3 grounded, find the dc current and the overdrive voltage at which each of Q_1 to Q_3 is operating. Ignore the mismatch in I_Q between Q_1 and Q_3, arising from their different drain voltages. Also find the dc voltage at the output.

(b) Find g_m and r_0 of each of the five transistors.

(c) Find the values of A and R_L. Assume that the bias current sources are ideal.

(d) Find the gain-with-feedback, A_f, and the output resistance R_{out}.

(e) How would you modify the circuit to realize a closed-loop voltage gain of 5 V/V? What is the value of the output resistance obtained?

8.34 For the circuit in Fig. P8.34, $|V_s| = 1$ V, $I_s = 1$ mA, $h_T = 100$, and the Early voltage magnitude for all devices (including those that implement the current sources) is 100 V. The signal source V_s has a zero dc component. Find the dc voltage at the output and at the base of Q_2. Find the values of A, V_{in}/V_{out}, and R_{out}.

8.35 Figure P8.35 shows a series-shunt feedback amplifier without details of the bias circuit.

(a) Sketch the A circuit and the circuit for determining f.

(b) Show that if A_f is large then the closed-loop voltage gain is given approximately by

$$A_f = \frac{V_{in}}{V_{out}} = \frac{R_f}{R_e}$$

(c) If R_f is selected equal to 50 kΩ, find R_e that will result in a closed-loop gain of approximately 25 V/V.

(d) If Q_1 is biased at 1 mA, Q_2 at 2 mA, and Q_3 at 5 mA, and assuming that the transistors have $h_T = 100$, find approximate values for R_{in} and R_{out} to obtain gains from the stages of the A circuit as follows: a voltage gain of Q_1 of about −10 and a voltage gain of Q_3 of about −50.

(e) For your design, what is the closed-loop voltage gain realized?

(f) Calculate the input and output resistances of the closed-loop amplifier designed.

8.36 For the circuit in Fig. 8.17(b), find an approximate value for L/V, assuming that the loop gain is large. Use it to determine the voltage gain L/V. Compare your results with the values found in Example 8.2.

8.37 A series-series feedback amplifier employs a transconductance amplifier having $G_m = 100$ mV/A, input resistance of 10 kΩ, and output resistance of 100 kΩ. The feedback network has $f = 0.1$ V/A, an input resistance with port 1 open-circuited of 100 kΩ, and an input resistance with port 2 open-circuited of 10 kΩ. The amplifier operates with a signal source having a resistance of 10 kΩ and with a load resistance of 10 kΩ. Find A_f, R_{in}, and R_{out}.

8.38 Figure P8.38 shows a circuit for a voltage-controlled current source employing series-series feedback through the resistor R_f. (The bias circuit for the transistor is not shown.) Show that if the loop gain A_f is large,

$$\frac{I_s}{V_s} = \frac{1}{R_f}$$

Then find the value of R_f to obtain a circuit transconductance of 1 mV/A. If the voltage amplifier has a differential input resistance of 10 kΩ, a voltage gain of 100, and an output resistance of 1 kΩ, and if the transistor is biased at a current of 1 mA, and has $h_T = 100$ and $r_e = 100$ kΩ, find the actual value of transconductance (L/V) realized. Use $R_f = 10$ kΩ.

Also find the input resistance R_{in} and the output resistance R_{out}. For calculating R_{in} recall that the output resistance of a BJT with an emitter resistance that is much larger than r_e is approximately $h_T r_e$.

8.39 Figure P8.39 shows a circuit for a voltage-to-current converter employing series-series feedback via resistor R_f. The MOSFETs have the dimensions shown and $h_T = 20$ mV/A, $|V_T| = 1$ V, and $|V_{gs}| = 100$ V. What is the value of L/V obtained for large loop gain? Use feedback analysis to find a more exact value for L/V. Also, if the output voltage is taken at the source of Q_1, what closed-loop voltage gain is realized?

8.40 For the series-series feedback amplifier in Fig. P8.40, the op amp is characterized by an open-loop voltage gain μ.

FIGURE P8.33

FIGURE P8.34

FIGURE P8.35

FIGURE P8.38

FIGURE P8.39
CHAPTER 8 FEEDBACK

A transresistance amplifier having an open-circuit "gain" of 100 V/A, an input resistance of 1 kΩ, and an output resistance of 1 kΩ is connected in a negative-feedback loop employing a shunt-shunt topology. The feedback network has an input resistance (with port 2 short-circuited) of 10 kΩ and an input resistance (with port 2 short-circuited) of 10 kΩ and provides a feedback factor $\beta = 0.1 \text{ mV/V}$. The amplifier is fed with a current source having $R_L = 10 \text{kΩ}$, and a load resistance $R_L = 1 \text{kΩ}$ is connected at the output. Find the source resistance of the feedback amplifier, its input resistance R_{in}, and its output resistance R_{out}.

8.46 For the circuit of Fig. 8.48, use the feedback method to find the voltage gain V_i/V_o, the input resistance R_{in}, and the output resistance R_{out}. The op amp has open-loop gain $\mu = 10^6 \text{V/V}$, $R_L = 100 \text{kΩ}$, and $r_o = 1 \text{kΩ}$.

(b) Using three cascaded stages of the type shown in Fig. 8.46(b) to implement the amplifier, design a feedback amplifier with a voltage gain of approximately -100 V/V. The amplifier is to operate between a source resistance $R_s = 10 \text{kΩ}$ and a load resistance $R_L = 1 \text{kΩ}$. Calculate the actual value of V_i/V_o, realize the input resistance (excluding R_s), and the output resistance (excluding R_L). Assume that the BJTs have h_{oc} of 100. (Note: In practice, the three amplifier stages are not made identical, for stability reasons.)

FIGURE P8.40

SECTION 8.6: THE SHUNT–SHUNT AND THE SHUNT–SERIES FEEDBACK AMPLIFIERS

D8.41. For the amplifier topology shown in Fig. 8.21(a), show that for large loop gain, $V_o = R_{in} V_i$.

FIGURE P8.42

Calculate this gain for the component values given on the circuit diagram, and compare the result with that found in Example 8.3. Find a new value for V_o to obtain a voltage gain of approximately -7.5 V/V. 8.42 The shunt–shunt feedback amplifier in Fig. 8.42 has $i_L = 1 \text{ mA}$ and $V_{cc} = 0.8 \text{ V}$. The MOSFET has $V_{th} = 0.6 \text{ V}$ and $V_{gs} = 30 \text{ V}$. For $R_s = 10 \text{kΩ}$, $R_f = 1 \text{ MΩ}$, and $R_D = 4.7 \text{ MΩ}$, find the voltage gain $A_v = V_o/V_i$, the input resistance R_{in}, and the output resistance R_{out}.

FIGURE P8.44

8.45 Recompute the circuit in Fig. 8.44. Now let the drain of Q_2 be connected to V_{cc} and let the output be taken at the voltage at the source of Q_2. Now R_f should be considered as part of the A circuit, since the voltage V_o develops across it. Convince yourself that now the amplifier can be viewed as a shunt–shunt topology with the feedback network composed of R_f. Find expressions for A_v, β, R_{in}, and R_{out} where R_{out} is the resistance looking back into the output terminal. Neglect r_o and the body effect. Find the values of all parameters for the case in which $R_f = 5 \text{ kΩ}$, $R_s = 10 \text{ kΩ}$, and $R_{in} = 90 \text{ kΩ}$.

FIGURE P8.46

8.47 Negative feedback is to be used to modify the characteristics of a particular amplifier for various purposes. Identify the feedback topology to be used if:

(a) Input resistance is to be lowered and output resistance raised.

(b) Both input and output resistances are to be raised.

(c) Both input and output resistances are to be lowered.

8.48 For the circuit of Fig. 8.48, use the feedback method to find the voltage gain V_i/V_o, the input resistance R_{in}, and the output resistance R_{out}. The op amp has open-loop gain $\mu = 10^6 \text{V/V}$, $R_L = 100 \text{kΩ}$, and $r_o = 1 \text{kΩ}$.
8.51 For the amplifier circuit in Fig. 8.51, assuming that V_i has zero dc component, find the ac voltages at all nodes and the dc emitter currents of Q_1 and Q_2. Let the BJTs have $V_B = 100$. Use feedback analysis to find V_O and R_{in}.

8.52 The feedback amplifier of Fig. 8.52 consists of a common-gate amplifier formed by Q_1 and R_{in}, and a feedback circuit formed by the cascode divider (C_1, C_2) and the common-source transistor Q_2. Note that the bias circuit for Q_2 is not shown. It is required to derive expressions for $A_v = V_O / V_i$, R_{in}, R_O, and R_{out}. Assume that C_1 and C_2 are small and zero, and their loading effect on the bias amplifiers can be neglected. Also neglect r_e and the body effect. Find the values of A_v, R_{in}, R_O, and R_{out} for the case in which $g_m = 5$ mS, $R_D = 10$ kΩ, $C_1 = 0.9$ pF, $C_2 = 0.1$ pF, and $g_m = 1$ mS.

8.53 Determine the loop gain of the amplifier in Fig. 8.53 by breaking the loop at the gate of Q_2 and finding the returned voltage across the 100-kΩ resistor (while setting $V_C = 0$). The devices have $|V_T| = 1$ V, $I_{DSS}/W/L = 1$ mA/μA, and $h_{21} = 100$. The Early voltage magnitude for all devices (including those that implement the current sources) is 100 V. The signal source V_s has zero dc component. Determine the output resistance R_{out}.

8.54 It is required to determine the loop gain of the amplifier circuit shown in Fig. 8.54. The most convenient place to break the loop is at the base of Q_2. Thus, connect a resistance equal to r_o between the collector of Q_2 and ground, apply a test voltage V_T to the base of Q_2, and determine the returned voltage at the collector of Q_2 (with V_s set to zero, of course). Show that

$$A_f = \frac{g_{m2}r_o(R_2 + r_o)}{(1 + g_{m1}r_o + R_1)}$$

8.55 Show that the loop gain of the amplifier circuit in Fig. 8.55 is

$$A_f = \frac{g_{m1}(r_o + r_e)}{(1 + g_{m1}r_o)R_1}$$

where g_{m1} is the g_m of each of Q_1 and Q_2.

8.56 Find the loop gain of the feedback circuit shown in Fig. 8.56 by breaking the loop at the gate of Q_2 (and, of course, setting $v_{in} = 0$). Use the values given in the statement of Problem 8.35. Determine the value of R_{in}.

8.57 Find the loop gain of the feedback amplifier shown in Fig. 8.57 by breaking the loop at the gate of Q_2 (and, of course, setting $v_{in} = 0$). Use the values given in the statement of Problem 8.36. Determine the value of R_{in}.

8.58 For the feedback amplifier in Fig. 8.58, derive an expression for the loop gain by breaking the loop at the gate of the MOSFET (and, of course, setting $v_{in} = 0$). Find the value of the loop gain for the component values given in Problem 8.39.

8.59 For the feedback amplifier in Fig. 8.44, set $v_{in} = 0$ and derive an expression for the loop gain by breaking the loop at the gate terminal of transistor Q_1.

8.60 For the feedback amplifier in Fig. 8.52, set $v_{in} = 0$ and derive an expression for the loop gain by breaking the loop at the gate terminal of transistor Q_1.

SECTION 8.8: THE STABILITY PROBLEM

8.61 An op amp designed to have a low-frequency gain of 10^3 and a high-frequency response dominated by a single pole at 100 rad/s, acquires, through a manufacturing error, a pair of additional poles at 100,000 rad/s. At what frequency does the total phase shift reach 180°? At this frequency, for what value of $beta$, assumed to be frequency independent, does the loop gain reach a value of unity? What is the corresponding value of closed-loop gain at low frequencies?

8.62 For the situations described in Problem 8.61, sketch Nyquist plots for $beta = 0.1$ and 100. (Plot for $beta = 0$ rad/s, 100 rad/s, 10^4 rad/s, and 1 MHz.)

8.63 An op amp having a low-frequency gain of 10^5 and a single-pole rolloff at 10^4 rad/s is connected in a negative-feedback loop via a feedback network having a transmission k and a two-pole rolloff at 10^6 rad/s. Find the value of k above which the closed-loop amplifier becomes unstable.

8.64 Consider a feedback amplifier for which the open-loop gain $A(s)$ is given by

$$A(s) = \frac{1000}{(1 + s/10^4)(1 + s/10^6)}$$

If the feedback factor P is independent of frequency, find the frequency at which the phase shift is 180°, and find the critical value of $beta$ at which oscillation will commence.

SECTION 8.9: EFFECT OF FEEDBACK ON THE AMPLIFIER POLES

8.65 A dc amplifier having a single-pole response with pole frequency 10^6 Hz and unity-gain frequency of 10 MHz is operated in a loop whose frequency-independent feedback factor is 0.1. Find the low-frequency gain, the 3-dB frequency, and the unity-gain frequency of the closed-loop amplifier. By what factor does the pole shift?

8.66 An amplifier having a low-frequency gain of 10^5 and poles at 10^6 Hz and 10^7 Hz is operated in a closed-loop negative-feedback amplifier with a frequency-independent $beta$.

(a) For what value of $beta$ do the closed-loop poles become coincident? At what frequency?

(b) What is the low-frequency gain corresponding to the situation in (a)? What is the value of the closed-loop gain at the frequency of the coincident poles?

(c) What is the value of Q corresponding to the situation in (a)?

(d) If $beta$ is increased by a factor of 10, what are the new pole locations? What is the corresponding pole Q^*?

8.67 A dc amplifier has an open-loop gain of 1000 and two poles, a dominant one at 1 kHz and a high-frequency pole whose location can be controlled. It is required to correct this amplifier in a negative-feedback loop that provides a dc-closed-loop gain of 100 and a maximally flat response. Find the required value of $beta$ and the frequency at which the second pole should be placed.

8.68 Consider Example 8.5 with the circuit in Fig. 8.34 modified to incorporate a so-called tapped network, in which the components immediately adjacent to the amplifier input are raised in impedance to 100,000 and 10 kΩ. Expressions for the resulting pole frequency s_1 and Q factor. For what value of K do the poles coincide? For what value of K does the response become maximally flat? For what value of K does the circuit oscillate?
Three identical logic inverters, each of which can be characterized in its switching region as a linear amplifier having a gain K and a pole at 10^4 Hz, are connected in a ring. Regarding this as a negative-feedback loop with $\beta = 1$, find the minimum value of K for which the inverter ring must oscillate. What would the frequency of oscillation be for very small signal operation? (Note that in practice such a ring oscillator operates with relatively larger signal [logic levels] at a somewhat lower frequency.)

SECTION 8.10: STABILITY STUDY USING BODE PLOTS

8.70 Reconsider Exercise 8.14 for the case of the op-amp wired as a unity-gain buffer. At what frequency is $|A_3| = 1$? What is the corresponding phase margin?

8.71 Reconsider Exercise 8.14 for the case of a manufacturing error introducing a second pole at 10^4 Hz. What is now the frequency for which $|A_3| = 1$? What is the corresponding phase margin? For what values of β is the phase margin 45° or more?

8.72 For what phase margin does the gain peaking have a value of 5%? Of 10%? Of 0.1 dB? Of 1 dB? (Hint: Use the result in Eq. 8.76.)

8.73 An amplifier has a dc gain of 10^6 and poles at 10^4 Hz, 3.16×10^4 Hz, and 10^5 Hz. Find the value of β and the corresponding closed-loop gain, for which a phase margin of 45° is obtained.

8.74 A two-pole amplifier for which $A_0 = 10^6$ and having poles at 1 MHz and 10 MHz is to be connected as a differentiator. On the basis of the rate-of-closure rule, what is the smallest differentiator time constant for which operation is stable? What are the corresponding gain and phase margins?

8.75 For the amplifier described by Fig. 8.37 and with frequency-independent feedback, what is the minimum closed-loop voltage gain that can be obtained for phase margins of 30° and 45°?

SECTION 8.11: FREQUENCY COMPENSATION

8.76 A multiple amplifier having a first pole at 2 MHz and a dc open-loop gain of 100 dB is to be compensated for closed-loop gain as low as unity by the introduction of a new dominant pole. At what frequency must the new pole be placed?

8.77 For the amplifier described in Problem 8.76, rather than introducing a new dominant pole we can use additional capacitance at the circuits node at which the pole is formed to reduce the frequency of the first pole. If the frequency of the second pole is 10 MHz and if it remains unchanged while additional capacitance is introduced as mentioned, find the frequency to which the first pole must be lowered so that the resulting amplifier is stable for closed-loop gains as low as unity. By what factor is the capacitance at the controlling node increased?

8.78 Contemplate the effects of pole splitting by considering Eqs. (8.87) and (8.88) under the conditions that $R_1 = R_2 = 1$, $C_1 = C_2 = C$, $C_3 = C$, and $g_m = 1000 \text{mS}$. By calculating ϕ_1, ϕ_2, and ϕ_3, determine the new closed-loop poles.

D8.79 An op-amp with open-loop voltage gain of 10^6 Hz and poles at 10^4 Hz, 10^5 Hz, and 10^7 Hz is to be compensated by the addition of a fourth dominant pole to operate stably with unity feedback ($\beta = 1$). What is the frequency of the required dominant pole? The compensation network is to consist of an RC low-pass network placed in the negative-feedback path of the op amp. What bias conditions are such that a 1-MΩ resistor can be tolerated in series with each of the negative and positive input terminals. What capacitor is required between the negative input and ground to implement the required fourth pole?

D8.80 An op amp with an open-loop voltage gain of 80 dB and poles at 10^3 Hz, 10^4 Hz, and 2×10^6 Hz is to be compensated to be stable for unity β. Assume that the op amp incorporates an amplifier equivalent to that in Fig. 8.40, with $C_0 = 150 \text{pF}$, $C_1 = 5 \text{pF}$, and $g_m = 40 \text{mA/V}$, and that f_p is caused by the input circuit and f_m by the output circuit of this amplifier. Find the required value of the compensating Miller capacitance and the new frequency of the output pole.

D8.81 The op-amp in the circuit of Fig. P8.81 has an open-loop gain of 10^6 and a single-pole roll-off with $\omega_m = 10 \text{rad/s}$.

(a) Sketch a Bode plot for the loop gain.

(b) Find the frequency at which $|A_3| = 1$, and find the corresponding phase margins.

(c) Find the closed-loop transfer function, including its zero and poles. Sketch a pole-zero plot. Sketch the magnitude of the transfer function versus frequency, and label the important parameters on your sketch.

FIGURE P8.81

Operational-Amplifier and Data-Converter Circuits

Introduction 871

9.1 The Two-Stage CMOS 897

9.2 The Folded-Cascode CMOS 899

9.3 The 741 Op-Amp Circuit 899

9.4 DC Analysis of the 741 909

9.5 Small-Signal Analysis of the 741 905

9.6 Gain, Frequency Response, and Slew Rate of the 741 917

9.7 Data Converters—An Introduction 922

9.8 D/A Converters 922

9.9 A/D Converters 927

9.10 DC Analysis of the 741 929

9.11 Summary 940

9.12 Problems 941
CHAPTER 9 OPERATIONAL-AMPLIFIER AND DATA-CONVERTER CIRCUITS

FIGURE 9.1

Q together with its current mirror load. This differential-amplifier circuit, studied in detail in Section 7.5, provides a voltage gain that is typically in the range of 20 V/V to 60 V/V.

In addition to exposing the reader to some of the ideas that make analog IC design such an exciting topic, this chapter should serve to tie together many of the concepts and methods studied thus far.

9.1 THE TWO-STAGE CMOS OP AMP

The first op-amp circuit we shall study is the two-stage CMOS topology shown in Fig. 9.1. This simple but elegant circuit has become a classic and is used in a variety of forms in the design of VLSI systems. We have already studied this circuit in Section 7.7.1 as an example of a multistage CMOS amplifier. We urge the reader to review Section 7.7.1 before proceeding further. Here, our discussion will emphasize the performance characteristics of the circuit and the trade-offs involved in its design.

9.1.1 The Circuit

The circuit consists of two gain stages: The first stage is formed by the differential pair Q_1-Q_2 together with its current mirror load Q_4-Q_5. This differential-amplifier circuit, studied in detail in Section 7.5, provides a voltage gain that is typically in the range of 20 V/V to 60 V/V.

As expected, the overdrive voltages, which are important design parameters, subtract from the available common-mode range. It follows that from Eqs. (9.2) and (9.3) the input common-mode range as

$$V_{CM} = V_{DD} - |V_{OS}| - |V_{I} - V_{OS}|$$

or equivalently

$$V_{CM} < V_{DD} - |V_{OS}| - |V_{I} - V_{OS}|$$

The expressions in Eqs. (9.2) and (9.3) can be combined to express the input common-mode range as

$$V_{CM} < V_{DD} - |V_{OS}| - |V_{I} - V_{OS}|$$

As expected, the overdrive voltages, which are important design parameters, subtract from the dc supply voltages thereby reducing the input common-mode range. It follows that from the dc supply voltages, it is desirable to select the values of V_{DD} as low as possible.

9.1.2 Input Common-Mode Range and Output Swing

Refer to Fig. 9.1 and consider what happens when the two input terminals are tied together and connected to a voltage V_{CM}. The lowest value of V_{CM} should be sufficiently large to keep Q_1 and Q_2 in saturation. Then, the lowest value of V_{GS} should not be lower than the voltage at the drain of Q_1, i.e., $V_{DD} = V_{GS} + V_{os} + |V_{Vt}|$ by more than $|V_{P}|$ thus

$$V_{DD} = V_{GS} + V_{os} + |V_{Vt}|$$

The highest value of V_{CM} should ensure that Q_3 remains in saturation. In this case, the voltage across Q_3, V_{CS}, should not decrease below $|V_{os}|$. Equivalently, the voltage at the drain of Q_3 should not go higher than $V_{DD} - |V_{os}|$. Thus the upper limit of V_{CM} is

$$V_{CM} = V_{DD} - |V_{os}| - |V_{I} - V_{os}|$$

or equivalently

The expressions in Eqs. (9.2) and (9.3) can be combined to express the input common-mode range as

$$V_{CM} < V_{DD} - |V_{os}| - |V_{I} - V_{os}|$$

As expected, the overdrive voltages, which are important design parameters, subtract from the dc supply voltages thereby reducing the input common-mode range. It follows that from the dc supply voltages, it is desirable to select the values of V_{DD} as low as possible.
The extent of the signal swing allowed at the output of the op amp is limited at the lower end by the need to keep Q6 saturated and at the upper end by the need to keep Q7 saturated, thus

\[-V_0 + V_{OL} \leq v_0 \leq V_O + I V_{OL} (9.5)\]

Here again we observe that to achieve a wide range for the output voltage swing we need to select values for \(v_0\) of Q6 and Q7 as low as possible. This requirement, however, is countered by the need to have a high transition frequency \(f_T\) for Q6. From Table 6.3 and the corresponding discussion in Section 6.2.3, we know that \(f_T\) is proportional to \(V_{OV}\); thus the high-frequency performance of a MOSFET improves with the increase of the overdrive voltage at which it is operated.

An important requirement of an op-amp circuit is that it be possible for its output terminal to be connected back to its negative input terminal so that a unity-gain amplifier is obtained. For such a connection to be possible, there must be a substantial overlap between the allowable range of \(v_0\) and the allowable range of \(V_{KM}\). This is usually the case in the CMOS amplifier circuit under study.

For a particular design of the two-stage CMOS op amp of Fig. 9.1, ±1.65-V supplies are utilized and all transistors except for Q6 and Q7 are operated with overdrive voltages of 0.3-V magnitude; Q6 and Q7 use overdrive voltages of 0.5-V magnitude. The fabrication process employed provides \(V_m = V_tp^2 = 0.5 \text{ V}\).

Find the input common-mode range and the range allowed for \(v_0\).

Ans. -1.35 V to 0.55 V; -1.15 V to +1.15 V

9.1.3 Voltage Gain

To determine the voltage gain and the frequency response, consider a simplified equivalent circuit model for the small-signal operation of the CMOS amplifier (Fig. 9.2), where each of the two stages is modeled as a transconductance amplifier. As expected, the input resistance is practically infinite,

\(R_{in} = \infty\)

The first-stage transconductance \(G_{m1}\) is equal to the transconductance of each of Q1 and Q2 (see Section 7.5),

\(G_{m1} = G_{m1} = G_{m2}\) (9.6)

The voltage gain of the second stage can now be found as

\(A_2 = -G_{m2} R_2\) (9.18)

Resistances \(R_1\) and \(R_2\) are operated at equal bias currents \((I/2)\) and equal overdrive voltages, \(V_{OL} = V_{OD}\).

\(G_{m1} = \frac{2(I/2)}{V_{OL}} = \frac{I}{V_{OL}} (9.7)\)

Resistance \(R_1\) represents the output resistance of the first stage, thus

\(R_1 = r_{ox} \| r_{on}\) (9.8)

where

\(r_{on} = \frac{V_{GS}}{I_{DS}}\) (9.9)

and

\(r_{ox} = \frac{V_{GS}}{I_{DS}}\) (9.10)

The dc gain of the first stage is thus

\(A_1 = -G_{m1} R_1\) (9.11)

\(= -G_{m1} (r_{ox} \| r_{on})\) (9.12)

\(= -\frac{2}{V_{GS}} \left(\frac{1}{V_{GS}} + \frac{1}{V_{GS}}\right)\) (9.13)

Observe that the magnitude of \(A_1\) is increased by operating the differential-pair transistors, Q1 and Q2, at a low overdrive voltage, and by choosing a longer channel length to obtain larger Early voltages, \(V_A\). Both actions, however, degrade the frequency response of the amplifier (see Table 6.3 and the corresponding discussion in Section 6.2.3).

Returning to the equivalent circuit in Fig. 9.2 and leaving the discussion of the various model capacitances until the next section, we note that the second-stage transconductance \(G_{m2}\) is given by

\(G_{m2} = \frac{V_{OL}}{I_{DS}} (9.14)\)

Resistance \(R_1\) represents the output resistance of the second stage, thus

\(R_1 = r_{on} \| r_{on}\) (9.15)

where

\(r_{on} = \frac{V_{GS}}{I_{DS}}\) (9.16)

and

\(r_{ox} = \frac{V_{GS}}{I_{DS}}\) (9.17)

The voltage gain of the second stage can now be found as

\(A_2 = -G_{m2} R_2\) (9.18)

\(= -\frac{2}{V_{GS}} \left(\frac{1}{V_{GS}} + \frac{1}{V_{GS}}\right)\) (9.19)

\(= -\frac{2}{V_{GS}} \left(\frac{1}{V_{GS}} + \frac{1}{V_{GS}}\right)\) (9.20)
9.1 The Two-Stage CMOS Op Amp

Here again we observe that to increase the magnitude of \(A_p \), \(Q_2 \) has to be operated at a low overdrive voltage, and the channel lengths of \(Q_6 \) and \(Q_7 \) should be made longer. Both these actions, however, would reduce the amplifier bandwidth, which presents the designer with an important trade-off.

The overall dc voltage gain can be found as the product \(A_p A_2 \)

\[
A_p = A_1 A_2 = G_{m_1} R_1 G_{m_2} R_2 \quad (9.21)
\]

Note that \(A_p \) is of the order of \((G_{m_1} R_1)^2\). Thus the maximum value of \(A_p \) will be in the range of 500 V/V to 5000 V/V.

Finally, we note that the output resistance of the op amp is equal to the output resistance of the second stage,

\[
R_o = r_{o2} || r_{o3} \quad (9.23)
\]

Hence \(R_o \) can be large (i.e., in the tens-of-kilohms range). Nevertheless, since on-chip CMOS op amps are rarely required to drive heavy loads, the large open-loop output resistance is usually not an important issue.

9.1.4 Frequency Response

Refer to the equivalent circuit in Fig. 9.2. Capacitance \(C_L \) is the total capacitance between the output node of the first stage and ground, thus

\[
C_L = C_{o1} + C_{o2} + C_{o3} + C_{o4} + C_{o5} \quad (9.24)
\]

Capacitance \(C_2 \) represents the total capacitance between the output node of the op amp and ground and includes whatever load capacitance \(C_L \) that the amplifier is required to drive, thus

\[
C_2 = C_{o6} + C_{o7} + C_{o8} + C_2 \quad (9.25)
\]

Usually, \(C_2 \) is larger than the transistor capacitances, with the result that \(C_2 \) becomes much larger than \(C_1 \). Finally, note that \(C_{o6} \) should be shown in parallel with \(C_2 \) but has been ignored because \(C_2 \) is usually much larger.

The equivalent circuit of Fig. 9.2 was analyzed in detail in Section 7.7.1, where it was found that it has two poles and a positive real-axis zero with the following approximate frequencies:

\[
f_2 = \frac{1}{2 \pi R_c G_{m_1} R_2 C_c} \quad (9.26)
\]

\[
f_3 = \frac{G_{m_2}}{2 \pi C_2} \quad (9.27)
\]

\[
f_z = \frac{G_{m_2}}{2 \pi C_2} \quad (9.28)
\]

This so-called excess phase shift is due to the second pole,

\[
\phi_{ex} = \tan^{-1} \left(\frac{f_z}{f_2} \right) \quad (9.33)
\]

and the right-half-plane zero,

\[
\phi_z = -\tan^{-1} \left(\frac{f_z}{f_2} \right) \quad (9.34)
\]

Thus the phase lag at \(f = f_z \) will be

\[
\phi_{ex} = 90^\circ + \tan^{-1} \left(\frac{f_z}{f_2} \right) + \tan^{-1} \left(\frac{f_z}{f_2} \right) \quad (9.35)
\]
20 \log |A| (dB)

\[
\frac{V_{OL}}{R + \frac{1}{sC_o}} = G_m V_i
\]

Thus the zero is now at

\[
s = \left(\frac{C_o}{G_m2} - R\right)
\]

(9.37)

We observe that by selecting

\[
R = \frac{1}{G_m2}
\]

we can place the zero at infinite frequency. An even better choice would be to select a resistance

\[
R > \frac{1}{G_m2}
\]

thus placing the zero at a negative real-axis location where the phase it introduces adds to the phase margin.

9.1.5 Slew Rate

The slew-rate limitation of op amps is discussed in Chapter 2. Here, we shall illustrate the origin of the slewing phenomenon in the context of the two-stage CMOS amplifier under study.

Consider the unity-gain follower of Fig. 9.6 with a step of say, 1 V applied to the input. Because of the amplifier dynamics, its output will not change in zero time. Thus, immediately after the input is applied, the entire value of the step will appear as a differential signal between the two input terminals.

![Figure 9.6](image)

Figure 9.6 A unity-gain follower with a large step input. Since the output cannot change immediately, a large differential voltage appears between the op-amp input terminals.

EXERCISE

9.3 A particular implementation of the CMOS amplifier of Figs. 9.1 and 9.2 provides

\[
G_{m2} = 2 \text{ mA/V}, \quad r_o = 40 \text{ kΩ}, \quad C_2 = 1 \text{ pF}
\]

(a) Find the value of \(C_o\) that results in \(f_z = 100 \text{ MHz}\). What is the 3-dB frequency of the open-loop gain?

(b) Find the value of the resistance \(R\) that when placed in series with \(C_o\), causes the transmission zero to be located at infinite frequency.

(c) Find the frequency of the second pole and hence find the excess phase lag at \(f = f_z\) introduced by the second pole, and the resulting phase margin assuming that the situation in (b) pertains.

Ans. 1.6 pF; 50 kHz; 500 Ω; 318 MHz; 17.4°; 72.5°
Exercise 9.4

Find the bias current I for the CMOS op amp of Fig. 9.1 for the case $f = 100$ MHz and $V_{dd} = 2 V$. If $C_o = 1.65$ fF, what must the bias current I be?

Ans. $126 \mu A$, $260 \mu A$

Solution

Using the voltage-gain expression in Eq. (9.22),

$$A_v = 2 \frac{L}{2} \frac{V_{ds}}{V_{ov}} \frac{C_o}{C_c} \frac{r_o}{r_s}$$

$$= \left(\frac{V_{ds}}{V_{ov}} \right)^2 \left(\frac{V_{ds}}{V_{ov}} \right)$$

To obtain $A_v = 4000$, given $V_d = 20 V$,

$$V_{ds} = \frac{400}{V_{ov}}$$

$$V_{ov} = 0.316 V$$

To obtain the required (W/L) ratios of Q_3 and Q_2,

$$I_o = \frac{1}{2} \left(\frac{W}{L} \right) \frac{V_{ds}}{V_{ov}}$$

$$100 = \left(\frac{W}{L} \right) \times 0.316^2$$

Thus,

$$\left(\frac{W}{L} \right) = \frac{25 \, \mu m}{1 \, \mu m}$$

and

$$\left(\frac{W}{L} \right) = \frac{25 \, \mu m}{1 \, \mu m}$$

For Q_3 and Q_2, we write

$$100 = \frac{1}{2} \times 20 \left(\frac{W}{L} \right) \times 0.316^2$$
To move the transmission zero to $s = -\infty$, we select the value of R as

$$R = \frac{1}{G_{m2}} = \frac{1}{3.2 \times 10^{-3}} = 316 \, \Omega$$

For a phase margin of 75°, the phase shift due to the second pole at $f = f_z$ must be 15°, that is,

$$\tan^{-1} \frac{f_z}{f_p} = 15°$$

Thus,

$$f_z = 637 \times \tan 15° = 171 \, MHz$$

The value of C_r can be found using Eq. (9.30),

$$C_r = \frac{G_{m2}}{2\pi f_p}$$

where

$$G_{m2} = \frac{2 \times 100 \, \mu A}{0.316 \, V} = 0.63 \, mA/V$$

Thus,

$$C_r = \frac{0.63 \times 10^{-3}}{2\pi \times 171 \times 10^6} = 0.6 \, pF$$

The value of SR can now be found using Eq. (9.40) as

$$SR = 2 \times 340 \, V/\mu s$$

9.2.1 The Circuit

Figure 9.8 shows the structure of the CMOS folded-cascode op amp. Here, Q_1 and Q_2 form the input differential pair, and Q_3 and Q_4 are the cascode transistors. Recall that for differential input signals, each of Q_1 and Q_2 acts as a common-source amplifier. Also note that the gate terminals of Q_3 and Q_4 are connected to a constant dc voltage (V_{BIAS}) and hence are to obtain

$$\left[\frac{W}{L}\right]_3 = \left[\frac{W}{L}\right]_4 = \left(\frac{10 \, \mu m}{1 \, \mu m}\right)$$

For Q_3,

$$200 = \frac{1}{2} \times 80 \left[\frac{W}{L}\right]_3 \times 0.316^2$$

Thus,

$$\left[\frac{W}{L}\right]_3 = \left(\frac{50 \, \mu m}{1 \, \mu m}\right)$$

Since Q_3 is required to conduct 500 μA, its (W/L) ratio should be 2.5 times that of Q_4.

For Q_4, we write

$$500 = \frac{1}{2} \times 200 \times \left[\frac{W}{L}\right]_4 \times 0.316^2$$

Thus,

$$\left[\frac{W}{L}\right]_4 = \left(\frac{50 \, \mu m}{1 \, \mu m}\right)$$

Finally, let's select $I_{DIP} = 20 \, \mu A$, thus

$$\left[\frac{W}{L}\right]_6 = \left(\frac{0.1 \, \mu m}{1 \, \mu m}\right)$$

The input common-mode range can be found using the expression in Eq. (9.4) as

$$-1.33 \, V < V_{ICM} < 0.52 \, V$$

The maximum signal swing allowable at the output is found using the expression in Eq. (9.5) as

$$-1.33 \, V < V_O < 1.33 \, V$$

The input resistance is practically infinite, and the output resistance is

$$R_i = r_{in} \approx r_{out} = \frac{1}{2} \times \frac{20 \, \Omega}{0.5} = 20 \, k\Omega$$

To determine f_{z}, we use Eq. (9.27) and substitute for G_{m2},

$$G_{m2} = \frac{f_{z}}{V_{out}} = \frac{2 \times 0.5}{0.316} = 3.2 \, mA/V$$

Thus,

$$f_{z} = \frac{3.2 \times 10^{-3}}{2\pi \times 0.8 \times 10^{15}} = 0.67 \, MHz$$

9.2 THE FOLDED-CASCODE CMOS OP AMP

In this section we study another type of CMOS op-amp circuit: the folded cascode. The circuit is based on the folded-cascode amplifier studied in Section 6.8.6. We mentioned that although it is composed of a CS transistor and a CG transistor of opposite polarity, the folded-cascode configuration is generally considered to be a single-stage amplifier. Similarly, the op-amp circuit that is based on the cascode configuration is considered to be a single-stage op amp. Nevertheless, it can be designed to provide performance parameters that equal and in some respects exceed those of the two-stage topology studied in the preceding section. Indeed, the folded-cascode op-amp topology is currently as popular as the two-stage structure. Furthermore, the folded-cascode configuration can be used in conjunction with the two-stage structure to provide performance levels higher than those available from either circuit alone.

9.2.1 The Circuit

Figure 9.8 shows the structure of the CMOS folded-cascode op amp. Here, Q_1 and Q_2 form the input differential pair, and Q_3 and Q_4 are the cascode transistors. Recall that for differential input signals, each of Q_1 and Q_2 acts as a common-source amplifier. Also note that the gate terminals of Q_3 and Q_4 are connected to a constant dc voltage (V_{BIAS}) and hence are
at signal ground. Thus, for differential input signals, each of the transistor pairs \(Q_1 - Q_3 \) and \(Q_2 - Q_4 \) acts as a folded-cascode amplifier, such as the one in Fig. 6.45. Note that the input differential pair is biased by a constant-current source \(I \). Thus each of \(Q_1 \) and \(Q_3 \) is operating at a bias current \(I/2 \). A node equation at each of their drains shows that the bias current of each of \(Q_1 \) and \(Q_3 \) is \((I_d - I/2) \). Selecting \(I_d = I \) forces all transistors to operate at the same bias current of \(I/2 \). For reasons that will be explained shortly, however, the value of \(I_d \) is usually made somewhat greater than \(I \).

As we learned in Chapter 6, if the full advantage of the high output-resistance achieved through cascoding is to be realized, the output resistance of the current-source load must be equally high. This is the reason for using the cascode current mirror \(Q \) to \(Q_4 \) in the circuit of Fig. 9.8. (This current-mirror circuit was studied in Section 6.12.1.) Finally, note that capacitance \(C_1 \) denotes the total capacitance at the output node. It includes the internal transistor capacitances, an actual load capacitance (if any), and possibly an additional capacitance deliberately introduced for the purpose of frequency compensation. In many cases, however, the load capacitance will be sufficiently large, obviating the need to provide additional capacitance to achieve the desired frequency compensation. This topic will be discussed shortly. For the time being, we note that unlike the two-stage circuit, that requires the load capacitance to be large enough to provide additional damping against oscillations, the CMOS folded-cascode amplifier of Fig. 9.8 has a significant improvement over the case of the two-stage circuit. The maximum value of \(V_{\text{CM}} \) is limited by the requirement that \(Q_1 \) and \(Q_3 \) operate in saturation at all times. Thus \(V_{\text{CMmax}} \) should be at most \(V_{\text{dd}} \) volts above the voltage at the drains of \(Q_1 \) and \(Q_3 \). The latter voltage is determined by \(V_{\text{IH}} \) and must allow for a voltage drop across \(Q_1 \) and \(Q_3 \) at least equal to their overdrive voltage, \(|V_{\text{oV1}}| = |V_{\text{oV3}}| \). Assuming that \(Q_1 \) and \(Q_3 \) are indeed operated at the edge of saturation, \(V_{\text{CMmax}} \) will be

\[
V_{\text{CMmax}} = V_{\text{dd}} - |V_{\text{oV1}}| + V_N
\]

which can be larger than \(V_{\text{dd}} \), a significant improvement over the case of the two-stage circuit. The value of \(V_{\text{CMmax}} \) should be selected to yield the required value of \(I_d \) while operating \(Q_1 \) and \(Q_3 \) at a small value of \(|V_{\text{oV1}}| \) (e.g., 0.2 V or so). The minimum value of \(V_{\text{CM}} \) is the same as in the case of the two-stage circuit, namely

\[
V_{\text{CMmin}} = V_{\text{ss}} + |V_{\text{oV1}}| + V_N
\]

The presence of the threshold voltage \(V_T \) in this expression indicates that \(V_{\text{CMmin}} \) is not sufficiently low. Later in this section we shall describe an ingenious technique for solving this problem. For the time being, note that the value of \(V_{\text{CMmax}} \) should be selected to provide the required value of \(I_d \) while operating \(Q_1 \) at a low overdrive voltage. Combining Eqs. (9.42) and (9.43) provides

\[
V_{\text{ss}} + |V_{\text{oV1}}| + V_N \leq V_{\text{CM}} \leq V_{\text{dd}} - |V_{\text{oV1}}| + V_N
\]

The upper end of the allowable range of \(V_{\text{CM}} \) is determined by the need to maintain \(Q_1 \) and \(Q_3 \) in saturation. Note that \(Q_1 \) will operate in saturation as long as an overdrive voltage, \(|V_{\text{oV1}}| \), appears across it. It follows that to maximize the allowable positive swing of \(V_{\text{CM}} \),
ANS.

-0.55 V to +1.85 V

for $v_i = 0.5 V$. Find the input, common-mode range and the range allowed employed provides $v_i = 0.5 V$. Fixed the input extension-mode range and the range allowed.

Thus, the transistors of the differential pair,

$$V_{\text{sat}} = \frac{|V_{\text{GS1}}| - V_{\text{GS2}}}{|v_i|}$$

The upper limit of v_i will then be

$$v_{\text{lim}} = V_{\text{DD}} - |V_{\text{GS2}}| - |v_i|$$

which is two overdrive voltages below V_{DD}. The situation is not as good, however, at the other end: Since the voltage at the gate of Q_1 is $-V_{\text{DD}} + V_{\text{DD}} + V_{\text{sat}}$ or equivalently $-V_{\text{DD}} + V_{\text{sat}} + V_{\text{sat}}$, the lowest possible v_i is obtained when Q_1 reaches the edge of saturation, namely, when v_i decreases below the voltage at the gate of Q_2 by V_{sat}, that is.

$$v_{\text{lim}} = -V_{\text{DD}} + V_{\text{sat}} + V_{\text{sat}} + V_{\text{sat}}$$

Note that this value is two overdrive voltages plus a threshold voltage above $-V_{\text{DD}}$. This is a drawback of utilizing the cascode mirror. The problem can be alleviated by using a modified mirror circuit, as we shall shortly see.

EXERCISE

9.5. For a particular design of the folded-cascode op amp of Fig. 9.9, ±1.65 V supplies are utilized and all transistors are operated at overdrive voltages of 0.3 V magnitude. The fabrication process employs provides $|V_{\text{sat}}| = 0.5 V$. First the input extension-mode range and the range allowed.

Ans. -0.55 V to +1.85 V - 0.55 V to +1.05 V.

9.2.3 Voltage Gain

The folded-cascode op amp is simply a transconductance amplifier with an infinite input resistance, a transconductance G_m and an output resistance R_o. G_m is equal to g_{m1} of each of the two transistors of the differential pair.

$$G_m = g_{m1} = g_{m2}$$

Thus,

$$G_m = \frac{2(1/2)}{V_{\text{sat}}} = \frac{1}{V_{\text{sat}}}. \tag{9.49}$$

The output resistance R_o is the parallel equivalent of the output resistance of the cascode amplifier and the output resistance of the cascode mirror, thus

$$R_o = R_{o1} \parallel R_{o2} \tag{9.50}$$

Reference to Fig. 9.9 shows that the resistance R_{o1} is the output resistance of the CG transistor Q_1. The latter has a resistance $(r_{o1} \parallel r_{o2})$ in its source lead, thus

$$R_{o1} = (r_{o1} + r_{o2}) \tag{9.51}$$

The resistance R_{o2} is the output resistance of the cascode mirror and is thus given by Eq. (6.141), thus

$$R_{o2} = r_{o1} + r_{o2} \tag{9.52}$$

Combining Eqs. (9.50) to (9.52) gives

$$R_o = \frac{(r_{o1} + r_{o2}) \parallel (r_{o1} + r_{o2})}{(1 + A_f)} \tag{9.53}$$

Note that this value is two overdrive voltages plus a threshold voltage above $-V_{\text{DD}}$. This is a drawback of utilizing the cascode mirror. The problem can be alleviated by using a modified mirror circuit, as we shall shortly see.

9.2. THE FOLDED-CASCADE CMOS OP AMP

Figure 9.10 shows the equivalent circuit model including the load capacitance C_L, which we shall take into account shortly.

Because the folded-cascode op amp is a transconductance amplifier, it has been given the name operational transconductance amplifier (OTA). Its high output resistance, which is of the order of $g_m V_{\text{sat}}$ (see Eq. 9.53) is what makes it possible to realize a relatively high voltage gain in a single amplifier stage. However, such a high output resistance may be a cause of concern to the reader; after all, in Chapter 2, we stated that an ideal op amp has a zero output resistance! To alleviate this concern somewhat, let us find the closed-loop output resistance of a unity-gain follower formed by connecting the output terminal of the circuit of Fig. 9.9 back to the negative input terminal. Since this feedback is of the voltage sampling type, it reduces the output resistance by the factor $(1 + A_f)$ where $A = A_f$ and $B = 1$, that is,

$$R_{o1'} = \frac{R_o}{1 + A_f} = \frac{R_o}{1 + A_f} \tag{9.54}$$

Thus,

$$A_f = \frac{g_{m1} \parallel (r_{o1} \parallel r_{o2})}{(1 + A_f)} \tag{9.55}$$

Figure 9.10 shows the equivalent circuit model including the load capacitance C_L, which we shall take into account shortly.

The dc open-loop gain can now be found using G_m and R_{o1} as

$$A_f = \frac{G_m}{R_o} \tag{9.54}$$

Figure 9.10 shows the equivalent circuit model including the load capacitance C_L, which we shall take into account shortly.

Because the folded-cascode op amp is a transconductance amplifier, it has been given the name operational transconductance amplifier (OTA). Its high output resistance, which is of the order of $g_m V_{\text{sat}}$ (see Eq. 9.53) is what makes it possible to realize a relatively high voltage gain in a single amplifier stage. However, such a high output resistance may be a cause of concern to the reader; after all, in Chapter 2, we stated that an ideal op amp has a zero output resistance! To alleviate this concern somewhat, let us find the closed-loop output resistance of a unity-gain follower formed by connecting the output terminal of the circuit of Fig. 9.9 back to the negative input terminal. Since this feedback is of the voltage sampling type, it reduces the output resistance by the factor $(1 + A_f)$ where $A = A_f$ and $B = 1$, that is,

$$R_{o1'} = \frac{R_o}{1 + A_f} \tag{9.54}$$

Substituting for A_f from Eq. (9.54) gives

$$R_{o1'} = \frac{1}{G_m} \tag{9.57}$$

which is a general result that applies to any OTA to which 100% voltage feedback is applied. For our particular circuit, $G_m = g_{m1}$, thus

$$R_{o1'} = \frac{1}{g_{m1}} \tag{9.58}$$

Since g_{m1} is of the order of 1 mA/V, $R_{o1'}$ will be of the order of 1 kΩ. Although this is not very small, it is reasonable in view of the simplicity of the op-amp circuit as well as the fact that this type of op amp is not usually intended to drive low-valued resistive loads.
9.2.4 Frequency Response

From our study of the cascode configuration in Section 6.8, we know that one of its advantages is its excellent high-frequency response. It has poles at the input, at the connection between the CS and CG transistors (i.e., at the source terminals of Q2 and Q6), and at the output terminal. Normally, the first two poles are at very high frequencies, especially when the resistance of the signal generator that feeds the differential pair is small. Since the primary purpose of CMOS op amps is to feed capacitive loads, Cgs is usually large, and the pole at the output becomes dominant. Even if Cgs is not large, we can increase it deliberately to give the op amp a dominant pole. From Fig. 9.10 we can write

\[\frac{v_0}{v_{in}} = \frac{g_{m1}R_s}{1 + sC_{gs}R_s} \]

Thus, the dominant pole has a frequency \(f_p \),

\[f_p = \frac{1}{2\pi R_s C_{gs}} \]

and the unity-gain frequency \(f_u \) will be

\[f_u = \frac{1}{2\pi R_s C_{gs}C_{gd}} \]

From a design point-of-view, the value of Cgs should be such that at \(f = f_p \), the excess phase resulting from the non-dominant poles is small enough to permit the required phase margin to be achieved. If Cgs is not large enough to achieve this purpose, it can be augmented.

It is important to note the different effects of increasing the load capacitance on the operation of the two-op-amp circuits we have studied. In the two-stage circuit, if \(C_{gs} \) is increased, the frequency of the second pole decreases, the excess phase shift at \(f = f_p \) increases, and the phase margin is reduced. Here, on the other hand, when \(C_{gs} \) is increased, \(f_s \) decreases, but the phase margin increases. In other words, a heavier capacitive load decreases the bandwidth of the folded-cascode amplifier but does not impair its response (which happens when the phase margin decreases). Of course, if an increase in \(C_{gs} \) is anticipated in the two-stage op-amp case, the designer can increase \(C_{gs} \), thus decreasing \(f_p \) and restoring the phase margin to its required value.

9.2.5 Slew Rate

As discussed in Section 9.1.5, slewing occurs when a large differential input signal is applied. Refer to Fig. 9.8 and consider the case when a large signal \(v_{in} \) is applied so that \(Q_6 \) cuts off and \(Q_2 \) conducts the entire bias current \(I_0 \). We see that \(Q_2 \) will now carry a current \((I_0 - I) \), and \(Q_6 \) will conduct a current \(I_0 - (I_0 - I) = I \). Thus the output \(v_{0} \) will be a ramp with a slope of \(I/C_{gs} \), which is the slew rate.

\[SR = \frac{I}{C_{gs}} \]

Note that the reason for selecting \(I_0 > I \) is to avoid turning off the current mirror completely; if the current mirror turns off, the output distortion increases. Typically, \(I_0 \) is set 10% to 20% larger than \(I \). Finally, Eqs. (9.61), (9.62), and (9.49), can be combined to obtain the following relationship between \(SR \) and \(f_1 \),

\[SR = \frac{2\pi f_1 V_{pN}}{2 V} \]

which is identical to the corresponding relationship in the case of the two-stage design. Note, however, that this relationship applies only when \(I_0 > I \).

EXAMPLE 9.2

Consider a design of the folded-cascode op amp of Fig. 9.9 for which \(I = 200 \mu A, I_0 = 250 \mu A, \) and \(|V_{pN}| \) for all transistors is 0.25 V. Assume that the fabrication process provides \(k'p = 100 \mu A/V^2, k' = 40 \mu A/V^2, \) \(V_{pN} = 20 V/V, V_{os} = V_{os} = 2.5 V, \) and \(V_{ss} = 0.75 V \). Let all transistors have \(L = 1 \mu m \) and assume that \(C_{gs} = 5 \ pF \). Find \(I_0, r_o, r_i, \) and \(W/L \) for all transistors. Find the allowable range of \(V_{pN} \) and of the output voltage swing. Determine the values of \(A_1, f_s, \) and \(SR \). What is the power dissipation of the op amp?

Solution

From the given values of \(I \) and \(I_0 \) we can determine the drain current \(I_0 \) for each transistor. The transconductance of each device is found using

\[g_m = \frac{2I_0}{V_{pN}} \]

and the output resistance \(r_o \) from

\[r_o = \frac{V_{pN}}{I_0} \]

The W/L ratio for each transistor is determined from

\[\frac{W}{L} = \frac{2I_0}{V_{pN}} \]

The results are as follows:

<table>
<thead>
<tr>
<th>(Q_1)</th>
<th>(Q_2)</th>
<th>(Q_3)</th>
<th>(Q_4)</th>
<th>(Q_5)</th>
<th>(Q_6)</th>
<th>(Q_7)</th>
<th>(Q_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>120</td>
<td>120</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that for all transistors,

\[g_m r_o = 100 \ V/V \]

\[V_{pN} = 2.5 \ V \]

Using the expression in Eq. (9.44), the input common-mode range is found to be

\[-1.25 V \leq v_{CM} \leq 3 V \]

The output voltage swing is found using Eqs. (9.49) and (9.7) to be

\[-1.25 V \leq v_{os} \leq 2 V \]

To obtain the voltage gain, we first determine \(A_1 \) using Eq. (9.51) as

\[A_1 = 160(200/180) = 9.34 \quad M \]
and \(R_o \) using Eq. (9.52) as:
\[
R_o = 21.28 \text{ MQ}
\]
The output resistance \(R_o \) can then be found as:
\[
R_o = R_{o4} + R_{o6} = 6.4 \text{ MQ}
\]
and the voltage gain
\[
A_v = G_m R_0 = 0.8 \times 10^5 \times 6.4 \times 10^6 = 5120 \text{ V/V}
\]

The unity-gain bandwidth is found using Eq. (9.61),
\[
f_u = \frac{f_s}{2\pi \times 5 \times 10^{-3}} = 25.5 \text{ MHz}
\]
Thus, the dominant-pole frequency must be
\[
f_p = \frac{1}{2\pi \times 5 \times 10^{-3}} = 5 \text{ kHz}
\]
The slew rate can be determined using Eq. (9.62),
\[
SR = \frac{I_s}{2\pi \times 5 \times 10^{-3}} = 40 \text{ V/μs}
\]
Finally, to determine the power dissipation we note that the total current is 500 μA = 0.5 mA, and the total supply voltage is 5 V, thus
\[
P_D = 5 \times 0.5 = 2.5 \text{ mW}
\]

9.2.6 Increasing the Input Common-Mode Range:
Rail-to-Rail Input Operation

In Section 9.2.2 we found that while the upper limit on the input common-mode range exceeds the supply voltage \(V_{DD} \), the lower limit is significantly lower than \(V_{SS} \). The opposite situation occurs if the input differential amplifier is made up of PMOS transistors. It follows that an NMOS and a PMOS differential pair placed in parallel would provide an input stage with a common-mode range that exceeds the power supply voltage in both directions. This is known as rail-to-rail input operation. Figure 9.11 shows such an arrangement. To keep the diagram simple, we have not shown the parallel connection of the two differential pairs. The two positive input terminals are to be connected together and the two negative input terminals are to be tied together. Transistors \(Q_5 \) and \(Q_6 \) are the cascode transistors for the \(Q_1-Q_2 \) pair, and transistors \(Q_7 \) and \(Q_8 \) are the cascode devices for the \(Q_3-Q_4 \) pair. The output voltage \(V_0 \) is shown taken differentially between the drains of the cascode devices. To obtain a single-ended output, a differential-to-single-ended conversion circuit should be connected in cascade.

Figure 9.11 indicates by arrows the direction of the current increments that result from the application of a positive differential input signal \(V_{id} \). Each of the current increments indicated is equal to \(G_m V_{id} / 2 \) where \(G_m = g_{m5} = g_{m6} = g_{m7} = g_{m8} \). Thus the total current feeding each of the two output nodes will be \(G_m V_{id} \). Now, if the output resistance between each of the two nodes and ground is denoted \(R_o \), the output voltage will be
\[
V_o = 2G_m R_o V_{id}
\]

This, however, assumes that both differential pairs will be operating simultaneously. This in turn occurs only over a limited range of \(V_{CM} \). Over the remainder of the input common-mode range, only one of the two differential pairs will be operational, and the gain drops to half of the value in Eq. (9.65). This rail-to-rail folded-cascode structure is utilized in a commercially available op amp.\(^1\)

EXERCISE

9.7 For the circuit in Fig. 9.11, assume that all transistors are operating at equal overdrive voltages of 0.3 V magnitude and have \(V_{DD} = 0.7 \text{ V} \) and \(V_{SS} = V_{SS} = 2.5 \text{ V} \).
(a) Find the range over which the NMOS input stage operates.
(b) Find the range over which the PMOS input stage operates.
(c) Find the range over which both operate (the overlap range).
(d) Find the input common-mode range.
(Note that to operate properly, each of the current sources requires a maximum voltage of \(V_{CM} \) across its terminals.)
\[
\text{Ans.} -1.2 \text{ V to } -2.9 \text{ V to } -2.9 \text{ V to } +1.2 \text{ V to } +1.2 \text{ V to } +2.9 \text{ V to } +2.9 \text{ V.}
\]

\(^1\) The Texas Instruments OPA357.
9.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror

In Section 9.2.2 it was found that while the output voltage of the circuit of Fig. 9.9 can swing to within 2|\(V_{dd}\)| of \(V_{cc}\), the cascode current mirror limits the negative swing to |2|\(V_{cc}\)| + |\(V_{dd}\)|, or 2|\(V_{cc}\)| + 2|\(V_{dd}\)|. In other words, the cascode mirror reduces the voltage swing by \(V_{dd}\) volts. This point is further illustrated in Fig. 9.12(a), which shows a cascode mirror (with \(V_{dd} = 0\), for simplicity) and indicates the voltages that result at the various nodes. Observe that because the voltage at the gate of \(Q_2\) is \(2V_{cc} + 2V_{dd}\) (the minimum voltage permitted at the output while \(Q_2\) remains saturated) is \(V_{cc}\) above \(V_{dd}\), the voltage \(V_{dd}\) must be added to \(V_{cc}\). This establishes a drain-to-source voltage \(V_{ds}\) of \(3V_{cc}\), which is sufficient to operate \(Q_3\) in saturation (as long as \(V_{cc}\) is greater than \(V_{dd}\), which is usually the case). This circuit is known as the wide-swing current mirror.

The observations above lead us to the conclusion that to permit the output voltage at the drain of \(Q_3\) to swing as low as \(2V_{cc}\), we must lower the voltage at the gate of \(Q_3\) from \(2V_{cc} + 2V_{dd}\) to \(V_{cc}\). This is exactly what is done in the modified mirror circuit in Fig. 9.12(b): The gate of \(Q_3\) is now connected to a bias voltage \(V_{bias} = V_{cc} + V_{dd}\). This allows the output voltage to go down to \(2V_{cc}\) with \(Q_3\) still in saturation. Also, the voltage at the drain of \(Q_3\) is now \(V_{dd}\), and thus \(Q_3\) is operating at the edge of saturation. The same is true of \(Q_2\), and thus the current tracking between \(Q_2\) and \(Q_3\) will be assured. Note, however, that we can no longer connect the gate of \(Q_2\) to its drain. Rather, it is connected to the drain of \(Q_3\). This establishes a voltage of \(V_{dd} + V_{ds}\) at the drain of \(Q_3\), which is sufficient to operate \(Q_3\) in saturation. This circuit is known as the wide-swing current mirror. Finally, note that Fig. 9.12(b) does not show the circuit for generating \(V_{bias}\). There are a number of possible circuits to accomplish this task, one of which is explored in Exercise 9.8.

9.3 THE 741 OP-AMP CIRCUIT

Our study of BIT op-amps is focused on the 741 op-amp circuit, which is shown in Fig. 9.13. This circuit uses a large number of transistors, but relatively few resistors, and only one capacitor. This philosophy is dictated by the economics (silicon area, ease of fabrication, quality of realizable components) of the fabrication of active and passive components in IC form (see Section 6.1 and Appendix A). As is the case with most general-purpose IC op-amps, the 741 requires two power supplies, \(+V_{cc}\) and \(-V_{cc}\). Normally, \(+V_{cc} = -V_{cc} = 15\,\text{V}\), but the circuit also operates satisfactorily with the power supplies reduced to much lower values (such as \(\pm 5\,\text{V}\)). It is important to observe that no circuit node is connected to ground, the common terminal of the two supplies. With a relatively large circuit such as that shown in Fig. 9.13, the first step in the analysis is the identification of its recognizable parts and their functions. This can be done as follows.

9.3.1 Bias Circuit

The reference bias current of the 741 circuit, \(I_{bias}\), is generated in the branch at the extreme left of Fig. 9.13, consisting of the two diode-connected transistors \(Q_8\) and \(Q_9\) and the resistance \(R_8\). Using a Widlar current source formed by \(Q_1\), \(Q_6\), and \(R_6\), bias current for the first stage is generated in the collector of \(Q_6\). Another current mirror formed by \(Q_5\) and \(Q_9\) takes part in biasing the first stage.

The reference bias current \(I_{bias}\) is used to provide two proportional currents in the collectors of \(Q_{10}\). This double-collector lateral pnp transistor can be thought of as two...
transistors whose base-emitter junctions are connected in parallel. Thus Q_{13} and Q_{14} form a two-output current mirror. One output, the collector of Q_{13}, provides bias current for Q_{15}, and the other output, the collector of Q_{14}, provides bias current for the output stage of the op amp.

Two more transistors, Q_{19} and Q_{20}, take part in the dc bias process. The purpose of Q_{19} and Q_{20} is to establish a two V_{BE} drops between the bases of the output transistors Q_{3} and Q_{4}.

9.3.2 Short-Circuit Protection Circuitry

The 741 circuit includes a number of transistors that are normally off and conduct only in the event that one attempts to draw a large current from the op-amp output terminal. This happens, for example, if the output terminal is short-circuited to one of the two supplies. The short-circuit protection network consists of R_{15}, R_{16}, Q_{19}, Q_{20}, R_{17}, and Q_{21}. In the following we shall assume that these transistors are off. Operation of the short-circuit-protection network will be explained in Section 9.5.3.

9.3.3 The Input Stage

The 741 circuit consists of three stages: an input differential stage, an intermediate single-ended high-gain stage, and an output-buffering stage. The input stage consists of transistors Q_{1} through Q_{6}, with biasing performed by Q_{7}, Q_{8}, and Q_{9}. Transistors Q_{1} and Q_{2} act as emitter followers, causing the input resistance to be high and delivering the differential input signal to the differential common-base amplifier formed by Q_{3} and Q_{4}. Thus the input stage is the differential version of the common-collector common-base configuration disclosed in Section 6.11.3.

Transistors Q_{5}, Q_{6}, and Q_{13} and resistors R_{16}, R_{20}, and R_{21} form the load circuit of the input stage. This is an elaborate current-mirror load circuit, which we will analyze in detail in Section 9.5.1. It will be shown that this load circuit not only provides a high-resistance load but also converts the signal from differential to single-ended form with no loss in gain or common-mode rejection. The output of the input stage is taken single-endedly at the collector of Q_{3}.

As mentioned in Section 7.7.2, every op-amp circuit includes a level shifter whose function is to shift the dc level of the signal so that the signal at the op-amp output can swing positive and negative. In the 741, level shifting is done in the first stage using the lateral pnp transistors Q_{13} and Q_{14}. Although lateral pnp transistors have poor high-frequency performance, their use in the common-base configuration (which is known to have good high-frequency response) does not seriously impair the op-amp frequency response.

The use of the lateral pnp transistors Q_{13} and Q_{14} in the first stage results in an added advantage: production of the input-stage transistors Q_{5} and Q_{6} against emitter-base junction breakdown. Since the emitter-base junction of an npn transistor breaks down at about 7 V of reverse bias (see Section 5.2.5), regular npn differential stages suffer such a breakdown if, say, the supply voltage is accidentally connected between the input terminals. Lateral pnp transistors, however, have high emitter-base breakdown voltages (about 50 V), and because they are connected in series with Q_{13} and Q_{14}, they provide protection of the 741 input transistors, Q_{5} and Q_{6}.

9.3.4 The Second Stage

The second or intermediate stage is composed of Q_{12}, Q_{13}, Q_{14}, and the two resistors R_{15} and R_{16}. Transistor Q_{15} acts as an emitter follower, thus giving the second stage a high input...
resistance. This minimizes the loading on the input stage and avoids loss of gain. Transistor \(Q_1 \) acts as a common-emitter amplifier with a 100-\(\Omega \) resistor in the emitter. Its load is composed of the high output resistance of the \(pnp \) current source \(Q_2 \), in parallel with the input resistance of the output stage (seen looking into the base of \(Q_2 \)). Using a \(pnp \) current source as a load resistance (active load) enables one to obtain high gain without resorting to the use of large load resistances, which would occupy a large chip area and require large power-supply voltages.

The output of the second stage is taken at the collector of \(Q_1 \). Capacitor \(C_1 \) is connected in the feedback path of the second stage to provide frequency compensation using the Miller compensation technique studied in Section 8.11. It will be shown in Section 9.5 that the relatively small capacitor \(C_1 \) gives the 741 a dominant pole at about 4 Hz. Furthermore, pole splitting causes other poles to be shifted to much higher frequencies, giving the op amp a uniform -20-dB/decade gain rolloff with a unity-gain bandwidth of about 1 MHz. It should be pointed out that although \(C_1 \) is small in value, the chip area that it occupies is about 12 times that of a standard \(nnp \) transistor!

9.3.5 The Output Stage

The purpose of the output stage is to provide the amplifier with a low output resistance. In addition, the output stage should be able to supply relatively large load currents without dissipating an unduly large amount of power in the IC. The 741 uses an efficient output circuit known as a **class AB output stage**.

Output stages are studied in detail in Chapter 14, and the output stage of the 741 will be discussed in some detail in Section 9.4. For the time being we wish to point out the difference between the class AB output stage and the output stage we are familiar with, namely the emitter (or source) follower. Figure 9.14(a) shows an emitter follower biased with a constant-current source \(I \). To keep the emitter-follower transistor conducting at all times and thus ensure the low output resistance it provides, the bias current \(I \) must be greater than the largest magnitude of load current \(I_L \). This is known as **class A operation** and the emitter (source) follower is a **class A output stage**. The drawback of class A operation is the large power dissipated in the transistor.

The power dissipated in the output-stage can be reduced by arranging for the transistor to turn on only when an input signal is applied. For this to work, however, one needs two transistors, an \(nnp \) to source output current and a \(pnp \) to sink output current. Such an arrangement is shown in Fig. 9.14(b). Observe that both transistors will be cut off when \(v_i = 0 \). In other words, the transistors are biased at a zero dc current. When \(v_i \) goes positive, \(Q_2 \) conducts while \(Q_1 \) remains off. When \(v_i \) goes negative the transistors reverse roles. This arrangement is known as **class B operation** and the circuit is called a **class B output stage**.

Although efficient in terms of power dissipation, the class B circuit causes output-signal distortion, as illustrated in Fig. 9.14(c). This is a result of the fact that for \(|v_i| \) less than about 0.5 V, neither of the transistors conducts and \(v_o = 0 \). This type of distortion is known as **crossover distortion**.

Crossover distortion can be reduced by biasing the output-stage transistors at a low current. This ensures that the output transistors \(Q_2 \) and \(Q_1 \) will remain conducting when \(v_i \) is small. As \(v_i \) increases, one of the two transistors conducts, while the other shuts off, in a manner similar to that in the class B stage.

There are a number of ways for biasing the transistors of the class AB stage. Figure 9.14(d) shows one such approach utilizing two diode-connected transistors \(Q_1 \) and \(Q_2 \) with junction

FIGURE 9.14 (a) The emitter follower is a class A output stage. (b) Class B output stage. (c) The output of a class B output stage fed with an input sinusoid. Observe the crossover distortion. (d) Class AB output stage.
9.3.6 Device Parameters

In the following sections we shall carry out a detailed analysis of the 741 circuit. For the standard npn and pnp transistors, the following parameters will be used:

npn: $I_s = 10^{-14} \text{A}, B = 200, V_c = 125 \text{V}

pnp: $I_s = 10^{-14} \text{A}, B = 50, V_c = 50 \text{V}

In the 741 circuit the nonstandard devices are Q_{12}, Q_{14}, and Q_{18}. Transistor Q_n will be assumed to be equivalent to two transistors, Q_{13} and Q_{14}, with parallel base-emitter junctions and having the following saturation currents:

$I_{SA} = 0.25 \times 10^{-14} \text{A}, I_{SB} = 0.75 \times 10^{-14} \text{A}

Transistors Q_{14} and Q_{20} will be assumed to each have an area three times that of a standard device. Output transistors usually have relatively large areas, to be able to supply large load currents and dissipate relatively large amounts of power with only a moderate increase in device temperature.

EXERCISES

9.9 For the standard npn transistor whose parameters are given in Section 9.3.6, find approximate values for the following parameters at $I_c = 1 \text{mA}$:

V_{BE}, r_c, r_x, r_i

Ans. $V_{BE} \approx 633 \text{mV}; r_c \approx 47 \Omega; r_x \approx 250 \Omega; r_i \approx 5 \Omega$

9.10 For the circuit in Fig. 9.10, neglect base currents and use the exponential $I_C = I_s e^{V_{BE}/V_T}$ relationship to show that

$V_{BE} = (1 - \frac{r_x}{r_C}) V_{CE}$

Then

$V_{BE} = (1 - \frac{I_{EB0}}{I_{CE0}}) V_{CE}$

where it has been assumed that $I_{EB0} = I_{CE0}$. Substituting the known values for I_{EB0} and R_x, this equation can be solved by trial and error to determine I_{CE0}. For our case, the result is $I_{CE0} = 19 \mu\text{A}$.
Having determined I_{c0}, we proceed to determine the dc current in each of the input-stage transistors. Part of the input stage is redrawn in Fig. 9.16. From symmetry, we see that

$$I_{c1} = I_{c2}$$

Denote this current by I. We see that if the npn is high, then

$$I_{c3} = I_{c4} = I$$

and the base currents of Q_3 and Q_4 are equal, with a value of $I/\beta_p = I/\beta_n$, where β_p denotes β of the pnp devices.

The current mirror formed by Q_6 and Q_9 is fed by an input current of $2I$. Using the result in Eq. (6.21), we can express the output current of the mirror as

$$I_{c6} = \frac{2I}{1 + 2/\beta_p}$$

We can now write a node equation for node X in Fig. 9.16 and thus determine the value of I. If $\beta_p \gg 1$, then this node equation gives

$$2I = I_{c6}$$

For the 741, $I_{c0} = 10 \mu A$; thus $I = 9.5 \mu A$. We have thus determined that

$$I_{c1} = I_{c2} = I_{c3} = I_{c4} = 9.5 \mu A$$

At this point, we should note that transistors Q_1 through Q_6 and Q_7 form a negative-feedback loop, which works to stabilize the value of I at approximately $I_{c0}/2$. To appreciate this fact, assume that for some reason the current I in Q_1 and Q_2 increases. This will cause the current pulled from Q_9 to increase, and the output current of the Q_6-Q_9 mirror will correspondingly increase. However, since I_{c0} remains constant, node X forces the combined base currents of Q_3 and Q_4 to decrease. This in turn will cause the emitter currents of Q_3 and Q_4, and hence the collector currents of Q_1 and Q_2, to decrease. This is in the opposite direction to the change originally assumed. Hence the feedback is negative, and it stabilizes the value of I.

Figure 9.17 shows the remainder of the 741 input stage. If we neglect the base current of Q_6, then

$$I_{c6} \approx I$$

Similarly, neglecting the base current of Q_7, we obtain

$$I_{c7} \approx I$$

The bias current of Q_7 can be determined from

$$I_{c7} = I_{c2} = \frac{2I}{\beta_p + 1} = \frac{V_{BE6} + I_{c6}}{R_s}$$

(9.67)

where β_p denotes β of the npn transistors. To determine V_{BE6} we use the transistor exponential relationship and write

$$V_{BE6} = V_T \ln \frac{I}{I_{c2}}$$

Substituting $I = 10^{-14} A$ and $I = 9.5 \mu A$ results in $V_{BE6} = 517 \text{ mV}$. Then substituting in Eq. (9.67) yields $I_{c2} = 10.5 \mu A$. Note that the base current of Q_2 is indeed negligible in comparison to the value of I, as has been asserted.

FIGURE 9.16 The dc analysis of the 741 input stage.

FIGURE 9.17 The dc analysis of the 741 input stage, continued.
9.4.3 Input Bias and Offset Currents

The input bias current of an op amp is defined (Chapters 2 and 7) as

\[I_b = \frac{I_{b1} + I_{b2}}{2} \]

For the 741 we obtain

\[I_b = \frac{I_b}{\beta_b} \]

Using \(\beta_b = 200 \), yields \(I_b = 47.5 \, \text{nA} \). Note that this value is reasonably small and is typical of general-purpose op amps that use BJTs in the input stage. Much lower input bias currents (in the picocamp or femtoamp range) can be obtained using a FET input stage. Also, there exist techniques for reducing the input bias current of bipolar-input op amps.

Because of possible mismatches in the \(\beta \) values of \(Q_1 \) and \(Q_2 \), the input base currents will not be equal. Given the value of the \(\beta \) mismatch, one can use Eq. (7.137) to calculate the input offset current, defined as

\[I_{os} = |I_{b1} - I_{b2}| \]

9.4.4 Input Offset Voltage

From Chapter 7 we know that the input offset voltage is determined primarily by mismatches between the two sides of the input stage. In the 741 op amp, the input offset voltage is due to mismatches between \(Q_1 \) and \(Q_2 \), between \(Q_3 \) and \(Q_4 \), between \(Q_5 \) and \(Q_6 \), and between \(R_7 \) and \(R_8 \). Evaluation of the components of \(V_{os} \) corresponding to the various mismatches follows the method outlined in Section 7.4. Basically, we find the current that results at the output of the first stage due to the particular mismatch being considered. Then we find the differential input voltage that must be applied to reduce the output current to zero.

9.4.5 Input Common-Mode Range

The input common-mode range is the range of input common-mode voltages over which the input stage remains in the linear active mode. Refer to Fig. 9.13. We see that in the 741 circuit the input common-mode range is determined at the upper end by saturation of \(Q_3 \) and \(Q_4 \), and at the lower end by saturation of \(Q_1 \) and \(Q_2 \).

EXERCISE

*If the voltage drop across \(R_2 \) and \(R_1 \) is \(V_{23} = 3 \, \text{V} \), show that the input common-mode range of the 741 is approximately \(\pm 3 \, \text{V} \). Assume that \(I_{b1} = 1.6 \, \text{nA} \) and that for the base-emitter voltage of \(Q_{10} \),

\[V_{BE} = 0.7 \, \text{V} \] then calculate \(I_{C23} \).

9.4.6 Second-Stage Bias

If we neglect the base current of \(Q_{10} \), then we find from Fig. 9.13 that the collector current of \(Q_{10} \) is approximately equal to the current supplied by current source \(Q_{10} \). Because \(Q_{10} \) has a scale current 0.75 times that of \(Q_1 \) and \(Q_2 \), its collector current will be \(I_{C10} = 0.75I_{C1} \), where we have assumed that \(\beta_b > 1 \). Then \(I_{C10} = 550 \, \mu\text{A} \) and \(I_{C1} = 550 \, \mu\text{A} \). At this current level the base-emitter voltage of \(Q_{10} \) is

\[V_{BE} = V_T \ln \frac{I_{C10}}{I_s} = 618 \, \text{mV} \]

The collector current of \(Q_{10} \) can be determined from

\[I_{C10} = I_{C1} + I_{TQ10} + \frac{V_{BE} - 0.7}{R_6} \]

This calculation yields \(I_{C10} = 16.2 \, \mu\text{A} \). Note that the base current of \(Q_{10} \) will indeed be negligible compared to the input-stage bias \(I_b \) as we have assumed.

9.4.7 Output-Stage Bias

Figure 9.18 shows the output stage of the 741 with the short-circuit-protection circuitry omitted. Current source \(Q_{31} \) delivers a current of \(0.25I_{AF} \) (because \(I_l \) of \(Q_{31} \) is 0.25 times the \(I_l \) of \(Q_{10} \)) to the network composed of \(Q_{32} \), \(Q_{33} \), and \(R_9 \). If we neglect the base currents of \(Q_{31} \) and \(Q_{32} \), then the emitter current of \(Q_{31} \) will also be equal to \(0.25I_{AF} \).

Thus

\[I_{C31} = I_{C32} = 0.25I_{AF} = 180 \, \mu\text{A} \]

Thus we see that the base current of \(Q_{32} \) is only \(180/50 = 3.6 \, \mu\text{A} \), which is negligible compared to \(I_{C31} \), as we have assumed.
If we assume that V_{BE18} is approximately 0.6 V, we can determine the current in R_{18} as 15 μA. The emitter current of Q_{18} is therefore

$$I_{CE18} = 180 - 15 = 165 \, \mu A$$

Also,

$$I_{CQ} = I_{CE18} = 165 \, \mu A$$

At this value of current we find that $V_{BEQ} = 588 \, mV$, which is quite close to the value assumed. The base current of Q_{18} is 165/200 = 0.8 μA, which can be added to the current in R_{18} to determine the Q_{18} current as

$$I_{CQ} = I_{CE18} = 15.8 \, \mu A$$

The voltage drop across the base–emitter junction of Q_{18} can now be determined as

$$V_{BB} = V_{BEB18} + V_{BEQ} = 588 + 530 = 1118 \, V$$

Since V_{BB} appears across the series combination of the base–emitter junctions of Q_{18} and Q_{20}, we can write

$$V_{BB} = V_{F} \ln \frac{I_{CQ}}{I_{BQ18}} = V_{F} \ln \frac{I_{CQ}}{I_{BQ18}}$$

Using the calculated value of V_{BB} and substituting $I_{CQ} = 3 \times 10^{-14} A$, we determine the collector currents as

$$I_{CQ} = I_{CE18} = 154 \, \mu A$$

This is the small current at which the class AB output stage is biased.

9.4.8 Summary

For future reference, Table 9.1 provides a listing of the values of the collector bias currents of the 741 transistors.

| Table 9.1: Collector Currents of the 741 Circuit (μA) |
|-----------------|-----------------|-----------------|-----------------|
| Q_1 | Q_2 | Q_{20} | Q_{21} |
| 9.5 | 9.5 | 19 | 19 |
| 9.5 | 9.5 | 19 | 19 |
| 9.5 | 9.5 | 7.30 | 7.30 |
| 9.5 | 9.5 | 7.30 | 7.30 |
| 9.5 | 9.5 | 180 | 180 |
| 10.5 | 10.5 | 180 | 180 |
| 15.5 | 15.5 | 154 | 154 |
| 154 | 154 | 0 | 0 |
| 154 | 154 | 16.2 | 16.2 |
| 154 | 154 | 165 | 165 |
| 154 | 154 | 180 | 180 |
| 154 | 154 | 0 | 0 |
| 154 | 154 | 0 | 0 |
For the circuit in Fig. 9.20, find in terms of \(i \) (a) the signal voltage at the base of \(Q_1 \); (b) the signal voltage at the base of \(Q_6 \); (c) the signal current in the base of \(Q_6 \); (d) the input resistance seen by the left-hand-side signal current source \(Q_6 \).

Neglecting the signal current in the collector of \(Q_6 \), we see that the collector signal current of \(Q_6 \) is approximately equal to the input current \(a_i \). Now, since \(Q_6 \) and \(Q_5 \) are identical and their bases are tied together, and since equal resistances are connected in their emitters, it follows that their collector signal currents must be equal. Thus the signal current in the collector of \(Q_6 \) is forced to be equal to \(a_i \). In other words, the load circuit functions as a current mirror.

Proceeding with the input-stage analysis, we show in Fig. 9.20 the load circuit fed with the complementary pair of current signals found earlier. Neglecting the signal current in the base of \(Q_6 \), we see that the collector signal current of \(Q_6 \) is approximately equal to the input current \(a_i \). Now, since \(Q_6 \) and \(Q_5 \) are identical and their bases are tied together, and since equal resistances are connected in their emitters, it follows that their collector signal currents must be equal. Thus the signal current in the collector of \(Q_6 \) is forced to be equal to \(a_i \). In other words, the load circuit functions as a current mirror.

Now consider the output node of the input stage. The output current \(i \) is given by

\[
i_o = 2a_i \tag{9.70}
\]

The factor of 2 in this equation indicates that conversion from differential to single-ended is performed without losing half the signal. The trick, of course, is the use of the current mirror to invert one of the current signals and then add the result to the other current signal (see Section 7.5).

Equations (9.68) and (9.70) can be combined to obtain the transconductance of the input stage, \(G_m \):

\[
G_m = \frac{i_o}{a_i} = \frac{\alpha}{2r_e} \tag{9.71}
\]

Substituting \(r_e = 2.63 \, k\Omega \) and \(\alpha = 1 \) yields \(G_m = 1/5.26 \, mA/V \).

EXERCISE

9.14 For the circuit in Fig. 9.20, find in terms of \(i \) (a) the signal voltage at the base of \(Q_6 \); (b) the signal current in the emitter of \(Q_2 \); (c) the signal current in the base of \(Q_2 \); (d) the signal voltage at the base of \(Q_6 \); (e) the input resistance seen by the left-hand-side signal current source \(Q_6 \).

FIGURE 9.20

The load circuit of the input stage fed by the two complementary current signals generated by \(Q_1 \) through \(Q_6 \) in Fig. 9.19. Circled numbers indicate the order of the analysis steps.

FIGURE 9.21

Simplified circuits for finding the two components of the output resistance \(R_o \) of the first stage.

To complete our modeling of the 741 input stage we must find its output resistance \(R_o \). This is the resistance seen "looking back" into the collector terminal of \(Q_6 \) in Fig. 9.20. Thus \(R_o \) is the parallel equivalent of the output resistance of the current source supplying the signal current \(a_i \) and the output resistance of \(Q_6 \). The first component is the resistance looking into the collector of \(Q_6 \) in Fig. 9.19. Finding this resistance is considerably simplified if we assume that the common bases of \(Q_5 \) and \(Q_6 \) are at a virtual ground. This of course happens only when the input signal \(v_i \) is applied in a complementary fashion. Nevertheless, this assumption does not result in a large error.

Assuming that the base of \(Q_6 \) is at virtual ground, the resistance we are after is \(R_{ov} \) indicated in Fig. 9.21(a). This is the output resistance of a common-base transistor that has a resistance \(r_e \) of \(Q_6 \) in its emitter. To find \(R_{ov} \) we may use the following expression (Eq. 6.118):

\[
R_{ov} = r_e[1 + g_{m1} R_v/2r_e] \tag{9.72}
\]

Substituting \(r_e = 2.63 \, k\Omega \) and \(r_v = 50 \, V \) and \(l = 9.5 \, \mu A \) (thus \(r_e = 5.26 \, M\Omega \)), and neglecting \(r_e \) since it is \((6+1) \) times larger than \(R_v \), results in \(R_{ov} = 10.5 \, M\Omega \).

The second component of the output resistance is that seen looking into the collector of \(Q_6 \) in Fig. 9.20. Although the base of \(Q_6 \) is at signal ground, we shall assume that the signal voltage at the base is small enough to make this approximation valid. The circuit then takes the form shown in Fig. 9.21(b), and \(R_v \) can be determined using Eq. (9.72) with \(R_v = R_o \). Thus \(R_{ov} = 18.2 \, M\Omega \).

Finally, we combine \(R_{ov} \) and \(R_v \) in parallel to obtain the output resistance of the input stage, \(R_o = 6.7 \, M\Omega \).

Figure 9.22 shows the equivalent circuit that we have derived for the input stage.

FIGURE 9.22

Small-signal equivalent circuit for the input stage of the 741 op amp.
We wish to find the input offset voltage resulting from a 2% mismatch between the resistances \(R \) and \(R_2 \) in Fig. 9.13.

Solution

Consider first the situation when both input terminals are grounded, and assume that \(R = R_1 \) and \(R_2 = R + \Delta R \), where \(\Delta R/R = 0.02 \). From Fig. 9.23 we see that while \(Q_5 \) still conducts a current equal to \(I \), the current in \(Q_6 \) will be smaller by \(\Delta I \). The value of \(\Delta I \) can be found from

\[
V_{BE5} = V_{BE6} + (I - \Delta I)(R + \Delta R)
\]

Thus

\[
V_{BE5} - V_{BE6} = I \Delta R - \Delta I(R + \Delta R)
\]

(9.73)

The quantity on the left-hand side is in effect the change in \(V_{BE} \) due to a change in \(I_E \) of \(\Delta I \). We may therefore write

\[
\Delta I = \frac{V_{BE5} - V_{BE6}}{R + \Delta R}
\]

(9.74)

Equations (9.73) and (9.74) can be combined to obtain

\[
\frac{\Delta I}{I} = \frac{\Delta R}{R + \Delta R} - \frac{\Delta I}{R + \Delta R}
\]

(9.75)

Substituting \(R = 1 \) k\(\Omega \) and \(r_e = 2.63 \) k\(\Omega \) shows that a 2% mismatch between \(R \) and \(R_2 \) gives rise to an output current \(\Delta I \) of about \(5.5 \times 10^{-7} \) A. To reduce this output current to zero we have to apply an input voltage \(V_{os} \) given by

\[
V_{os} = \frac{\Delta I}{G_{m1}} = \frac{5.5 \times 10^{-7}}{G_{m1}}
\]

(9.76)

Substituting \(I = 9.5 \mu A \) and \(G_{m1} = 1 \) mA/V results in the offset voltage \(V_{os} = 0.3 \) mV.

It should be pointed out that the offset voltage calculated is only one component of the input offset voltage of the 741. Other components arise because of mismatches in transistor characteristics. The 741 offset voltage is specified to be typically 2 mV.

EXERCISES

The purpose of this series of exercises is to determine the finite common-mode gain that results from a mismatch in the load circuit of the input stage of the 741 op amp. Figure E9.15 shows the input stage with an input common-mode signal \(v_{cm} \) applied and with a mismatch \(\Delta R \) between the two resistances \(R_1 \) and \(R_2 \). Note that to simplify matters, we have opened the common-mode feedback loop and included a resistance \(R_e \), which is the resistance seen looking to the left of node \(Y \) in the circuit of Fig. 9.13. Thus \(R_e \) is the parallel equivalent of \(R_1 \) (the output resistance of \(Q_3 \)) and \(R_{10} \) (the output resistance of \(Q_{10} \)).

9.15 Show that the current \((\text{Fig. E9.15}) \) is given approximately by

\[
I = I_{r1} = \frac{R_e - R_{r1}}{R_e + R_{r1}} \frac{R_e}{R}\frac{v_{cm}}{R_{10} + R}\frac{R}{R_{10}}
\]

9.16 Show that

\[
l = \frac{I}{v_{cm}} \approx \frac{R_e - R_{r1}}{R_e + R_{r1}}
\]

9.17 Using the results of Exercises 9.15 and 9.16, and assuming that \(\Delta R \ll (R + r_e) \), show that the common-mode transconductance \(G_{cm} \) is given approximately by

\[
G_{cm} = \frac{\Delta I/\Delta v_{cm}}{v_{cm}} = \frac{I_{r1}}{v_{cm}} = \frac{R_e - R_{r1}}{R_e + R_{r1}}
\]

FIGURE 9.23 Input stage with both inputs grounded and a mismatch \(\Delta R \) between \(R_1 \) and \(R_2 \).
9.18 Refer to Fig. 9.13 and assume that the bases of Q1 and Q2 are at approximately constant voltages (signal ground). Find \(R_{in}\) and hence \(R_i\). Use \(V_S = 125\) V for npn and \(50\) V for pnp transistors.

9.19 For \(I_F = 50\) and \(AR/R = 0.02\), evaluate \(G_{min}\) obtained in Exercise 9.17.

9.20 Use the value of \(G_{min}\) obtained in Exercise 9.19 and the value of \(G_{max}\) obtained from Eq. (9.71) to find the CMRR, that is the ratio of \(G_{min}\) to \(G_{max}\), expressed in decibels.

9.21 Notice that with the common-mode negative-feedback loop in place the common-mode gain will decrease by the amount of feedback, and noting that the loop gain is approximately equal to \(f_t\) (see Problem 9.26), find the CMRR with the feedback loop in place. (\(f_t = 50\).)

9.5.2 The Second Stage

Figure 9.24 shows the 741 second stage prepared for small-signal analysis. In this section we shall analyze the second stage to determine the values of the parameters of the equivalent circuit shown in Fig. 9.25.

Input Resistance

The input resistance \(R_i\) can be found by inspection to be

\[
R_i = (\beta + 1) [r_{e1} + 1] \left(r_{e1} + r_{b1} + R_{in}\right) \tag{9.77}
\]

Substituting the appropriate parameter values yields \(R_i = 4\) MΩ.

Transconductance

From the equivalent circuit of Fig. 9.25, we see that the transconductance \(G_m\) is the ratio of the short-circuit output current to the input voltage. Short-circuiting the output terminal of the second stage (Fig. 9.24) to ground makes the signal current through the output resistance of \(Q_{17}\) zero, and the output short-circuit current becomes equal to the collector signal current of \(Q_{17}\). This latter current can be easily related to \(V_i\) as follows:

\[
i_{c17} = \frac{G_m}{r_{e1} + R_i} \tag{9.78}
\]

\[
v_{c17} = V_i \left(\frac{r_{e1}}{R_i + r_{e1}} \right) \tag{9.79}
\]

\[
R_i = (\beta + 1) (r_{e1} + R_i) \tag{9.80}
\]

These equations can be combined to obtain

\[
G_m = \frac{i_{c17}}{v_{c17}} \tag{9.81}
\]

which, for the 741 parameter values, is found to be \(G_m = 6.5\) mA/V.

Output Resistance

To determine the output resistance \(R_o\) of the second stage in Fig. 9.24, we ground the input terminal and find the resistance looking back into the output terminal. It follows that \(R_o\) is given by

\[
R_o = \frac{R_{o13B} + R_{o17}}{R_{o13B} + R_{o17}} \tag{9.82}
\]

where \(R_{o13B}\) is the resistance looking into the collector of \(Q_{13B}\) while its base and emitter are connected to ground. It can be easily seen that

\[
R_{o13B} = \frac{r_{o13B}}{\beta + 1} \tag{9.83}
\]

For the 741 component values we obtain \(R_{o13B} = 90.9\) kΩ.

Thevenin Equivalent Circuit

The second-stage equivalent circuit can be converted to the Thevenin form, as shown in Fig. 9.27. Note that the stage open-circuit voltage gain is \(-G_mR_o\).
9.22 Use Eq. (9.77) to show that \(R_{i2} = 4 \text{ M}\Omega \).

9.23 Use Eqs. (9.78) to (9.81) to verify that \(G_{m2} = 6.5 \text{ mA/V} \).

9.24 Verify that \(R_{o2} = 81 \text{ k}\Omega \).

9.25 Find the open-circuit voltage gain of the second stage of the 741.

Ans. \(-526.5 \text{ V/V}\)

9.5.3 The Output Stage

The 741 output stage is shown in Fig. 9.28 without the short-circuit-protection circuitry. The stage is shown driven by the second-stage transistor \(Q_{19} \) and loaded with a 2-k\Omega resistance. The circuit is of the AB class (Section 9.3.5), with the network composed of \(Q_{19}, Q_{20}, \) and \(R_{10} \) providing the bias of the output transistors \(Q_u \) and \(Q_2a \). The use of this network rather than two diode-connected transistors in series enables biasing the output transistors at a low current (0.15 mA) in spite of the fact that the output devices are three times as large as the standard devices. This is obtained by arranging that the current in \(Q_{19} \) is very small and thus its \(V_{BE} \) is also small. We analyzed the dc bias in Section 9.4.7.

Another feature of the 741 output stage worth noting is that the stage is driven by an emitter follower \(Q_{23} \). As will be shown, this emitter follower provides added buffering, which makes the op-amp gain almost independent of the parameters of the output transistors.

Output Voltage Limits

The maximum positive output voltage is limited by the saturation of current-source transistor \(Q_{19} \). Thus

\[
V_{0m^+} = V_{CC} - V_{CEsat} - V_{BEu} \quad (9.84)
\]

which is about 1 V below \(V_{CC} \). The minimum output voltage (i.e., maximum negative amplitude) is limited by the saturation of \(Q_{23} \). Neglecting the voltage drop across \(R_1 \), we obtain

\[
V_{0m^-} = -V_{BE} + V_{CEsat} + V_{BEu} \quad (9.85)
\]

which is about 1.5 V above \(-V_{EE}\).

Small-Signal Model

We shall now carry out a small-signal analysis of the output stage for the purpose of determining the values of the parameters of the equivalent circuit model shown in Fig. 9.29. Note that this model is based on the general amplifier equivalent circuit presented in Table 5.5 as "Equivalent Circuit C." The model is shown fed by \(v_{i2} \), which is the open-circuit output voltage of the second stage. From Fig. 9.27, \(v_{i2} \) is given by

\[
v_{i2} = -G_{m2}R_{o2}v_{i2} \quad (9.86)
\]

where \(G_{m2} \) and \(R_{o2} \) were previously determined as \(G_{m2} = 6.5 \text{ mA/V} \) and \(R_{o2} = 81 \text{ k}\Omega \). Resistance \(R_{i2} \) is the input resistance of the output stage determined with the amplifier loaded with \(R_L \). Although the effect of loading an amplifier stage on its input resistance is negligible in the input and second stages, this is not the case in general in an output stage. Defining \(A_{2b} \) in this manner (see Table 5.5) enables correct evaluation of the voltage gain of the second stage, \(A_{2b} \), as

\[
A_{2b} = \frac{v_{o2}}{v_{i2}} = -G_{m2}R_{i2} \frac{R_{i2}}{R_{o2} + R_{i2}} \quad (9.87)
\]
To determine R_{in}, assume that one of the two output transistors—say, Q_{20}—is conducting a current of, say, 5 mA. It follows that the input resistance looking into the base of Q_{20} is approximately $\beta_3 R_e$. Assuming $\beta_3 = 50$, for $R_e = 2 \, \text{k}\Omega$, the input resistance of Q_{20} is 100 kΩ. This resistance appears in parallel with the series combination of the output resistance of Q_{20}, $G_{out} = 28.0 \, \text{k}\Omega$ and the resistance of the Q_{21}-Q_{23} network. The latter resistance is very small (about 160 Ω; see later: Exercise 9.26). Thus the total resistance in the emitter of Q_{23} is approximately (100 kΩ/280 kΩ) or 74 Ω. The input resistance looking into the base of Q_{20} is given by

$$R_{in} = \frac{R_e}{\beta_3} \times 74 \, \text{k}\Omega$$

which for $\beta_3 = 50$ is $R_{in} = 3.7 \, \text{M}\Omega$. Since $R_{in} = 81 \, \text{M}\Omega$, we see that $R_{in} \gg R_{out}$ and the value of R_{in} will have little effect on the performance of the op amp. We can use the value obtained for R_{in} to determine the gain of the second stage using Eq. (9.87) as $A_2 = -3.51 \, \text{V/V}$. The value of A_2 will be needed in Section 9.6 in connection with the frequency-response analysis.

Continuing with the determination of the equivalent circuit-model parameters, we note from Fig. 9.29 that G_{out} is the open-circuit overall voltage gain of the output stage,

$$G_{out} = \frac{v_{out}}{v_{in}}$$

With $R_e = \beta_3 R_e$, the gain of the emitter-follower output transistor (Q_{20} or Q_{23}) will be nearly unity. Also, with $R_{out} = \beta_3 R_e$ the resistance in the emitter of Q_{20} will be very large. This means that the gain of Q_{20} will be nearly unity and the input resistance of Q_{20} will be very large. We thus conclude that $G_{out} = 1$.

Next, we shall find the value of the output resistance of the op amp, R_{out}. For this purpose refer to the circuit shown in Fig. 9.30. In accordance with the definition of R_{out}, the input source feeding the output stage is grounded, but its resistance (which is the output resistance of the second stage, R_{out}) is included. We have assumed that the output voltage v_{out} is negative, and thus Q_{23} is conducting most of the current; transistor Q_{20} has therefore been eliminated. The exact value of the output resistance will of course depend on which transistor (Q_{20} or Q_{23}) is conducting and on the value of load current. Nevertheless, we wish to find an estimate of R_{out}.

As indicated in Fig. 9.30, the resistance seen looking into the emitter of Q_{23} is

$$R_{in} = \frac{R_{out}}{\beta_3} + r_{23}$$

Substituting $R_{in} = 81 \, \text{M}\Omega$, $\beta_3 = 50$, and $r_{23} = 25/0.18 = 139 \, \text{M}\Omega$ yields $R_{out} = 1.73 \, \text{k}\Omega$. This resistance appears in parallel with the series combination of r_{23} and the resistance of the Q_{21}-Q_{23} network. Since r_{23} alone (0.28 MΩ) is much larger than R_{out}, the effective resistance between the base of Q_{23} and ground is approximately equal to R_{out}. Now we can find the output resistance R_{out} as

$$R_{out} = \frac{R_{out}}{\beta_3} + r_{23}$$

For $\beta_3 = 50$, the first component of R_{out} is 34 Ω. The second component depends critically on the value of output current. For an output current of 5 mA, $r_{23} = 5 \, \text{M}\Omega$ and $R_{out} = 39 \, \text{M}\Omega$. To this value we must add the resistance R_1 (27 Ω) (see Fig. 9.13), which is included for short-circuit protection. The output resistance of the 741 is specified to be typically 75 Ω.

EXERCISES

9.26 Using a simple (r_e, β) model for each of the two transistors Q_{21} and Q_{23} in Fig. E9.26, find the small-signal resistance between A and A'. (Note: From Table 9.1, $\beta_1 = 165 \, \text{k}\Omega$ and $\beta_3 = 14 \, \text{k}\Omega$.)

Ans. 15 Ω.
Figure E9.27 shows the circuit for determining the op-amp output resistance when v_0 is positive and $Q^{°}$ is conducting most of the current. Using the resistance of the Q_{12} Q 19 network calculated in Exercise 9.26 and neglecting the large output resistance of Q_{13}, find R_{out} when Q_u is sourcing an output current of 5 mA.

Ans. 14.4 Ω

Output Short-Circuit Protection If the op-amp output terminal is short-circuited to one of the power supplies, one of the two output transistors could conduct a large amount of current. Such a large current can result in sufficient heating to cause burnout of the IC (Chapter 14). To guard against this possibility, the 741 op amp is equipped with a special circuit for short-circuit protection. The function of this circuit is to limit the current in the output transistors in the event of a short circuit.

Refer to Fig. 9.13. Resistance R_6 together with transistor Q_{15} limits the current that would flow out of Q_u in the event of a short circuit. Specifically, if the current in the emitter of Q_{14} exceeds about 20 mA, the voltage drop across R_6 exceeds 540 mV, which turns Q_{15} on. As Q_{15} turns on, its collector robs some of the current supplied by Q_{13}, thus reducing the base current of Q_u. This mechanism thus limits the maximum current that the op amp can source (i.e., supply from the output terminal in the outward direction) to about 20 mA.

Limiting of the maximum current that the op amp can sink, and hence the current through Q_{20}, is done by a mechanism similar to the one discussed above. The relevant circuit is composed of R_7, Q_{21}, Q_{24}, and Q_{22}. For the components shown, the current in the inward direction is limited also to about 20 mA.

In this section we shall evaluate the overall small-signal voltage gain of the 741 op amp. We shall then consider the op amp's frequency response and its slew-rate limitation.

9.6.1 Small-Signal Gain

The overall small-signal gain can be easily found from the cascade of the equivalent circuits derived in the preceding sections for the three op-amp stages. This cascade is shown in Fig. 9.31, loaded with $R_I = 2 k\Omega$, which is the typical value used in measuring and specifying the 741 data. The overall gain can be expressed as

$$A _{0} = \frac{-G_m (R_{ol} + R_{i2}) (-G_{n2} R_{o2})}{R_I} \approx -526.5 \times 0.97 = 243.147 \frac{V}{V}$$

9.6.2 Frequency Response

The 741 is an internally compensated op amp. It employs the Miller compensation technique, studied in Section 8.1.3, to introduce a dominant low-frequency pole. Specifically, a 30-pF capacitor (C_c) is connected in the negative-feedback path of the second stage. An approximate estimate of the frequency of the dominant pole can be obtained as follows.

Using Miller's theorem (Section 6.4.4) the effective capacitance due to C_c between the base of Q_{16} and ground is (see Fig. 9.13)

$$C_{m} = C_{c} (1 + |A_{2}|)$$

where A_2 is the second-stage gain. Use of the value calculated for A_2 in Section 9.5.3, $A_2 = -515$, results in $C_{m} = 15,480 \text{ pF}$. Since this capacitance is quite large, we shall neglect all other capacitances between the base of Q_{16} and signal ground. The total resistance between this node and ground is

$$R_T = \frac{R_{ol} R_{i2}}{R_{ol} + R_{i2}} = 6.7 \text{ M}\Omega/4 \text{ M}\Omega = 2.5 \text{ M}\Omega$$

9.6.3 Slew Rate

The output voltage of the 741 op amp should not exceed 12 V. This upper limit is imposed by the breakdown voltage of the transistors which make up the output stage. The maximum output voltage cannot exceed this breakdown voltage because if it did, the voltage across Q_u would exceed the breakdown voltage of the transistor.

9.6.4 Common-Mode Rejection Ratio

There are two modes of operation of the op amp, the common-mode input and the differential input. The common-mode input can accept a range of input voltages between v_1 and v_2. The differential input can accept a range of input voltages between v_1 and v_2 also. The output of the op amp is a function of the difference between v_1 and v_2. The common-mode rejection ratio (CMRR) is defined as

$$CMRR = \frac{\text{Differential Gain}}{\text{Common Mode Gain}}$$

where the differential gain is the output voltage to input differential voltage ratio and the common mode gain is the output voltage to input common voltage ratio.

9.6.5 Offset Voltage and Offset Current

The offset voltage and offset current are defined as the differences between the input voltages at which the output voltage is zero. The offset voltage is defined as

$$V_{os} = v_1 - v_2$$

and the offset current is defined as

$$I_{os} = i_1 - i_2$$

where v_1 and v_2 are the input voltages at which the output voltage is zero and i_1 and i_2 are the input currents at which the output voltage is zero.

9.6.6 Cross-Over Frequency

The crossover frequency is the frequency at which the gain of the op amp is reduced to 0.707 times its value at low frequencies.

9.6.7 Phase Margin

The phase margin is the difference between 180 degrees and the phase shift of the op amp at the crossover frequency.

9.6.8 Stability

The stability of the op amp can be determined by examining the gain-phase plot of the op amp. If the gain-phase plot crosses the unity-gain line at an angle greater than 90 degrees, the op amp is stable. If the gain-phase plot crosses the unity-gain line at an angle less than 90 degrees, the op amp is unstable.
Thus the dominant pole has a frequency \(f_p \) given by
\[
f_p = \frac{1}{2\pi C R} = 4.1 \text{ Hz}
\]
(9.96)

It should be noted that this approach is equivalent to using the approximate formula in Eq. (8.87).

As discussed in Section 8.11.3, Miller compensation provides an additional advantageous effect, namely pole splitting. As a result, the other poles of the circuit are moved to very high frequencies. This has been confirmed by computer-aided analysis [see Gray et al (2000)].

Assuming that all nondominant poles are at very high frequencies, the calculated values give rise to the Bode plot shown in Fig. 9.32 where \(f_{3 \text{dB}} = f_p \). The unity-gain bandwidth \(f_t \) can be calculated from
\[
f_t = A_0 f_{3 \text{dB}}
\]
(9.97)

Thus,
\[
f_t = 245.147 \times 4.1 = 1 \text{ MHz}
\]
(9.98)

Although this Bode plot implies that the phase shift at \(f_t \) is \(-90^\circ\) and thus that the phase margin is \(90^\circ\), in practice a phase margin of about \(80^\circ\) is obtained. The excess phase shift (about \(10^\circ\)) is due to the nondominant poles. This phase margin is sufficient to provide stable operation of closed-loop amplifiers with any value of feedback factor \(\beta \). This convenience of use of the internally compensated 741 is achieved at the expense of a great reduction in open-loop gain and hence in the amount of negative feedback. In other words, if one requires a closed-loop amplifier with a gain of 1000, then the 741 is overcompensated for such an application, and one would be much better off designing one's own compensation (assuming, of course, the availability of an op amp that is not already internally compensated).

9.6.3 A Simplified Model

Figure 9.33 shows a simplified model of the 741 op amp in which the high-gain second stage, with its feedback capacitance \(C_c \), is modeled by an ideal integrator. In this model, the gain of the second stage is assumed sufficiently large that a virtual ground appears at its input. For this reason the output resistance of the input stage and the input resistance of the second stage have been omitted. Furthermore, the output stage is assumed to be an ideal unity-gain follower. Except for the presence of the output stage, this model is identical to that which we used for the two-stage CMOS amplifier in Section 9.1.4 (Fig. 9.3).

Analysis of the model in Fig. 9.33 gives
\[
A(j\omega) = \frac{V_{a}(j\omega)}{V_{i}(j\omega)} = \frac{G_{ai}}{sC_c}
\]
(9.99)

Thus,
\[
A(j\omega) = \frac{G_{ai}}{sC_c}
\]
(9.100)

and the magnitude of gain becomes unity at \(\omega = \omega_s \), where
\[
\omega_s = \frac{G_{ai}}{C_c}
\]
(9.101)

Substituting \(G_{ai} = 1/5.26 \text{ mA/V} \) and \(C_c = 30 \text{ pF} \) yields
\[
f_s = \frac{\omega_s}{2\pi} = 1 \text{ MHz}
\]
(9.102)

which is equal to the value calculated before. It should be pointed out, however, that this model is valid only at frequencies \(f > f_{3 \text{dB}} \). At such frequencies the gain falls off with a slope of \(-20 \text{ dB/decade} \), just like that of an integrator.

9.6.4 Slew Rate

The slew-rate limitation of op amps is discussed in Chapter 2. Here we shall illustrate the origin of the slewing phenomenon in the context of the 741 circuit.

Consider the unity-gain follower of Fig. 9.34 with a step of, say, 10 V applied at the input. Because of amplifier dynamics, its output will not change in zero time. Thus immediately after the input is applied, almost the entire value of the step will appear as a differential signal between the two input terminals. This large input voltage causes the high-gain stage to be overdriven, and its small-signal model no longer applies. Rather, half the stage cuts off and the other half conducts all the current. Specifically, reference to Fig. 9.13 shows that a large positive differential input voltage causes \(Q_2 \) and \(Q_4 \) to conduct all the available bias current \(I_b \), while \(Q_2 \) and \(Q_4 \) will be cut off. The current mirror \(Q_3 \) and \(Q_6 \) will still function, and \(Q_6 \) will produce a collector current of \(I_b \).
CHAPTER 9 OPERATIONAL-AMPLIFIER AND DATA-CONVERTER CIRCUITS

FIGURE 9.34 A unity-gain follower with a large step input. Since the output voltage cannot change instantaneously, a large differential voltage appears between the op-amp input terminals.

FIGURE 9.35 Model for the 741 op amp when a large positive differential signal is applied.

Using the observations above, and modeling the second stage as an ideal integrator, results in the model of Fig. 9.35. From this circuit we see that the output voltage will be a ramp with a slope of \(\frac{2I_c}{C_C} \):

\[V_o(t) = \frac{2I_c}{C_C} t \] \hspace{1cm} (9.103)

Thus the slew rate \(SR \) is given by

\[SR = \frac{2I_c}{C_C} \] \hspace{1cm} (9.104)

For the 741, \(I_c = 9.5 \mu A \) and \(C_C = 30 \text{ pF} \), resulting in \(SR = 0.63 \text{ V/\mu s} \).

It should be pointed out that this is a rather simplified model of the slewing process. More detail can be found in Gray et al. (2000).

EXERCISES

9.29 Use the value of the slew rate calculated above to find the full-power bandwidth \(f_t \) of the 741 op amp. Assume that the maximum output is \(\pm 10 \text{ V} \).

Ans. \(101.7 \text{ Hz} \) (a 6-dB decrease; 8.3 Hz

9.6.5 Relationship Between \(f_t \) and \(SR \)

A simple relationship exists between the unity-gain bandwidth \(f_t \), and the slew rate \(SR \). This relationship is obtained from Eqs. (9.101) and (9.104) together with

\[G_{na} = \frac{I_c}{4V_T} \] \hspace{1cm} (9.105)

Substituting in Eq. (9.101) results in

\[f_t = \frac{I_c}{2V_T} \] \hspace{1cm} (9.106)

Substituting for \(I_c/C_C \) from Eq. (9.104) gives

\[f_t = \frac{SR}{4V_T} \] \hspace{1cm} (9.107)

which can be expressed in the alternative form

\[SR = 4V_T f_t \] \hspace{1cm} (9.108)

As a check, for the 741 we have

\[SR = 4 \times 25 \times 10^3 \times 2 \pi \times 10^6 = 0.63 \text{ V/\mu s} \]

which is the result obtained previously. Observe that Eq. (9.108) is of the same form as Eq. (9.41), which applies to the two-stage CMOS op amp. Here, \(4V_T \) replaces \(V_{ov} \). Since, typically, \(V_{ov} \) will be two to three times the value of \(4V_T \), a two-stage CMOS op amp with an \(f_t \) equal to that of the 741 exhibits a slew rate that is two to three times as large as that of the 741.

A general form for the relationship between \(SR \) and \(f_t \) for an op amp with a structure similar to that of the 741 (including the two-stage CMOS circuit) is

\[SR = \frac{(C_C)}{(f_t)} \]

where \(a \) is the constant of proportionality relating the transconductance of the first stage \(G_{ml} \), to the total bias current of the input differential stage. That is, for the 741 circuit \(G_{ml} = \alpha(2I_c) \), while for the CMOS circuit of Fig. 9.1, \(G_{ml} = \alpha I_c \). For a given \(f_t \), a higher value of \(SR \) is obtained by making \(a \) smaller; that is, the total bias current is kept constant and \(G_{ml} \) is reduced. This is a viable technique for increasing slew rate. It is referred to as the \(G_{ml} \)-reduction method (see Exercise 9.30).

EXERCISES

9.29 Consider the integrator model of the op amp in Fig. 9.33. Find the value of the resistor that, when connected across \(C_C \), provides the correct value of the dc gain.

Ans. \(10 \Omega \).

9.30 If a resistance \(R_E \) is included in each of the emitter leads of \(Q_1 \) and \(Q_2 \), show that \(SR = \frac{4V_T}{R_E + 2R_1} \), hence find the value of \(R_E \) that would double the 741's slew rate while keeping \(I_c \) and \(f_t \) unchanged. What are the new values of \(f_t \) (the dc gain), and the 3-dB frequency?

Ans. \(5.26 \text{ k\Omega} \); \(101.7 \text{ Hz} \) (a 6-dB decrease; 8.3 Hz

The difference is just a matter of notation; we used \(I_c \) to denote the total bias current of the input differential stage of the CMOS circuit, and we used \(2I_c \) for the 741 case!
9.7 DATA CONVERTERS—AN INTRODUCTION

In this section we begin the study of another group of analog IC circuits of great importance; namely, data converters.

9.7.1 Digital Processing of Signals

Most physical signals, such as those obtained at transducer outputs, exist in analog form. Some of the processing required on these signals is most conveniently performed in an analog fashion. For instance, in instrumentation systems it is quite common to use a high-input-impedance, high-gain, high-CMRR differential amplifier right at the output of the transducer. This is usually followed by a filter whose purpose is to eliminate interference. However, further signal processing is usually required, which can range from simply obtaining a measurement of signal strength to performing some algebraic manipulations on this and related signals to obtain the value of a particular system parameter of interest, as is usually the case in systems intended to provide a complex control function. Another example of signal processing can be found in the common need for transmission of signals to a remote receiver.

Many such forms of signal processing can be performed by analog means. In earlier chapters we encountered circuits for implementing a number of such tasks. However, an attractive alternative exists: It is to convert, following some initial analog processing, the signal from analog to digital form and then use economical, accurate, and convenient digital ICs to perform digital signal processing. Such processing can in its simplest form provide us with a measure of the signal strength as an easy-to-read number (consider, e.g., the digital voltmeter). In more involved cases the digital signal processor can perform a variety of arithmetic and logic operations that implement a filtering algorithm. The resulting digital filter does many of the same tasks that an analog filter performs—namely, eliminate interference and noise. Yet another example of digital signal processing is found in digital communications systems, where signals are transmitted as a sequence of binary pulses, with the obvious advantage that corruption of the amplitudes of these pulses by noise is, to a large extent, of no consequence.

Once digital signal processing has been performed, we might be content to display the result in digital form, such as a printed list of numbers. Alternatively, we might require an analog output. Such is the case in a telecommunications system, where the usual output may be audible speech. If such an analog output is desired, then obviously we need to convert the digital signal back to an analog form.

It is not our purpose here to study the techniques of digital signal processing. Rather, we shall examine the interface circuits between the analog and digital domains. Specifically, we shall study the basic techniques and circuits employed to convert an analog signal to digital form (analog-to-digital or simply A/D conversion) and those used to convert a digital signal to analog form (digital-to-analog or simply D/A conversion). Digital circuits are studied in Chapters 10 and 11.

9.7.2 Sampling of Analog Signals

The principle underlying digital signal processing is that of sampling the analog signal. Figure 9.36 illustrates in a conceptual form the process of obtaining samples of an analog signal. The switch shown closes periodically under the control of a periodic pulse signal (clock). The closure time of the switch, \(T \), is relatively short, and the samples obtained are stored (held) on the capacitor. The circuit of Fig. 9.36 is known as a sample-and-hold (S/H) circuit. As indicated, the S/H circuit consists of an analog switch that can be implemented by a MOSFET transmission gate (Section 10.5), a storage capacitor, and (not shown) a buffer amplifier.

Between the sampling intervals—that is, during the hold intervals—the voltage level on the capacitor represents the signal samples we are after. Each of these voltage levels is then fed to the input of an A/D converter, which provides an N-bit binary number proportional to the value of signal sample.

The fact that we can do our processing on a limited number of samples of an analog signal while ignoring the analog-signal details between samples is based on the Shannon's sampling theorem [see Lathi (1965)].
9.73 Signal Quantization

Consider an analog signal whose values range from 0 to +10 V. Let us assume that we wish to convert this signal to digital form and that the required output is a 4-bit digital signal. We know that a 4-bit binary number can represent 16 different values, 0 to 15; it follows that the resolution of our conversion will be 10 V/15 = 0.67 V. Thus an analog signal of 0 V will be represented by 0000, 1 V will be represented by 0001, 6 V will be represented by 1010, and 10 V will be represented by 1111.

All these sample numbers are multiples of the basic increment (0.67 V). A question now arises regarding the conversion of numbers that fall between these successive incremental levels. For instance, consider the case of a 6.2-V analog level. This falls between 6.0 V and 6.3 V. However, since it is closer to 6.0 V we treat it as if it were 6.0 V and code it as 1001. This process is called quantization. Obviously errors are inherent in this process; such errors are called quantization errors. Using more bits to represent (encode or, simply, code) an analog signal reduces quantization errors but requires more complex circuitry.

9.7.4 The A/D and D/A Converters as Functional Blocks

Figure 9.37 depicts the functional block representations of A/D and D/A converters. As indicated, the A/D converter (also called an ADC) accepts an analog sample \(v_A \) and produces an \(N \)-bit digital word. Conversely, the D/A converter (also called a DAC) accepts an \(N \)-bit digital word and produces an analog sample. The output samples of the D/A converter are often fed to a sample-and-hold circuit. At the output of the S/H circuit a staircase waveform, such as that in Fig. 9.38, is obtained. The staircase waveform can then be smoothed by a low-pass filter, giving rise to the smooth curve shown in color in Fig. 9.38. In this way an analog output signal is reconstructed. Finally, note that the quantization error of an A/D converter is equivalent to \(\pm 1 \) least significant bit (LSB).

EXERCISE

9.31 An analog signal in the range 0 to +10 V is to be converted to an \(N \)-bit digital signal. What is the resolution of the conversion in volts? What is the digital representation of an input of 6 V? What is the representation of an input of 6.2 V? What is the quantization error in absolute terms and as a percentage of the input? As a percentage of full scale? What is the largest possible quantization error as a percentage of full scale?

Ans. 0.67 V; 10011001; 10011110; -0.0064 V; -0.1%; -0.064%; 0.196%

9.8 D/A CONVERTER CIRCUITS

9.8.1 Basic Circuit Using Binary-Weighted Resistors

Figure 9.39 shows a simple circuit for an \(N \)-bit D/A converter. The circuit consists of a reference voltage \(V_{REF} \), \(N \) binary-weighted resistors \(R, 2R, 4R, 8R, \ldots, 2^{N-1}R \), \(N \) single-pole double-throw switches \(S_1, S_2, \ldots, S_N \), and an op amp together with its feedback resistance \(R_f = R/2 \).

The switches are controlled by an \(N \)-bit digital input word \(D \),

\[D = \frac{b_1}{2^1} + \frac{b_2}{2^2} + \ldots + \frac{b_N}{2^N} \quad (9.109) \]

where \(b_1, b_2 \), and so on are bit coefficients that are either 1 or 0. Note that the bit \(b_i \) is the least significant bit (LSB) and \(b_N \) is the most significant bit (MSB). In the circuit in Fig. 9.39, \(b_1 \) controls switch \(S_1 \), \(b_2 \) controls \(S_2 \), and so on. When \(b_i = 0 \), switch \(S_i \) is in position 1, and when \(b_i = 1 \) switch \(S_i \) is in position 2.

Since position 1 of all switches is ground and position 2 is virtual ground, the current through each resistor remains constant. Each switch simply controls where its corresponding current goes: to ground (when the corresponding bit is 0) or to virtual ground (when the corresponding bit is 1). The currents flowing into the virtual ground add up, and the sum flows...

FIGURE 9.39 An \(N \)-bit D/A converter using a binary-weighted resistor ladder network.
through the feedback resistance R_F. The total current i_0 is therefore given by

$$i_0 = \frac{V_{REF}}{R} b_1 + \frac{V_{REF}}{2R} b_2 + \cdots + \frac{V_{REF}}{2^{N-1}R} b_N$$

$$= 2^{V_{REF}} \left(\frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{b_N}{2^N} \right)$$

Thus,

$$i_0 = \frac{2^{V_{REF}} D}{R}$$

(9.110)

and the output voltage v_0 is given by

$$v_0 = -i_0 R_F = -V_{REF} D$$

(9.111)

which is directly proportional to the digital word D, as desired.

It should be noted that the accuracy of the DAC depends critically on (1) the accuracy of V_{REF}, (2) the precision of the binary-weighted resistors, and (3) the perfection of the switches. Regarding the third point, we should emphasize that these switches handle analog signals; thus their perfection is of considerable interest. While the offset voltage and the finite on resistance are not of critical significance in a digital switch, these parameters are of immense importance in analog switches. The use of MOSFETs to implement analog switches will be discussed in Chapter 10. Also, we shall shortly see that in practical circuit implementations of the DAC, the binary-weighted currents are generated by current sources. In this case the analog switch can be realized using the differential-pair circuit, as will be shown shortly.

A disadvantage of the binary-weighted resistor network is that for a large number of bits ($N > 4$) the spread between the smallest and largest resistances becomes quite large. This implies difficulties in maintaining accuracy in resistor values. A more convenient scheme exists utilizing a resistive network called the $R-2R$ ladder.

9.8.2 R-2R Ladders

Figure 9.40 shows the basic arrangement of a DAC using an $R-2R$ ladder. Because of the small spread in resistance values, this network is usually preferred to the binary-weighted scheme discussed earlier, especially for $N > 4$. Operation of the $R-2R$ ladder is straightforward. First, it can be shown, by starting from the right and working toward the left, that the resistance to the right of each ladder node, such as that labeled X_{N-1}, is equal to $2R$. Thus the current flowing to the right, away from each node, is equal to the current flowing downward to ground, and twice that current flows into the node from the left side. It follows that

$$I_i = 2I_{i+1} = 4I_{i+2} = \cdots = 2^{N-i} I_N$$

(9.112)

Thus, as in the binary-weighted resistive network, the currents controlled by the switches are binary weighted. The output current i_0 will therefore be given by

$$i_0 = \frac{V_{REF}}{R} D$$

(9.113)

9.8.3 A Practical Circuit Implementation

A practical circuit implementation of the DAC utilizing an $R-2R$ ladder is shown in Fig. 9.41. The circuit utilizes BJTs to generate binary-weighted constant currents I_1, I_2, \ldots, I_N which are switched between ground and virtual ground of an output summing op amp (not shown).

Starting at the two rightmost transistors, Q_{N-1} and Q_N, we see that if they are matched, their emitter currents will be equal and are denoted I_{N-1} and I_N, respectively. Transistor Q_N is included to provide proper termination of the $R-2R$ network. The voltage between the base line of the BJT and node N will be

$$V_N = V_{BE} + \frac{(I_{N-1} + I_N) (2R)}{2R}$$

FIGURE 9.40 The basic circuit configuration of a DAC utilizing an $R-2R$ ladder network.
Differential Operational-Amplifier and Data-Converter Circuits

9.33 If the input bias current of an op amp used as the output summer in a 10-bit DAC is to be no more than an equivalent to 1 LSB, what is the maximum current required to flow in \(R \), for an op amp whose base current is as great as 0.5 \(\mu \)A?

\[I_{\text{bias}} = 1 \times 10^{-6} \text{ A} \]

Ans. 2046 mA

9.9 A/D Converter Circuits

There exist a number of A/D conversion techniques varying in complexity and speed. We shall discuss four different approaches: two simple, but slow, schemes, one complex (in terms of the amount of circuitry required) but extremely fast method, and, finally, a method particularly suited for MOS implementation.

9.9.1 The Feedback-Type Converter

Figure 9.43 shows a simple A/D converter that employs a comparator, an up/down counter, and a D/A converter. The comparator circuit provides an output that assumes one of two

\[V_{\text{in}} \]

states corresponding to the analog input. The counter circuit counts in one direction when the comparator output is high and in the other direction when it is low. The D/A converter converts the digital output of the counter into an analog signal that is proportional to the input voltage. The output of the D/A converter is amplified and applied to the comparator as a reference voltage. The comparator then compares this reference voltage with the input voltage and produces a digital output that represents the input voltage.

FIGURE 9.43 A simple feedback-type A/D converter.
distinct values: positive when the difference input signal is positive, and negative when the difference input signal is negative. We shall study comparator circuits in Chapter 13. An up/down counter is simply a counter that can count either up or down depending on the binary level applied at its up/down control terminal. Because the A/D converter of Fig. 9.43 employs a DAC in its feedback loop it is usually called a feedback-type A/D converter. It operates as follows: With a 0 count in the counter, the D/A converter output, \(v_0 \), will be zero and the output of the comparator will be high, instructing the counter to count the clock pulses in the up direction. As the count increases, the output of the DAC rises. The process continues until the DAC output reaches the value of the analog input signal, at which point the comparator switches and stops the counter. The counter output will then be the digital equivalent of the input analog voltage.

Operation of the converter of Fig. 9.43 is slow if it starts from zero. This converter however, tracks incremental changes in the input signal quite rapidly.

9.9.2 The Dual-Slope A/D Converter

A very popular high-resolution (12- to 14-bit) (but slow) A/D conversion scheme is illustrated in Fig. 9.44. To see how it operates, refer to Fig. 9.44 and assume that the analog input signal \(v_A \) is negative. Prior to the start of the conversion cycle, switch \(S_2 \) is closed, thus discharging capacitor \(C \) and setting \(v_x = 0 \). The conversion cycle begins with opening \(S_2 \) and connecting the integrator input through switch \(S_x \) to the analog input signal. Since \(v_A \) is negative, a current \(I = v_A/R \) will flow through \(R \) in the direction away from the integrator. Thus \(v_x \) rises linearly with a slope of \(I/C = v_A/RC \), as indicated in Fig. 9.44(b). Simultaneously, the counter is enabled and it counts the pulses from a fixed-frequency clock. This phase of the conversion process continues for a fixed duration \(T_x \). It ends when the counter has accumulated a fixed count denoted \(n_{fix} \). Usually, for an \(N \)-bit converter, \(n_{fix} = 2^N \).

Denoting the peak voltage at the output of the integrator as \(V_{PEAK} \), we can write, with reference to Fig. 9.44(b),

\[
\frac{V_{PEAK}}{T_x} = \frac{v_A}{RC} \tag{9.115}
\]

At the end of this phase, the counter is reset to zero.

Phase II of the conversion begins at \(t = T_x \) by connecting the integrator input through switch \(S_2 \) to the positive reference voltage \(V_{REF} \). The current into the integrator reverses direction and is equal to \(V_{REF}/R \). Thus \(v_1 \) decreases linearly with a slope of \(V_{REF}/RC \). Simultaneously, the counter is enabled and it counts the pulses from the fixed-frequency clock. When \(v_1 \) reaches zero volts, the comparator signals the control logic to stop the counter. Denoting the duration of phase II by \(T_2 \), we can write, by reference to Fig. 9.44(b),

\[
\frac{V_{PEAK}}{T_2} = \frac{V_{REF}}{RC} \tag{9.116}
\]

Equations (9.115) and (9.116) can be combined to yield

\[
T_2 = T_x \left(\frac{V_A}{V_{REF}} \right) \tag{9.117}
\]

Since the counter reading, \(n_{fix} \), at the end of \(T_x \) is proportional to \(T_x \) and the reading, \(n \), at the end of \(T_2 \) is proportional to \(T_2 \), we have

\[
n = n_{fix} \left(\frac{V_A}{V_{REF}} \right) \tag{9.118}
\]
Thus the content of the counter, \(n \), at the end of the conversion process is the digital equivalent of \(v_A \).

The dual-slope converter features high accuracy, since its performance is independent of the exact values of \(R \) and \(C \). There exist many commercial implementations of the dual-slope method, some of which utilize CMOS technology.

9.9.3 The Parallel or Flash Converter

The fastest A/D conversion scheme is the simultaneous, parallel, or flash conversion process illustrated in Fig. 9.45. Conceptually, flash conversion is very simple. It utilizes \(2^N - 1 \) possible quantization levels. The outputs of the comparators are processed by an encoding-logic block to provide the \(N \) bits of the output digital word. Note that a complete conversion can be obtained within one clock cycle.

Although flash conversion is very fast, the price paid is a rather complex circuit implementation. Variations on the basic technique have been successfully employed in the design of IC converters.

9.9.4 The Charge-Redistribution Converter

The last A/D conversion technique that we shall discuss is particularly suited for CMOS implementation. As shown in Fig. 9.46, the circuit utilizes a binary-weighted capacitor array, a voltage comparator, and analog switches; control logic (not shown in Fig. 9.46) is also required. The circuit shown is for a 5-bit converter; capacitor \(C_T \) serves the purpose of terminating the capacitor array, making the total capacitance equal to the desired value of \(2C \).

Operation of the converter can be divided into three distinct phases, as illustrated in Fig. 9.46. In the sample phase (Fig. 9.46a) switch \(S_2 \) is closed, thus connecting the top plate of all capacitors to ground and setting \(v_{in} \) to zero. Meanwhile, switch \(S_4 \) is connected to the analog input voltage \(v_A \). Thus the voltage \(v_A \) appears across the total capacitance of \(2C \), resulting in a stored charge of \(2Cv_A \). Thus, during this phase, a sample of \(v_A \) is taken and a proportional amount of charge is stored on the capacitor array.

\[v_T = v_A \]

During the hold phase (Fig. 9.46b), switch \(S_4 \) is opened and switches \(S_1 \) to \(S_3 \) and \(S_5 \) are thrown to the ground side. Thus the top plate of the capacitor array is open-circuited while their bottom plates are connected to ground. Since no discharge path has been provided, the capacitor charges must remain constant, with the total equal to \(2Cv_T \). It follows that the voltage at the top plate must become \(v_T \). Finally, note that during the hold phase, \(S_4 \) is connected to \(V_{REF} \) in preparation for the charge-redistribution phase.

\[v_T = v_A \]

\(^5 \) Note that \(n \) is not a continuous function of \(v_A \); it might be inferred from Eq. (9.118). Rather, \(n \) takes on discrete values corresponding to one of the \(2^N \) quantized levels of \(v_A \).
9.34 Consider the 5-bit charge-redistribution converter in Fig. 9.46(c) with \(V_{REF} = 4 \) V. What is the voltage increment \(V_{REF}/2 \) to appear on the top plate? Now, if \(V_o \) is greater than \(V_{REF}/2 \), the net voltage at the top plate will remain negative, which means that \(S_i \) will be left in its new position as we move on to switch \(S_2 \). If, on the other hand, \(V_o \) was smaller than \(V_{REF}/2 \), then the net voltage at the top plate would become positive. The comparator will detect this situation and signal the control logic to return \(S_i \) to its ground position and then to move on to \(S_2 \).

Next, switch \(S_2 \) is connected to \(V_{REF} \), which causes a voltage increment of \(V_{REF}/4 \) to appear on the top plate. If the resulting voltage is still negative, \(S_2 \) is left in its new position; otherwise, \(S_2 \) is returned to its ground position. We then move on to switch \(S_3 \) and so on until all the bit switches \(S_i \) to \(S_5 \) have been tried.

It can be seen that during the charge-redistribution phase the voltage on the top plate will be reduced incrementally to zero. The connection of the bit switches at the conclusion of this phase gives the output digital word; a switch connected to ground indicates a 0 value for the corresponding bit, whereas connection to \(V_{REF} \) indicates a 1. The particular switch configuration depicted in Fig. 9.46(c) is for \(D = 01101 \). Observe that at the end of the conversion process, all the charge is stored in the capacitors corresponding to 1 bits; the capacitors of the 0 bits have been discharged.

The accuracy of this A/D conversion method is independent of the value of stray capacitances from the bottom plate of the capacitors to ground. This is because the bottom plates are connected either to ground or to \(V_{REF} \), thus the charge on the stray capacitances will not flow into the capacitor array. Also, because both the initial and the final voltages on the top plate are zero, the circuit is also insensitive to the stray capacitances between the top plates and ground. The insensitivity to stray capacitances makes the charge-redistribution technique a reasonably accurate method capable of implementing A/D converters with as many as 10 bits.

Exercises

9.34 Consider the 5-bit charge-redistribution converter in Fig. 9.46(c) with \(V_{REF} = 4 \) V. What is the voltage increment appearing on the top plate when \(S_i \) is switched? What is the full-scale voltage of this converter? \(V_o \) = 2.5 V, which switches will be connected to \(V_{REF} \) at the end of conversion?

9.35 Express the maximum quantization error of an 8-bit A/D converter in terms of its least-significant bit (LSB) and in terms of its full-scale analog input \(V_{REF} \).

\[\text{LSB} = \frac{V_{REF}}{2^8} \]

9.10 SPICE Simulation Example

We conclude this chapter with an example to illustrate the use of SPICE in the simulation of the two-stage CMOS op amp.

A TWO-STAGE CMOS OP AMP

In this example, we will use SPICE to aid in designing the frequency compensation of the two-stage CMOS circuit whose Capture schematic is shown in Fig. 9.47. PSpice will then be employed to determine the frequency response and the slew rate of the op amp. We will assume a 0.5-\(\mu \)m n-well CMOS technology for the MOSFETs and use the SPICE level-1 model parameters listed in Table 4.8. Observe that to eliminate the body effect and improve the matching between \(M_1 \) and \(M_2 \), the source terminals of the input PMOS transistors \(M_1 \) and \(M_2 \) are connected to their n-wells.

The op-amp circuit in Fig. 9.47 is designed using a reference current \(I_{REF} = 90 \mu A \), a supply voltage \(V_{DD} = 3.3 \) V, and a load capacitor \(C_L = 1 \) pF. Unit-size transistors with \(W/L = 1.25 \) \(\mu m / 0.6 \) \(\mu m \) are used for both the NMOS and PMOS devices. The transistors are sized for an overload voltage \(V_{OL} = 0.3 \) V. The corresponding multiplicative factors are given in Fig. 9.47.

In PSpice, the common-mode input voltage \(V_{CM} \) of the op-amp circuit is set to \(V_{OL}/2 = 1.65 \) V. A bias-point simulation is performed to determine the dc operating point. Using the values found in the simulation output file for the small-signal parameters of the MOSFETs, we obtain

\[G_m = 0.333 \text{ mA/V} \]
\[G_m = 0.666 \text{ mA/V} \]
\[C_L = 20.5 \text{ pF} \]
\[C_L = 1.04 \mu \text{F} \]

using Eqs. (9.7), (9.14), (9.24), and (9.25), respectively. Then, using Eq. (9.27), the frequency of the second, nondominant, pole can be found as

\[f_{Z2} = \frac{G_m}{2\pi C_L} = 97.2 \text{ MHz} \]

In order to place the transmission zero, given by Eq. (9.37), at infinite frequency, we select

\[R = \frac{1}{G_m} = 1.53 \text{ k\Omega} \]

Now, using Eq. (9.36), the phase margin of the op amp can be expressed as

\[\text{PM} = 50^\circ - \arctan \left(\frac{f_{Z2}}{f_r} \right) \]

(9.119)

where \(f_r \) is the unity-gain frequency, given in Eq. (9.30),

\[f_r = \frac{G_m}{2\pi C_L} \]

(9.120)

Using Eqs. (9.119) and (9.120) we determine that compensation capacitors \(C_C = 0.78 \) pF and \(C_C = 2 \) pF are required to achieve phase margins of \(\text{PM} = 55^\circ \) and \(\text{PM} = 75^\circ \), respectively.

Recall that \(G_m \) and \(G_m \) are the transconductances of, respectively, the first and second stages of the op amp. Capacitors \(C_C \) and \(C_C \) represent the total capacitance to ground at the output nodes of, respectively, the first and second stages of the op amp.
Next, an ac-analysis simulation is performed in PSpice to compute the frequency response of the op-amp and to verify the foregoing design values. It was found that, with \(R = 1.53 \, \text{k}\Omega \), we needed \(C_c = 0.6 \, \text{pF} \) and \(C_c = 1.8 \, \text{pF} \) to set \(\text{PM} = 55^\circ \) and \(\text{PM} = 75^\circ \), respectively. We note that these values are reasonably close to those predicted by hand analysis. The corresponding frequency responses for the uncompensated op amp are plotted in Figs. 9.48 and 9.49. For comparison, we also show the frequency response of the uncompensated op amp \((C_c = 0)\). Observe that, the unity gain frequency \(f_u \) drops from 70.2 MHz to 26.4 MHz as \(C_c \) is increased to improve \(\text{PM} \) (as anticipated from Eq. 9.120).

Rather than increasing the compensation capacitor \(C_c \), the value of the series resistor \(R \) can be increased to improve the phase margin \(\text{PM} \). For a given \(C_c \), increasing \(R \) above \(1/G_m^2 \) places the transmission zero at a negative real-axis location (Eq. 9.37), where the phase it introduces adds to the phase margin. Thus, \(\text{PM} \) can be improved without affecting \(f_u \). To verify this point, we set \(C_c = 0.6 \, \text{pF} \) and simulate the op-amp circuit in PSpice for the cases of \(R = 1.53 \, \text{k}\Omega \) and \(R = 3.2 \, \text{k}\Omega \). The corresponding frequency response is plotted in Fig. 9.50. Observe how \(f_u \) is approximately independent of \(R \). However, by increasing \(R \), \(\text{PM} \) is improved from 55\(^\circ\) to 75\(^\circ\). Increasing the \(\text{PM} \) is desirable because it reduces the overshoot in the step response of the op-amp. To verify this point, we simulate in PSpice the step response of the op-amp for \(\text{PM} = 55^\circ \) and \(\text{PM} = 75^\circ \). To do that, we connect the op-amp in a unity-gain configuration, apply a small (10-mV) pulse signal at the input with very short (1-ps) rise and fall times to emulate a step input, perform a transient-analysis simulation, and plot the output voltage as shown in Fig. 9.51. Observe that the overshoot in the step response drops from 15% to 1.4% when the phase margin is increased from 55\(^\circ\) to 75\(^\circ\).
CHAPTER 9 OPERATIONAL-AMPLIFIER AND DATA-CONVERTER CIRCUITS

FIGURE 9.50 Magnitude and phase response of the op-amp circuit in Fig. 9.47: $C_c = 0.6 \text{ pF}$, $R = 1.53 \text{ k\Omega}$ (PM = 55°), and $R = 3.2 \text{ k\Omega}$ (PM = 75°).

FIGURE 9.45 Small-signal step response (for a 10-mV step input) of the op-amp circuit in Fig. 9.47 connected in a unity-gain configuration: PM = 55° ($C_c = 0.6 \text{ pF}$, $R = 1.53 \text{ k\Omega}$) and PM = 75° ($C_c = 0.6 \text{ pF}$, $R = 3.2 \text{ k\Omega}$).

We conclude this example by computing SR, the slew rate of the op amp. From Eq. (9.40),

$$SR = \frac{2\pi f V_{ov}}{C_c} \approx 166.5 \text{ V/\mu s}$$

when $C_c = 0.6 \text{ pF}$. Next, to determine SR using PSpice (see Example 2.9), we again connect the op amp in a unity-gain configuration and perform a transient-analysis simulation. However, we now apply a large pulse signal (3.3 V) at the input to cause slew-rate limiting at the output. The corresponding output-voltage waveform is plotted in Fig. 9.52. The slope of the slew-rate-limited output waveform corresponds to the slew rate of the op amp and is found to be $SR = 160 \text{ V/\mu s}$ and 60 V/\mu s for the negative- and positive-going output, respectively. These results, with the unequal
CHAPTER 9: OPERATIONAL AMPLIFIER AND DATA CONVERTER CIRCUITS

SUMMARY

- Most CMOS op amps are designed to operate as part of a VLSI circuit and thus are required to drive only small capacitive loads. Therefore, most do not have a low-output-resistance stage.
- There are basically two approaches to the design of CMOS op amps: a two-stage configuration, and a single-stage topology utilizing the folded-cascode circuit.

PROBLEMS

PROBLEM 9.1: THE TWO-STAGE CMOS OP AMP

A CMOS op amp with the topology shown in Fig. 9.1 utilizes ±2.5-V power supplies. All transistors are operated at equal overdrive voltages of 0.25-V magnitude. The process technology provides devices with $V_A = 400 \text{ V}$, $V_T = 1.0 \text{ V}$, $I_{OL} = 5 \mu\text{A}$, and $I_{OH} = 5 \mu\text{A}$. All transistors are operated at overdrive voltages of 0.3-V magnitude. Also, determine the op-amp output resistance obtained when the second stage is biased at 0.4 mA. What do you expect the output resistance of a unity-gain amplifier to be, using this op amp?

PROBLEM 9.2: THE FOLDED-CASCODE OP AMP

The 741 circuit consists of an input differential stage, a unity-gain amplifier feeding an ideal integrator with a bandwidth of 50 MHz. Is it found to have a capacitance between the output node and ground of 1 pF. If it is desired to have a unity-gain bandwidth of 100 MHz with a phase margin of 75° what must g_{m2} be set to? Assume that a resistance R is connected in series with the frequency-compensation capacitor C_F and adjusted to place the transmission zero at infinity. What value should R have? If the first stage is operated at $V_{DD} = 0.2 \text{ V}$, what is the value of slew rate obtained? If the first-stage bias current $i_I = 200 \mu\text{A}$, what is the required value of C_F?

PROBLEM 9.3: THE CMOS OP AMP

Use of the cascode configuration increases the gain of a CMOS amplifier stage by about two orders of magnitude, thus making possible a single-stage op amp.

The CMOS op amp with the topology shown in Fig. 9.9 is fabricated in a process for which $V_p = 25 \text{ Vmum}$ and $V_n = 20 \text{ Vmum}$.

(a) Draw A_1 and A_2, if all devices are 0.5-um long and are operated at equal overdrive voltages of 0.25-V magnitude. Also, determine the op-amp output resistance obtained when the second stage is biased at 0.4 mA. What do you expect the output resistance of a unity-gain voltage amplifier to be, using this op-amp?

(b) One approach to the design of CMOS op amps is to use a single-stage configuration and to extend the input common-mode range by utilizing a wide-swing current mirror in the two directions, differ from those predicted by the simple model for the slew-rate limiting of the two-stage op-amp circuit (Section 9.1.3). The difference can perhaps be said to be a result of $M2$, where $M2$ is the transconductance for which the transmission zero is located at $s = -j\omega$. If $M2$ is real, find the value of g_{m2} when placed in series with C_F, causes the transmission zero to be located at $s = -j\omega$.

(c) With R in place, as in (b), find the value of R that results in the highest possible value of ω while providing a phase margin of 90°.

(d) What is the corresponding frequency of the dominant pole?

(e) If g_{m2} is changed to 200 mA/V, what is the phase shift introduced by the second pole? To reduce this excess phase shift to 10° and thus obtain an 80° phase margin, as before, what value should R be changed to?
the values of I_D and W. To avoid turning off the current mirror during slewing, select I_D to be 20% larger than I.

D9.11 For the folded-cascode op amp utilizing power supplies of ±8.5 V, find the values of V_{CC1}, V_{CC2}, and V_{CC3} to maximize the allowable range of V_{CC1} and V_{CC2}. Assume that all transistors are operated at equal overdrive voltages of 0.2 V. Assume V_{CC} for all devices is 0.5 V. Specify the maximum range of V_{CC1} and V_{CC2}.

D9.12 For the folded-cascode op-amp circuit of Figs. 9.8 and 9.9 with bias currents $I_B = 125$ pA and $I_E = 150$ pA, and with all transistors operated at overdrive voltages of 0.2 V, find the V_{CC} ratios for all devices. Assume that the technology available is characterized by $K_p = 50$ mA/V^2 and $K_n = 90$ mA/V^2.

D9.13 Consider the folded-cascode op amp when loaded with a 10-pF capacitance. What should the bias current I_B be to obtain a slew rate of at least 10 $V/\mu s$? If the input-stage transistors are operated at overdrive voltages of 0.2 V, what is the unity gain bandwidth realized? If the two non-dominant poles have the same frequency of 25 MHz, what is the phase margin obtained? If it is required to have a phase margin of 75°, what must the bias current be reduced to? By what amount should C_E be increased? What is the new value of SR?

P9.14 Consider a design of the cascode op-amp of Fig. 9.9 for which $I_B = 125$ pA and $I_E = 150$ pA. Assume that all transistors are biased at $V_{CC} = 10$ V and that for all devices, $V_{CC} = 0.5$ V. Find I_C, R_E, and A. Also, for the op amp is connected in the feedback configuration shown in Fig. P9.14, find the voltage gain and output resistance of the closed-loop amplifier.

SECTION 9.3: THE 741 OP-AMP CIRCUIT

9.20 In the 741 op-amp circuit of Fig. 9.13, Q_1, Q_2, Q_3, and Q_4 are biased to collector currents of 9.5 mA. Q_3 is biased at a collector current of 15.2 mA, and Q_1, Q_2, and Q_4 are biased at a collector current of 5.0 mA. All these devices are of the "standard amp" type, having $I_C = 10^{-3} A$, $V_C = 200$, and $V_{BE} = 0.75$ V. For each of these transistors, find V_{BE}, V_{BE}, r_{BE}, and r_{RE}. Provide your results in table form. (Note that these parameter values are utilized in the text in the analysis of the 741 circuit.)

D9.21 For the (mirror) bias circuit shown in Fig. 9.10 and the result verified in the associated Exercise, find I_B for the case in which $I_{E2} = 10^{-4} A$, $I_{E3} = 60^{-4} A$, and $I_{E4} = 10^{-5} A$ for which a bias current $I_B = 154$ mA is required.

9.22 Transistor Q_4 in the circuit of Fig. 9.13 consists of: (a) the range over which the NMOS input stage operates, (b) the range over which the PMOS input stage operates, (c) the range over which both operate (the overlap range), and (d) the input common-mode range.

SECTION 9.4: DC ANALYSIS OF THE 741

D9.25 For the 741 circuit, estimate the input reference current I_{COM} at the input event 25 V-supplies are used. Find the input biasing current, assuming that for the two BITs involved, $I_{E2} = 10^{-4} A$. What value of I_{E2} would be necessary to reduce the bias current of 15 mA supplies as exists for 255 mA in the original design?

9.26 In the 741 circuit, consider the common-mode feedback loop comprising transistors Q_3, Q_4, Q_5, Q_6, Q_7, Q_8, and Q_9. We wish to find the loop gain. This can be conveniently done by breaking the loop between the common collector connection of Q_3 and Q_4 and the diode-connected transistor Q_5. Assume that Q_5 and Q_6 act as ideal current sources. If I_{E2} and I_{E3} have $I_{E2} = 40$, find the amount of common-mode feedback in decibels.

D9.27 Design the 741 output current source of Fig. 9.15 to generate a current, $I_{COM} = 20$ mA which is $I_{E2} = 0.5$ mA. If for the transistors, $I_{E2} = 10^{-4} A$, find V_{CC} and V_{EE}.

D9.28 Consider the dc analysis of the 741 input stage shown in Fig. 9.16. For what value of I_{E2} do the currents in Q_5 and Q_6 differ from the ideal value of I_{E2} by 10%?

D9.29 Consider the dc analysis of the 741 input stage shown in Fig. 9.16 for the situation in which $I_{E2} = 25 A$. For $I_{E2} = 15$ mA and assume I_{E2} to be high, what does the new value of I_{E2} become? Redesign the 741 circuit to be equal to I_{E2}.

9.30 For the mirror circuits shown in Fig. 9.17 with the bias and component values given in the text for the 741 circuit, what is the maximum I_{E2}? For $I_{E2} = 15$ mA, find the value of I_{E2}.

9.31 It is required to redesign the circuit of Fig. 9.17 by selecting a new value for I_{E2} so that the bias currents are not neglected, the collector currents of Q_5, Q_6, and Q_7 all become equal, assuming that the input current $I_{E2} = 9.4$ mA. Find the new value of R_{E2} and the three currents. Recall that $I_{E2} = 200$.

9.32 Consider the input circuit of the 741 op amp of Fig. 9.13 when the emitter current of Q_1 is about 19 mA. If $I_{E2} = 0$ and $Q_1 = 200$, find the input bias current I_{E2} and the input current I_{E2} of the op amp.

9.33 For a particular application, consideration is being given to selecting 741 IC's for bias and current limits rounded to ±40 nA and ±40 nA, respectively. Assuming other aspects of the selected units to be normal, what minimum I_{E2} and what I_{E2} variation are implied?

9.34 A manufacturing problem in a 741 op-amp circuit involves the current transfer ratio of the mirror circuit that loads the input stage to become 0.9 A/A. For input devices (Q_2-Q_3) appropriately matched and with high I_{E2} and normally biased at 9.5 mA, what input offset voltage results?

9.35 Consider the design of the second stage of the 741 circuit. What value of R_{E2} would be needed to reduce I_{E2} to 9.5 mA?

9.36 Reconsider the 741 output stage as shown in Fig. 9.18, in which R_{E2} is adjusted to make $I_{E2} = I_{E2}$. What is the new value of R_{E2}? What values of I_{E2} and I_{E2} results?

9.37 An alternative approach to providing the voltage drop needed to bias the output transistor is the V_{EE}-multiplier circuit shown in Fig. 9.37. Design the circuit to provide a terminal voltage of 1.116 V (the same as in the 741 circuit). Based on your design, half the current flowing through R_9 and R_{10}, and assume that $I_{E2} = 10^{-4} A$ and $I_{E2} = 200$. What is the incremental
resistance between the two terminals of the \(V_{oc} \) multiplier circuit?

\[R = \frac{V_{oc}}{I} \]

where \(V_{oc} \) is the output voltage, \(I \) is the input current.

FIGURE P9.37

9.38 For the circuit of Fig. 9.13, what is the total current required from the power supplies when the op amp is operated in the linear mode, but with no load? Hence, estimate the quiescent power dissipation at the circuit. (Hint: Use the data given in Table 9.1.)

SECTION 9.5: SMALL-SIGNAL ANALYSIS OF THE 741

9.39 Consider the 741 input stage as modeled in Fig. 9.19, with two additional npn diode-connected transistors, \(Q_1 \) and \(Q_2 \), connected between the present npn and pnp devices, one per side. Convince yourself that each of the additional devices will be biased at the same current as \(Q_1 \) to \(Q_2 \) — that is, 9.5 \(\mu \)A. What does \(R_{ce} \) become? What does \(G_{m1} \) become? What is the value of \(R_{ce} \) now? What is the output resistance of the first stage, \(R_{o1} \)? What is the new open-circuit voltage gain, \(G_{m1}R_{ce} \)? Compare these values with the original ones.

FIGURE P9.42

9.40 What relatively simple change can be made to the mirror load of stage 1 to increase its output resistance, say by a factor of 2?

9.41 Repeat Example 9.14 with \(R_1 = R_2 \) replaced by 2-k\(\Omega \) resistors.

9.42 In Example 9.3 we investigated the effect of a mismatch between \(R_1 \) and \(R_2 \) on the input offset voltage of the op amp. Conversely, \(R_1 \) and \(R_2 \) can be deliberately mismatched (along the circuit shown in Fig. P9.32, for example) to compensate for the op amp internal offset voltage.

(a) Show that the input offset voltage \(V_{os} \) can be compensated (i.e., reduced to zero) by creating a relative mismatch \(\Delta R \) between \(R_1 \) and \(R_2 \):

\[\Delta R = R_1 - R_2 \]

(b) Show that the error voltage is eliminated.

FIGURE P9.47

9.43 Through a processing imperfection, the \(\beta \) of \(Q_1 \) in Fig. 9.13 is reduced to 25, while the \(\beta \) of \(Q_2 \) remains at its original value of 50. Find the input offset voltage that this mismatch introduces. (Hint: Follow the general procedure outlined in Example 9.3.)

9.44 Consider the circuit of Fig. 9.13 modified to include resistors \(R \) in series with the emitters of each of \(Q_1 \) and \(Q_2 \). What does the resistance looking into the collector of \(Q_2 \) become? For what value of \(R \) does it equal \(R_{ce} \)? For this case, what does \(R_o \) looking to the left of node 1 become?

9.45 Refer to Fig. 9.19 and let \(R_1 = R_2 \). If \(Q_1 \) and \(Q_2 \) have a \(\beta \) mismatch such that for \(Q_1 \) the current gain is \(\beta_1 \) and for \(Q_2 \) the current gain is \(\beta_0 \), find \(G_{m1} \) and \(G_{m2} \). For \(R_1 = 2.43 \) k\(\Omega \), \(\beta_0 = 20 \), and \(\beta_1 = 2 \), \(G_{m1} \) (differential) = 15.26 k\(\Omega \). Find the worst-case characteristic of \(G_{m1} \). Assume the current is ideal.

9.46 What is the effect on the differential gain of the 741 op amp of short-circuiting one, or the other, or both, of \(R_1 \) and \(R_2 \) in Fig. 9.13? (Refer to Fig. 9.20.) For simplicity, assume \(\beta = \infty \).

9.47 Figure P9.47 shows the equivalent common-mode half circuit of the input stage of the 741. Here \(R_{cm} \) is the resistance seen looking to the left of node \(V \) in Fig. 9.13; its value is approximately 2.4 M\(\Omega \). Transistors \(Q_1 \) and \(Q_2 \) operate at a bias current of 9.5 \(\mu \)A. Find the input resistance of the common-mode half-circuit using \(R_{cm} = 200 \), \(R_2 = 50 \), and \(V_{cc} = 125 \) V for npn and pnp transistors. To find the common-mode input resistance of the 741 note that it has common-mode feedback that increases the input common-mode resistance. The loop gain is approximately equal to \(K_0 \). Find the value of \(K_{0cm} \).

9.48 Consider a variation on the design of the 741 second stage in which \(R_2 = 50 \) k\(\Omega \). What are the values of \(R_1 \) and \(R_2 \) required to make \(R_{o2} \) equal to \(R_{o1} \) and thus \(R_{o2} \) half as great? What resistors in each of the other emitters would be required?

9.49 For a 741 employing 5-V supplies, \(|V_{os} | = 0.6 \) V and \(|V_{os} \) | = 0.2 V, find the output voltage limits that apply.

9.50 Consider an alternative to the present 741 output stage in which \(Q_4 \) is not used, that is, in which its base and emitter are joined. Reevaluate the reflection of \(R_2 = 2 \) k\(\Omega \) to the collector of \(Q_2 \). What does \(A_2 \) become?

9.51 Consider the positive current-limiting circuit involving \(Q_2 \), \(Q_3 \), and \(R_3 \). Find the current in \(R_3 \) at which the collector current of \(Q_2 \) equals the current available from \(V_{cc} \) (180 \(\mu \)A) minus the base current of \(Q_3 \). You need to perform a couple of iterations.

9.52 Consider the current-limiting circuit involving \(Q_2 \), \(Q_3 \), and \(R_3 \). Find the current in \(R_3 \) at which the collector current of \(Q_2 \) equals the current available from \(V_{cc} \) (180 \(\mu \)A) minus the base current of \(Q_3 \). You need to perform a couple of iterations.

9.53 Consider the 741 sinking-current limit involving \(Q_2 \), \(Q_3 \), \(R_3 \), and \(Q_4 \). For what current through \(R_3 \) is the current in \(Q_4 \) equal to the maximum current available from the input stage (i.e., the current in \(Q_3 \)? What simple change would you make to reduce this current limit to 10 mA?

SECTION 9.6: GAIN, FREQUENCY RESPONSE, AND SLEW RATE OF THE 741

9.54 Using the data provided in Fig. 9.93 (alone) for the overall gain of the 741 with a 2-k\(\Omega \) load, and realizing the significance of the factor 0.97 in the load, calculate the open-circuit voltage gain, the output resistance, and the gain with a load of 200 k\(\Omega \). What is the maximum output voltage available for such a load?

9.55 A 741 op amp has a phase margin of 80°. If the excess phase shift is due to a second single pole, what is the frequency of this pole?

9.56 A 741 op amp has a phase margin of 80°. If the op amp has nearly coincident second and third poles, what is their frequency?

|9.57| For a modified 741 whose second pole is at 5 MHz, what dominant-pole frequency is required for 85° phase margin with a closed-loop gain of 100? Assuming \(C_2 \) continues to control the dominant pole, what value of \(C_2 \) would be required?

9.58 An internally compensated op amp having an \(f_c \) of 5 MHz and dc gain of 100 utilizes Miller compensation around an inverting amplifier stage with a gain of 1000. If space exists for at most a 50-pF capacitor, what resistance must be added to the input of the Miller amplifier for compensation to be possible?

9.59 Consider the integrator op-amp model shown in Fig. 9.33. For \(G_O = 10 \) mA/V, \(f_c = 50 \) Hz, and a resistance of 10 k\(\Omega \) shunting \(C_2 \), sketch and label a Bode plot for the second-stage bias current via Eq. (9.105), find the slew rate of the op amp.

9.60 For an amplifier with a slew rate of 100 V/\(\mu \)s, what is the full-power bandwidth for outputs of 210 V? What unity-gain bandwidth, \(f_u \), would you expect if the topology was similar to that of the 741?

9.61 Figure 9.61 shows a circuit suitable for op-amp applications. For all transistors \(\beta = 100 \), \(V_{os} = 0.7 \) V, and \(r_o = \infty \).

(a) For inputs grounded and output held at 0 V (by negative feedback) find the emitter currents of all transistors.

(b) Calculate the gain of the amplifier with a load of 10 k\(\Omega \).
CHAPTER 9 OPERATIONAL-AMPLIFIER AND DATA-CONVERTER CIRCUITS

SECTION 9.7: DATA CONVERTERS—AN INTRODUCTION

9.62 An analog signal in the range 0 to +10 V is to be digitized with a quantization error of less than 1% of full scale. What is the number of bits required? What is the resolution of the conversion? If the range is to be extended to +10 V with the same requirement, what is the number of bits required? For an extension to a range of 0 to +15 V, how many bits are required to provide the same resolution? What is the corresponding resolution and quantization error?

*9.63 Consider Fig. 9.38. On the staircase output of the S/H circuit sketch the output of a simple low-pass RC circuit with a time constant that is (a) one-third of the sampling interval and (b) equal to the sampling interval.

SECTION 9.8: D/A CONVERTER CIRCUITS

*9.64 Consider the DAC circuit of Fig. 9.39 for the cases N = 2, 4, and 8. What is the tolerance, expressed as ±x%, to which the resistors should be selected to limit the resulting output error to the equivalent of ±1 LSB?

9.65 The BJTs in the circuit of Fig. P9.65 have their base-emitter junction areas scaled in the ratios indicated. Find I1 to I5 in terms of I1.

FIGURE P9.65

9.66 A problem encountered in the DAC circuit of Fig. 9.41 is the large spread in transistor EBI areas required when N is large. As an alternative arrangement, consider using the circuit in Fig. 9.41 for 4 bits only. Then, feed the current in the collector of the terminating transistor Q3 to the circuit of Fig. P9.65 in place of the current source I3, thus producing currents for 4 more bits. In this way, an 8-bit DAC can be implemented with a maximum spread in area of 8. What is the total area of emitters needed in terms of the smallest device? Contrast this with the usual 8-bit circuit. Give the complete circuit of the converter thus realized.

FIGURE P9.65

D9.67 The circuit in Fig. 9.41 can be used to multiply an analog signal by a digital one by feeding the analog signal to the Vref terminal. In this case the D/A converter is called a multiplying DAC or MDAC. Given an input sine-wave signal of 0.1 sin x volts, use the circuit of Fig. 9.41 together with an additional op amp to obtain Vout = 0.2 sin x volts, where D is the digital word given by Eq. (9.109) and N = 4. How many discrete sine-wave amplitudes are available at the output? What is the smallest? What is the largest? To what digital input does a 10-V peak-to-peak output correspond?

SECTION 9.9: A/D CONVERTER CIRCUITS

9.68 What is the input resistance seen by Vref in the circuit of Fig. 9.41?

9.69 A 12-bit dual-slope ADC of the type illustrated in Fig. 9.44 utilizes a 1-MHz clock and has Vref = 10 V. Its analog input voltage is in the range 0 to –10 V. The fixed interval τ1 is the time taken for the counter to accumulate a count of 2N. What is the time required to convert an input voltage equal to the full-scale value? If the peak voltage reached at the output of the integrator is 10 V, what is the integrator time constant? If through aging, R increases by 2% and C decreases by 1%, what does Vref become? Does the conversion accuracy change?

D9.70 The design of a 4-bit flash ADC such as that shown in Fig. 9.45 is being considered. How many comparators are required? For an input signal in the range of 0 to +10 V, what are the reference voltages needed? Show how they can be generated using a 10-V reference and several 1-MΩ resistors (how many?). If a comparison is possible in 50 ns and the associated logic requires 35 ns, what is the maximum possible conversion rate? Indicate the digital code you expect at the output of the comparators and at the output of the logic for an input of (a) 0 V, (b) +5.1 V, and (c) +10 V.
INTRODUCTION

This chapter is concerned with the study of CMOS digital logic circuits. CMOS is by far the most popular technology for the implementation of digital systems. The small size, ease of fabrication, and low power dissipation of MOSFETs enable extremely high levels of integration of both logic and memory circuits. The latter will be studied in Chapter 11.

The chapter begins with an overview section whose objective is to place in proper perspective the material we shall study in this chapter and the next. Then, building on the study of the CMOS inverter in Section 4.10, we take a comprehensive look at its design and analysis. This material is then applied to the design of CMOS logic circuits and two other types of logic circuits (namely, pseudo-NMOS and pass-transistor logic) that are frequently employed in special applications, as supplements to CMOS.

To reduce the power dissipation even further, and simultaneously to increase performance (speed of operation), dynamic logic techniques are employed. This challenging topic is the subject of Section 10.6 and completes our study of logic circuits. The chapter concludes with a SPICE simulation example.

In summary, this chapter provides a reasonably comprehensive and in-depth treatment of CMOS digital integrated-circuit design, perhaps the most significant area (at least in
10.1 DIGITAL CIRCUIT DESIGN: AN OVERVIEW

In this section, we build on the introduction to digital circuits presented in Section 1.7 and provide an overview of the subject. We discuss the various technologies and logic-circuit families currently in use, consider the parameters employed to characterize the operation and performance of logic circuits, and finally mention the various styles for digital-system design.

10.1.1 Digital IC Technologies and Logic-Circuit Families

The chart in Figure 10.1 shows the major IC technologies and logic-circuit families that are currently in use. The concept of a logic-circuit family perhaps needs a few words of explanation. Members of each family are made with the same technology, have a similar circuit structure, and exhibit the same basic features. Each logic-circuit family offers a unique set of advantages and disadvantages. In the conventional style of designing systems, one selects an appropriate logic family (e.g., TTL, CMOS, or ECL) and attempts to implement as much of the system as possible using circuit modules (packages) that belong to this family. In this way, interconnection of the various packages is relatively straightforward. If, on the other hand, packages from more than one family are used, one has to design suitable interface circuits. The selection of a logic family is based on such considerations as logic flexibility, speed of operation, availability of complex functions, noise immunity, operating-temperature range, power dissipation, and cost. We will discuss some of these considerations in this chapter and the next. To begin with, we make some brief remarks on each of the four technologies listed in the chart of Fig. 10.1.

CMOS Although shown as one of four possible technologies, this is not an indication of digital IC market share. CMOS technology is, by a large margin, the most dominant of all the IC technologies available for digital-circuit design. As mentioned earlier, CMOS has replaced NMOS, which was employed in the early days of VLSI (in the 1970s). There are a number of reasons for this development, the most important of which is the much lower power dissipation of CMOS circuits. CMOS has also replaced bipolar as the technology of choice in digital-system design, and has made possible levels of integration (or circuit-packing densities), and a range of applications, neither of which would have been possible with bipolar technology. Furthermore, CMOS continues to advance, whereas there appear to be few innovations at the present time in bipolar digital circuits. Some of the reasons for CMOS displacing bipolar technology in digital applications are as follows:

1. CMOS logic circuits dissipate much less power than bipolar logic circuits and thus can pack more CMOS circuits on a chip than is possible with bipolar circuits. We will have a lot more to say about power dissipation in the following sections.
2. The high input impedance of the MOS transistor allows the designer to use charge storage as a means for the temporary storage of information in both logic and memory circuits. This technique cannot be used in bipolar circuits.
3. The feature size (i.e., minimum channel length) of the MOS transistor has decreased dramatically over the years, with some recently reported designs utilizing channel lengths as short as 0.06 μm. This permits very tight circuit packing and, correspondingly, very high levels of integration.

Of the various forms of CMOS, complementary CMOS circuits based on the inverter studied in Section 4.10 are the most widely used. They are available both as small-scale integrated (SSI) circuit packages (containing 1-10 logic gates) and medium-scale integrated (MSI) circuit packages (10-100 gates per chip) for assembling digital systems on printed-circuit boards. More significantly, complementary CMOS is used in VLSI logic (with millions of gates per chip) and memory-circuit design. In some applications, complementary CMOS is supplemented by one (or both) of two MOS logic circuit forms. These are pseudo-NMOS, so named because of the similarity of its structure to NMOS logic, and pass-transistor logic, both of which will be studied in this chapter.

A fourth type of CMOS logic circuit utilizes dynamic techniques to obtain faster circuit operation, while keeping the power dissipation very low. Dynamic CMOS logic represents an area of growing importance. Lastly, CMOS technology is used in the design of memory chips, as will be detailed in Chapter 11.

Bipolar Two logic-circuit families based on the bipolar junction transistor are in some use at present: TTL and ECL. Transistor-transistor logic (TTL or T'CL) was for many years the most widely used logic-circuit family. Its decline was precipitated by the advent of the VLSI era. TTL manufacturers, however, fought back with the introduction of low-power and high-speed versions. In these newer versions, the higher speeds of operation are made possible by preventing the BJT from saturating and thus avoiding the slow turnoff process of a saturated transistor. These nonsaturating versions of TTL utilize the Schottky diode discussed in Section 3.8 and are called Schottky TTL or variations of this name. Despite all these efforts, TTL is no longer a significant logic-circuit family and will not be studied in this book.

The other bipolar logic-circuit family in present use is emitter-coupled logic (ECL). It is based on the current-switch implementation of the inverter, discussed in Section 1.7. The basic element of ECL is the differential BJT pair studied in Chapter 7. Because ECL is basically a current-steering logic and, correspondingly, also called current-mode logic (CML), in which saturation is avoided, very high speeds of operation are possible. Indeed, of all the commercially available logic-circuit families, ECL is the fastest. ECL is also used in VLSI circuit design when very high operating speeds are required and the designer is willing to accept higher power dissipation and increased silicon area. As such, ECL is considered an important specialty technology and will be briefly discussed in Chapter 11.

FIGURE 10.1 Digital IC technologies and logic-circuit families.
BICMOS BICMOS combines the high operating speeds possible with BJTs (because of their inherently higher transconductance) with the low power dissipation and other excellent characteristics of CMOS. Like CMOS, BICMOS allows for the implementation of both analog and digital circuits on the same chip. (See the discussion of analog BICMOS circuits in Chapter 6.) At present, BICMOS is used to great advantage in special applications, including memory chips, where its high performance as a high-speed capacitive-current driver justifies the more complex process technology it requires. A brief discussion of BICMOS is provided in Chapter 11.

Gallium Arsenide (GaAs) The high carrier mobility in GaAs results in very high speeds of operation. This has been demonstrated in a number of digital IC chips utilizing GaAs technology. It should be pointed out, however, that GaAs remains an "emerging technology," one that appears to have great potential but has not yet achieved such potential commercially. As such, it will not be studied in this book. Nevertheless, considerable material on GaAs devices and circuits, including digital circuits, can be found on the CD accompanying this book and on the book's website.

10.1.2 Logic-Circuit Characterization

The following parameters are usually used to characterize the operation and performance of a logic-circuit family.

Noise Margins The static operation of a logic-circuit family is characterized by the voltage transfer characteristic (VTC) of its basic inverter. Figure 10.2 shows such a VTC and defines its four parameters: \(V_{OH}, V_{OL}, V_{IH}, \) and \(V_{IL} \). Note that \(V_{OH} \) and \(V_{IL} \) are defined as the points at which the slope of the VTC is \(-1\). Also indicated is the definition of the threshold voltage \(V_T \), or what we shall frequently call it, as the point at which \(V_T = V_{OH} \).

Recall that we discussed the VTC in its generic form in Section 1.7, and have also seen actual VTCs: in Section 4.10 for the CMOS inverter, and in Section 5.10 for the BJT inverter.

The robustness of a logic-circuit family is determined by its ability to reject noise, and thus by the noise margins \(NM_H \) and \(NM_L \):

\[
NM_H = V_{OH} - V_{TP} \\
NM_L = V_{OL} - V_{TL}
\]

(10.1)

(10.2)

Definitions of propagation delays and switching times of the logic inverter.

FIGURE 10.2 Typical voltage transfer characteristic (VTC) of a logic inverter, illustrating the definition of the critical points.

FIGURE 10.3 Definitions of propagation delays and switching times of the logic inverter.

An ideal inverter is one for which \(NM_H = NM_L = V_{PP} / 2 \), where \(V_{PP} \) is the power-supply voltage. Further, for an ideal inverter, the threshold voltage \(V_T = V_{PP}/2 \).

Propagation Delay The dynamic performance of a logic-circuit family is characterized by the propagation delay of its basic inverter. Figure 10.3 illustrates the definition of the low-to-high propagation delay \(t_{PLH} \) and the high-to-low propagation delay \(t_{PHL} \).

The inverter propagation delay \(t_P \) is defined as the average of these two quantities:

\[
t_P = \frac{1}{2} (t_{PLH} + t_{PHL})
\]

(10.3)

Obviously, the shorter the propagation delay, the higher the speed at which the logic-circuit family can be operated.

Power Dissipation Power dissipation is an important issue in digital-circuit design. The need to minimize the gate power dissipation is motivated by the desire to pack an ever-increasing number of gates on a chip, which in turn is motivated by space and economic considerations. In general, however, modern digital systems utilize large numbers of gates and memory cells, and thus to keep the total power requirement within reasonable bounds, the power dissipation per gate and per memory cell should be kept as low as possible. This is particularly the case for portable, battery-operated equipment such as cellular phones and personal digital assistants (PDAs).

There are two types of power dissipation in a logic gate: static and dynamic. Static power refers to the power that the gate dissipates in the absence of switching action. It results from the presence of a path in the gate circuit between the power supply and ground in one or both of its two states (i.e., with the output either low or high). Dynamic power, on the other hand, occurs only when the gate is switched: An inverter operated from a power supply \(V_{PP} \) and driving a load capacitance \(C \) dissipates dynamic power \(P_D \):

\[
P_D = f CV_{PP}^2
\]

(10.4)
where \(f \) is the frequency at which the inverter is being switched. The derivation of this formula (Section 4.10) is based on the assumption that the low and high output voltage levels are 0 and \(V_{DD} \), respectively.

Delay-Power Product One is usually interested in high-speed performance (low \(f \)) combined with low power dissipation. Unfortunately, these two requirements are often in conflict; generally, when designing a gate, if one attempts to reduce power dissipation by decreasing the supply voltage, or the supply current, or both, the current-driving capability of the gate decreases. This in turn results in longer times to charge and discharge the load and parasitic capacitances, and thus the propagation delay increases. It follows that a figure-of-merit for comparing logic-circuit technologies (or families) is the delay-power product, defined as

\[
D_P = \frac{P}{t}
\]

where \(P \) is the power dissipation of the gate. Note that \(D_P \) has the units of joules. The lower the \(D_P \) figure for a logic family, the more effective it is.

Silicon Area An obvious objective in the design of digital VLSI circuits is the minimization of silicon area per logic gate. Smaller area requirements enable the fabrication of a larger number of gates per chip, which has economic and space advantages from a system-design standpoint. Area reduction occurs in three different ways: through advances in processing technology that enable the reduction of the minimum device size, through advances in circuit-design techniques, and through careful chip layout. In this book, our interest lies in circuit design, and we shall make frequent comments on the relationship between the circuit design and its silicon area. As a general rule, the smaller the circuit, the smaller the area required. As will be seen shortly, the circuit designer has to decide on device sizes. Choosing smaller devices has the obvious advantage of requiring smaller silicon area and at the same time reducing parasitic capacitances and thus increasing speed. Smaller devices, however, have lower current-driving capability, which tends to increase delay. Thus, as in all engineering design problems, there is a trade-off to be quantified and exercised in a manner that optimizes whatever aspect of the design is thought to be critical for the application at hand.

Fan-In and Fan-Out The fan-in of a gate is the number of its inputs. Thus, a four-input NOR gate has a fan-in of 4. Fan-out is the maximum number of similar gates that a gate can drive while remaining within guaranteed specifications. As an example, we saw in Section 4.10 that increasing the fan-out of the BJT inverter reduces \(V_{OH} \) and hence \(I_C \). In this case, to keep \(I_C \) above a certain minimum, the fan-out has to be limited to a calculable maximum value.

10.1.3 Styles for Digital System Design

The conventional approach to designing digital systems consists of assembling the system using standard IC packages of various levels of complexity (and hence integration). Many systems have been built this way using, for example, TTL, SSI and MSI packages. The advent of VLSI, in addition to providing the system designer with more powerful off-the-shelf components such as microprocessors and memory chips, has made possible alternative design styles. One such alternative is to use field-programmable gate arrays (FPGAs), which in turn is characterized and stored as a functional block to be used in the design of an even larger system (e.g., an entire processor).

At every level of design abstraction, the need arises for simulation and other computer programs that help make the design process as automated as possible. Whereas SPICE is employed in circuit simulation, other software tools are utilized at other levels and in other phases of the design process. Although digital-system design and design automation are outside the scope of this book, it is important that the reader appreciate the role of design abstraction and computer aids in digital design. They are what make it humanly possible to design a 100-millimeter transistor digital IC. Unfortunately, analog IC design does not lend itself to the same level of abstraction and automation. Each analog IC to a large extent has to be "handcrafted." As a result, the complexity and density of analog ICs remain much below what is possible in a digital IC.

Whatever approach or style is adopted in digital design, some familiarity with the various digital-circuit technologies and design techniques is essential. This chapter and the next aim to provide such a background.
CHAPTER 10 DIGITAL CMOS LOGIC CIRCUITS

10.2 DESIGN AND PERFORMANCE ANALYSIS OF THE CMOS INVERTER

The CMOS inverter is a fundamental building block in digital logic circuits. It consists of an NMOS pull-down transistor and a PMOS pull-up transistor, connected in such a way that one is always on and the other is always off, depending on the input voltage.

10.2.1 Static Operation

The inverter circuit can be represented by a pair of switches operated in a complementary fashion, as shown in Fig. 10.4. The switches are controlled by the input voltage, which is in the range of 0.2 V to 1 V, with values near the lower end of this range for modern processes. When the input voltage is near 0 V, the PMOS transistor is turned on, and the output voltage is high (VDD). Conversely, when the input voltage is near VDD, the NMOS transistor is turned on, and the output voltage is low (0 V).

10.2.2 Static Operation

With \(V_{in} = 0 \), \(V_{out} = V_{DD} \) and the output node is connected to \(V_{DD} \) through the resistance \(r_{PD} \) of the pull-up transistor. Similarly, with \(V_{in} = V_{DD} \), \(V_{out} = 0 \), and the output node is connected to ground through the resistance \(r_{PD} \) of the pull-down transistor. Thus, in the steady state, no direct-current path exists between \(V_{DD} \) and ground, and the static-power dissipation is zero.

The voltage transfer characteristic of the inverter is shown in Fig. 10.5, from which it is confirmed that the output voltage levels are 0 and \(V_{DD} \). The CMOS inverter can be made to switch at the midpoint of the logic swing, 0 to \(V_{DD} \), by appropriately sizing the transistors. Specifically, it can be shown that the switching threshold \(V_{OH} \) (or \(V_{OL} \)) is given by

\[
V_{OH} = \frac{k_{n}L_{n}V_{DD} + k_{p}L_{p}V_{DD}}{k_{n}L_{n} + k_{p}L_{p}}
\]

(10.8)

where \(k_{n} = W_{n}/L_{n} \) and \(k_{p} = W_{p}/L_{p} \), from which we see that for the typical case where \(V_{DD} = V_{in} \), \(V_{OH} = V_{DD}/2 \) for \(k_{n} = k_{p} \), that is,

\[
k_{n}L_{n} = k_{p}L_{p}
\]

(10.9)

Thus a symmetrical transfer characteristic is obtained when the devices are designed to have equal transconductance parameters, a condition we refer to as matching. Normally, the two devices have the same channel length, \(L \), which is set at the minimum allowable for the given process technology. The minimum width of the NMOS transistor is usually one and a half to two times \(L \), and the width of the PMOS transistor two to three times \(L \). For example, for a 0.25-\(\mu m \) process for which \(\mu_{n}/\mu_{p} = 3, L = 0.25 \mu m, (W/L)_{n} = 0.375 \mu m/0.25 \mu m, \) and \((W/L)_{p} = 1.125 \mu m/0.25 \mu m \). As we shall discuss shortly, if the inverter is required to drive a relatively large capacitive load, the transistors are made wider. However, to conserve chip area, most of the inverters would have this "minimum size." For future purposes, we shall denote the \((W/L)\) ratio of the NMOS transistor of this minimum-size inverter by \(n \) and the \((W/L)\) ratio of the PMOS transistor by \(p \). Since the inverter area is proportional to \(W_{n}L_{n} + W_{p}L_{p} \), the area of the minimum-size inverter is \((n + p)L \) and the area factor \(n + p \). For the example cited earlier, \(n = 1.5, p = 4.5, \) and the area factor \(n + p = 6 \).

Besides placing the gate threshold at the center of the logic swing, matching the transconductance parameters of \(Q_{n} \) and \(Q_{p} \) provides the inverter with equal current-driving capability in both directions (pull-up and pull-down). Furthermore, and obviously related, it makes \(t_{PLH} = t_{PHL} \) equal delays. Thus an inverter with matched transistors will have equal propagation delays, \(t_{PD} \) and \(t_{PD} \).

When the inverter threshold is at \(V_{DD}/2 \), the noise margins \(NM_{H} \) and \(NM_{L} \) are equalized, and their values are maximized, such that (Section 4.10):

\[
NM_{H} = NM_{L} = \frac{1}{2}(V_{DD} + \frac{1}{2}V_{DD})
\]

(10.11)

FIGURE 10.4 (a) The CMOS inverter and (b) its representation as a pair of switches operated in a complementary fashion.

FIGURE 10.5 The voltage transfer characteristic (VTC) of the CMOS inverter when \(Q_{n} \) and \(Q_{p} \) are matched.
Since typically $V_T = 0.1$ to 0.2 V_{DD}, the noise margins are approximately 0.4 V_{DD}. This value, being close to half the power-supply voltage, makes the CMOS inverter nearly ideal from a noise-immunity standpoint. Further, since the inverter dc input current is practically zero, the noise margins are not dependent on the gate fan-out.

Further, since the inverter dc input current is practically zero, V_{DD}, the noise margins are approximately 0.4 V_{DD}. This value, the same for the gate-dri

10.2.3 Dynamic Operation

The propagation delay of the inverter is usually determined under the condition that it is driving an identical inverter. This situation is depicted in Fig. 10.6. We wish to analyze this circuit to determine the propagation delay of the inverter comprising Q_1 and Q_2, which is driven by a low-impedance source V_T and is loaded by the inverter comprising Q_3 and Q_4, indicated in the figure as the various transistor internal capacitances that are connected to the output node of the (Q_1, Q_2) inverter. Obviously, an exact pencil-and-paper analysis of this circuit will be too complicated to yield useful design insight, and a simplification of the circuit is in order. Specifically, we wish to replace all the capacitances attached to the inverter output node with a single capacitance C connected between the output node and ground. If we are able to do that, we can utilize the results of the transient analysis performed in Section 4.10. Toward that end, we note that during t_{PHL} or t_{PLH}, the output of the first inverter changes from 0 to $V_{DD}/2$ or from V_{DD} to $V_{DD}/2$, respectively. It follows that the second inverter remains in the same state during each of our analysis intervals. This observation will have an important bearing on our expression for the equivalent input capacitance of the second inverter. Let's now consider the contribution of each of the capacitances in:

![Figure 10.6 Circuit for analyzing the propagation delay of the inverter formed by Q_1 and Q_2, which is driving an identical inverter formed by Q_3 and Q_4.](image-url)

Fig. 10.6 to the value of the equivalent load capacitance C:

1. The gate-drain overlap capacitance of Q_2, C_{gd2}, can be replaced by an equivalent capacitance between the output node and ground of $2C_{gd2}$. The factor 2 arises because the Miller effect (Section 6.6.4). Specifically, note that as V_T goes high and V_T goes low by the same amount, the change in voltage across C_{gd2} is twice that amount. Thus the output node sees in effect twice the value of C_{gd2}. This simple replaces the gate-dri

$$ C_{gd2} = (W/L_2)C_{gd2} + (W/L_2)C_{gd2} + C_{gd2} + C_{gd2} + C_{gd2} + C_{gd2} + C_{gd2} $$. (10.12)

Having determined an approximate value for the equivalent capacitance between the inverter output node and ground, we can utilize the circuits in Fig. 10.7 to determine t_{PHL} and t_{PLH}, respectively. Since the two circuits are similar, we need only consider one and apply the result directly to the other. Consider the circuit in Fig. 10.7(a), which applies when V_T goes high and Q_2 discharges C from its initial voltage of V_{DD} to the final value of 0. The analysis is somewhat complicated by the fact that initially Q_2 will be in the saturation mode, and then, when V_T falls below $V_{DD} - V_T$, it will go into the triode region of operation. We have in fact performed this analysis in Section 4.10 and obtained the following approximate expression for t_{PLH}:

$$ t_{PLH} = \frac{1.6C}{i_{plh}} \left(V_{DD} - V_T \right) $$. (10.13)

where we have assumed that $V_T = 0.2 V_{DD}$, which is typically the case.

There is an alternative, an approximate but simpler, method for analyzing the circuit in Fig. 10.7(a). It is based on computing an average value for the discharge current i_{plh} during the interval $t = 0$ to $t = t_{PLH}$. Specifically, at $t = 0$, Q_2 will be saturated, and $i_{plh}(0)$ is given by

$$ i_{plh}(0) = \frac{1}{2} \left(C_{gd2} \frac{W}{L_2} \right) \left(V_{DD} - V_T \right) $$. (10.14)
An expression for the low-to-high inverter delay, \(t_{PLH} \), can be written by analogy to the \(t_{PD} \) expression in Eq. (10.17),

\[
\begin{align*}
 t_{PLH} & = \frac{1.7C}{k' \left(\frac{W}{L} \right)_N \ V_{DD}} \\
 & = \frac{1.7C}{k' \left(\frac{W}{L} \right)_N \ V_{DD}} \\
& \quad \text{(10.19)}
\end{align*}
\]

Finally, the propagation delay \(t_p \) can be found as the average of \(t_{PHL} \) and \(t_{PLH} \).

\[
\begin{align*}
 t_p & = \frac{1}{2} (t_{PHL} + t_{PLH})
\end{align*}
\]

Examination of the formulas in Eqs. (10.18) and (10.19) enables us to make a number of useful observations:

1. As expected, the two components of \(t_p \) can be equalized by selecting the \((W/L) \) ratios to equalize \(k_n \) and \(k_p \), that is, by matching \(Q_N \) and \(Q_P \).
2. Since \(t_p \) is proportional to \(C \), the designer should strive to reduce \(C \). This is achieved by using the minimum possible channel length and by minimizing parasitic and other capacitances. Careful layout of the chip can result in significant reduction in such capacitances and in the value of \(C \).
3. Using a process technology with larger transconductance parameter \(k' \) can result in shorter propagation delays. Keep in mind, however, that for such processes \(C \) is increased, and thus the value of \(C \) increases at the same time.
4. Using larger \((W/L) \) ratios can result in a reduction in \(t_p \). Care, however, should be exercised here also, since increasing the size of the devices increases the value of \(C \), and thus the expected reduction in \(t_p \) might not materialize. Reducing \(t_p \) by increasing \((W/L) \), however, is an effective strategy when \(C \) is dominated by components not directly related to the size of the driving device (such as wiring or fan-out devices).
5. A larger supply voltage \(V_{DD} \) results in a lower \(t_p \). However, \(V_{DD} \) is determined by the process technology and thus is often not under the control of the designer. Furthermore, modern process technologies in which device sizes are reduced require lower \(V_{DD} \) (see Table 6.1). A motivating factor for lowering \(V_{DD} \) is the need to keep the dynamic power dissipation at acceptable levels, especially in very-high-density chips.

We will have more to say on this point shortly.

These observations clearly illustrate the conflicting requirements and the trade-offs available in the design of a CMOS digital integrated circuit (and indeed in any engineering design problem).

10.2.4 Dynamic Power Dissipation

The negligible static power dissipation of CMOS has been a significant factor in its dominance as the technology of choice in implementing high-density VLSI circuits. However, as the number of gates per chip steadily increases, the dynamic power dissipation has become a serious issue. The dynamic power dissipated in the CMOS inverter is given by Eq. (10.4), which we repeat here as

\[
\begin{align*}
 P_D = f CV_{DD}^2 \\
& = f CV_{DD}^2 \\
& \quad \text{(10.20)}
\end{align*}
\]

where \(f \) is the frequency at which the gate is switched. It follows that minimizing \(C \) is an effective means for reducing dynamic-power dissipation. An even more effective strategy is the use of a lower power-supply voltage. As we have mentioned, new CMOS process technologies utilize \(V_{DD} \) values as low as 1 V. These newer chips, however, pack much more circuitry
on the chip (as many as 100 million transistors) and operate at higher frequencies (microprocessor clock frequencies above 1 GHz are now available). The dynamic power dissipation on the chip (as many as 100 million transistors) and operate at higher frequencies (microprocessors can be over 100 W.

\[= 1 \text{ fF} \]

The wiring capacitance \(C_{\text{wiring}} \) and \(C_{\text{body capacitances}} \), \(1 \text{ fF} \) and \(0.2 \text{ fF} \). Find \(C_{\text{PHL}} \) and that for \(p_{\text{m}} \), \(0.375^/0.25 \) is 1.125 \frac{\text{zm}}{0.25} \).

The gate-source and gate-drain overlap capacitances are specified to be 0.3 \(\text{fF/m} \) of gate width. Further, the effective value of drain-body capacitances are \(C_{\text{dib}} = 1 \text{ fF} \) and \(C_{\text{dbp}} = 1 \text{ fF} \). Find \(C_{\text{PLH}} \) and \(t_{\text{PLH}} \).

Consider a CMOS inverter fabricated in a 0.25-\(\mu \text{m} \) process for which \(C_{\text{ox}} = 6 \text{ fF/}{\mu \text{m}^2} \), \(\mu_{\text{n}} C_{\text{nv}} = 115 \text{ \(\mu \text{A/V} \text{ }^2 \)}, \mu_{\text{p}} C_{\text{pv}} = 30 \text{ \(\mu \text{A/V} \text{ }^2 \)}, V_{\text{tp}} = -0.4 \text{ V}, \) and \(V_{\text{tn}} = 2.5 \text{ V}. \) The \(W/L \) min of \(Q_{\text{n}} \) is 0.375 \(\mu \text{m}/0.25 \mu \text{m} \), and that for \(Q_{\text{p}} \) is 1.125 \(\mu \text{m}/0.25 \mu \text{m} \). The gate-source and gate-drain overlap capacitances are specified to be 0.3 \(\text{fF/m} \) of gate width.

We determine the value of the equivalent capacitance \(C \) using Eq. (10.12), where

\[
C = 2C_{\text{dib}} + 2C_{\text{dbp}} + C_{\text{dib}} + C_{\text{dbp}} + C_{\text{g}}
\]

Thus,

\[
C = 2 \times 0.1125 + 2 \times 0.375 + 1 + 0.7875 + 2.3625 + 0.2 = 6.25 \text{ fF}
\]

Next, although we can use the formula in Eq. (10.18) to determine \(t_{\text{PHL}} \), we shall take an alternative route. Specifically, we shall consider the discharge of \(C \) through \(Q_{\text{n}} \) and determine the average discharge current using Eqs. (10.14) through (10.16):

\[
I_{\text{DIN}}(0) = \frac{1}{2} \mu (W/L) (V_{\text{tp}} - V_{\text{tn}})^2
\]

\[
= \frac{1}{2} \times 10^3 \times 0.25 \times (2.5 - 0.4)^2 = 380 \mu \text{A}
\]

\[
I_{\text{DIN}}(t_{\text{PHL}}) = \mu (W/L) (V_{\text{tp}} - V_{\text{tn}})^2 - \frac{1}{2} \frac{1}{2}
\]

\[
= 115 \times 0.375 \times (2.5 - 0.4)^2 = 318 \mu \text{A}
\]

Thus

\[
I_{\text{DIN}}(t_{\text{PHL}}) = \frac{380 + 318}{2} = 349 \mu \text{A}
\]

10.3.1 Basic Structure

A CMOS logic circuit is in effect an extension, or a generalization, of the CMOS inverter: the inverter consists of an NMOS pull-down transistor, and a PMOS pull-up transistor, operated by the input voltage in a complementary fashion. The CMOS logic gate consists of two networks: the pull-down network (PDN) constricted of NMOS transistors, and the pull-up network (PUN) constructed of PMOS transistors (see Fig. 10.8). The two networks are operated by the input variables, in a complementary fashion. Thus, for the three-input gate represented in Fig. 10.8, the PDN will conduct for all input combinations that require a low output \((Y = 0)\) and will then pull the output node down to ground, causing a zero voltage to

EXERCISES

10.1. Consider the inverter specified in Example 10.1 with a 2 fF load capacitance. What will the propagation delay become?

Ans. 477 ps

10.2. In an attempt to decrease the area of the inverter in Example 10.1, \(W/L \) is made equal to 3/1. What is the percentage reduction in area achieved? Find the new values of \(C_{\text{PLH}} \), \(t_{\text{PLH}} \), and \(C_{\text{PHL}} \). Assume that \(V_2 \) and \(V_1 \) are 2.5 V.

Ans. 50 \%, 4.225 fF, 15.8 ps, 20.5 ps, 18.1 ps

10.3. For the inverter of Example 10.1, find the dynamic power dissipation when clocked at a 500-MHz rate.

Ans. 15.5 \mu \text{W}
CHAPTER 10 DIGITAL CMOS LOGIC CIRCUITS

Figure 10.8 Representation of a three-input CMOS logic gate. The PDN comprises PMOS transistors, and the PUN comprises NMOS transistors.

appear at the output, \(v_Y = 0 \). Simultaneously, the PUN will be off, and no direct dc path will exist between \(V_{DD} \) and ground. On the other hand, all input combinations that call for a high output (\(Y = 1 \)) will cause the PUN to conduct, and the PUN will pull the output node up to \(V_{DD} \), establishing an output voltage \(v_Y = V_{DD} \). Simultaneously, the PDN will be cut off, and again, no dc current path between \(V_{DD} \) and ground will exist in the circuit.

Now, since the PDN comprises NMOS transistors, and since an NMOS transistor conducts when the signal at its gate is high, the PDN is activated (i.e., conducts) when the inputs are high. In a dual manner, the PUN comprises PMOS transistors, and a PMOS transistor conducts when the input signal at its gate is low; thus the PUN is activated when the inputs are low.

The PDN and the PUN each utilizes devices in parallel to form an OR function, and devices in series to form an AND function. Here, the OR and AND notation refer to current flow or conduction. Figure 10.9 shows examples of PDNs. For the circuit in Fig. 10.9(a), we observe that \(Q_A \) will conduct when \(A \) is high (\(v_A = V_{DD} \)) and will then pull the output node down to ground (\(v_Y = 0 \), \(Y = 0 \)). Similarly, \(Q_B \) conducts and pulls \(Y \) down when \(B \) is high. Thus

\[
Y = A + B
\]

will be low when \(A \) is high or \(B \) is high, which can be expressed as

\[
Y = A \lor B
\]

or equivalently

\[
Y = \overline{A} \lor B
\]

The PDN in Fig. 10.9(b) will conduct only when \(A \) and \(B \) are both high simultaneously. Thus \(Y \) will be low when \(A \) is high and \(B \) is low, or equivalently

\[
Y = A \lor B
\]

As a final example, the PDN in Fig. 10.9(c) will conduct and cause \(Y \) to be 0 when \(A \) is high or when \(B \) and \(C \) are both high, thus

\[
Y = A + BC
\]

or equivalently

\[
Y = A + \overline{B} \overline{C}
\]

Next consider the PUN examples shown in Fig. 10.10. The PUN in Fig. 10.10(a) will conduct and pull \(Y \) up to \(V_{DD} \) when \(A \) is low or \(B \) is low. Thus

\[
Y = A \lor B
\]

The PUN in Fig. 10.10(b) will conduct and produce a high output (\(v_Y = V_{DD} \), \(Y = 1 \)) only when \(A \) and \(B \) are both low, thus

\[
Y = \overline{A} \overline{B}
\]

Finally, the PUN in Fig. 10.10(c) will conduct and cause \(Y \) to be high (logic 1) if \(A \) is low or if \(B \) and \(C \) are both low, thus

\[
Y = \overline{A} + \overline{B} \overline{C}
\]

Having developed an understanding and an appreciation of the structure and operation of PDNs and PUNs, we now consider complete CMOS gates. Before doing so, however, we wish to introduce alternative circuit symbols, that are almost universally used for MOS transistors by
digital-circuit designers. Figure 10.11 shows our usual symbols (left) and the corresponding
“digital” symbols (right). Observe that the symbol for the PMOS transistor with a circle at the
gate terminal is intended to indicate that the signal at the gate has to be low for the device to
be activated (i.e., to conduct). Thus, in terms of logic-circuit terminology, the gate terminal of
the PMOS transistor is an active low input. Besides indicating this property of PMOS
devices, the digital symbols omit any indication of which of the device terminals is the source
and which is the drain. This should cause no difficulty at this stage of our study; simply
remember that for an NMOS transistor, the drain is the terminal that is at the higher voltage
(current flows from drain to source), and for a PMOS transistor the source is the terminal that
is at the higher voltage (current flows from source to drain). To be consistent with the litera­
ture, we shall henceforth use these modified symbols for MOS transistors in logic applica­
tions, except in locations where our usual symbols help in understanding circuit operation.

10.3.2 The Two-Input NOR Gate
We first consider the CMOS gate that realizes the two-input NOR function
\[Y = A + B \]
(10.21)
We see that \(Y \) is to be low (PDN conducting) when \(A \) is high or \(B \) is high. Thus, the PDN
consists of two parallel NMOS devices with \(A \) and \(B \) as inputs (i.e., the circuit in Fig. 10.9a).
For the PUN, we note from the second expression in Eq. (10.21) that \(Y \) is to be high when \(A
\) and \(B \) are both low. Thus the PUN consists of two series PMOS devices with \(A \) and \(B \) as the
inputs (i.e., the circuit in Fig. 10.10b). Putting the PDN and PUN together gives the
CMOS NOR gate shown in Fig. 10.12. Note that extension to a higher number of inputs is
straightforward: For each additional input, an NMOS transistor is added in parallel with
\(Q_{NA} \) and \(Q_{NB} \), and a PMOS transistor is added in series with \(Q_{PA} \) and \(Q_{PB} \).

10.3.3 The Two-Input NAND Gate
The two-input NAND function is described by the Boolean expression
\[Y = AB \]
(10.22)
second expression in Eq. (10.22) as \(A \) low or \(B \) low. Thus, the PUN consists of two parallel
PMOS transistors with \(A \) and \(B \) applied to their gates (such as the circuit in Fig. 10.10a).
Putting the PDN and PUN together gives the CMOS NAND gate implementation shown
in Fig. 10.13. Note that extension to a higher number of inputs is straightforward: For each
additional input, we add an NMOS transistor in series with \(Q_{NA} \) and \(Q_{NB} \), and a PMOS tran­
sistor in parallel with \(Q_{PA} \) and \(Q_{PB} \).

10.3.4 A Complex Gate
Consider next the more complex logic function
\[Y = A(B + CD) \]
(10.23)
Since \(\overline{Y} = A(B + CD) \), we see that \(Y \) should be low for \(A \) high and simultaneously either \(B
\) high or \(C \) and \(D \) both high, from which the PDN is directly obtained. To obtain the PUN, we
need to express Y in terms of the complemented variables. We do this through repeated application of DeMorgan's law, as follows:

$$Y = A(B + CD)$$
$$= A + B + CD$$
$$= A + B + C + D$$ \hspace{1cm} (10.24)

Thus, Y is high for A low or B low and either C or D low. The corresponding complete CMOS circuit will be as shown in Fig. 10.14.

10.3.5 Obtaining the PUN from the PDN and Vice Versa

From the CMOS gate circuits considered thus far (e.g., that in Fig. 10.14), we observe that the PDN and the PUN are dual networks: Where a series branch exists in one, a parallel branch exists in the other. Thus, we can obtain one from the other, a process that can be simpler than having to synthesize each separately from the Boolean expression of the function. For instance, in the circuit of Fig. 10.14, we found it relatively easy to obtain the PDN by exploiting the given Boolean expression to express Y as a function of the complemented variables, the form convenient for synthesizing PUNs. Alternatively, we could have used this duality property to obtain the PUN from the PDN. The reader is urged to refer to Fig. 10.14 to convince herself that this is indeed possible.

10.3.6 The Exclusive-OR Function

An important function that often arises in logic design is the exclusive-OR (XOR) function,

$$Y = AB + AB$$ \hspace{1cm} (10.25)

We observe that since Y (rather than \overline{Y}) is given, it is easier to synthesize the PUN. We note, however, that unfortunately Y is not a function of the complemented variables only (as we would like it to be). Thus, we will need additional inverters. The PUN obtained directly from Eq. (10.25) is shown in Fig. 10.15(a). Note that the Q_2, Q_4 branch realizes the first term ($A\overline{B}$), whereas the Q_1, Q_3 branch realizes the second term (AB). Note also the need for two additional inverters to generate \overline{A} and \overline{B}. As for synthesizing the PDN, we can obtain it as the dual network of the PUN in Fig. 10.15(a). Alternatively, we can develop an expression for Y and use it to synthesize the PDN. Leaving the first approach for the reader to do as an exercise, we shall utilize the direct synthesis approach. DeMorgan's law can be applied to the expression in Eq. (10.25) to obtain Y as

$$Y = AB + \overline{AB}$$ \hspace{1cm} (10.26)

The corresponding PDN will be as in Fig. 10.15(b), which shows the CMOS realization of the exclusive-OR function except for the two additional inverters. Note that the exclusive-OR requires 12 transistors for its realization, a rather complex network. Later, in Section 10.5, we shall show a simpler realization of the XOR employing a different form of CMOS logic.

![FIGURE 10.14 CMOS realization of a complex gate.](image)

![FIGURE 10.15 Realization of the exclusive-OR (XOR) function: (a) The PUN synthesized directly from the expression in Eq. (10.25). (b) The complete XOR realization utilizing the PUN in (a) and a PDN that is synthesized directly from the expression in Eq. (10.26). Note that two inverters (not shown) are needed to generate the complemented variables. Also note that in this XOR realization, the PDN and the PUN are not dual networks; however, a realization based on dual networks is possible (see Problem 10.27).](image)
Another interesting observation follows from the circuit in Fig. 10.15(b). The PDN and the PUN here are not dual networks. Indeed, duality of the PDN and the PUN is not a necessary condition. Thus, although a dual of PDN (or PUN) can always be used for PUN (or PDN), the two networks are not necessarily duals.

10.3.7 Summary of the Synthesis Method
1. The PDN can be most directly synthesized by expressing \(Y \) as a function of the uncomplemented variables. If complemented variables appear in this expression, additional inverters will be required to generate them.
2. The PUN can be most directly synthesized by expressing \(Y \) as a function of the complemented variables and then applying the uncomplemented variables to the gates of the PMOS transistors. If uncomplemented variables appear in the expression, additional inverters will be needed.
3. The PDN can be obtained from the PUN (and vice versa) using the duality property.

10.3.8 Transistor Sizing
Once a CMOS gate circuit has been generated, the only significant step remaining in the design is to decide on \(W/L \) ratios for all devices. These ratios usually are selected to provide the gate with current-driving capability in both directions equal to that of the basic inverter. The reader will recall from Section 10.2 that for the basic inverter design, we denoted \((W/L)_p = n \) and \((W/L)_n = p \), where \(n \) is usually 3.5 to 2 and, for a matched design, \(p = (\mu_n/\mu_p)n \). Thus, we wish to select individual \(W/L \) ratios for all transistors in a logic gate so that the PDN should be able to provide a capacitor discharge current at least equal to that of an NMOS transistor with \(W/L = n \), and the PUN should be able to provide a charging current at least equal to that of a PMOS transistor with \(W/L = p \). This will guarantee a worst-case gate delay equal to that of the basic inverter.

In the preceding description, the idea of “worst case” should be emphasized. It means that in deciding on device sizing, we should find the input combinations that result in the lowest current and then choose sizes that will make this current equal to that of the basic inverter. Before we consider examples, we need to address the issue of determining the current-driving capability of a circuit consisting of a number of MOS devices. In other words, we need to find the equivalent \(W/L \) ratio of a network of MOS transistors. Toward this end, we consider the parallel and series connection of MOSFETs and find the equivalent \(W/L \) ratio.

The derivation of the equivalent \(W/L \) ratio is based on the fact that the on-resistance of a MOSFET is inversely proportional to \(W/L \). Thus, if a number of MOSFETs having ratios of \((W/L)_1, (W/L)_2, \ldots \) are connected in series, the equivalent series resistance obtained by adding the on-resistances will be

\[
R_{\text{eq}} = \frac{r_{\text{on,1}} + r_{\text{on,2}} + \cdots}{(W/L)_1 + (W/L)_2 + \cdots}
\]

resulting in the following expression for \((W/L)_e \) for transistors connected in series:

\[
(W/L)_e = \frac{1}{\frac{1}{(W/L)_1} + \frac{1}{(W/L)_2} + \cdots} \tag{10.27}
\]

Similarly, we can show that the parallel connection of transistors with \(W/L \) ratios of \((W/L)_1, (W/L)_2, \ldots \) results in an equivalent \(W/L \) of

\[
(W/L)_p = \frac{(W/L)_1 + (W/L)_2 + \cdots}{(W/L)} \tag{10.28}
\]

As an example, two identical MOS transistors with individual \(W/L \) ratios of 4 result in an equivalent \(W/L \) of 2 when connected in series and of 1 when connected in parallel.

As an example of proper sizing, consider the four-input NOR in Fig. 10.16. Here, the worst case (the lowest current) for the PDN is obtained when only one of the NMOS transistors is conducting. We therefore select the \(W/L \) of each NMOS transistor to be equal to that of the NMOS transistor of the basic inverter, namely, \(n \). For the PUN, however, the worst-case situation (and indeed the only case) is when all inputs are low and the four series PMOS transistors are conducting. Since the equivalent \(W/L \) will be one-quarter of that of each PMOS device, we should select the \(W/L \) ratio of each PMOS transistor to be four times that of \(Q_0 \) of the basic inverter, that is, \(4n \).

As another example, we show in Fig. 10.17 the proper sizing for a four-input NAND gate. Comparison of the NAND and NOR gates in Figs. 10.16 and 10.17 indicates that because \(p \) is usually two to three times \(n \), the NOR gate will require much greater area than the NAND gate. For this reason, NAND gates are generally preferred for implementing combinational logic functions in CMOS.

\[Y = A + B + C + D \]
FIGURE 10.17 Proper transistor sizing for a four-input NAND gate. Note that \(n \) and \(p \) denote the \((W/L)\) ratios of \(Q_N \) and \(Q_P \), respectively, of the basic inverter.

EXAMPLE 10.2

Provide transistor \(W/L \) ratios for the logic circuit shown in Fig. 10.18. Assume that for the basic inverter \(n = 1.5 \) and \(p = 5 \) and that the channel length is 0.25 \(\mu \)m.

Solution

Refer to Fig. 10.18, and consider the PDN first. We note that the worst case occurs when \(Q_{NB} \) is on and either \(Q_{NC} \) or \(Q_{ND} \) is on. That is, in the worst case, we have two transistors in series. Therefore, we select each of \(Q_{NB}, Q_{NC}, \) and \(Q_{ND} \) to have twice the width of the \(n \)-channel device in the basic inverter, thus

\[Q_{NB}: \quad W/L = 3n = 3 \times 0.75/0.25 \]
\[Q_{NC}: \quad W/L = 3n = 3 \times 0.75/0.25 \]
\[Q_{ND}: \quad W/L = 3n = 3 \times 0.75/0.25 \]

For transistor \(Q_{NA} \), select \(W/L \) to be equal to that of the \(n \)-channel device in the basic inverter:

\[Q_{NA}: \quad W/L = n = 1.5 \times 0.375/0.25 \]

Next, consider the PUN. Here, we see that in the worst case, we have three transistors in series: \(Q_{PA}, Q_{PC}, \) and \(Q_{PD} \). Therefore, we select the \(W/L \) ratio of each of these to be three times that of \(Q_P \) in the basic inverter, that is, 3p, thus

\[Q_{PA}: \quad W/L = 3p = 3 \times 7.5 = 1.875/0.25 \]
\[Q_{PC}: \quad W/L = 3p = 3 \times 7.5 = 1.875/0.25 \]
\[Q_{PD}: \quad W/L = 3p = 3 \times 7.5 = 1.875/0.25 \]

Finally, the \(W/L \) ratio for \(Q_{PB} \) should be selected so that the equivalent \(W/L \) of the series connection of \(Q_{PB}, Q_{PA}, \) and \(Q_{PC} \) is equal to \(p \). It follows that for \(Q_{PB} \), the ratio should be 3p.

\[Q_{PB}: \quad W/L = 3p = 3 \times 7.5 = 1.875/0.25 \]

Figure 10.18 shows the circuit with the transistor sizes indicated.

10.3.9 Effects of Fan-In and Fan-Out on Propagation Delay

Each additional input to a CMOS gate requires two additional transistors, one NMOS and one PMOS. This is in contrast to other forms of MOS logic, where each additional input requires only one additional transistor. The additional transistor in CMOS not only increases the chip area but also increases the total effective capacitance per gate and in turn increases the propagation delay. The size-scaling method described earlier compensates for some (but not all) of the increase in \(t_P \). Specifically, by increasing device size, we are able to preserve the current-driving capability. However, the capacitance \(C \) increases because of both the increased number of inputs and the increase in device size. Thus \(t_P \) will still increase with fan-in, a fact that imposes a practical limit on the fan-in of, say, the NAND gate to about 4. If a higher number of inputs is required, then "clever" logic design should be adopted to realize the given Boolean function with gates of no more than four inputs. This would usually mean an increase in the number of cascaded stages and thus an increase in delay. However, such an increase in delay can be less than the increase due to the large fan-in (see Problem 10.36).

An increase in a gate’s fan-out adds directly to its load capacitance and, thus, increases its propagation delay.
Thus although CMOS has many advantages, it does suffer from increased circuit complexity when the fan-in and fan-out are increased, and from the corresponding effects of this complexity on both chip area and propagation delay. In the following two sections, we shall study some simplified forms of CMOS logic that attempt to reduce this complexity, although at the expense of foregoing some of the advantages of basic CMOS.

EXERCISES

10.4 For a process technology with $L = 0.5$ μm, $n = 1.5$, $p = 2$, give the sizes of all transistors in (a) a four-input NOR, and (b) a four-input NAND. Also, give the relative areas of the two gates.

Ans: (a) NMOS devices: W/L = 0.75/0.5, PMOS devices: 12/0.5;
(b) NMOS devices: W/L = 3/0.5, PMOS devices: 5/0.5;
NOR area/NAND area = 2.125.

10.5 For the scaled NAND gate in Exercise 10.4, find the ratio of the maximum to minimum current available to (a) charge a load capacitance and (b) discharge a load capacitance.

Ans: (a) 4, (b) 1

10.4 PSEUDO-NMOS LOGIC CIRCUITS

As explained in Section 10.3, despite its many great advantages, CMOS suffers from increased area, and correspondingly increased capacitance and delay, as the logic gates become more complex. For this reason, designers of digital integrated circuits have been searching for forms of CMOS logic circuits that can be used to supplement the complementary-type circuits studied in Sections 10.2 and 10.3. These forms are not intended to replace complementary CMOS but rather to be used in special applications for special purposes. We shall examine two such CMOS logic styles in this and the following section.

10.4.1 The Pseudo-NMOS Inverter

Figure 10.19(a) shows a modified form of the CMOS inverter. Here, only Q_2 is driven by the input voltage while the gate of Q_1 is grounded, and Q_2 acts as an active load for Q_1. Even before we examine the operation of this circuit in detail, an advantage over complementary CMOS is obvious: Each input must be connected to the gate of only one transistor or, alternatively, only one additional transistor (an NMOS) will be needed for each additional gate input. Thus the area and delay penalties arising from increased fan-in in a complementary CMOS gate will be reduced. This is indeed the motivation for exploring this modified inverter circuit.

The inverter circuit of Fig. 10.19(a) resembles other forms of NMOS logic that consist of a driver transistor (Q_2) and a load transistor (in this case, Q_1); hence the name pseudo-NMOS. For comparison purposes, we shall briefly mention two older forms of NMOS logic. The earliest form, popular in the mid-1970s, utilized an enhancement MOSFET as the load element, in a topology whose basic inverter is shown in Fig. 10.18(b). Enhancement-load NMOS logic circuits suffer from a relatively small logic swing, small noise margins, and high static power dissipation. For these reasons, this logic-circuit technology is now virtually obsolete. It was replaced in the late 1970s and early 1980s with depletion-load NMOS circuits, in which a depletion NMOS transistor with its gate connected to its source is used as the load element. The topology of the basic depletion-load inverter is shown in Fig. 10.19(c).

FIGURE 10.19 (a) The pseudo-NMOS logic inverter. (b) The enhancement-load NMOS inverter. (c) The depletion-load NMOS inverter.

It was initially expected that the depletion NMOS with $V_{pd} = 0$ would operate as a constant-current source and would thus provide an excellent load element. However, it was quickly realized that the body effect in the depletion transistor causes its i/V characteristic to deviate considerably from that of a constant-current source. Nevertheless, depletion-load NMOS circuits feature significant improvements over their enhancement-load counterparts, enough to justify the extra processing step required to fabricate the depletion devices (namely, ion-implanting the channel). Although depletion-load NMOS has been virtually replaced by CMOS, one can still see some depletion-load circuits in specialized applications. We will not study depletion-load NMOS logic here (the interested reader can refer to the third edition of this book).

The pseudo-NMOS inverter that we are about to study is similar to depletion-load NMOS but with rather improved characteristics. It also has the advantage of being directly compatible with complementary CMOS circuits.

10.4.2 Static Characteristics

The static characteristics of the pseudo-NMOS inverter can be derived in a manner similar to that used for complementary CMOS. Toward that end, we note that the drain currents of Q_2 and Q_3 are given by

\[I_{DS} = k_i(v_i - V_T)^2, \text{ for } v_i \geq v_T - V_D \]
\[I_{DS} = k_i(v_i - V_T)v_T - \frac{v_T^2}{2}, \text{ for } v_T \leq v_i < V_D \]
\[I_{DS} = k_i(V_D - v_i)^2, \text{ for } v_D < v_i \leq V_D \]
\[I_{DS} = k_i(V_D - v_i)(V_D - v_D) - \frac{(V_D - V_T)^2}{2}, \text{ for } v_D < v_D \]
where we have assumed that $V_D = V_P = V_D$ and have used $k_i = k_i'W/L_i$ and $k_p = k_p'W/L_p$ to simplify matters.

A constant-current load provides a capacitor-charging current that does not diminish as the load capacitance increases. For this reason, a constant-current load is significantly lower than that obtained with a resistive load (see Problem 10.38). Of course, a resistive load is simply out of the question because of the very large silicon area it would occupy (equivalent to that of thousands of transistors).
To obtain the VTC of the inverter, we superimpose the load curve represented by Eqs. (10.31) and (10.32) on the i_D-v_{DS} characteristics of Q_N, which can be relabeled as $i_{QN}=v_{QH}$. Such a graphical construction is shown in Fig. 10.20 where, to keep the diagram simple, we show the Q_N curves for only the two extreme values of v_{GS}, namely, 0 and V_{DD}. Two observations follow:

1. The load curve represents a much lower saturation current (Eq. 10.31) than is represented by the corresponding curve for Q_N, namely, that for $v_{I}=V_{DD}$. This is a result of the fact that the pseudo-NMOS inverter is usually designed so that k_n is greater than k_p by a factor of 4 to 10. As we will show shortly, this inverter is of the so-called ratioed type, and the ratio $r=k_n/k_p$ determines all the breakpoints of the VTC, that is, V_{0L}, V_{IL}, V_{IH}, and so on, and thus determines the noise margins. Selection of a relatively high value for r reduces V_{0L} and widens the noise margins.

2. Although one tends to think of Q_P as acting as a constant-current source, it actually operates in saturation for only a small range of v_0, namely, $v_0 \leq V_I$. For the remainder of the v_0 range, Q_P operates in the triode region.

Consider first the two extreme cases of v_0: When $v_0 = 0$, Q_P is cut off and Q_N is operating in the triode region, though with zero current and zero drain-source voltage. Thus the operating point is that labeled A in Fig. 10.20, where $v_0 = V_{DD}$, the static current is zero, and the static power dissipation is zero. When $v_0 = V_{DD}$, the inverter will operate at the point labeled E in Fig. 10.20. Observe that unlike complementary CMOS, here V_{0L} is zero, an obvious disadvantage. Another disadvantage is that the gate conducts current (I_{STAT}) in the low-output state, and thus there will be static power dissipation ($P_D = I_{STAT} \times V_{DD}$).

10.4.3 Derivation of the VTC

Figure 10.21 shows the VTC of the pseudo-NMOS inverter. As indicated, it has four distinct regions, labeled I through IV, corresponding to the different combinations of possible modes of operation of Q_N and Q_P. The four regions, the corresponding transistor modes of operation, and the conditions that define the regions are listed in Table 10.1. We shall utilize the information in this table together with the device equations given in Eqs. (10.29) through (10.32) to derive expressions for the various segments of the VTC and in particular for the important parameters that characterize the static operation of the inverter.

Region I (segment AB):

$$v_0 = V_{DD}$$ \hspace{1cm} (10.33)
The static current conducted by the inverter in the low-output state is found from Eq. (10.31) as

\[I_{\text{st}} = \frac{1}{2} \frac{k}{r} (V_{\text{DD}} - V_t) \]

(10.40)

Finally, we can use Eqs. (10.35) and (10.39) to determine \(NM_L \) and Eqs. (10.33) and (10.38) to determine \(NM_H \).

\[NM_L = \frac{V_{\text{DD}} - V_t}{1 - \left(\frac{1}{r} \right)} \]

(10.41)

\[NM_H = \frac{V_{\text{DD}} - V_t}{1 - \left(\frac{1}{r} \right)} \]

(10.42)

As a final observation, we note that since \(V_{\text{DD}} \) and \(V_t \) are determined by the process technology, the only design parameter for controlling the values of \(V_{\text{OL}} \) and the noise margins is the ratio \(r \).

10.4.4 Dynamic Operation

Analysis of the inverter transient response to determine \(t_{\text{PLH}} \) with the inverter loaded by a capacitance \(C \) is identical to that of the complementary CMOS inverter. The capacitance will be charged by the current \(I_{\text{PLH}} \); we can determine an estimate for \(t_{\text{PLH}} \) by using the average value of \(I_{\text{PLH}} \) over the range \(v_0 = 0 \) to \(v_0 = V_{\text{DD}}/2 \). The result is the following approximate expression (where we have assumed \(V_t \approx 0.2V_{\text{DD}} \)):

\[t_{\text{PLH}} = \frac{1.7C}{k \cdot V_{\text{DD}}} \]

(10.43)

The case for the capacitor discharge is somewhat different because the current \(I_{\text{PLH}} \) has to be subtracted from \(I_{\text{PLH}} \) to determine the discharge current. The result is the approximate expression,

\[t_{\text{PLH}} = \frac{1.7C}{k \cdot V_{\text{DD}}} \]

(10.44)

which, for a large value of \(r \), reduces to

\[t_{\text{PLH}} = \frac{1.7C}{k \cdot V_{\text{DD}}} \]

(10.45)

Although these are identical formulas to those for the complementary CMOS inverter, the pseudo-NMOS inverter has a special problem: Since \(k \) is \(r \) times larger than \(k \), \(t_{\text{PLH}} \) will be \(r \) times larger than \(t_{\text{PLH}} \). Thus the circuit exhibits an asymmetrical delay performance. Recall, however, that for gates with large fan-in, pseudo-NMOS requires fewer transistors and \(C \) can be smaller than in the corresponding complementary CMOS gate.

10.4.5 Design

The design involves selecting the ratio \(r \) and the \((W/L)\) for one of the transistors. The value of \((W/L)\) for the other device can then be obtained using \(r \). The design parameters of interest are \(V_{\text{DD}}, NM_L, NM_H, I_{\text{PLH}}, I_{\text{PLH}}, \), and \(t_{\text{PLH}} \). Important design considerations are as follows:

1. The ratio \(r \) determines all the breakpoints of the VTC; the larger the value of \(r \), the lower \(V_t \) is. (Eq. 10.39) and the wider the noise margins are. (Eqs. 10.41 and 10.42). However, a larger \(r \) increases the asymmetry in the dynamic response and, for a given \((W/L)\), makes the gate larger. Thus selecting a value for \(r \) represents a compromise.
between noise margins on the one hand and silicon area and \(r \) on the other. Usually, \(r \) is selected in the range 4 to 10.

2. Once \(r \) has been determined, a value for \((W/L)_p\) or \((W/L)_n\) can be selected and the other determined. Here, one would select a small \((W/L)_n\) to keep the gate area small and thus obtain a small value for \(C \). Similarly, a small \((W/L)_p\), keeps \(I_{on} \) and \(P_D \) low. On the other hand, one would want to select larger \((W/L)_p\) ratios to obtain low \(t_P \) and thus fast response. For usual (high-speed) applications, \((W/L)_p\) is selected so that \(Z_{stat} \) is in the range of 50 to 100 \(\mu \)A, which for \(V_{DD} = 5 \) V results in \(P_D \) in the range of 0.25 mW to 0.5 mW.

10.4.6 Gate Circuits

Except for the load device, the pseudo-NMOS gate circuit is identical to the PDN of the complementary CMOS gate. Four-input pseudo-NMOS NOR and NAND gates are shown in Fig. 10.22. Note that each requires five transistors compared to the eight used in complementary CMOS. In pseudo-NMOS, NOR gates are preferred over NAND gates since the former do not utilize transistors in series, and thus can be designed with minimum-size NMOS devices.

10.4.7 Concluding Remarks

Pseudo-NMOS is particularly suited for applications in which the output remains high most of the time. In such applications, the static power dissipation can be reasonably low (since the gate dissipates static power only in the low-output state). Further, the output transitions that matter would presumably be high-to-low ones where the propagation delay can be made as short as necessary. A particular application of this type can be found in the design of address decoders for memory chips (Section 11.5) and in read-only memories (Section 11.6).

EXAMPLE 10.3

Consider a pseudo-NMOS inverter fabricated in the CMOS technology specified in Example 10.1 for which \(\mu C_n = 115 \ \mu A/V^2 \), \(\mu C_p = 30 \ \mu A/V^2 \), \(V_m = -V_m = 0.4 \) V, and \(V_{DD} = 2.5 \) V. Let the \((W/L)_n\) ratio of \(Q_N \) be \(0.375 \mu m/0.25 \mu m \) and \(r = 9 \). Find:

(a) \(V_{OH}, V_{OL}, V_{IL}, V_{IH}, V_{IL}, \) and \(N_{M_L} \)
(b) \((W/L)_p \)
(c) \(I_{stat} \) and \(P_D \)
(d) \(t_{PLH}, t_{PHL}, \) and \(t_P \), assuming a total capacitance at the inverter output of 7 \(fF \)

Solution

(a) \(V_{OH} = V_{DD} = 2.5 \) V

\(V_{OL} \) is determined from Eq. (10.39) as

\[
V_{OL} = (2.5 - 0.4)(1 - \frac{1}{r}) = 0.12 \ \text{V}
\]

\(V_{IH} \) is determined from Eq. (10.35) as

\[
V_{IH} = 0.4 + \frac{2.5 - 0.4}{\sqrt{2}} = 0.62 \ \text{V}
\]

\(V_{IL} \) is determined from Eq. (10.38) as

\[
V_{IL} = 0.4 + \frac{2}{\sqrt{2}} \times (2.5 - 0.4) = 1.21 \ \text{V}
\]

\(V_{IH} \) is determined from Eq. (10.36) as

\[
V_{IH} = 0.4 + \frac{2.5 - 0.4}{\sqrt{2}} = 1.06 \ \text{V}
\]

The noise margins can now be determined as

\[
N_{M_H} = V_{OH} - V_{IH} = 2.5 - 1.21 = 1.29 \ \text{V}
\]

\[
N_{M_L} = V_{IL} - V_{OL} = 0.62 - 0.12 = 0.50 \ \text{V}
\]

Observe that the noise margins are not equal and that \(N_{M_L} \) is rather low.

(b) The \((W/L)_p\) ratio of \(Q_P \) can be found from

\[
\frac{\mu C_P(w/l)_p}{\mu C_n(w/l)_n} = \frac{9}{9} \Rightarrow (W/l)_p = 0.64
\]

Thus

\[
(W/L)_p = 0.64
\]

(c) The dc current in the low-output state can be determined from Eq. (10.40), as

\[
I_{stat} = \frac{1}{2} \times 30 \times 0.64(2.5 - 0.4)^2 = 42.3 \ \mu A
\]
The static power dissipation can now be found from
\[P_{IN} = I_{DQ} \cdot V_{DD} = 42.3 \times 2.5 = 106 \ \mu W \]

(d) The low-to-high propagation delay can be found from Eq. (10.45), as
\[t_{PHL} = \frac{1.7 \times 10^{-12}}{30 \times 10^{-6} \times 0.64 \times 2.5} = 0.25 \ \text{ns} \]

The high-to-low propagation delay can be found from Eq. (10.45), as
\[t_{PLH} = \frac{1.7 \times 10^{-12}}{115 \times 10^{-6} \times 0.375 \times 2.5} = 0.03 \ \text{ns} \]

Now, the propagation delay can be determined as
\[t_p = \frac{1}{0.25 + 0.03} = 0.14 \ \text{ns} \]

Although the propagation delay is considerably greater than that of the complementary CMOS inverter of Example 10.1, this is not an entirely fair comparison. Recall that the advantage of pseudo-NMOS occurs in gates with large fan-in, not in a single inverter.

EXERCISES

901A. While keeping x unchanged, redesign the inverter circuit of Example 10.3 to lower its static power dissipation to half the value found. Find the W/L ratio for the new design. Also find \(t_{PHL} \), \(t_{PLH} \), and \(t_p \), assuming that \(C \) remains unchanged. Would the noise margins change?

\[V_{DD} = 5 \ \text{V}, \ |V_{OL}| = 0.07 \ \text{ns}, \ |V_{OH}| = 0.03 \ \text{ns}; \ |V_{IH}| = 0.32 \ \text{V}, \ |V_{IL}| = 0.27 \ \text{V}, \ |t_{PHL}| = 0.25 \ \text{ns}, \ |t_{PLH}| = 0.03 \ \text{ns}, \ |t_p| = 0.14 \ \text{ns} \]

902D. Redesign the inverter of Example 10.3 using \(r = 1 \). Find \(V_{OL} \) and the noise margins. If \(W/L \) = 0.375 \(\mu m \), find \(t_{PHL} \), \(t_{PLH} \), and \(t_p \). Assume \(C = 7 \ \text{fF} \).

\[V_{DD} = 0.28 \ \text{V}, \ |V_{OL}| = 0.59 \ \text{V}, \ |V_{OH}| = 0.09 \ \text{V}, \ W/L = 1.44, \ \text{I}_{ON} = 95.3 \ \mu A, \ \text{I}_{OFF} = 0.24 \ \text{mW} \]

10.5 PASS-TRANSISTOR LOGIC CIRCUITS

A conceptually simple approach for implementing logic functions utilizes series and parallel combinations of switches that are controlled by input logic variables to connect the input and output nodes (see Fig. 10.22). Each of the switches can be implemented either by a single NMOS transistor (Fig. 10.24a) or by a pair of complementary MOS transistors connected in what is known as the CMOS transmission-gate configuration (Fig. 10.24b). The result is a simple form of logic circuit that is particularly suited for some special logic functions and is frequently used in conjunction with complementary CMOS logic to implement such functions efficiently.

Because this form of logic utilizes MOS transistors in the series path from input to output, to pass or block signal transmission, it is known as pass-transistor logic (PTL). As mentioned earlier, CMOS transmission gates are frequently employed to implement the switches, giving this logic-circuit form the alternative name, transmission-gate logic. The terms are used interchangeably independent of the actual implementation of the switches.

10.5.1 An Essential Design Requirement

An essential requirement in the design of PTL circuits is ensuring that every circuit node has at all times a low-resistance path to \(V_{DD} \) or ground. To appreciate this point, consider the situation depicted in Fig. 10.25a: A switch \(S_1 \) (usually part of a larger PTL network, not shown) is used to form the AND function of its controlling variable \(B \) and the variable \(A \) available at the output of a CMOS inverter. The output \(Y \) of the PTL circuit is shown connected to the input of another inverter. Obviously, if \(B \) is high, \(S_1 \) closes and \(Y = A \). Node \(Y \) will then be connected either to \(V_{DD} \) (if \(A \) is high) through \(Q \) or to ground (if \(A \) is low) through \(Q \). But, what happens when \(B \) goes low and \(S \) opens? Node \(Y \) will now become a high-impedance node. If initially, \(t_{PHL} \) was zero, it will remain so. However, if initially, \(t_{PHL} \) was high at \(V_{PHL} \), this voltage will be maintained by the charge on the parasitic capacitance \(C \), but for only a time. The inevitable leakage currents will slowly discharge \(C \), and \(t_{PHL} \) will diminish correspondingly. In any case, the circuit can no longer be considered a static combinational logic circuit.

The problem can be easily solved by establishing for node \(Y \) a low-resistance path that is activated when \(B \) goes low, as shown in Fig. 10.25b. Here, another switch, \(S_2 \), controlled by \(B \) is connected between \(Y \) and ground. When \(B \) goes low, \(S_2 \) closes and establishes a low-resistance path between \(Y \) and ground.
10.5.2 Operation with NMOS Transistors as Switches

Implementing the switches in a PTL circuit with single NMOS transistors results in a simple circuit with small area and small node capacitances. These advantages, however, are obtained at the expense of serious shortcomings in both the static characteristics and the dynamic performance of the resulting circuits. To illustrate, consider the circuit shown in Fig. 10.25, where an NMOS transistor is used to implement a switch connecting an input node with voltage V_1 and an output node. The total capacitance between the output node and ground is represented by capacitor C. The switch is shown in the closed state with the control signal applied to its gate being high at V_{DD}. We wish to analyze the operation of the circuit as the input voltage V_1 goes high (to V_{DD}) at time $t = 0$. We assume that initially the output voltage V_0 is zero and capacitor C is fully discharged.

When V_1 goes high, the transistor operates in the saturation mode and delivers a current i_D to charge the capacitor,

$$i_D = \frac{k_2}{2}(V_{DD} - V_0 - V_T)^2$$

where $k_2 = \frac{e}{2L}$, and V_T is determined by the body effect since the source is at a voltage V_s relative to the body, thus (see Eq. 4.33),

$$V_T = V_{DS} + \sqrt{\frac{2e}{k_1}} \phi - \sqrt{\frac{2e}{k_1}} \phi$$

Then at time $t = 0$, the transistor turns on, and the output V_0 reaches V_{DD}. The propagation delay t_{PLH} of the PTL gate of Fig. 10.25 can be determined as the time for V_0 to reach $V_{DD}/2$. This can be calculated using techniques similar to those employed in the preceding sections, as will be illustrated shortly in an example.

Figure 10.27 shows the NMOS switch circuit when V_1 is brought down to 0 V. We assume that initially $V_0 = V_{DD}$. Thus at $t = 0$, the transistor conducts and operates in the saturation region.

$$i_D = \frac{k_2}{2}(V_{DD} - V_0 - V_T)^2$$

where we note that since the source is now at 0 V (note that the drain and source have interchanged roles), there will be no body effect, and V_T remains constant at V_{DS}. As C discharges, V_0 decreases and the transistor enters the triode region at $V_T = V_{DD} - V_2$. Nevertheless, the capacitor discharge continues until C is fully discharged and $V_0 = 0$. Thus, the NMOS transistor provides $V_0 = 0$, or a "good 0." Again, the propagation delay t_{PLH} can be determined using usual techniques, as illustrated by the following example.

Example 10.6

Consider the NMOS transistor switch in the circuits of Figs. 10.26 and 10.27 to be fabricated in a technology for which $\mu C_{ox} = 50 \text{ m\textmu A/V}^2$, $C_{ox} = 20 \text{ m\textmu A/V}^2$, $|V_T| = 1 V$, $V_s = 0.5 V$, $K = 1 G$, $n = 2$, $V_{DD} = 5 V$, and $V_{PLH} = 5 V$. Let the transistor be of the minimum size for this technology, namely, $4 \mu m$ wide, and assume that the total capacitance between the output node and ground is $C = 50 \text{ fF}$.

(a) For the case with V_1 high (Fig. 10.26), find V_{PLH}.
Also find the inverter output voltage.

P (i.e., 18Q region. Equating its current to that of pA)

Eq. (10.47),

Thus, the static power dissipation of the inverter will be

2\frac{VDD}{2} = \frac{50}{2} \times 10^{-6} \times 2.5 = 0.17 \text{ ns}

At \(t = tPHL \), \(Q \) will be operating in the triode region, and thus

\(I_{OH} = \frac{1}{2} \times 50 \times \left[(5 - 1)^2 - 2.5 \times 2.5 \right] \)

= 690 \mu\text{A}

Thus, the average discharge current is given by

\(I_{DH} = \frac{1}{2} (800 + 690) = 740 \mu\text{A} \)

and \(t_{PHL} \) can be determined as

\(t_{PHL} = \frac{50 \times 10^{-6} \times 2.5}{740 \times 10^{-6}} = 0.17 \text{ ns} \)

(e) \(t_P = \left(t_{PHL} + t_{PLH}\right) = \frac{1}{2} (0.29 + 0.17) = 0.23 \text{ ns} \)

Example 10.4 illustrates clearly the problem of signal level loss and its deleterious effect on the operation of the succeeding CMOS inverter. Some rather ingenious techniques have been developed to restore the output level to \(V_{DD} \). We shall briefly discuss two such techniques. One is circuit-based and the other is based on process technology.

The circuit-based approach is illustrated in Fig. 10.28. Here, \(QP \) is a pass transistor controlled by input \(B \). The output node of the PTL network is connected to the input of a complementary inverter formed by \(QN \) and \(QD \). A PMOS transistor \(QP \) whose gate is controlled by the output voltage of the inverter, \(V_{OH} \), has been added to the circuit. Observe that in the event that the output of the PTL gate, \(V_{OH} \), is low (at ground), \(t_{PLH} \) will be high (at \(V_{DD} \)) and \(QP \) will be off. On the other hand, if \(V_{OH} \) is high but not quite equal to \(V_{DD} \), \(QP \) will conduct a current of

\(I_{QP} = \frac{V_{OH} - V_{THP}}{L/W} \)

and \(t_{PLH} \) can be found as

\(t_{PLH} = \frac{C_{V_{PP}}(V_{OH}/2)}{V_{DD}} \)

\(= \frac{50 \times 10^{-6} \times 2.5}{425 \times 10^{-6}} = 0.29 \text{ ns} \)

(b) Refer to the circuit in Fig. 10.27. Observe that, here, \(V_{L} \) remains constant at \(V_{OH} = 1 \text{ V} \). The drain current at \(t = 0 \) is

\(I_D(0) = \left(\frac{1}{2} \times 50 \times \left[(5 - 1)^2 - 2.5 \times 2.5 \right] \right) \)

\(= 800 \mu\text{A} \)

Thus, the average discharge current is given by

\(I_{DH} = \frac{1}{2} (800 + 690) = 740 \mu\text{A} \)

and \(t_{PHL} \) can be determined as

\(t_{PHL} = \frac{50 \times 10^{-6} \times 2.5}{740 \times 10^{-6}} = 0.17 \text{ ns} \)

We can now compute the average discharge current as

\(I_{DH} = \frac{800 + 50}{2} = 425 \mu\text{A} \)
inverter will be low (as it should be) and \(Q_n \) will turn on, supplying a current to charge \(C \) up to \(V_{DD} \). This process will stop when \(v_d \) = \(V_{DD} \), that is, when the output voltage has been restored to its proper level. The "level-restoring" function performed by \(Q_n \) is frequently employed in MOS digital-circuit design. It should be noted that although the description of operation is relatively straightforward, the addition of \(Q_n \) closes a "positive-feedback" loop around the CMOS inverter, and thus operation is more involved than it appears, especially during transients. Selection of a W/L ratio for \(Q_n \) is also somewhat involved in process, although normally \(k \) is selected to be much lower than \(k_i \) (say a third or a fifth as large). Intuitively, this is appealing, for it implies that \(Q_n \) will not play a major role in circuit operation, apart from restoring the level of \(V_{DD} \), as explained [see Rabey (1996)]. Transistor \(Q_n \) is said to be a "weak PMOS transistor."

The other technique for correcting for the loss of the high-output signal level (\(V_{OH} \)) is a technology-based solution. Specifically, recall that the loss is the value of \(V_{OH} \) is equal to \(V_{DD} \). It follows that we can reduce the loss by using a lower value of \(V_{DD} \) for the NMOS switches, and we can eliminate the loss altogether by using both devices for which \(V_{OH} \) = 0. These zero-threshold devices can be fabricated by using ion implantation to control the value of \(V_{OH} \) and are known as natural devices.

10.5.3 The Use of CMOS Transmission Gates as Switches

Great improvements in static and dynamic performance are obtained when the switches are implemented with CMOS transmission gates. The transmission gate utilizes a pair of complementary transistors connected in parallel. It acts as an excellent switch, providing bidirectional current flow, and it exhibits an on-resistance that remains almost constant for wide ranges of input voltage. These characteristics make the transmission gate not only an excellent switch in digital applications but also an excellent analog switch in such applications as data converters (Chapter 9) and switched-capacitor filters (Chapter 12).

Figure 10.29(a) shows the transmission-gate switch in the "on" position with the input, \(v_d \), rising to \(V_{DD} \) at \(t = 0 \). Assuming, as before, that initially the output voltage is zero, we see that \(Q_n \) will be operating in saturation and providing a charging current of

\[
i_{on} = 2k(V_{DD} - v_d - V_n)\]

(10.49)

where, as in the case of the single NMOS switch, \(V_n \) is determined by the body effect,

\[
v_n = V_{DD} + 2k V_d - 2V_n\]

(10.50)

Transistor \(Q_n \) will conduct a diminishing current that reduces to zero at \(v_d = V_{DD} - V_n \). Observe, however, that \(Q_n \) operates with \(V_{dd} < V_{DD} \) and is initially in saturation,

\[
i_{on} = f_n(V_{DD} - V_n)^2\]

(10.51)

where, since the body of \(Q_n \) is connected to \(V_{DD} \), \(V_{DD} \) remains constant at the value \(V_D \) assumed to be the same value as for the n-channel device. The total capacitor-charging current is the sum of \(i_{on} \) and \(i_{off} \). Now, \(Q_n \) will enter the triode region at \(v_d = V_n \), but will continue to conduct until \(C \) is fully charged and \(v_d = V_{DD} = V_{DD} \). Thus, the p-channel device will provide the gate with a "good 1." The value of \(i_{off} \) can be calculated using usual techniques, where we expect that as a result of the additional current available from the PMOS device, for the same value of \(C \), \(i_{off} \) will be lower than in the case of the single NMOS switch. Note, however, that adding the PMOS transistor increases the value of \(C \).

When \(v_d \) goes low, as shown in Fig. 10.29(b), \(Q_n \) and \(Q_p \) interchange roles. Analysis of the circuit in Fig. 10.29(b) will indicate that \(Q_p \) will cease conduction when \(v_d \) fails to \(V_{OH} \).
10.5.4 Pass-Transistor Logic Circuit Examples

We conclude this section by showing examples of PTL logic circuits. Figure 10.30 shows a PTL realization of a two-to-one multiplexer. Depending on the logic value of C, either A or B is connected to the output Y. The circuit realizes the Boolean function

\[Y = CA + CB \]

Our second example is an efficient realization of the exclusive-OR (XOR) function. The circuit shown in Fig. 10.31 utilizes four transistors in the transmission gates and another four for the two inverters needed to generate the complements \(\overline{A} \) and \(\overline{B} \), for a total of eight transistors. Note that 12 transistors are needed in the realization with complementary CMOS.

Our final PTL example is the circuit shown in Fig. 10.32. It uses NMOS switches with low or zero threshold. Observe that both the input variables and their complements are employed and that the circuit generates both the Boolean function and its complement. Thus this form of circuit is known as complementary pass-transistor logic (CPL). The circuit consists of two identical networks of pass transistors with the corresponding transistor gates controlled by the same signal \(\overline{B} \) and \(\overline{B} \). The inputs to the PTL, however, are complemented: \(\overline{A} \) and \(\overline{B} \) for the first network, and \(A \) and \(B \) for the second. The circuit shown realizes both the AND and NAND functions.

![Figure 10.30](image)

Figure 10.30 Realization of a two-to-one multiplexer using pass-transistor logic.

![Figure 10.31](image)

Figure 10.31 Realization of the XOR function using pass-transistor logic.

FIGURE 10.32 An example of a pass-transistor logic gate utilizing both the input variables and their complements. This type of circuit is therefore known as complementary pass-transistor logic or CPL. Note that both the output function and its complement are generated.

10.5.5 A Final Remark

Although the use of zero-threshold devices solves the problem of the loss of signal levels when NMOS switches are used, the resulting circuits can be much more sensitive to noise and other effects, such as leakage currents resulting from subthreshold conduction.

10.6 DYNAMIC LOGIC CIRCUITS

The logic circuits that we have studied thus far are of the static type. In a static logic circuit, every node has, at all times, a low-resistance path to \(V_{DD} \) or ground. By the same token, the voltage of each node is well defined at all times, and no node is left floating. Static circuits do not need clocks (i.e., periodic timing signals) for their operation, although clocks may be present for other purposes. In contrast, the dynamic logic circuits we are about to discuss rely on the storage of signal voltages on parasitic capacitances at certain circuit nodes. Since charge will leak away with time, the circuits need to be periodically refreshed; thus the presence of a clock with a certain specified minimum frequency is essential.
To place dynamic-logic-circuit techniques into perspective, let’s take stock of the various logic-circuit styles we have studied. Complementary CMOS excels in nearly every performance category: It is easy to design, has the maximum possible logic swing, is robust from a noise-immunity standpoint, dissipates no static power, and can be designed to provide equal low-to-high and high-to-low propagation delays. Its main disadvantage is the requirement of two transistors for each additional gate input, which for high fan-in gates can make the chip area large and increase the total capacitance and, correspondingly, the propagation delay and the dynamic power dissipation. Pseudo-NMOS reduces the number of required transistors at the expense of static power dissipation. Pass-transistor logic can result in simple small-area circuits but is limited to special applications and requires the use of complementary inverters to restore signal levels, especially when the switches are simple NMOS transistors. The dynamic logic techniques studied in this section maintain the low device count of pseudo-NMOS while reducing the static power dissipation to zero. As will be seen, this is achieved at the expense of more complex, and less robust, design.

10.6.1 Basic Principle

Figure 10.33(a) shows the basic dynamic-logic gate. It consists of a pull-down network (PDN) that realizes the logic function in exactly the same way as the PDN of a complementary CMOS gate or a pseudo-NMOS gate. Here, however, we have two switches in series that are periodically operated by the clock signal whose waveform is shown in Fig. 10.33(b). When \(\phi \) is low, \(Q_e \) is turned on, and the circuit is said to be in the setup or precharge phase. When \(\phi \) is high, \(Q_p \) is off and \(Q_c \) turns on, and the circuit is in the evaluation phase. Finally, note that \(C_L \) denotes the total capacitance between the output node and ground.

During precharge, \(Q_p \) conducts and charges capacitance \(C_L \) to \(V_{DD} \). After \(V_T \) is equal to \(V_{DD} \) during precharge, the input \(A, B, \) and \(C \) are allowed to change and settle to their proper values. Observe that because \(Q_p \) is off, no path to ground exists.

During the evaluation phase, \(Q_p \) is off and \(Q_c \) is turned on. Now, if the input combination corresponds to a high output, the PDN does not conduct (just as in a complementary CMOS gate) and the output remains high at \(V_{DD} \). On the other hand, if the combination of inputs is one that corresponds to a low output, the appropriate NMOS transistors in the PDN will conduct and establish a path between the output node and ground through the on-transistor \(Q_c \). Thus \(C_p \) will be discharged through the PDN, and the voltage at the output node will reduce to \(V_{DD} = 0 \). The high-to-low propagation delay \(\tau_{PHL} \) can be calculated in exactly the same way as for a complementary CMOS circuit except that here we have an additional transistor, \(Q_p \), in the series path to ground. Although this will increase the delay slightly, the increase will be more than offset by the reduced capacitance at the output node as a result of the absence of the PUN.

As an example, we show in Fig. 10.33(c) the circuit that realizes the function \(Y = A + BC \).

Sizing of the PDN transistors often follows the same procedure employed in the design of static CMOS. For \(Q_p \), we select a \(W/L \) ratio large enough to ensure that \(C_p \) will be fully charged during the precharge interval. The size of \(Q_c \), however, should be small so that the capacitance \(C_p \) will not be increased significantly. This is a ratioless form of MOS logic, where the output levels do not depend on the transistors’ \(W/L \) ratios.

EXERCISES

Consider a four-input NAND gate realized in the dynamic logic form and fabricated in a CMOS process technology for which \(\mu_C/\lambda_C = 70 \mu A/V^2 \cdot \mu m, \mu_P/\lambda_P = 20 \mu A/V^2 \cdot \mu m, V_{DD} = 5 \), \(V_{SS} = 0 \), \(V_{DD} = 5 \), and \(V_{SS} = 0 \). To keep \(C_p \) small, minimum-size NMOS devices are used for which \(W/L = 2 \mu m/1 \mu m \) (this includes \(C_c \)). The PMOS precharge transistor \(Q_p \) has a \(W/L = 6 \mu m/5 \mu m \). The total capacitance \(C_L \) is limited to be 30 fF.

10.10 Consider the precharge operation with the gate of \(Q_p \) falling to 0 V, and assume that \(\phi \) is 0. Assume that \(\phi \) is 0.5 V and the current at \(\phi \) is 4.5 V, then compute an approximate value for \(\tau_{PHL} \). \(\phi \) is the average value of the two currents.

An. \(480 \mu A; 112 \mu A; 0.8 \mu s \).

10.11 Next, consider the computation of the high-to-low propagation delay \(\tau_{PHL} \). Find the equivalent \(W/L \) ratio of the five NMOS transistors in series. Then, find the discharge current at \(\phi = 5 \) V and at \(\phi = 2.5 \) V. Finally, use the average of these two currents to compute an approximate value for \(\tau_{PHL} \).

An. \(W/L = 0.42; 164 \mu A; 138 \mu A; 0.5 \mu s \).

10.6.2 Nonideal Effects

We now briefly consider various sources of nonideal operation of dynamic logic circuits.

Noise Margins

Since, during the evaluation phase, the NMOS transistors begin to conduct for \(\phi = V_{DD} \),

\[
V_{OH} \cong V_{SS} \equiv V_{in}
\]

and thus the noise margins will be

\[
NM_H = V_{OH} - V_{in}
\]

\[
NM_L = V_{in} - V_{OL}
\]
Thus the noise margins are far from equal, and NM < 0 is rather low. Although NM is high, other nonlinear effects reduce its value, as we shall shortly see. At this time, however, observe that the output node is a high-impedance node and thus will be susceptible to noise pickup and other disturbances.

Output Voltage Decay Due to Leakage Effects In the absence of a path to ground through the PDN, the output voltage will ideally remain high at \(V_{DD} \). This, however, is based on the assumption that the charge on \(C_L \) will remain intact. In practice, there will be leakage current that will cause \(C_L \) to slowly discharge and \(V_O \) to decay. The principal source of leakage is the reverse current of the reverse-biased junction between the drain diffusion of transistors connected to the output node and the substrate. Such currents can be in the range of \(10^{-12} \) A to \(10^{-15} \) A, and they increase rapidly with temperature (approximately doubling for every \(10^6 \) rise in temperature). Thus the circuit can malfunction if the clock is operating at a very low frequency and the output node is not "refreshed" periodically. This exact same point will be encountered when we study dynamic memory cells in Chapter 11.

Charge Sharing There is another and often more serious way for \(C_L \) to lose some of its charge and thus cause \(V_O \) to fall significantly below \(V_{DD} \). To see how this can happen, refer to Fig. 10.34(a), which shows only \(Q_1 \) and \(Q_2 \), the two top transistors of the PDN, together with the precharge transistor \(Q_p \). Here, \(C \) is the capacitance between the common node of \(Q_1 \) and \(Q_2 \) and ground. At the beginning of the evaluation phase, after \(Q_p \) has turned off and with \(C_L \) charged to \(V_{DD} \), we assume that \(C_L \) is initially discharged and that the inputs are such that at the gate of \(Q_2 \), we have a high signal, whereas at the gate of \(Q_1 \), the signal is low. We can easily see that \(Q_1 \) will turn on, and its drain current, \(I_{D1} \), will flow as indicated.

![FIGURE 10.34](image-url) (a) Charge sharing. (b) Adding a permanently turned-on transistor \(Q_p \) solves the charge-sharing problem at the expense of static power dissipation.

Thus \(I_{D1} \) will discharge \(C_L \) and cause \(C_L \) to slowly discharge and \(V_O \) to decay. The principal source of leakage is the reverse current of the reverse-biased junction between the drain diffusion of transistors connected to the output node and the substrate. Such currents can be in the range of \(10^{-12} \) A to \(10^{-15} \) A, and they increase rapidly with temperature (approximately doubling for every \(10^6 \) rise in temperature). Thus the circuit can malfunction if the clock is operating at a very low frequency and the output node is not "refreshed" periodically. This exact same point will be encountered when we study dynamic memory cells in Chapter 11.

Output Voltage Decay Due to Leakage Effects In the absence of a path to ground through the PDN, the output voltage will ideally remain high at \(V_{DD} \). This, however, is based on the assumption that the charge on \(C_L \) will remain intact. In practice, there will be leakage current that will cause \(C_L \) to slowly discharge and \(V_O \) to decay. The principal source of leakage is the reverse current of the reverse-biased junction between the drain diffusion of transistors connected to the output node and the substrate. Such currents can be in the range of \(10^{-12} \) A to \(10^{-15} \) A, and they increase rapidly with temperature (approximately doubling for every \(10^6 \) rise in temperature). Thus the circuit can malfunction if the clock is operating at a very low frequency and the output node is not "refreshed" periodically. This exact same point will be encountered when we study dynamic memory cells in Chapter 11.

Charge Sharing There is another and often more serious way for \(C_L \) to lose some of its charge and thus cause \(V_O \) to fall significantly below \(V_{DD} \). To see how this can happen, refer to Fig. 10.34(a), which shows only \(Q_1 \) and \(Q_2 \), the two top transistors of the PDN, together with the precharge transistor \(Q_p \). Here, \(C \) is the capacitance between the common node of \(Q_1 \) and \(Q_2 \) and ground. At the beginning of the evaluation phase, after \(Q_p \) has turned off and with \(C_L \) charged to \(V_{DD} \), we assume that \(C_L \) is initially discharged and that the inputs are such that at the gate of \(Q_2 \), we have a high signal, whereas at the gate of \(Q_1 \), the signal is low. We can easily see that \(Q_1 \) will turn on, and its drain current, \(I_{D1} \), will flow as indicated.

Thus \(I_{D1} \) will discharge \(C_L \) and charge \(C \). Although eventually \(I_{D1} \) will reduce to zero, \(C \) will have lost some of its charge, which will have been transferred to \(C_L \). This phenomenon is known as charge sharing.

We shall not pursue the problem of charge sharing any further here, except to point out a couple of the techniques usually employed to minimize its effect. One approach involves adding a \(p \)-channel device that continuously conducts a small current to replenish the charge lost by \(C_L \), as shown in Fig. 10.34(b). This arrangement should remind us of pseudo-NMOS. Indeed, adding this transistor will cause the gate to dissipate static power. The positive side, however, the added transistor will lower the impedance level of the output node and make it less susceptible to noise as well as solving the leakage and charge-sharing problems.

Another approach to solving the charge-sharing problem is to precharge the internal nodes, that is, to precharge capacitor \(C_L \). The price paid in this case is increased circuit complexity and node capacitances.

Cascading Dynamic Logic Gates A serious problem arises if one attempts to cascade dynamic logic gates. Consider the situation depicted in Fig. 10.35, where two single-input dynamic gates are connected in cascade. During the precharge phase, \(C_1 \) and \(C_2 \) will be charged through \(Q_{1A} \) and \(Q_{2A} \), respectively. Thus, at the end of the precharge interval, \(V_{1A} = V_{DD} \) and \(V_{2A} = V_{DD} \). Now consider what happens in the evaluation phase for the case of high input \(A \). Obviously, the correct result will be \(Y_1 \) low \((v_{1A} = 0 \text{ V}) \) and \(Y_2 \) high \((v_{2A} = V_{DD}) \). What happens, however, is somewhat different. As the evaluation phase begins, \(Q_1 \) turns on and \(C_1 \) begins to discharge. However, simultaneously, \(Q_2 \) turns on and \(C_2 \) begins to discharge. Only when \(v_{1A} \) drops below \(V_{DD} \) will \(Q_2 \) turn off. Unfortunately, however, by that time, \(C_2 \) will have lost a significant amount of its charge, and \(v_{1A} \) will be less than the expected value of \(V_{DD} \). Here, it is important to note that in dynamic logic, once charge has been lost, it cannot be recovered.) This problem is sufficiently serious to make simple cascading an impractical proposition. As usual, however, the ingenuity of circuit designers has come to the rescue, and a number of schemes have been proposed to make cascading possible in dynamic logic circuits. We shall discuss one such scheme after considering Exercise 10.12.
EXERCISE

10.12 To gain further insight into the cascading problems described, let us determine the decrease in the output voltage \(v_y \) for the circuit in Fig. 10.35. Specifically, consider the circuit as the evaluation phase begins:

- voltage \(v_x \) = 0
- \(A_X \) = 0.56 ns
- \(A_Y \) = 100 ns

For an average value of 288 ns. (a) 1; (b) 400 pA and 175 nA; (c) 0.56 ns; (d) 100 ns for an average value of 288 ns.

Ans. (a) 1, 1; (b) 400 pA and 175 nA; (c) 0.56 ns; (d) 100 ns for an average value of 288 ns.

To simplify matters, take the average to be the value of \(\Delta t \) obtained when the gate voltage is midway through its excursion (i.e., \(v_x = 1 \) V). Hence, determine an average value for \(\Delta t \). To find the average value of \(\Delta t \), use the average value of \(\Delta t \) determined in (d) to find an estimate for the interval \(\Delta t \).

(c) Use the average value of \(i_x \) found in (b) to determine an estimate for the interval \(\Delta t \). To simplify matters, take the average to be the value of \(\Delta t \) during \(\Delta t \).

(d) Find the average value of \(i_x \) found in (b) to determine an estimate for the interval \(\Delta t \). To simplify matters, take the average to be the value of \(\Delta t \) during \(\Delta t \).

(e) Use the value of \(i_x \) found in (b) to determine an estimate for the interval \(\Delta t \). To simplify matters, take the average to be the value of \(\Delta t \) during \(\Delta t \).

FIGURE E10.12

(a) Find \(W/L_{\text{in}} \) and \(W/L_{\text{out}} \).
(b) Find the value of \(v_x \) at \(v_x = V_{DD} \) and at \(v_x = V_{DD} \). Hence determine an average value for \(v_x \).
(c) Use the average value of \(v_x \) found in (b) to determine an estimate for the interval \(\Delta t \).
(d) Find the average value of \(v_x \) during \(\Delta t \). To simplify matters, take the average to be the value of \(v_x \) obtained when the gate voltage is midway through its excursion (i.e., \(v_x = 1 \) V). Hence, determine the final value of \(v_x \).

10.6.3 Domino CMOS Logic

Domino CMOS logic is a form of dynamic logic that results in cascaded gates. Figure 10.36 shows the structure of the Domino CMOS logic gate. We observe that it is simply the basic dynamic-logic gate of Fig. 10.33(a) with a static CMOS inverter connected to its output. Operation of the gate is straightforward. During precharge, \(X \) will be raised to \(V_{DD} \) and the gate output \(Y \) will be at 0 V. During evaluation, depending on the combination of input variables, either \(X \) will remain high and thus the output \(Y \) will remain low or \(X \) will be brought down to 0 V and the output \(Y \) will rise to \(V_{DD} \) (\(V_{out} \) finite). Thus, during evaluation, the output either remains low or makes only one low-to-high transition.

To see why Domino CMOS gates can be cascaded, consider the situation in Fig. 10.37(a), where we show two Domino gates connected in cascade. For simplicity, we show single-input gates. At the end of precharge, \(X_1 \) will be at \(V_{DD} \) and \(Y_1 \) will be at 0 V. In this case, \(X_2 \) will remain low. As in the preceding case, assume \(A \) is high at the beginning of evaluation.

Thus, as \(A \) goes up, capacitor \(C_{12} \) begins discharging, pulling \(X_2 \) down. Meanwhile, the low input at the gate of \(Q_2 \) keeps \(Q_2 \) off, and \(C_{12} \) remains fully charged. When \(v_{x1} \) falls below the threshold voltage of inverter \(f_x \), \(Y_1 \) will go up turning \(Q_2 \) on, which in turn begins to discharge \(C_{12} \) and pulls \(X_2 \) low. Eventually, \(Y_2 \) rises to \(V_{DD} \).

FIGURE 10.35 The Domino CMOS logic gate. The circuit consists of a dynamic-MOS logic gate with a static-CMOS inverter connected to its output. During evaluation, \(Y_1 \) either will remain low (at 0 V) or will make one 0-to-1 transition (to \(V_{DD} \)).

FIGURE 10.36 The Domino CMOS logic gate. The circuit consists of a dynamic-MOS logic gate with a static-CMOS inverter connected to its output. During evaluation, \(Y_1 \) either will remain low (at 0 V) or will make one 0-to-1 transition (to \(V_{DD} \)).
From this description, we see that because the output of the Domino gate is low at the beginning of evaluation, no premature capacitor discharge will occur in the subsequent gate in the cascade. As indicated in Fig. 10.37(b), output Y_2 will make a 0-to-1 transition t_{PLH} seconds after the rising edge of the clock. Subsequently, output Y_3 makes a 0-to-1 transition after another t_{PLH} interval. The propagation of the rising edge through a cascade of gates resembles contiguously placed dominoes falling over, each toppling the next, which is the origin of the name Domino CMOS logic. Domino CMOS logic finds application in the design of address decoders in memory chips, for example.

10.6.4 Concluding Remarks

Dynamic logic presents many challenges to the circuit designer. Although it can provide considerable reduction in the chip-area requirement, as well as high-speed operation, and zero (or little) static-power dissipation, the circuits are prone to many nonideal effects, some of which have been discussed here. It should also be remembered that dynamic-power dissipation is an important issue in dynamic logic. Another factor that should be considered is the "dead time" during precharge when the output of the circuit is not yet available.

10.7 SPICE SIMULATION EXAMPLE

We conclude this chapter with an example illustrating the use of SPICE in the analysis of CMOS digital circuits. To appreciate the need for SPICE, recall that throughout this chapter we have had to make many simplifying assumptions so that manual analysis can be made possible and also so that the results can be sufficiently simple to yield design insight. This is especially the case in the analysis of the dynamic operation of logic circuits. Computer-aided analysis using SPICE not only obviates the need to make approximations, thus providing accurate results, but it also allows the use of more precise MOSFET models. Such models, of course, are too complex to use in manual analysis.

EXAMPLE 10.5

OPERATION OF THE CMOS INVERTER

In this example, we will use PSpice to simulate the CMOS inverter whose Capture schematic is shown in Fig. 10.38. We will assume a 0.5-μm CMOS technology for the MOSFETs and use unit-size NMOS0P5 and PMOS0P5 whose level-1 model parameters are listed in Table 4.8. In addition to the channel length L, and the channel width W, we have used the multiplicative factor m to specify the dimensions of the MOSFETs. The MOSFET parameter m, whose default value is 1, is used in SPICE to specify the number of unit-size MOSFETs connected in parallel (see Fig. 6.65). In our simulations, we will use unit-size transistors with $L = 0.5 \, \mu m$ and $W = 1.25 \, \mu m$. We will simulate the inverter for two cases: (a) setting $m_1 = m_2 = 1$ so that the NMOS and PMOS transistors are equal widths, and (b) setting $m_1 = 4, m_2 = 2$ so that the PMOS transistor is four times wider than the NMOS transistor (to compensate for the lower mobility in p-channel devices as compared with n-channel ones). Here, m_1 and m_2 are the multiplicative factors of, respectively, the NMOS and PMOS transistors of the inverter.

PARAMETERS:

- $CL = 0.5\mu m$
- $MN = 1$
- $MP = 1$
- $VDD = 3.3$
- $Vsupply = VDD$
- $DC = (VDD)$
- $V1 = 0$
- $V2 = (VDD)$
- $TD = 2n$
- $TR = 1p$
- $TF = 1p$
- $PW = 6n$
- $PER = 12n$
- $V1 = 0$
- $V2 = (VDD)$

FIGURE 10.38 Capture schematic of the CMOS inverter in example 10.5.

To compute both the voltage transfer characteristic (VTC) of the inverter and its supply current at various values of the input voltage V_{IN}, we apply a dc voltage source at the input and perform a dc analysis with V_{IN} swept over the range 0 to V_{DD}. The resulting VTC is plotted in Fig. 10.39. Note that the slope of the VTC in the switching region (where the NMOS and PMOS devices are both in saturation) is not infinite as predicted from the simple theory presented earlier (Section 4.10, Fig. 4.55). Rather, the nonzero value of α causes the inverter gain to be finite. Using the derivative feature of Probe, we can find the two points on the VTC at which the inverter gain is unity (i.e., the VTC slope is $-1 \, \text{V/V}$) and, hence, determine V_{TH} and V_{OH}. Using the results given in Fig. 10.39, the corresponding noise margins are $NM_L = NM_H = 1.34 \, \text{V}$ for the inverter with $m_1 = m_2 = 4$, while $NM_L = 0.975 \, \text{V}$ and $NM_H = 1.74 \, \text{V}$ for the inverter with $m_1 = m_2 = 1$. Observe that these results correlate reasonably well with the values obtained using the approximate formula in Eq. (10.8). Furthermore, note that, with $m_1 = m_2 = 4$, the NMOS and PMOS devices are closely matched and, hence, the two noise margins are equal.

The threshold voltage V_{TH} of the CMOS inverter is defined as the input voltage V_{IN} that results in an identical output voltage V_{OUT}, that is,

$$V_{TH} = V_{OUT} = V_{OH}$$

(10.53)
Figure 10.39: Input-output voltage transfer characteristic (VTC) of the CMOS inverter in Example 10.5 with $m_p/m_n = 1$ and $m_p/m_n = 4$.

Thus, as shown in Fig. 10.40, V_{th} is the intersection of the VTC with the straight line corresponding to $v_{out} = V_D$. This line can be simply generated in Probe by plotting v_m versus v_{om}, as shown in Fig. 10.40. Note that $V_{th} = V_{DD}/2$ for the inverter with $m_p/m_n = 4$. Furthermore, decreasing m_p/m_n decreases V_{th} (see earlier: Exercise 4.44). Figure 10.40 also shows the inverter supply current versus v_{in}. Observe that the location of the supply-current peak shifts with the threshold voltage.

To investigate the dynamic operation of the inverter with PSpice, we apply a pulse signal at the input (Fig. 10.38), perform a transient analysis, and plot the input and output waveforms as shown in Fig. 10.41. The rise and fall times of the pulse source are chosen to be very short. Note that increasing m_p/m_n from 1 to 4 decreases t_{PLH} (from 1.13 ns to 0.29 ns) because of the increased current available to charge C_L with only a minor increase in t_{PHL} (from 0.33 ns to 0.34 ns). The two propagation delays, t_{PLH} and t_{PHL}, are not exactly equal when $m_p/m_n = 4$ because the NMOS and PMOS transistors are still not perfectly matched (e.g., $V_{th}
eq V_{DD}/2$).

Figure 10.40: (a) Output voltage, and (b) supply current versus input voltage for the CMOS inverter in Example 10.5 with $m_p/m_n = 1$ and $m_p/m_n = 4$.

Figure 10.41: Transient response of the CMOS inverter in Example 10.5 with $m_p/m_n = 1$ and $m_p/m_n = 4$.

Figure 10.39: Input-output voltage transfer characteristic (VTC) of the CMOS inverter in Example 10.5 with $m_p/m_n = 1$ and $m_p/m_n = 4$.
Although CMOS is one of four digital IC technologies currently in use (the others are bipolar, BiCMOS and GaAs), it is the most popular. This is due to its zero static-power dissipation and excellent static and dynamic characteristics. Further, advances in CMOS process technology have made possible the fabrication of MOS transistors with channel lengths as small as 0.06 μm. The high input impedance of MOS transistors allows the use of charge storage on capacitors as a means of realizing memory, a technique successfully exploited in both dynamic logic and dynamic memory.

The CMOS inverter is usually designed using the minimum channel length for both the NMOS and PMOS transistors. The width of the NMOS transistor is usually 1.5 to 2 times \(L \), and the width of the PMOS device is \((1.5/2) \) times that. This latter matching condition ensures that the inverter will switch at \(V_{dd}/2 \) and gives equal current-driving capabilities in both directions and hence symmetrical propagation delays.

A simple technique for determining the propagation delay of a logic gate is to determine the average propagation delay of a logic gate is to determine the average charge storage interval, to charge the output node to \(V_{dd} \) and \(V_{ss} \). Since a PMOS conducts when its input is low, the PDN is PDN of the high output (\(V_H \)) as a function of the uncomplemented input. The PDN of the low output (\(V_L \)) as a function of the complemented input.

Complementary CMOS logic utilizes two transistors, an NMOS and a PMOS, for each input variable. The circuit complexity, silicon area, and parasitic capacitance all increase with fan-in.

To reduce the device count, two other forms of static CMOS, namely, pseudo-NMOS and pass-transistor logic (PTL), are employed in special applications as supplements to complementary CMOS.

Pseudo-NMOS utilizes the same PDN as in complementary CMOS logic but replaces the PUN with a single PMOS transistor whose gate is grounded. Unlike complementary CMOS, pseudo-NMOS is a ratioed form of logic in which \(V_{dd} \) is determined by the ratio of \(t_{pd} \) to \(t_{pu} \). Normally, \(t \) is selected in the range 4 to 10 and its value determines the noise margins.

Pseudo-NMOS has the disadvantage of dissipating static power when the output of the logic gate is low. Static power can be eliminated by turning the PMOS load on for only a brief interval, known as the pre-charge interval, to charge the output node to \(V_{dd} \). Then the inputs are applied, and depending on the input combination, the output node either remains high or is discharged through the PDN. This is the essence of dynamic logic.

Pass-transistor logic utilizes either single NMOS transistors or CMOS transmission gates to implement a network of switches that are controlled by the input logic variables. Switches implemented by single NMOS transistors, though simple, result in the reduction of \(V_{dd} \) from \(V_{dd} \) to \(V_{dd} - V_{th} \).

A particular form of dynamic logic circuits, known as dynamic logic, allows the cascading of dynamic logic gates.

SECTION 10.1: DIGITAL CIRCUIT DESIGN: AN OVERVIEW

10.1 For a logic-circuit family employing a 5-V supply, suggest an ideal set of values for \(V_{DD} \), \(V_{SS} \), \(V_{OL} \), \(V_{OH} \), \(V_{MAX} \), \(V_{MIN} \). Also, sketch the VTC. What value of voltage gain in the transition region does your ideal specification imply?

10.2 For a particular logic-circuit family, the basic technology used provides an inherent limit to the small-signal low-frequency voltage gain of 50 V/V. If, with a 3.3-V supply, the values of \(V_{OH} \) and \(V_{OL} \) are ideal, but \(V_{OH} = 0.4 V_{SS} \), what are the best possible values of \(V_{OH} \) and \(V_{OL} \) that can be expected? What are the best possible noise margins you could expect? If the total noise margins are only 7/10 of these values, what \(V_{OH} \) and \(V_{OL} \) result? What is the large-signal voltage gain (defined as \(V_{OH} - V_{OL}/V_{OL}/V_{OH} \)). (Hint: Use straightforward approximations for the VTC.)

10.3 A logic-circuit family intended for use in a digital-signal-processing application in a newly developed hearing aid can operate down to single-cell supply voltages of 1.2 V. If for its inverter, the output signals swing between 0 and \(V_{dd} \), the "gain-of-one" points are separated by less than 1/3 \(V_{dd} \) and the noise margins are within 30% of one another. What ranges of values of \(V_{dd} \), \(V_{PP} \), \(V_{PS} \), \(V_{MIN} \), \(V_{MAX} \) can you expect for the lowest possible battery supply?

10.4 In a particular logic family, the standard inverter, when loaded by a similar circuit, has a propagation delay specified to be 1.3 ns.

(a) If the current available to charge a load capacitance when the output of the logic gate is low. Static power can be eliminated by turning the PMOS load on for only a brief interval, known as the pre-charge interval, to charge the output node to \(V_{dd} \). Then the inputs are applied, and depending on the input combination, the output node either remains high or is discharged through the PDN. This is the essence of dynamic logic.

(b) If the current available to charge a load capacitance when the output of the logic gate is low. Static power can be eliminated by turning the PMOS load on for only a brief interval, known as the pre-charge interval, to charge the output node to \(V_{dd} \). Then the inputs are applied, and depending on the input combination, the output node either remains high or is discharged through the PDN. This is the essence of dynamic logic.

(c) If the current available to charge a load capacitance when the output of the logic gate is low. Static power can be eliminated by turning the PMOS load on for only a brief interval, known as the pre-charge interval, to charge the output node to \(V_{dd} \). Then the inputs are applied, and depending on the input combination, the output node either remains high or is discharged through the PDN. This is the essence of dynamic logic.

10.5 A particular logic family, operating with a 3.3-V supply, the basic inverter draws from the supply a current of 40 μA in one state and 0 μA in the other. When the inverter is switched at the rate of 100 MHz, the average supply current becomes 150 μA. Estimate the equivalent capacitance at the output node of the inverter.

10.6 A collection of logic gates for which the static-power dissipation is zero, and the dynamic-power dissipation, as specified by Eq. (10.4), is 10 mW are operated at 50 MHz with a 5-V supply. By what fraction could the power dissipation be reduced if operation at 3.3 V were possible? If the frequency of operation is reduced by the same factor as the supply voltage (i.e., 3.3/5), what additional power can be saved?

10.7 A logic-circuit family with zero static-power dissipation normally operates at \(V_{DD} = 3 \) V. To reduce its dynamic-power dissipation, which is specified by Eq. (10.4), operation at 3.3 V is considered. It is found, however, that the currents available to charge and discharge load capacitances also decrease. If current is (a) proportional to \(V_{DD} \) or (b) proportional to \(V_{PP} \), what reductions in maximum operating frequency do you expect in each case? What fractional change in delay-power product do you expect in each case?
10.10 Consider an inverter for which \(V_{DD} = 3.3 \text{ V} \) and \(V_{DD} = 5 \text{ V} \). Derive the Boolean expression for the output \(V \) in terms of \(V_x \) and \(V_y \) using the law of conservation of energy.

10.11 Design a 5-V inverter circuit for which \(V_{OUT} = 0 \) when \(V_{IN} = 3 \text{ V} \), and \(V_{OUT} = 5 \text{ V} \) when \(V_{IN} = 0 \text{ V} \). The circuit is to have a propagation delay of 5 ns.

10.12 For a CMOS inverter fabricated in the process specified in Problem 10.13, what is the maximum average gate capacitance in such a design?

10.13 Give two different realizations of the exclusive-OR function \(Y = A + B(C + D) \).

10.14 Sketch a CMOS realization for the function \(Y = ABC + A'B'C' \).

10.15 For a general CMOS inverter characterized by \(V_{th} \), \(V_{ds} \), \(W/L \), and \(C \), derive the relation in Eq. (10.8) for \(V_{ds} \).

10.16 Use Eq. (10.8) to determine the value of \(V_{th} \) for a device with a width of 2 \(\mu \text{m} \). The device has a maximum output current of 10 \(\mu \text{A/V} \) with a supply voltage of 3.3 \text{ V}.

10.17 A particular logic gate has \(t_R \) and \(t_{PHL} \) of 10 ns, 100 ns, and 15 ns, respectively. The rising and falling edges of the inverter output can be approximated by linear ramps. Two such inverters are connected in series, and the output voltage is to be high when an even number (0 or 2) of the inputs are high. The PDN and the PUN networks are dual networks.

10.18 Use Eq. (10.10) to determine the expression for \(V_{OUT} \) in terms of \(V_{IN} \) and \(V_{TH} \).

10.19 A particular matched CMOS inverter, \(C = 10 \mu \text{F} \), is used to drive a 5-V supply with a maximum output current of 10 \(\mu \text{A/V} \). What is the maximum output current if the supply voltage is increased to 10 \text{ V}?

10.20 A particular matched CMOS inverter, \(C = 10 \mu \text{F} \), is used to drive a 5-V supply with a maximum output current of 10 \(\mu \text{A/V} \). What is the maximum output current if the supply voltage is increased to 10 \text{ V}?

10.21 Find the propagation delay for a minimum-size inverter for which \(C = 10 \mu \text{F} \), \(V_{DD} = 3.3 \text{ V} \), \(W/L = 0.75 \) \(\mu \text{m} \), and \(\mu \text{A/V} = 10 \mu \text{A/V} \). What is the maximum output current if the supply voltage is increased to 10 \text{ V}?

10.22 A CMOS microprocessor chip containing the equivalent of 1 million gates operates from a 5-V supply. The power dissipation is found to be 9 W when the chip is operating at 120 MHz, and 4.7 W when operating at 50 MHz. What is the power dissipation if the chip is operating at 300 MHz?

10.23 A matched CMOS inverter fabricated in a process for which \(C_{th} = 0.5 \mu \text{F} \), \(\mu \text{A/V} = 10 \mu \text{A/V} \), and \(W/L = 0.75 \) \(\mu \text{m} \), dissipates 1 \(\mu \text{W} \) with output voltage of 3.3 \text{ V} for a 10 ns pulse.

10.24 Repeat Problem 10.22 for an inverter for which \(C_{th} = 0.75 \mu \text{F} \), \(\mu \text{A/V} = 0.75 \mu \text{A/V} \), and \(W/L = 0.75 \) \(\mu \text{m} \). Find \(t_R \) and the input capacitance when the circuit is operated at a 300-MHz rate.

10.25 Sketch a CMOS realization for the function \(Y = ABC \).

10.26 A CMOS logic gate is required to provide an output with \(Y = ABC + A'B'C' \). How many transistors does it need? Sketch a suitable PUN and PDN, obtaining each first independently, then one from the other using the dual-networks idea.

10.27 Find two different realizations of the exclusive-OR function \(Y = A + B \) in which the PDN and the PUN are dual networks.

10.28 Sketch a CMOS logic circuit that realizes the function \(Y = A + B \) in which the PDN and the PUN are dual networks.

10.29 Design a CMOS logic circuit that realizes the function \(Y = A + B \) in which the PDN and the PUN are dual networks.

10.30 Repeat Problem 10.23 for an inverter for which \(C_{th} = 0.75 \mu \text{F} \), \(\mu \text{A/V} = 0.75 \mu \text{A/V} \), and \(W/L = 0.75 \) \(\mu \text{m} \). Find \(t_R \) and the input capacitance when the circuit is operated at a 300-MHz rate.

10.31 Give two different realizations of the exclusive-OR function \(Y = A + B \) and the voltage gain at 50 MHz.

10.32 Repeat Problem 10.23 for an inverter for which \(C_{th} = 0.75 \mu \text{F} \), \(\mu \text{A/V} = 0.75 \mu \text{A/V} \), and \(W/L = 0.75 \) \(\mu \text{m} \). Find \(t_R \) and the input capacitance when the circuit is operated at a 300-MHz rate.

10.33 Consider the CMOS gate shown in Fig. 10.14. Specify \(W/L \) ratios for all transistors in terms of the current and \(V_{DD} \) of the basic inverter, such that the worst-case \(V_{DD} \) and \(t_R \) of the gate are equal to those of the basic inverter.

10.34 Find appropriate sizes for the transistors used in the exclusive-OR circuit of Fig. 10.13(b). Assume that the basic inverter has \(W/L = 0.75 \mu \text{m} \), \(0.5 \mu \text{m} \), and \(0.75 \mu \text{m} \) for the input, output, and middle transistors, respectively.

10.35 Consider a four-input CMOS NAND gate for which the current response is dominated by a fixed-size capacitance between the output node and ground. Compare the values of \(W/L \) and \(V_{DD} \), when the devices are sized as in Fig. 10.17, in the values obtained when all-transistor devices have \(W/L = 0.5 \mu \text{m} \) and all-\(p \)-channel devices have \(W/L = 0.5 \mu \text{m} \).

10.36 Figure P.10.36 shows two approaches to realizing the OR function of six input variables. The circuit in Fig. P.10.36(b), though it uses additional transistors, has a lower \(V_{DD} \) than the circuit in Fig. P.10.36(a). (a) What are the advantages and disadvantages of each circuit? (b) Can both circuits be used to implement an AND function? (c) Which circuit is more efficient in terms of power consumption?
less total area and lower propagation delay because it uses NOR gates with lower (W/L). Assuming that the transistors in both circuits are properly sized to provide each gate with a current-driving capability equal to that of the basic matched inverter, find the number of transistors and the total area of each circuit. Assume the basic inverter to have a (W/L) ratio of 1.2 μm/0.8 μm and a (W/L) ratio of 3.6 μm/0.8 μm.

*10.37 Consider the two-input CMOS NOR gate of Fig. 10.12 whose transistors are properly sized so that the current-driving capability in each direction is equal to that of a matched inverter. For |V| = 1 V and VDD = 5 V, find the gate threshold in the cases for which (a) input terminal A is connected to ground and (b) the two input terminals are tied together. Neglect the body effect in QP.

SECTION 10.4: PSEUDO-NMOS LOGIC CIRCUITS

10.38 The purpose of this problem is to compare the value of VDD obtained with a resistive load (see Fig. P10.38a) to that obtained with a current-source load (see Fig. P10.38b). Consider the two-input CMOS NOR gate of Fig. P10.49 whose transistors are properly sized so that the logic levels at Y are 0.1 V and 0.9 V.

10.39 Design a pseudo-NMOS inverter that has equal negative and positive capacitive-driving output currents as VDD = 1 V. What are the values of (W/L) for both NMOS and PMOS?

10.40 Consider a pseudo-NMOS inverter with r = 2, (W/L) = 1.2 μm/0.8 μm, VDD = 5 V, |V| = 0.4 V, and k' = |k'| = 125 μA/V². Let the device capacitances per micron of device width be Cg = 1.5 fF, Cgd = 0.5 fF, and Cgd = 2 fF. What is the input and output capacitance and the voltage values of VDD, VO, and V0 when the inverter is driving another identical inverter?

10.41 Use Eq. (10.41) to find the value of r for which NMOS is maximized. What is the corresponding value of NMOS?

10.42 Design a pseudo-NMOS inverter that has VDD = 0.1 V. Let VDD = 2.5 V, |V| = 0.4 V, k' = 44.5 μA/V², and (W/L) = 0.375 μm/0.25 μm. What is the value of VDD that would result in the minimum static power dissipation?

10.43 For what values of r does NMOS of a pseudo-NMOS inverter become zero? Prepare a table of NMOS versus r for r = 1 to 10.

10.44 For a pseudo-NMOS inverter, what values of r result in VDD = 10 and VDD = 0.8 V? What is the resulting margin?

10.45 It is required to design a minimum-area pseudo-NMOS inverter with equal high and low noise margins using 5-V supply and devices for which |V| = 0.8 V and k' = |k'| = 34 μA/V², and the minimum-size device has (W/L) = 1.2 μm/0.8 μm. Use r = 2.72 and show that NMOS = 10 μm. Specify the values of (W/L) and (W/L) for this gate. What is the power dissipated in this gate? What is the ratio of propagation delays for high and low transitions? What is the maximum frequency of operation at which the static and dynamic power levels are equal? In this speed of operation possible in view of the values you found? What is the ratio of dynamic power to static power at which you may assume is the maximum usable operating frequency [2]? 1/2π(VDD²/(2VDD))²?

10.46 Sketch a pseudo-NMOS realization of the function Y = A + B(C + D).

10.47 Sketch a pseudo-NMOS realization of the exclusive-OR function Y = A'B + A'B.

10.48 Consider a four-input pseudo-NMOS NOR gate in which the NMOS devices have (W/L) = (1.8 μm/1.2 μm). It is required to find (W/L) so that the worst-case value of VDD = 0.2 V. Let VDD = 5 V, |V| = 0.8 V, and k' = 34 μA/V².

SECTION 10.5: PASS-TRANSISTOR LOGIC CIRCUITS

10.49 A designer, beginning to experiment with the idea of pass-transistor logic, notes upon what he sees as two good ideas:

(a) that a string of minimum-size single MOS transistors can do complex logic functions, and
(b) that there must always be a path between output and a supply terminal.

Correspondingly, he first considers two circuits (shown in Fig. P10.49). For each, express Y as a function of A and B. In each case, what can be said about general operation? About the logic levels at Y? About node X? Do either of these circuits look familiar? If in each case the terminal connected to VDD is instead connected to the output of a CMOS inverter whose input is connected to a signal C, what does the function Y become?

10.50 Consider the circuits in Fig. P10.49 with all NMOS transistors replaced with NMOS, and all CMOS transistors by FOMOS, and with ground and VDD connections interchanged. What do the output functions Y become?

10.51 Is the circuit in Fig. P10.51 a satisfactory pass-transistor circuit? What are its deficiencies? What is Y as a function of A, B, C, D? What does the output become if the two NAND connections are driven by a CMOS inverter with input 2 and with ground and VDD connections interchanged? What do the output functions Y become?

10.52 An NMOS pass-transistor switch with VDD = 1.2 μm/0.8 μm, used in a 3.3-V system for which VDD = 0.8 V, y = 0.5 μA/V², and Cgd = 4.6 fF, drives a 100-F load capacitance at the input of a matched static inverter using (W/L) = 1.2 μm/0.8 μm. For the switch gate terminal at VDD, evaluate the switch VDD and VDD for inputs at VDD and 0 V, respectively. For this value of VDD, what is the static current? Estimate VDD and VDD for this arrangement as measured from the input to the output of the switch itself.

10.53 The purpose of this problem is to design the level-restoring circuit of Fig. 10.26 and gain insight into its
Assume that \(I_{D} = 75 \mu A / V^2 \). \(V_{DD} = 3.3 \) V and \(V_{PP} = 0.5 \) V. \(2 \beta = 0.6 \) V. (W/L) = \(1.2 \) \(\mu m / 0.8 \) \(\mu m \), and \(C = 20 \) F. Let \(v_o = v_{DD} \).

(a) Consider first the situation where \(v_o = 0 \). Find the value of the voltage \(v_{OL} \). Bring it to a threshold voltage above \(V_{DD} \). Let \(v_{OL} = 2.5 \) V so that \(Q_2 \) turns on. At this value of \(v_{OL} \), find \(v_i \) of \(Q_1 \). What is the capacitor-charging current available at this time? What is the average current available for charging \(C \) at this time?

(b) Now, to determine a suitable \(W/L \) ratio for \(Q_1 \), consider the situation when \(v_o \) is brought down to 0 V and \(Q_1 \) conducts and begins to discharge \(C \). The voltage \(v_{OL} \) will decrease.

Meanwhile, \(v_{OL} \) is still low and \(Q_2 \) is conducting. The current that \(Q_2 \) conducts subtracts from the current of \(Q_1 \), reducing the current available to discharge \(C \). Find the value of \(v_{OL} \) at which the inverter begins to switch. This is \(V_{OL} = (V_{DD} - 2V) \). Then, find the current that \(Q_2 \) conducts at this value of \(v_{OL} \). Choose \(W/L \) for \(Q_2 \) so that the current it conducts is limited to one half the current in \(Q_1 \). What is the \(W/L \) ratio you have chosen? Estimate \(t_{PLH} \) as the time for \(v_{OL} \) to drop from \(V_{OL} \) to 0 V.

SECTION 10.6: DYNAMIC-LOGIC CIRCUITS

D10.57 Based on the simple dynamic-logic circuit of Fig. 10.33, sketch complete circuits for NOT, NAND, and NOR gates. The latter two with two inputs, and a circuit for an exclusive-OR. Assuming \(V_{OL} = 1 \) V, \(V_{OL} = 0 \) V, and neglecting the body effect in \(M_1 \), find the drop in voltage at the output in the two cases: (a) \(C_1 = 5 \) F and (b) \(C_1 = 10 \) F (such that \(Q_2 \) remains in saturation during its entire conduction interval).

D10.61 The leakage current in a dynamic-logic gate causes the capacitor \(C_3 \) to discharge during the evaluation phase, even if the PDN is not conducting. For \(C_2 = 50 \) F, and \(\text{leakage} = 10^{-12} \) A, find the longest allowable evaluation time if the decay in output voltage is to be limited to 0.5 V. If the precharge interval is much shorter than the maximum allowable evaluate time, find the minimum clocking frequency required.

D10.62 For the four-input dynamic-logic NAND gate analyzed in Exercises 10.10 and 10.11, estimate the maximum clocking frequency allowed.
PART III

SELECTED TOPICS

CHAPTER 11
Memory and Advanced Digital Circuits 1013

CHAPTER 12
Filters and Tuned Amplifiers 1083

CHAPTER 13
Signal Generators and Waveform-Shaping Circuits 1165

CHAPTER 14
Output Stages and Power Amplifiers 1229

INTRODUCTION

To round out our study of electronic circuits we have selected, from among the many possible somewhat-specialized topics, four to include in the third and final part of this book.

Chapter 11 deals with the important subject of digital memory. In addition, two advanced digital-circuit technologies—ECL and BiCMOS—are studied. The material in Chapter 11 follows naturally the study of logic circuits, presented in Chapter 10. Together, these two chapters should provide a preparation sufficient for advanced courses on digital electronics and VLSI design.

The subsequent two chapters, 12 and 13, have an applications or systems orientation: Chapter 12 deals with the design of filters, which are important building blocks of communications and instrumentation systems. Filter design is one of the rare areas of engineering for which a complete design theory exists, starting from specification and culminating in an actual working circuit. The material presented should allow the reader to perform such a complete design process.

In the design of electronic systems, the need usually arises for signals of various waveforms—sinusoidal, pulse, square-wave, etc. The generation of such signals is the subject of Chapter 13. It will be seen that some of the circuits utilized in waveform generation process memory and are in fact the analog counterparts of the digital memory circuits studied in Chapter 11.

The material in Chapters 12 and 13 assumes knowledge of op amps (Chapter 2) and makes use of frequency response and related s-plane concepts (Chapter 6) and of feedback (Chapter 8).

The last of the four selected-topics chapters (Chapter 14) deals with the design of amplifiers that are required to deliver large amounts of load power; for example, the amplifier that drives the loudspeaker in a stereo system. As will be seen, the design of these high-power circuits is based on different considerations than those for small-signal amplifiers. Most of the material in Chapter 14 should be accessible to the reader who has studied Part I of this book.
INTRODUCTION

The logic circuits studied in Chapter 10 are called combinational (or combinatorial). Their output depends only on the present value of the input. Thus these circuits do not have memory. Memory is a very important part of digital systems. Its availability in digital computers allows for storing programs and data. Furthermore, it is important for temporary storage of the output produced by a combinational circuit for use at a later time in the operation of a digital system.

Logic circuits that incorporate memory are called sequential circuits; that is, their output depends not only on the present value of the input but also on the input's previous values. Such circuits require a timing generator (a clock) for their operation.

There are basically two approaches for providing memory to a digital circuit. The first relies on the application of positive feedback that, as will be seen shortly, can be arranged to provide a circuit with two stable states. Such a bistable circuit can then be used to store one bit of information; One stable state would correspond to a stored 0, and the other to a stored 1. A bistable circuit can remain in either state indefinitely, and thus belongs to the category of static sequential circuits. The other approach to realizing memory utilizes the storage of
11.1 LATCHES AND FLIP-FLOPS

In this section, we shall study the basic memory element, the latch, and consider a sampling of its applications. Both static and dynamic circuits will be considered.

11.1.1 The Latch

The basic memory element, the latch, is shown in Fig. 11.1(a). It consists of two cross-coupled logic inverters, G1 and G2. The inverters form a positive-feedback loop. To investigate the operation of the latch we break the feedback loop at the input of one of the inverters, say G1, and apply an input signal, vW, as shown in Fig. 11.1(b). Assuming that the input impedance of G1 is large, breaking the feedback loop will not change the loop voltage transfer characteristic, which can be determined from the circuit of Fig. 11.1(b) by plotting vZ versus vW. This is the voltage transfer characteristic of two cascaded inverters and thus takes the shape shown in Fig. 11.1(c). Observe that the transfer characteristic consists of three segments, with the middle segment corresponding to the transition region of the inverters. Also shown in Fig. 11.1(c) is a straight line with unity slope. This straight line represents the relationship vZ = vW that is realized by reconnecting Z to W to close the feedback loop.

As indicated, the straight line intersects the loop transfer curve at three points, A, B, and C. Thus any of those three points can serve as the operating point for the latch. We shall now show that while points A and C are stable operating points in the sense that the circuit can remain at either indefinitely, point B is an unstable operating point; the latch cannot operate at B for any significant period of time.

The reason point B is unstable can be seen by considering the latch circuit in Fig. 11.1(a) to be operating at point B, and taking account of the electrical interference (or noise) that is inevitably present in any circuit. Let the voltage vW increase by a small increment vΔ. The voltage at X will increase (in magnitude) by a larger increment, equal to the product of vΔ and the incremental gain of G1 at point B. The resulting signal vΔ is applied to G2 and gives rise to an even larger signal at node Z. The voltage vZ is related to the original increment vΔ by the loop gain at point B, which is the slope of the curve of vZ versus vW at point B. This gain is usually much greater than unity. Since vΔ is coupled to the input of G2, it will be further amplified by the loop gain. This regenerative process continues, shifting the operating point from B upward to point C. Since at C the loop gain is zero (or almost zero), no regeneration can take place.

In the description above, we assumed an initial positive voltage increment at W. Had we instead assumed a negative voltage increment, we would have seen that the operating point moves downward from B to A. Again, since at point A the slope of the transfer curve is zero (or almost zero), no regeneration can take place. In fact, for regeneration to occur the loop gain must be greater than unity, which is the case at point B.

The discussion above leads us to conclude that the latch has two stable operating points, A and C. At point C, vW is high, vZ is low, vS is low, and vQ is high. The reverse is true at point A. If we consider X and Z as the latch outputs, we see that in one of the stable states (say corresponding to operating point A) vS is high (at vS = 10) and vQ is low (at vQ = 0). In the other state (corresponding to operating point C) vS is low (at vS = 0) and vQ is high (at vQ = 1). Thus the latch is a bistable circuit having two complementary outputs. The stable state in which the latch operates depends on the external excitation that forces it to the particular state. The latch then memorizes this external action by staying indefinitely in the acquired state. As a memory element the latch is capable of storing one bit of information. For instance, we can arbitrarily designate the state in which vS is high and vQ is low as corresponding to a stored logic 1. The other complementary state then is designated by a stored logic 0. Finally, it should be obvious that the latch circuit described is of the static variety.

It now remains to devise a mechanism by which the latch can be triggered to change state. The latch together with the triggering circuitry forms a flip-flop. This will be discussed next. Analog bistable circuits utilizing op amps will be presented in Chapter 13.

11.1.2 The SR Flip-Flop

The simplest type of flip-flop is the set/reset (SR) flip-flop shown in Fig. 11.2(a). It is formed by cross-coupling two NOR gates, and thus it incorporates a latch. The second input

Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened. (c) Determining the operating point(s) of the latch.

Figure 11.2 (a) The set/reset (SR) flip-flop. (b) Its truth table.
of each NOR gate together serve as the trigger inputs of the flip-flop. These two inputs are labeled \(S \) (for set) and \(R \) (for reset). The outputs are labeled \(Q \) and \(Q' \), emphasizing their complementarity. The flip-flop is considered to be set (i.e., storing a logic 1) when \(Q \) is high and \(Q' \) is low. When the flip-flop is in the other state (\(Q \) low, \(Q' \) high), it is considered to be reset (storing a logic 0).

In the rest or memory state (i.e., when we do not wish to change the state of the flip-flop), both the \(S \) and \(R \) inputs should be low. Consider the case when the flip-flop is storing a logic 0. Since \(Q \) will be low, both inputs to the NOR gate \(G_1 \) will be low. Its output will therefore be high. This high is applied to the input of \(G_2 \), causing its output \(Q' \) to be low, satisfying the original assumption. To set the flip-flop we raise \(S \) to the logic-1 level while leaving \(R = 0 \). The 1 at the \(S \) terminal will force the output of \(G_1 \) to 0. Thus the two inputs to \(G_1 \) will be 0 and its output \(Q \) will go to 1. Now even if \(S \) returns to 0, the flip-flop remains in the newly acquired reset state. Obviously, if we raise \(S \) to 1 again (with \(R \) remaining at 0) no change will occur. To reset the flip-flop we need to raise \(R \) to 1 while leaving \(S = 0 \). We can readily show that this forces the flip-flop into the reset state and that the flip-flop remains in this state even after \(R \) has returned to 0. It should be observed that the trigger signal merely starts the regenerative action of the positive-feedback loop of the latch.

Finally, we inquire into what happens if both \(S \) and \(R \) are simultaneously raised to 1. The two NOR gates will cause both \(Q \) and \(Q' \) to become 0 (note that in this case the complementary labeling of these two variables is incorrect). However, if \(R \) and \(S \) return to the reset state (\(R = S = 0 \)) simultaneously, the state of the flip-flop will be undefined. In other words, it will be impossible to predict the final state of the flip-flop. For this reason, this input combination is usually disallowed (i.e., not used). Note, however, that this situation arises only in the idealized case, when both \(R \) and \(S \) return to 0 precisely simultaneously. In actual practice one of the two will return to 0 first, and the final state will be determined by the input that remains high longest.

The operation of the flip-flop is summarized by the truth table in Fig. 11.2(b), where \(Q \) denotes the value of \(Q \) at time \(t \), just before the application of the \(R \) and \(S \) signals, and \(Q_0 \) denotes the value of \(Q \) at time \(t \), after the application of the input signals. Rather than using two NOR gates, one can also implement an SR flip-flop by cross-coupling two NAND gates in which case the set and reset functions are active when low and the inputs are correspondingly labeled \(S \) and \(R \).

11.1.3 CMOS Implementation of SR Flip-Flops

The SR flip-flop of Fig. 11.2 can be directly implemented in CMOS by simply replacing each of the NOR gates by its CMOS circuit realization. We encourage the reader to sketch the CMOS implementation of the SR flip-flop of Fig. 11.2, in which case the set and reset functions are active when low and the inputs are correspondingly labeled \(S \) and \(R \).
FIGURE 11.4 The relevant portion of the flip-flop circuit of Fig. 11.3 for determining the minimum W/L ratios of Q5 and Q6 needed to ensure that the flip-flop will switch.

The minimum required W/L for Q5 and Q6 can be found by equating the current supplied by Q5 and Q6 to the current supplied by Q2 at VDD/2. To simplify matters, we assume that the series connection of Q5 and Q6 is approximately equivalent to a single transistor whose W/L is half the W/L of each of Q5 and Q6. Now, since at VDD/2 both this equivalent transistor and Q2 will be operating in the triode region, we can write

\[50 \times \frac{1}{2} \left(\frac{W}{L} \right) \left(\frac{5 - 1}{2} \right) \left(\frac{1}{2} \right) = 20 \times \frac{1}{2} \left(\frac{5 - 1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{5}{2} \right) \]

which leads to

\[\frac{W}{L} = 4 \quad \text{and} \quad \frac{W}{L} = 4 \]

Recalling that this is an absolute minimum value, we would in practice select a ratio of 5 or 6.

EXERCISES

11.1. Repeat Example 11.1 to determine the minimum required \(W/L \) so that switching is achieved when inputs \(S \) and \(P \) are at \(VDD/2 \).

11.2. We wish to determine the minimum required width of the set pulse. Toward that end, consider the time for \(\tau_{Q} \) in the circuit of Fig. 11.4 to fall from \(VDD \) to \(VDD/2 \). Assume that the total capacitance between the \(Q \) node and ground is 50 fF. Determine the high-to-low propagation delay \(\tau_{Q} \) by finding the average current available to discharge the capacitance over the voltage range \(VDD \) to \(VDD/2 \). Remember that \(Q_2 \) will be conducting a current that unfortunately reduces the current available to discharge \(C \). Assume \(W/L_2 = W/L_1 = K \), and use the technology parameters given in Example 11.1.

(a) Determine \(\tau_{Q} \) for \(\tau_{Q} \) (Fig. 11.2) using the following formula:

\[\tau_{Q} = \frac{1.7C}{W_2} \]

(b) Assume a total node capacitance at \(Q \) of 50 fF. (c) What is the minimum width required of the set pulse?

Ans. (a) 0.11 ns; (b) 0.17 ns; (c) 0.28 ns

11.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop

A simpler implementation of a clocked SR flip-flop is shown in Fig. 11.5. Here, pass-transistor logic is employed to implement the clocked set-reset functions. This circuit is very popular in the design of static random-access memory (SRAM) chips, where it is used as the basic memory cell (Section 11.4.1).

11.1.5 D Flip-Flop Circuits

A variety of flip-flop types exist and can be synthesized using logic gates. CMOS circuit implementations can be obtained by simply replacing the gates with their CMOS circuit realizations. This approach, however, usually results in rather complex circuits. In many cases, simpler circuits can be found by taking a circuit-design viewpoint, rather than a logic-design one. To illustrate this point, we shall consider the CMOS implementation of a very important type of flip-flop, the data, or D, flip-flop.

The D flip-flop is shown in block-diagram form in Fig. 11.6. It has two inputs, the data input \(D \) and the clock input \(\phi \). The complementary outputs are labeled \(Q \) and \(\bar{Q} \). When the clock is low, the flip-flop is in the memory, or reset, state; signal changes on the \(D \) input line have no effect on the state of the flip-flop. As the clock goes high, the flip-flop acquires the logic level that existed on the \(D \) line just before the rising edge of the clock. Such a flip-flop is said to be edge-triggered. Some implementations of the D flip-flop include direct set and reset inputs that override the clocked operation just described.

A simple implementation of the D flip-flop is shown in Fig. 11.7. The circuit consists of two inverters connected in a positive-feedback loop, just as in the static latch of Fig. 11.1(a).
except that here the loop is closed for only part of the time. Specifically, the loop is closed when the clock is low \((\phi = 0, \bar{\phi} = 1) \). The input \(D \) is connected to the flip-flop through a switch that closes when the clock is high. Operation is straightforward: When \(\phi \) is high, the loop is opened, and the input \(D \) is connected to the input of inverter \(G_2 \). The capacitance at the input node of \(G_2 \) is charged to the value of \(D \). Then, when the clock goes low, the input line is isolated from the flip-flop, the feedback loop is closed, and the latch acquires the state corresponding to the value of \(D \) just before it went down, providing an output \(Q = D \).

From the preceding, we observe that the circuit in Fig. 11.7 combines the positive-feedback technique of static bistable circuits and the charge-storage technique of dynamic circuits. It is important to note that the proper operation of this circuit, and of many circuits that use clocks, is predicated on the assumption that \(\phi \) and \(\bar{\phi} \) will not be simultaneously high at any time. This condition is defined by referring to the two clock phases as being nonoverlapping.

An inherent drawback of the D flip-flop implementation of Fig. 11.7 is that during \(\phi \), the output of the flip-flop simply follows the signal on the \(D \) input line. This can cause problems in certain logic design situations. The problem is solved very effectively by using the master-slave configuration shown in Fig. 11.8(a). Before discussing its circuit operation, we note that although the switches are shown implemented with single NMOS transistors, CMOS transmission gates are employed in many applications. We are simply using the single MOS transistor as a “shorthand notation” for a series switch.

The master-slave circuit consists of a pair of circuits of the type shown in Fig. 11.7, operated with alternate clock phases. Here, to emphasize that the two clock phases must be nonoverlapping, we denote them \(\phi \) and \(\bar{\phi} \), and clearly show the nonoverlap interval in the waveforms of Fig. 11.8(b). Operation of the circuit is as follows:

1. When \(\phi \) is high and \(\bar{\phi} \) is low, the input is connected to the master latch whose feedback loop is opened, while the slave latch is isolated. Thus, the output \(Q \) remains at the value stored previously in the slave latch whose loop is now closed. The node capacitances of the master latch are charged to the appropriate voltages corresponding to the present value of \(D \).

2. When \(\phi \) goes low, the master latch is isolated from the input data line. Then, when \(\phi \) goes high, the feedback loop of the master latch is closed, locking in the value of \(D \). Further, its output is connected to the slave latch whose feedback loop is now open. The node capacitances in the slave are appropriately charged so that when \(\phi \) goes high again the slave latch locks in the new value of \(D \) and provides it at the output, \(Q = D \).

From this description, we note that at the positive transition of clock \(\phi \), the output \(Q \) adopts the value of \(D \) that existed on the \(D \) line at the end of the preceding clock phase, \(\phi \).

This output value remains constant for one clock period. Finally, note that during the nonoverlap interval both latches have their feedback loops open and we are relying on the node capacitances to maintain most of their charge. It follows that the nonoverlap interval should be kept reasonably short (perhaps one-tenth or less of the clock period, and of the order of 1 ns or so in current practice).

11.2 MULTIVIBRATOR CIRCUITS

As mentioned before, the flip-flop has two stable states and is called a bistable multivibrator. There are two other types of multivibrator: monostable and astable. The monostable multivibrator has one stable state in which it can remain indefinitely. It has another quasi-stable state to which it can be triggered. The monostable multivibrator can remain in the quasi-stable state for a predetermined period \(T \), after which it automatically returns to the stable state. In this way the monostable multivibrator generates an output pulse of duration \(T \). This pulse duration is in no way related to the details of the triggering pulse, as is indicated schematically.

FIGURE 11.7 A simple implementation of the D flip-flop. The circuit in (a) utilizes the two-phase nonoverlapping clock whose waveforms are shown in (b).

FIGURE 11.8 (a) A master-slave D flip-flop. The switches can be, and usually are, implemented with CMOS transmission gates. The waveforms of the two-phase nonoverlapping clock required.
CHAPTER 11

MEMORY AND ADVANCED DIGITAL CIRCUITS

FIGURE 11.10 A monostable circuit using CMOS NOR gates. Signal source \(V_s \) supplies positive trigger pulses.

11.2 MULTIVIBRATOR CIRCUITS

The monostable multivibrator (one-shot) as a functional block, shown to be triggered by a positive pulse. In addition, there are monostable that are triggered by a negative pulse.

in Fig. 11.9. The monostable multivibrator can therefore be used as a pulse amplifier or, more appropriately, a pulse standardizer. A monostable multivibrator is also referred to as a one-shot.

The astable multivibrator has no stable states. Rather, it has two quasi-stable states, and it remains in each for predetermined intervals \(T_1 \) and \(T_2 \). Thus after \(T_1 \) seconds in one of the quasi-stable states the astable switches to the other quasi-stable state and remains there for \(T_2 \) seconds, after which it reverts back to the original state, and so on. The astable multivibrator thus oscillates with a period \(T = T_1 + T_2 \) or a frequency \(f = 1/T \), and it can be used to generate periodic pulses such as those required for clocking.

In Chapter 13 we will study astable and monostable multivibrator circuits that use op amps. In the following, we shall discuss monostable and astable circuits using logic gates. We also present an alternative, and very popular, oscillator circuit, the ring oscillator.

11.2.1 A CMOS Monostable Circuit

Figure 11.10 shows a simple and popular circuit for a monostable multivibrator. It is composed of two two-input CMOS NOR gates, \(G_1 \) and \(G_2 \), a capacitor of capacitance \(C \), and a resistor of resistance \(R \). The input source \(V_s \) supplies the triggering pulses for the monostable multivibrator.

Commercially available CMOS gates have a special arrangement of diodes connected at their input terminals, as indicated in Fig. 11.11(a). The purpose of these diodes is to prevent the input voltage signal from rising above the supply voltage \(V_{DD} \) (by more than one diode drop) and from falling below ground voltage (by more than one diode drop). These clamping diodes have an important effect on the operation of the monostable circuit. Specifically, we shall be interested in the effect of these diodes on the operation of the inverter-connected gate \(G_2 \). In this case, each pair of corresponding diodes appears in parallel, giving rise to the equivalent circuit in Fig. 11.11(b). While the diodes provide a low-resistance path to the power supply for voltages exceeding the power supply limits, the input current for intermediate voltages is essentially zero.

Consider first the stable state of the monostable circuit—that is, the state of the circuit before the trigger pulse is applied. The output of \(G_1 \) is high at \(V_{DD} \), the capacitor is discharged, and the input voltage to \(G_2 \) is high at ground voltage. This low voltage is fed back to \(G_2 \), since \(G_2 \) is also high, the output of \(G_2 \) is high, as initially assumed.

Next, consider what happens as the trigger pulse is applied. The output voltage of \(G_1 \) will go low. However, because \(G_1 \) will be sinking some current and because of its finite output resistance, \(R_o \), its output will not go all the way to 0 V. Rather, the output of \(G_1 \) drops by a value \(\Delta V_o \), which we shall shortly evaluate.

To simplify matters we shall use the approximate output equivalent circuits of the gate, illustrated in Fig. 11.12. Figure 11.12(a) indicates that when the gate output is low, its output characteristics can be represented by a resistance \(R_o \) to ground, which is normally a few hundred ohms. In this state, current can flow from the external circuit into the output terminal of the gate; the gate is said to be sourcing current. Similarly, the equivalent output circuit in Fig. 11.12(b) applies when the gate output is high. In this state, current can flow from \(V_{DD} \) through the output terminal of the gate into the external circuit; the gate is said to be sourcing current.

To see how the monostable circuit of Fig. 11.10 operates, consider the timing diagram given in Fig. 11.13. Here a short triggering pulse of duration \(t \) is shown in Fig. 11.13(a). In the following we shall neglect the propagation delays through \(G_1 \) and \(G_2 \). These delays, however, set a lower limit on the pulse width \(t > (t_p + t_{pd}) \).

The drop \(\Delta V_1 \) is coupled through \(C \) (which acts as a short circuit during the transient) to the input of \(G_2 \). Thus the input voltage of \(G_2 \) drops (from \(V_{DD} \)) by an identical amount \(\Delta V_2 \). Here, we note that during the transient there will be an instantaneous current that flows from

FIGURE 11.11 (a) Diodes at each input of a two-input CMOS gate. (b) Equivalent diode circuit when the two inputs of the gate are joined together. Note that the diodes are intended to protect the device gates from potentially destructive overvoltages due to static charge accumulation.
CHAPTER 11 MEMORY AND ADVANCED DIGITAL CIRCUITS

(a) Time constant = \(C(R + R_{on}) \)

(b) \(\Delta V_1 = V_{DD} - V_{DD} \)

(c) \(\Delta V_2 = \frac{V_{DD} + V_{DD}}{R_{on}} \)

(d) \(t = C(R + R_{on}) \ln \left(\frac{V_{DD} + V_{DD}}{R + R_{on}} \right) \)

FIGURE 11.13 Timing diagram for the monostable circuit in Fig. 11.10.

\(V_{DD} \) through \(R \) and \(C \) and into the output terminal of \(G_1 \) to ground. We thus have a voltage divider formed by \(R \) and \(R_{on} \) (note that the instantaneous voltage across \(C \) is zero) from which we can determine \(\Delta V_1 \) as

\[\Delta V_1 = V_{DD} \frac{R}{R + R_{on}} \]

(11.1)

Returning to \(G_2 \), we see that the drop of voltage at its input causes its output to go high (to \(V_{DD} \)). This signal keeps the output of \(G_1 \) low even after the triggering pulse has disappeared. The circuit is now in the quasi-stable state.

We next consider operation in the quasi-stable state. The current through \(R_1 \) causes \(C \) to charge, and the voltage \(v_{t2} \) rises exponentially toward \(V_{DD} \) with a time constant

\[t = C(R + R_{on}) \ln \left(\frac{V_{DD} + V_{DD}}{R + R_{on}} \right) \]

(11.2)

Thus it is diode \(D_1 \) that limits the size of the increment \(\Delta V_2 \).

Because now \(v_{t2} \) is higher than \(V_{DD} \) (by \(V_{DD} \)), current will flow from the output of \(G_1 \) through \(C \) and then through the parallel combination of \(R \) and \(D_1 \). This current discharges \(C \) until \(v_{t2} \) drops to \(V_{DD} \) and \(v_{t1} \) rises to \(V_{DD} \). The discharging circuit is depicted in Fig. 11.14, from which we note that the existence of the diode causes the discharging to be a nonlinear process. Although the details of the transient at the end of the pulse are not of immense interest, it is important to note that the monostable circuit should not be retriggered until the capacitor has been discharged, since otherwise the output obtained will not be the standard pulse, which the one-shot is intended to provide. The capacitor discharge interval is known as the recovery time.

An expression can be derived for the pulse interval \(T \) by referring to Fig. 11.13(c) and expressing \(v_{t2}(t) \) as

\[v_{t2}(t) = V_{DD} - AV_1 e^{-t/\tau} \]

where \(\tau = C(R + R_{on}) \). Substituting for \(t = T \) and \(v_{t2}(T) = V_{DD} \), and for \(\Delta V_1 \) from Eq. (11.1) gives, after a little manipulation:

\[T = C(R + R_{on}) \ln \left(\frac{R + R_{on}}{R} \right) \]

(11.3)

EXERCISES

11.3 For \(V_{DD} = V_{DD} \) and \(R_{on} = R \), find an approximate expression for \(T \).

Ans. \(T = 0.114VR \)

11.4 If \(R_{on} \) is known to be less than \(1 \) k\(\Omega \), use the approximation in Exercise 11.3 to design a monostable that produces 10-\(\mu \)s pulses. Specify values for \(C \) and \(R \). What is the maximum possible error in \(T \) due to neglecting \(R_{on} \) in the design?

Ans. Possible values are \(C = 1 \) n\(\text{F} \), \(R = 14.5 \) k\(\Omega \).
11.2.2 An Astable Circuit

Figure 11.15(a) shows a popular astable circuit composed of two inverter-connected NOR gates, a resistor, and a capacitor. We shall consider its operation, assuming that the NOR gates are of the CMOS family. However, to simplify matters we shall make some further approximations, neglecting the finite output resistance of the CMOS gate and assuming that the clamping diodes are ideal (thus have zero voltage drop when conducting).

With these simplifying assumptions, the waveforms of Fig. 11.15(b) are obtained. The reader is urged to consider the operation of this circuit in a step-by-step manner and verify that the waveforms shown indeed apply.¹

Using the waveforms in Fig. 11.15(b), derive an expression for the period T of the astable multivibrator of Fig. 11.15(a).

Ans. $T = \frac{V_{DD} - V_n}{V_n}$

1 Practical circuits often use a large resistance in series with the input to G_1. This limits the effect of diode conduction and allows v_{in} to rise to a voltage greater than V_{DD} and, as well, to fall below zero.

11.2.3 The Ring Oscillator

Another type of oscillator commonly used in digital circuits is the ring oscillator. It is formed by connecting an odd number of inverters in a loop. Although usually at least five inverters are used, we illustrate the principle of operation using a ring of three inverters, as shown in Fig. 11.16(a). Figure 11.16(b) shows the waveforms obtained at the outputs of the three inverters. These waveforms are idealized in the sense that their edges have zero rise and fall times. Nevertheless, they will serve to explain the circuit operation.

Observe that a rising edge at node 1 propagates through gates 1, 2, and 3 to return inverted after a delay of $3t_p$. This falling edge then propagates, and returns with the original (rising) polarity after another $3t_p$ interval. It follows that the circuit oscillates with a period of $6t_p$ or correspondingly with frequency $1/6t_p$.

In general, a ring with N inverters (where N must be odd) will oscillate with period of $2Nt_p$ and frequency $1/2Nt_p$.

As a final remark, we note that the ring oscillator provides a relatively simple means for measuring the inverter propagation delay.

EXERCISE

11.6 Find the frequency of oscillation of a ring of five inverters if the inverter propagation delay is specified to be $1\mu s$.

Ans. 100 MHz
A computer system, whether a large machine or a microcomputer, requires memory for storing data and program instructions. Furthermore, within a given computer system there are various types of memory utilizing a variety of technologies and having different access times. Broadly speaking, computer memory can be divided into two types: main memory and mass-storage memory. The main memory is usually the most rapidly accessible memory and the one from which most, often all, instructions in programs are executed. The main memory is usually of the random-access type. A random-access memory (RAM) is one in which the time required for storing (writing) information and for retrieving (reading) information is independent of the physical location (within the memory) in which the information is stored.

Random-access memories should be contrasted with serial or sequential memories, such as disks and tapes, from which data are available only in the sequence in which the data were originally stored. Thus, in a serial memory the time to access particular information depends on the memory location in which the required information is stored, and the average access time is longer than the access time of random-access memory. In a computer system, serial memory is used for mass storage. Items not frequently accessed, such as large parts of the computer operating system, are usually stored in a moving-surface memory such as magnetic disk.

Another important classification of memory relates to whether it is a read/write or a read-only memory. Read/write (R/W) memory permits data to be stored and retrieved at comparable speeds. Computer systems require random-access read/write memory for data and program storage.

Read-only memories (ROM) permit reading at the same high speeds as R/W memories (or perhaps higher) but restrict the writing operation. ROMs can be used to store a microprocessor operating system program. They are also employed in applications that require table lookup, such as finding values of mathematical functions. A popular application of ROMs is in their use in video game cartridges. It should be noted that read-only memory is usually of the random-access type. Nevertheless, in the digital circuit jargon, the acronym RAM usually refers to read/write, random-access memory, while ROM is used for read-only memory.

The regular structure of memory circuits makes them an ideal application for design of the circuits of the very-large-scale integrated (VLSI) type. Indeed, at any moment, memory chips represent the state of the art in packing density and hence integration level. Beginning with the introduction of the 1K-bit chip in 1970, memory-chip density has quadrupled about every 3 years. At the present time, chips containing 256M bits are commercially available, while multigigabit memory chips are being tested in research and development laboratories. In this and the next two sections, we shall study some of the basic circuits available, while multigigabit memory chips are being tested in research and development laboratories. In this and the next two sections, we shall study some of the basic circuits available in VLSI RAM chips. Read-only memory circuits are studied in Section 11.5.

11.3.1 Memory-Chip Organization

The bits on a memory chip are addressable either individually or in groups of 4 to 16. As an example, a 64M-bit chip in which all bits are individually addressable is said to be organized in 64M words x 1 bit (or simply 64M x 1). Such a chip needs a 26-bit address (2

The capacity of a memory chip to hold binary information as binary digits (or bits) is measured in K-bit and M-bit units, where 1K-bit = 1024 bits and 1M-bit = 1024 x 1024 = 1,048,576 bits. Thus a 64M-bit chip contains 67,108,864 bits of memory.
of bit-line number \(L \) will be raised, usually by a small voltage, say 0.1 V to 0.2 V. The readout voltage is small because the cell is small, a deliberate design decision, since the number of cells is very large. The small readout signal is applied to a sense amplifier connected to the bit line. As Fig. 11.17 indicates, there is a sense amplifier for every bit line. The sense amplifier provides a full-swing digital signal (from 0 to \(V_{DD} \)) at its output. This signal, together with the output signals from all the other cells in the selected row, is then delivered to the column decoder. The column decoder selects the signal of the particular column whose \(N \)-bit address is applied to the decoder input (the address bits are denoted \(A_0, A_1, \ldots, A_{M-1} \)) and causes this signal to appear on the chip input/output (I/O) data line.

A write operation proceeds in a similar manner: The data bit to be stored (1 or 0) is applied to the I/O line. The cell in which the data bit is to be stored is selected through the combination of its row address and its column address. The sense amplifier of the selected cell acts as a driver to write the applied signal into the selected cell. Circuits for sense amplifiers and address decoders will be studied in Section 11.5.

Before leaving the topic of memory organization (or memory-chip architecture), we wish to mention a relatively recent innovation in organization dictated by the exponential increase in chip density. To appreciate the need for a change, note that as the number of cells in the array increases, the physical lengths of the word lines and the bit lines increase. This has occurred even though for each new generation of memory chips, the transistor size has decreased currently, CMOS process technologies with 0.1-0.3 \(\mu \)m feature size are utilized). The net increase in word-line and bit-line lengths increases the total resistance and capacitance, and thus slows down their transient response. That is, as the lines lengthen, the exponential rise of the voltage of the word line becomes slower, and it takes longer for the cells to be activated. This problem has been solved by partitioning the memory chip into a number of blocks. Each of the blocks has an organization identical to that in Fig. 11.17. The row and column addresses are broadcast to all blocks, but the data selected come from only one of the blocks. Block selection is achieved by using an appropriate number of the address bits as a block address. Such an architecture can be thought of as three-dimensional: rows, columns, and blocks.

11.3.2 Memory-Chip Timing

The memory access time is the time between the initiation of a read operation and the appearance of the output data. The memory cycle time is the minimum time allowed between two consecutive memory operations. To be on the conservative side, a memory operation is usually taken to include both read and write (in the same location). MOS memories have access and cycle times in the range of a few to few hundred nanoseconds.

EXERCISES

11.7. A 4M-bit memory chip is partitioned into 32 blocks, with each block having 1024 rows and 128 columns. Give the number of bits required for the row address, column address, and block address.

11.8. The word lines in a particular MOS memory chip are fabricated using polysilicon (see Appendix A). The resistance of each word line is estimated to be 5 \(\Omega \) and the total capacitance between the line and ground is 2 pF. Find the time for the voltage on the word line to reach \(V_{DD}/2 \), assuming that the line is driven by a voltage \(V_{DD} \) provided by a low-impedance source. (Note: The line is actually a distributed network that we are approximating by a lumped circuit consisting of a single resistor and a single capacitor.)

11.4 RANDOM-ACCESS MEMORY (RAM) CELLS

As mentioned in Section 11.3, the major part of the memory chip is taken up by the storage cells. It follows that to be able to pack a large number of bits on a chip, it is imperative that the cell size be reduced to the smallest possible. The power dissipation per cell should be minimized also. Thus, many of the flip-flop circuits studied in Section 11.1 are too complex to be suitable for implementing the storage cells in a RAM chip.

There are basically two types of MOS RAM: static and dynamic. Static RAMs (called SRAMs for short) utilize static latches as the storage cells. Dynamic RAMs (called DRAMS), on the other hand, store the binary data on capacitors, resulting in further reduction in cell area, but at the expense of more complex read and write circuitry. In particular, while static RAMs can hold their stored data indefinitely, provided the power supply remains on, dynamic RAMs require periodic refreshing to regenerate the data stored on capacitors. This is because the storage capacitors will discharge, though slowly, as a result of the leakage currents inevitably present. By virtue of their smaller cell size, dynamic memory chips are usually four times as dense as their contemporary static chips. Both static and dynamic RAMs are volatile; that is, they require the continuous presence of a power supply. By contrast, most ROMs are of the nonvolatile type, as we shall see in Section 11.6. In the following sections, we shall study basic SRAM and DRAM storage cells.

11.4.1 Static Memory Cell

Figure 11.18 shows a typical static memory cell in CMOS technology. The circuit, which we encountered in Section 11.1, is a flip-flop comprising two cross-coupled inverters and two access transistors, \(Q_1 \) and \(Q_2 \). The access transistors are turned on when the word line is selected and its voltage raised to \(V_{DD} \), and they connect the flip-flop to the column (bit or \(B \)) line and column (\(B \) or \(D \)) line. Note that both \(B \) and \(B \) lines are utilized. The access transistors act as transmission gates allowing bidirectional current flow between the flip-flop and the \(B \) and \(B \) lines.

The Read Operation Consider first a read operation, and assume that the cell is storing a 1. In this case, \(Q \) will be high at \(V_{DD} \) and \(Q \) will be low at 0 V. Before the read operation begins, the \(B \) and \(B \) lines are precharged to an intermediate voltage, between the low and high values,

![FIGURE 11.18 A CMOS SRAM memory cell.](image)
Refer to Fig. 11.19 and recall that initially Vo = VDD, VQ = 0, and VD = VQ = VDD. We see immediately that the circuit in Fig. 11.19(b) will not be conducting, and thus VD will remain constant at VDD. Turning our attention then to the circuit in Fig. 11.19(a), we observe that since VQ will change by only 0.2 V (i.e., from 5 V to 4.8 V) during the readout process, transistor Q1 will be operating in saturation, and thus Cq will be discharged with a constant current I5. For transistor Q2 to conduct, its drain voltage VD will have to pass. We hope, however, that this rise will not exceed the threshold of inverter (Q3, Q4), which is VDD/2, since the p and n transistors in each inverter are matched. There will be a brief interval during which I5 will charge the small parasitic capacitance between node Q and ground to a voltage VQ 0.2 V sufficient to operate the flip-flop in the triode mode at a current I5 equal to I3. The current I5 can then be expressed as

\[
I5 = \frac{\mu C_o p VD}{2} \left[(VDD - VD) VQ \right] \frac{1}{2} \frac{1}{2}
\]

where we have assumed that VQ will remain constant at VDD. Since the source of Q1 is at ground, VD = 1 V and,

\[
I1 = 50 \times 10^{-12} \times 0.4 \times 5 \times 10^{-12} \times 0.4
\]

For Q3 we can write

\[
I3 = \frac{\mu C_o n W}{2 \times L} \left(VDD - VD - VQ \right)
\]

where the threshold voltage VDD can be determined from

\[
VDD = 1 + 0.5 \times \sqrt{0.6 - 0.6 \times \sqrt{0.6}}
\]

Since we do not yet know VQ, we need to solve by iteration. For a first iteration, we assume that VQ = 1 V, thus I3 will be

\[
I3 = \frac{1}{2} \times 50 \times \frac{10^{-12}}{2} \times (5 - 1)^2
\]

Now equating I3 from Eq. (11.5) to I5 from Eq. (11.3) and solving for VQ results in VQ = 5.86 V. As a second iteration, we use this value of VQ in Eq. (11.6) to determine VDD. The result is VDD = 1.4 V. This value is then used in the expression for I5, and the process repeated, with the result that VQ = 1.6 V. This is close enough to the original voltage, and no further iteration seems warranted. The current I5 can now be determined, I5 = 0.5 mA. Observe that VQ is indeed less than VDD/2, and that the flip-flop will not switch state (a relief!). In fact, VD for this inverter is 2.125 V; thus the assumption that VQ stays at VDD is justified, although VQ will change somewhat, a point we shall not pursue any further in this approximate analysis.

We can now determine the interval for a 0.2 V decrement to appear on the B line from

\[
\Delta t = \frac{C_b V_b}{I_3}
\]

Thus,

\[
\Delta t = \frac{1}{2} \times 10^{-12} \times \frac{0.2}{0.5 \times 10^{-12}} = 0.4 \text{ ns}
\]

We should point out that \(\Delta t \) is only one component of the delay encountered in the read operation. Another significant component is due to the finite rise time of the voltage on the word line. Indeed, even the calculation of \(\Delta t \) is optimistic, since the word line will have only reached a voltage lower than VDD when the process of discharging Cq takes place.
Another component of write delay is that taken up by the switching action of the flip-flop. This can be approximated by the delay time of one inverter.

EXERCISE

11.9 Consider the circuit in Fig. 11.20(b) and assume that the device dimensions and process technology parameters are as specified in Example 11.2. We wish to determine the interval \(\Delta t \) required for \(C_g \) to discharge, and its value to fall from \(V_{DD} \) to \(V_{DD}/2 \).

(a) At the beginning of interval \(\Delta t \), find the values of \(I_5 \) and \(I_4 \).

(b) At the end of interval \(\Delta t \), find the values of \(I_5 \) and \(I_4 \).

(c) Find an estimate of the average value of \(I_x \) during interval \(\Delta t \).

An. (a) \(I_5 = 0.1 \, \text{mA}, \quad I_4 = 2.2 \, \text{mA}, \quad I_{out} = -2 \, \text{mA} \); (b) \(I_5 = 1.72 \, \text{mA}, \quad I_4 = 1.61 \, \text{mA}, \quad I_{out} = -0.11 \, \text{mA} \); (c) \(I_{out} = 1.8 \, \text{mA} \); (d) \(\Delta t = 69.4 \, \text{ps} \).

From the results of Exercise 11.9, we note that this component of write delay is much smaller than the corresponding component in the read operation. This is because in the write operation, only the small capacitance \(C_g \) needs to be charged (or discharged), whereas in the read operation, we have to charge (or discharge) the much larger capacitances of the \(B \) and \(B \) lines. In the write operation, the \(B \) and \(\bar{B} \) line capacitances are charged (and discharged) relatively quickly by the driver circuitry. The end result is that the delay time in the write operation is dominated by the word-line delay.

\[^{3}\text{Implicit in this statement is the assumption that both } v_q \text{ and } v_g \text{ will reach } V_{DD}/2 \text{ simultaneously. As will be seen shortly, this is not the case. Nevertheless, it is a reasonable assumption to make for the purpose of obtaining an approximate estimate of the write delay time.}\]
1036 CHAPTER 11 MEMORY AND ADVANCED DIGITAL CIRCUITS

1.1.4 Dynamic Memory Cell

Although a variety of DRAM storage cells have been proposed over the years, a particular cell, shown in Fig. 11.21, has become the industry standard. The cell consists of a single n-channel MOSFET, known as the access transistor, and a storage capacitor \(C_s \). The cell is appropriately known as the one-transistor cell. 1

The gate of the transistor is connected to the word line, and its source (drain) is connected to the bit line. Observe that only one bit line is used in DRAMs, whereas in SRAMs both the bit and bit lines are utilized.

The DRAM cell stores its bit of information as charge on the cell capacitor \(C_s \). When the cell is storing a 1, the transistor conducts, thus connecting the storage capacitor \(C_s \) to the bit-line capacitance \(C_B \). When the voltage of the selected word line is raised, the transistor conducts, thus connecting the storage capacitor \(C_s \) to the bit-line capacitance \(C_B \).

Let us now consider the DRAM operation in more detail. As in the static RAM, the row decoder selects a particular row by raising the voltage of its word line. This causes all the access transistors in the selected row to become conductive, thereby connecting the storage capacitors of all the cells in the selected row to their respective bit lines. Thus the cell capacitor \(C_s \) is connected in parallel with the bit-line capacitance \(C_B \), as indicated in Fig. 11.22.

Here, it should be noted that \(C_B \) is typically 30 fF to 50 fF, whereas \(C_s \) is 30 to 50 times larger. Now, if the data bit is a 1, the bit line is precharged to \(V_{DD} \). To find the change of voltage on the bit line as a result of the read operation, we can write

\[
\Delta V = \frac{C_B}{C_B + C_s} \left(V_{DD} - V_c \right)
\]

and since \(C_B \gg C_s \),

\[
\Delta V \approx \frac{C_B}{C_s} (V_{DD} - V_c)
\]

Now, if the cell is storing a 1, \(V_c = V_{DD} - V_t \), and

\[
\Delta V(1) = \frac{C_B}{C_s} (V_{DD} - V_t - V_c)
\]

wheras if the cell is storing a 0, \(V_c = 0 \), and

\[
\Delta V(0) = \frac{C_B}{C_s} (V_{DD} - V_t)
\]

Since usually \(C_B \) is much greater than \(C_s \), these readout voltages are very small. For example, if \(C_B = 30 \) fF, \(V_{DD} = 5 \) V, and \(V_t = 1.5 \) V, \(\Delta V(0) \) will be about -83 mV, and \(\Delta V(1) \) will be 33 mV. This is a best-case scenario, for the 1 level in the cell might very well be below \(V_{DD} - V_t \). Furthermore, in modern memory chips, \(V_{DD} \) is 3.3 V or even lower. In any case, we see that a stored 1 in the cell results in a small positive increment in the bit-line voltage, whereas a stored zero results in a small negative increment. Observe also that the readout process is destructive, since the resulting voltage across \(C_s \) will no longer be \(V_{DD} - V_t \) or 0.

The write operation proceeds similarly to the read operation, except that the data bit to be written, which is impressed on the data input line, is applied by the column decoder to the selected bit line. Thus, if the data bit to be written is a 1, the \(B \)-line voltage is raised to \(V_{DD} \) (i.e., \(C_B \) is charged to \(V_{DD} \)). When the access transistor of the particular cell is turned on, its capacitor \(C_s \) will be charged to \(V_{DD} - V_c \); thus a 1 is written in the cell. Simultaneously, all the other cells in the selected row are simply refreshed.

Although the read and write operations result in automatic refreshing of all the cells in the selected row, provision must be made for the periodic refreshing of the entire memory every 5 to 10 ms, as specified for the particular chip. The refresh operation is carried out in a burst mode, one row at a time. During refresh, the chip will not be available for read or write operations. This is not a serious matter, however, since the interval required to refresh the entire chip is typically less than 2% of the time between refresh cycles. In other words, the memory chip is available for normal operation more than 98% of the time.

1 The name was originally used to distinguish this cell from earlier ones utilizing three transistors.
2 Consider a write-1 operation. The word line is at \(V_{DD} \) and the bit line is at \(V_{DD} \) and the transistor is conducting, charging \(C_s \). The transistor will cease conduction when the voltage on \(C_s \) reaches \(V_{DD} - V_t \), where \(V_t \) is higher than \(V_{DD} \) because of the body effect. We have analyzed this situation in length in Section 10.5 in connection with pass-transistor logic.
11.5 SENSE AMPLIFIERS AND ADDRESS DECODERS

Having studied the circuits commonly used to implement the storage cells in SRAMs and DRAMs, we now consider some of the other important circuit blocks in a memory chip. The design of these circuits, commonly referred to as the memory peripheral circuits, presents exciting challenges and opportunities to integrated-circuit designers: Improving the performance of peripheral circuits can result in denser and faster memory chips that dissipate less power.

11.5.1 The Sense Amplifier

Next to the storage cells, the sense amplifier is the most critical component in a memory chip. Sense amplifiers are essential to the proper operation of DRAMs and their use in SRAMs results in speed and area improvements.

A variety of sense-amplifier designs are in use, some of which closely resemble the active-load MOS differential amplifier studied in Chapter 7. Here, we describe a differential sense amplifier that employs positive feedback. Because the circuit is differential, it can be employed directly in SRAMs where the SRAM cell utilizes both the \(B \) and \(\overline{B} \) lines. On the other hand, the one-transistor DRAM circuit we studied in Section 11.4.2 is a single-ended circuit, utilizing only one bit line. The difference between these two circuits is highlighted in Fig. 11.23. The sense amplifier is required to convert a small differential signal source through the use of the "dummy cell" technique, which we shall discuss shortly. Therefore, we shall assume that the memory cell whose output is to be amplified is connected to both \(B \) and \(\overline{B} \) lines. The amplifier is required to develop a difference output voltage between the \(B \) and \(\overline{B} \) lines. This signal, which ranges between 30 mV and 500 mV depending on the memory type and cell design, will be amplified to the input terminals of the sense amplifier. The sense amplifier in turn responds by providing a full-swing (0 to \(V_{DD} \)) signal at its output terminals. The particular amplifier circuit we shall discuss here has a rather unusual property: Its output and input terminals are the same!

A Sense Amplifier with Positive Feedback

Figure 11.23 shows the sense amplifier together with some of the other columns of a RAM chip. Note that the sense amplifier is nothing but the familiar latch formed by cross-coupling two CMOS inverters. One inverter is implemented by transistors \(Q_3 \) and \(Q_4 \), and the other by transistors \(Q_5 \) and \(Q_6 \). Transistors \(Q_1 \) and \(Q_2 \) act as switches that connect the sense amplifier to ground and \(V_{DD} \) only when data-sensing action is required. Otherwise, \(Q_1 \) is low and the sense amplifier is turned off. This conserves power, an important consideration because usually there is one sense amplifier per column, resulting in thousands of sense amplifiers per chip. Note, again, that terminals \(x \) and \(y \) are both the input and the output terminals of the amplifier. As indicated, these I/O terminals are connected to the \(B \) and \(\overline{B} \) lines. The amplifier is required to detect a small signal appearing between \(B \) and \(\overline{B} \), and to amplify it to provide a full-swing signal at \(B \) and \(\overline{B} \). For instance, if during a read operation the cell had a stored 1, then a small positive voltage would develop between \(B \) and \(\overline{B} \) with \(v_B \) higher than \(v_{\overline{B}} \). The amplifier will then cause \(v_B \) to rise to \(V_{DD} \) and \(v_{\overline{B}} \) to fall to 0 V. This 1 output is then directed to the chip I/O pin by the column decoder (not shown) and at the same time is used to rewrite a 1 in the DRAM cell, thus performing the restore operation that is required because the DRAM readout process is destructive.

Figure 11.23 also shows the precharge and equalization circuit. Operation of this circuit is straightforward: When \(v_B \) goes high prior to a read operation, all three transistors conduct.
While \(Q_1 \) and \(Q_2 \) precharge the \(B \) and \(\bar{B} \) lines to \(V_{DD}/2 \), transistor \(Q_3 \) helps speed up this process by equalizing the initial voltages on the two lines. This equalization is critical to the proper operation of the sense amplifier. Any voltage difference present between \(B \) and \(\bar{B} \) prior to commencement of the read operation can result in erroneous interpretation by the sense amplifier of its input signal. In Fig. 11.23, we show only one of the cells in this particular column, namely, the cell whose word line is activated. The cell can be either an SRAM or a DRAM cell. All other cells in this column will not be connected to the \(B \) and \(\bar{B} \) lines (because their word lines will remain low).

Let us now consider the sequence of events during a read operation:

1. The precharge and equalization circuit is activated by raising the control signal \(\phi_c \). This will cause the \(B \) and \(\bar{B} \) lines to be at equal voltages, equal to \(V_{DD}/2 \). The clock \(\phi_c \) then goes low, and the \(B \) and \(\bar{B} \) lines are left to float for a brief interval.

2. The word line goes up, connecting the cell to the \(B \) and \(\bar{B} \) lines. A voltage then develops between \(B \) and \(\bar{B} \), with \(v_B \) higher than \(v_{\bar{B}} \) if the accessed cell is storing a 1, or \(v_B \) lower than \(v_{\bar{B}} \) if the accessed cell is storing a 0. To keep the cell design simple, and to facilitate operation at higher speeds, the readout signal, which the cell is required to provide between \(B \) and \(\bar{B} \), is kept small (typically, 30-500 mV).

3. Once an adequate difference voltage signal has been developed between \(B \) and \(\bar{B} \) by the storage cell, the sense amplifier is turned on by connecting it to ground and \(V_{DD} \) through \(Q_1 \) and \(Q_2 \), activated by raising the sense-control signal \(\phi_s \). Because initially the input terminals of the inverters are at \(V_{DD}/2 \), the inverters will be operating in their transition region where the gain is high (Section 10.2). It follows that initially the latch will be operating at its unstable equilibrium point. Thus, depending on the signal between the input terminals, the latch will quickly move to one of its two stable equilibrium points (refer to the description of the latch operation in Section 11.1). This is achieved by the regenerative action, inherent in positive feedback. Figure 11.24 clearly illustrates this point by showing the waveforms of the signal on the bit line for both a read-1 and a read-0 operation. Observe that once activated, the sense amplifier causes the small initial difference, \(\Delta V(1) \) or \(\Delta V(0) \), provided by the cell, to grow exponentially to either \(V_{DD} \) (for a read-1 operation) or 0 (for a read-0 operation).

The waveforms of the signal on the \(B \) line will be complementary to those shown in Fig. 11.24 for the \(\bar{B} \) line. In the following, we quantify the process of exponential growth of \(v_B \) and \(v_{\bar{B}} \).

A Closer Look at the Operation of the Sense Amplifier

Developing a precise expression for the output signal of the sense amplifier shown in Fig. 11.23 is a rather complex task requiring the use of large-signal (and thus nonlinear) models of the inverter voltage transfer characteristic, as well as taking the positive feedback into account. We will not do this here; rather, we shall consider the operation in a semiquantitative way.

Recall that at the time the sense amplifier is activated, each of its two inverters is operating in the transition region at \(V_{DD}/2 \). Thus, for small-signal operation, each inverter can be modeled using \(g_{mN} \) and \(g_{mP} \) the transconductances of \(Q_2 \) and \(Q_3 \), respectively, evaluated at an input bias of \(V_{DD}/2 \). Specifically, a small-signal \(v \) superimposed on \(V_{DD}/2 \) at the input of one of the inverters gives rise to an inverter output current signal of \(g_{mN}v = g_{mP}v \). This output current is delivered to one of the capacitors, \(C_B \) or \(C_{\bar{B}} \). The voltage thus developed across the capacitor is then fed back to the other inverter and is multiplied by its \(g_{m} \), which gives rise to an output current feeding the other capacitor, and so on, in a regenerative process. The positive feedback in this loop will mean that the signal around the loop, and thus \(v_B \) and \(v_{\bar{B}} \), will rise or decay exponentially (see Fig. 11.24) with a time constant of \(C_B/g_{mB} \) (or \(C_{\bar{B}}/g_{m}\)), since we have been assuming \(C_B = C_{\bar{B}} \). Thus, for example, in a read-1 operation we obtain

\[
\begin{align*}
\frac{v_B}{V_{DD}} &= 2 \Delta V(1)e^{\frac{g_{mN}}{C_B}t} \\
\Delta V(0) &= \frac{V_{DD}}{2} - \Delta V(0)e^{\frac{g_{mP}}{C_{\bar{B}}}t}
\end{align*}
\]

whereas in a read-0 operation,

\[
\begin{align*}
\frac{v_{\bar{B}}}{V_{DD}} &= 2 \Delta V(0)e^{\frac{g_{mP}}{C_{\bar{B}}}t} \\
\Delta V(1) &= \frac{V_{DD}}{2} - \Delta V(1)e^{\frac{g_{mN}}{C_B}t}
\end{align*}
\]

Because these expressions have been derived assuming small-signal operation, they describe the exponential growth (decay) of \(v_B \) reasonably accurately only for values close to \(V_{DD}/2 \). Nevertheless, they can be used to obtain a reasonable estimate of the time required to develop a particular signal level on the bit line.

EXAMPLE 11.3

Consider the sense-amplifier circuit of Fig. 11.23 during the reading of a 1. Assume that the storage cell provides a voltage increment on the \(B \) line of \(\Delta V(1) = 0.1 \) V, if the NMOS devices in the amplifiers have \(V_{thN} = 12 \) mV/\(\mu \)m and the PMOS devices have \(V_{thP} = 30 \) mV/\(\mu \)m. Asymptotic analysis allows us to assume that the other parameters of the process technology are as specified in Example 11.2. Let \(C_B = 1 \) pF.

Solution

First, we determine the transconductances \(g_{mN} \) and \(g_{mP} \)

\[
\begin{align*}
g_{mN} &= \mu_mC_{ox}\frac{W}{L}(V_{DD} - V_{thN}) \\
&= 50 \times \frac{1}{2}(2.5 - 1) \\
&= 0.225 \text{ mA/V}
\end{align*}
\]
11.5 Sense Amplifiers and Address Decoders

Basically, each bit line is split into two identical halves. Each half-line is connected to half the cells in the column and to an additional cell, known as a dummy cell, having a storage capacitor \(C_d = C_p \). When a word line on the left side is selected for reading, the dummy cell on the right side (controlled by \(\phi_0 \)) is also selected, and vice versa; that is, when a word line on the right side is selected, the dummy cell on the left (controlled by \(\phi_0 \)) is also selected. In effect, then, the dummy cell serves as the other half of a differential DRAM cell.

When the left-half bit line is in operation, the right-half bit line acts as its complement (or \(\bar{B} \) line) and vice versa.

Operation of the circuit in Fig. 11.25 is as follows: The two halves of the line are precharged to \(V_{DD}/2 \) and their voltages are equalized. At the same time, the capacitors of the two dummy cells are precharged to \(V_{DD}/2 \). Then a word line is selected, and the dummy cell on the other side is enabled (with \(\phi_0 \) or \(\phi_0 \) raised to \(V_{DD} \)). Thus the half-line connected to the selected cell will develop a voltage increment (around \(V_{DD}/2 \)) of \(\Delta V(1) \) or \(\Delta V(0) \) depending on whether a 1 or a 0 is stored in the cell. Meanwhile, the other half of the line will have its voltage held equal to that of \(C_d \) (i.e., \(V_{DD}/2 \)). The result is a differential signal of \(\Delta V(1) \) or \(\Delta V(0) \) that the sense amplifier detects and amplifies when it is enabled. As usual, by the end of the regenerative process, the amplifier will cause the voltage on one half of the line to become \(V_{DD} \) and that on the other half to become 0.

EXERCISES

11.12 If it is required to reduce the time \(\Delta t \) of the sense-amplifier circuit in Example 11.1 to 6 ns by increasing the ratio \(\beta \) of the transistors (while retaining the matched design of each inverter), what must the \((W/L)\) ratios of the \(p \) - and \(n \) - channel devices become?

Ans. \((W/L)\) = 12.5

11.13 If in the sense amplifier of Example 11.1, the signal available from the cell is only half as large (i.e., only 50 mV), what will \(\Delta t \) become?

Ans. 8.19 ns, an increase of 23%.

11.5.2 The Row-Address Decoder

As described in Section 11.3, the row-address decoder is required to select one of the \(2^N \) word lines in response to an \(N \)-bit address input. As an example, consider the case \(N = 3 \) and denote the three address bits \(A_0, A_1, \) and \(A_2 \), and the eight word lines \(W_0, W_1, \ldots, W_7 \). Conventionally, word line \(W_0 \) will be high when \(A_0 = 0, A_1 = 0, \) and \(A_2 = 0 \); thus, we can express \(W_0 \) as a Boolean function of \(A_0, A_1, \) and \(A_2 \).

\[
W_0 = A_0 A_1 A_2 = A_0 + A_1 + A_2
\]

Thus the selection of \(W_0 \) can be accomplished by a three-input NOR gate whose three inputs are connected to \(A_0, A_1, \) and \(A_2 \), and whose output is connected to word line 0. Word line \(W_7 \) will be high when \(A_0 = 1, A_1 = 1, \) and \(A_2 = 0 \); thus

\[
W_7 = A_0 A_1 A_2 = A_0 + A_1 + A_2
\]

Thus the selection of \(W_7 \) can be realized by a three-input NOR gate whose three inputs are connected to \(A_0, A_1, \) and \(A_2 \), and whose output is connected to word line 7. We can thus see that this address decoder can be realized by eight three-input NOR gates. Each NOR gate is...
fed with the appropriate combination of address bits and their complements, corresponding to the word line to which its output is connected.

A simple approach to realizing these NOR functions is provided by the matrix structure shown in Fig. 11.26. The circuit shown is a dynamic one (Section 10.6). Attached to each row line is a p-channel device that is activated, prior to the decoding process, using the precharge control signal ϕ_p. During precharge (ϕ_p low), all the word lines are pulled high to V_{DD}. It is assumed that at this time the address input bits have not yet been applied and all the inputs are low; hence there is no need for the circuit to include the evaluation transistor utilized in dynamic logic gates. Then, the decoding operation begins when the address bits and their complements are applied. Observe that the NMOS transistors are placed so that the word lines not selected will be discharged. For any input combination, only one word line will not be discharged, and thus its voltage remains high at V_{DD}. For instance, row 0 will be high only when $A_0 = 0$, $A_1 = 0$, and $A_2 = 0$; this is the only combination that will result in all three transistors connected to row 0 being cut off. Similarly, row 3 has transistors connected to A_0, A_1, and A_2, and thus it will be high when $A_0 = 1$, $A_1 = 1$, $A_2 = 0$, and so on. After the decoder outputs have stabilized, the output lines are connected to the word lines of the array, usually via clock-controlled transmission gates. This decoder is known as a NOR decoder. Observe that because of the precharge operation, the decoder circuit does not dissipate static power.

EXERCISE

11.34 How many transistors are needed for a NOR row decoder with an M-bit address?

Ans. M^2 NMOS + $2M$ PMOS = $2M(M + 1)$

11.5.3 The Column-Address Decoder

From the description in Section 11.3, the function of the column-address decoder is to connect one of the 2^N bit lines to the data I/O line of the chip. As such, it is a multiplexer and can be implemented using pass-transistor logic (Section 10.5) as shown in Fig. 11.27. Here, each bit line is connected to the data I/O line through an NMOS transistor. The gates of the pass transistors are controlled by 2^N lines, one of which is selected by a NOR decoder similar to that used for decoding the row address.

An alternative implementation of the column decoder that uses a smaller number of transistors (but at the expense of slower speed of operation) is shown in Fig. 11.28. This circuit, known as a tree decoder, has a simple structure of pass transistors. Unfortunately, since a relatively large number of transistors can exist in the signal path, the resistance of the bit lines increases, and the speed decreases correspondingly.

FIGURE 11.26 A NOR address decoder in array form. One out of eight lines (row lines) is selected using a 3-bit address.

FIGURE 11.27 A column decoder realized by a combination of a NOR decoder and a pass-transistor multiplexer.
11.6 READ-ONLY MEMORY (ROM)

As mentioned in Section 11.3, read-only memory (ROM) is memory that contains fixed data patterns. It is used in a variety of digital-system applications. Currently, a very popular application is the use of ROM in microprocessor systems to store the instructions of the system’s basic operating program. ROM is particularly suited for such an application because it is nonvolatile; that is, it retains its contents when the power supply is switched off.

Depending on whether the array contains MOSFETs whose gates are connected to the word lines, whose sources are grounded, and whose drains are connected to the bit lines, each ROM can be thought of as 8 words of 4 bits. Each bit line is connected to the power supply via a PMOS load transistor, in the manner of pseudo-NMOS logic (Section 10.4). An NMOS transistor exists in a particular cell if the cell is storing a 1; a cell storing a 0 has no MOSFET. The ROM can be thought of as 8 words of 4 bits.

11.6.1 A MOS ROM

Figure 11.29 shows a simplified 32-bit (or 8-word x 4-bit) MOS ROM. As indicated, the memory consists of an array of n-channel MOSFETs whose gates are connected to the word lines, whose sources are grounded, and whose drains are connected to the bit lines. Each bit line is connected to the power supply via a PMOS load transistor, in the manner of pseudo-NMOS logic (Section 10.4). An NMOS transistor exists in a particular cell if the cell is storing a 1; a cell storing a 0 has no MOSFET. This ROM can be thought of as 8 words of 4 bits.

The row decoder selects each of the 8 words by raising the voltage of the corresponding word line. The cell transistors connected to this word line will then conduct, thus pulling the voltage of the bit lines (to which transistors in the selected row are connected) down through the PMOS transistors. The bit lines that are connected to cells (of the selected word) without transistors (i.e., the cells that are storing 00) will remain at the power-supply voltage (logic 1) because of the action of the pull-up PMOS load devices. In this way, the bits of the addressed word can be read.

A disadvantage of the ROM circuit in Fig. 11.29 is that it dissipates static power. Specifically, when a word is selected, the transistors in this particular row will conduct static current that is supplied by the PMOS load transistors. Static power dissipation can be eliminated by a simple change. Rather than grounding the gate terminals of the PMOS transistors, we can connect these transistors to a precharge line φ that is normally high. Just before a reading operation, φ is lowered and the bit lines are precharged to VDD through the PMOS transistors. The precharge signal φ then goes high, and the word line is selected. The bit lines that have transistors in the selected word are then discharged, thus indicating stored zeros, whereas those lines for which no transistor is present remain at VDD, indicating stored ones.

EXERCISE

11.36. The purpose of this exercise is to estimate the various delay times involved in the operation of a ROM. Consider the ROM in Fig. 11.29 with the gates of the PMOS devices disconnected from ground and connected to a precharge control signal φ. Let all the NMOS devices have W/L = 6 μm/2 μm and all the PMOS devices have W/L = 24 μm/2 μm. Assume that μCA = 50 μA/μm², μC = 20 μA/μm², VPP = 5 V, and VDD = 5 V.

(a) During the precharge interval, φ is lowered to 0 V. Estimate the time required to charge a bit line from 0 V to 5 V. Use as an average charging current the current supplied by a PMOS transistor at a bit-line voltage halfway through the 0 V to 5 V excursion (i.e., 2.5 V). The bit-line capacitance is 2 pF. Note that all NMOS transistors are cut off at this time.

(b) After completion of the precharge interval and the return of φ to VDD, the row decoder raises the voltage of the selected word line. Because of the finite resistance and capacitance of the word line, the voltage rises exponentially toward VDD. If the resistance of each of the polysilicon word lines is 3 kΩ and the capacitance between the word line and ground is 3 pF, what is the (10% to 90%) rise time of the word-line voltage? What is the voltage reached at the end of one time constant?

(c) We account for the exponential rise of the word-line voltage by approximating the word-line voltage by a step equal to the voltage reached in one time constant. Find the interval Δt required for an NMOS transistor to discharge the bit line and lower its voltage by 0.5 V. (It is assumed that the sense amplifier needs a 0.5-V change at its input to detect a low bit value.)

Ans. (a) 6.1 ns; (b) 19.8 ns, 3.16 V; (c) 2.9 ns
11.6.2 Mask-Programmable ROMs
The data stored in the ROMs discussed thus far is determined at the time of fabrication, according to the user's specifications. However, to avoid having to custom-design each ROM from scratch (which would be extremely costly), ROMs are manufactured using a process known as mask programming. As explained in Appendix A, integrated circuits are fabricated on a wafer of silicon using a sequence of processing steps that include photomasking, etching, and diffusion. In this way, a pattern of junctions and interconnections is created on the surface of the wafer. One of the final steps in the fabrication process consists of coating the surface of the wafer with a layer of aluminum and then selectively (using a mask) etching away portions of the aluminum, leaving aluminum only where interconnections are desired. This last step can be used to program (i.e., to store a desired pattern in) a ROM. For instance, if the ROM is made of MOS transistors as in Fig. 11.29, MOSFETs can be included at all bit locations, but only the gates of those transistors where Os are to be stored are connected to the word lines; the gates of transistors where Is are to be stored are not connected. This pattern is determined by the mask, which is produced according to the user's specifications.

The economic advantages of the mask programming process should be obvious: All ROMs are fabricated similarly; customization occurs only during one of the final steps in fabrication.

11.6.3 Programmable ROMs (PROMs and EPROMs)
PROMs are ROMs that can be programmed by the user, but only once. A typical arrangement employed in BJT PROMs involves using polysilicon fuses to connect the emitter of each BIT to the corresponding digit line. Depending on the desired content of a ROM cell, the fuse can be either left intact or blown out using a large current. The programming process is obviously irreversible.

An erasable programmable ROM, or EPROM, is a ROM that can be erased and reprogrammed as many times as the user wishes. It is therefore the most versatile type of read-only memory. It should be noted, however, that the process of erasure and reprogramming is time-consuming and is intended to be performed only infrequently.

State-of-the-art EPROMs use variants of the memory cell whose cross section is shown in Fig. 11.30(a). The cell is basically an enhancement-type n-channel MOSFET with two...
Memory and Advanced Digital Circuits

CHAPTER 11

The other gate, called a select gate, functions in the same manner as the gate of a regular n-channel enhancement MOSFET. One of the gates is not electrically connected to any other part of the circuit; rather, it is left floating and is appropriately called a floating gate. The other gate is an enhancement MOSFET. An important class of EEPROMs using a floating gate variant and implementing block erasure are referred to as Flash memories.

6 See Appendix A for a description of silicon-gate technology.

To return the floating-gate MOSFET to its not-programmed state, the charge stored on the floating gate has to be returned to the substrate. This erasure process can be accomplished by illuminating the cell with ultraviolet light of the correct wavelength (2537 Å) for a specified duration. The ultraviolet light imparts sufficient photon energy to the trapped electrons to allow them to overcome the inherent energy barrier, and thus be transported through the oxide, back to the substrate. To allow this erasure process, the EPROM package contains a quartz window. Finally, it should be noted that the device is extremely durable, and can be erased and reprogrammed many times.

A more versatile programmable ROM is the electrically erasable PROM (or EEPROM). As the name implies, an EEPROM can be erased and reprogrammed electrically without the need for ultraviolet illumination. EEPROMs utilize a variant of the floating-gate MOSFET. An important class of EEPROMs using a floating gate variant and implementing block erasure are referred to as Flash memories.
11.7 Emitter-Coupled Logic (ECL)

Emitter-coupled logic (ECL) is the fastest logic circuit family. High speed is achieved by operating all transistors out of saturation, thus avoiding storage-time delays, and by keeping the logic signal swings relatively small (about 0.8 V or less), thus reducing the time required to charge and discharge the various load and parasitic capacitances. Randomization in ECL is avoided by using the BJT differential pair as a current switch. The BJT differential pair was studied in Chapter 7, and we urge the reader to review the introduction given in Section 7.3 before proceeding with the study of ECL.

11.7.1 The Basic Principle

Emitter-coupled logic is based on the use of the current-steering switch introduced in Section 1.7. Such a switch can be most conveniently realized using the differential pair shown in Fig. 11.33. The pair is biased with a constant-current source \(I \), and one side is connected to a reference voltage \(V_R \). As shown in Section 7.3, the current can be steered to either \(Q_1 \) or \(Q_2 \) under the control of the input signal \(v_i \). Specifically, when \(v_i \) is greater than \(V_R \) by about 40 mV (+100 mV), nearly all the current \(I \) is conducted by \(Q_2 \), and thus for \(n = 1 \), \(v_{EQ} = V_R - R_C \) (and simultaneously, the current through \(Q_2 \) will be nearly zero, and thus \(v_{EQ} = V_R \)).

Conversely, when \(v_i \) is lower than \(V_R \) by about 40 mV, most of the current \(I \) will flow through \(Q_1 \) and the current through \(Q_2 \) will be nearly zero. Thus, \(v_{EQ} = V_R - R_C \) and \(v_{EQ} = V_R - R_C \). The preceding description suggests that as a logic element, the differential pair realizes an inversion function \(v_{EQ} \) of \(v_i \). The output logic levels are \(v_{EQ} = V_R \) and \(v_{EQ} = V_R - R_C \), and thus the output logic swing is \(R_C \). A number of additional remarks can be made concerning this circuit:

1. The differential nature of the circuit makes it less susceptible to picked-up noise. In particular, an interfering signal will tend to affect both sides of the differential pair similarly and thus will not result in current switching. This is the common-mode rejection property of the differential pair (see Section 7.3).
2. The current drawn from the power supply remains constant during switching. Thus, unlike CMOS (and TTL), no current spikes occur in ECL, eliminating an important source of noise in digital circuits. This is a definite advantage, especially since ECL is usually designed to operate with small signal swings and has correspondingly low noise margins.
3. The output signal levels are both referenced to \(V_R \), and thus can be made particularly stable by operating the circuit with \(V_R = 0 \), in other words, by utilizing a negative power supply and connecting the \(V_R \) line to ground. In this case, \(V_{EQ} = 0 \) and \(V_{EQ} = -R_C \).
4. Some means has to be provided to make the output signal levels compatible with those at the input so that one gate can drive another. As we shall see shortly, practical ECL gate circuits incorporate a level-shifting arrangement that serves to center the output signal levels on the value of \(V_R \).
5. The availability of complementary outputs considerably simplifies logic design with ECL.

FIGURE 11.33 The basic element of ECL is the differential pair. Here, \(V_R \) is a reference voltage.

Although higher speeds of operation can be obtained with gallium arsenide (GaAs) circuits, the latter are not available as off-the-shelf components for conventional digital system design. GaAs digital circuits are not covered in this book; however, a substantial amount of materials on this subject can be found on the CD accompanying the book and on the website at www.sedrasmith.org.

6 This is in sharp contrast to the technique utilized in a non-inverting variant of transistor-transistor logic (TTL) known as Schottky TTL. There, a Schottky diode is placed across the CBJ junction to shunt away some of the base current and, owing to the low voltage drop of the Schottky diode, the CBJ is almost forward biased.

11.7.2 ECL Families

Currently there are three popular forms of commercially available ECL—namely, ECL 10K and ECL 100K. The ECL 100K series features gate delays of the order of 0.75 ns and dissipates about 40 mW/gate, for a delay-power product of 30 pJ. Although its power dissipation is relatively high, the 100K series provides the shortest available gate delay. The ECL 10K series is slightly slower; it features a gate propagation delay of 2.5 ns and a power dissipation of 25 mW for a delay-power product of 50 pJ. Although the value of \(DP \) is higher than that obtained in the 100K series, the 10K series is easier to use. This is because the rise and fall times of the pulse signals are deliberately made longer, thus reducing signal coupling, or crosstalk, between adjacent signal lines. ECL 10K has an "edge speed" of about 3.5 ns, compared with the approximately 1 ns of ECL 100K. To give concreteness to our study of ECL, in the following we shall consider the popular ECL 10K in some detail. The same techniques, however, can be applied to other types of ECL.

In addition to its usage in small- and medium-size integrated-circuit packages, ECL is also employed in large-scale and VLSI applications. A variant of ECL known as current-mode logic (CML) is utilized in VLSI applications [see Treadway (1989) and Wilk (1992)].

11.7.3 The Basic Gate Circuit

The basic gate circuit of the ECL 10K family is shown in Fig. 11.34. The circuit consists of three parts. The network composed of \(Q_1, Q_2, Q_3, R_C, R_E \), and \(R_I \) generates a reference voltage.
\[V_R = -1.32 \text{ V} \]

The reference voltage is made to change with temperature in a predetermined manner to keep the noise margins almost constant. Also, the reference voltage \(V_R \) is made relatively insensitive to variations in the power-supply voltage \(V_{EE} \).

EXERCISE

11.18 Figure E11.18 shows the circuit that generates the reference voltage \(V_R \). Assuming that the voltage drop across each of \(D_1, D_2 \), and the base-emitter junction of \(Q_2 \) is 0.75 V, calculate the value of \(V_R \). Neglect the base current of \(Q_x \).

The second part, and the heart of the gate, is the differential amplifier formed by \(Q_2 \) and either \(Q_A \) or \(Q_B \). This differential amplifier is biased not by a constant-current source, as was done in the circuit of Fig. 11.33, but with a resistance \(R_E \) connected to the negative supply \(-V_{EE}\). Nevertheless, we will shortly show that the current in \(R_E \) remains approximately constant over the normal range of operation of the gate. One side of the differential amplifier consists of the reference transistor \(Q_R \), whose base is connected to the reference voltage \(V_R \). The other side consists of a number of transistors (two in the case shown), connected in parallel, with separated bases, each connected to a gate input. If the voltages applied to \(A \) and \(B \) are at the logic-0 level, which, as we will soon find out, is about 0.4 V below \(V_R \), both \(Q_A \) and \(Q_B \) will be off and the current \(i_E \) in \(R_E \) will flow through the reference transistor \(Q_R \). The resulting voltage drop across \(R_{C2} \) will cause the collector voltage of \(Q_R \) to be low.

On the other hand, when the voltage applied to \(A \) or \(B \) is at the logic-1 level, which, as we will show shortly, is about 0.4 V above \(V_R \), transistor \(Q_A \) or \(Q_B \), or both, will be on and \(Q_R \) will be off. Thus the current \(i_E \) will flow through \(Q_A \) or \(Q_B \), or both, and the almost equal current flows through \(R_{C2} \). The resulting voltage drop across \(R_{C2} \) will cause the collector voltage to drop. Meanwhile, since \(Q_R \) is off, its collector voltage rises. We thus see that the voltage at the collector of \(Q_R \) will be high if \(A \) or \(B \), or both, is high, and thus at the collector of \(Q_A \), the OR logic function, \(A + B \), is realized. On the other hand, the common collector of \(Q_A \) and \(Q_B \) will be high only when \(A \) and \(B \) are simultaneously low. Thus, at the common
EXERCISE 11.19

In Fig. 11.34 let open, find the current through \(h_1 \) and \(h_2 \). With input terminals \(L \) and \(Q \) of Fig. 11.34, \(V_{CQ} = 0.75 \) V, and assume that \(V_{BE} \) is very high. Use \(V^* \) of the emitter followers to determine \(V_{CE} \) and \(V_{CC} \) at the collector of \(A \) and at the common collector of the input transistors \(Q_1 \) and \(Q_2 \). Simplify the function. The availability of complementary outputs is an important advantage of ECL, it simplifies logic design and avoids the use of additional inverters with associated time delay. It should be noted that the resistance connecting each of the gate input terminals to the negative supply enables the user to leave an unused input terminal open. An open input terminal will be pulled down to the negative supply voltage, and its associated transistor will be off.

FIGURE 11.35 The proper way to connect high-speed logic gates such as ECL. Properly terminating the transmission line connecting the two gates eliminates the “ringing” that would otherwise corrupt the logic signals. (See Section 11.7.6.)

11.74 Voltage Transfer Characteristics

Having provided a qualitative description of the operation of the ECL gate, we shall now derive its voltage transfer characteristics. This will be done under the conditions that the outputs are terminated in the manner indicated in Fig. 11.35. Assuming that the \(B \) input is low and thus \(Q_3 \) is off, the circuit simplifies to that shown in Fig. 11.36. We wish to analyze this circuit to determine \(V_{OL} \) versus \(I_{OL} \) and \(V_{OH} \) versus \(I_{OH} \) (where \(I_{OH} = I_{OL} \)).

In the analysis to follow, we shall make use of the exponential \(i = v^R \) characteristic of the BJT. Since the BJTs used in ECL circuits have small areas (in order to have small capacitances and hence high/low

The third part of the ECL gate circuit is composed of the two emitter followers, \(Q_2 \) and \(Q_3 \). The emitter followers do not have on-chip loads, since in many applications of high-speed logic circuits the gate output drives a transmission line terminated at the other end, as indicated in Fig. 11.35. (More on this later in Section 11.7.6.)

The emitter followers have two purposes. First, they shift the level of the output signals by one \(V_{BE} \) drop. Thus, using the results of Exercise 11.19, we see that the output levels become approximately \(-1.75 \) V and \(-0.75 \) V. These shifted levels are centered approximately around the reference voltage \(V_T = -1.32 \) V, which means that one gate can drive another. This compatibility of logic levels at input and output is an essential requirement in the design of gate circuits.

The second function of the output emitter followers is to provide the gate with low output resistances and with large output currents required for charging load capacitances. Since these large transient currents can cause spikes on the power-supply line, the collectors of the emitter followers are connected to a power-supply terminal \(V_{CC} \) separate from that of the differential amplifier and the reference-voltage circuit, \(V_{CC2} \). Here we note that the supply current of the differential amplifier and the reference-voltage circuit, \(I_{OL} \) and \(I_{OH} \), are small. We will therefore assume that at an emitter current of 1 mA an ECL transistor has a \(V_{BE} \) drop of 0.75 V.

The OR Transfer Curve Figure 11.37 is a sketch of the OR transfer characteristic, \(V_{OL} \) versus \(I_{OL} \), with the parameters \(V_{CC}, V_{OH}, V_{OL}, V_{BE}, V_{Q}, \) and \(V_{OUT} \) indicated. However, to simplify the calculation of \(V_{OH} \) and \(V_{OL} \), we shall use an alternative to the unity-gain definition. Specifically, we shall assume that at point \(x \) transistor \(Q_3 \) is conducting 1% of \(I_{OL} \) while \(Q_4 \) is conducting 99% of \(I_{OL} \). The reverse will be assumed for point \(y \). Thus at point \(x \) we have

\[
\frac{I_x}{I_{OL}} = 0.01
\]

Using the exponential \(i = v^R \) relationship, we obtain

\[
V_x = V_T \ln \left(1 - \frac{I_x}{I_{OL}} \right)
\]

which gives

\[
V_x = -1.32 \ln (1 - 0.01) = -1.32 \ln (0.99) = 1.2 \text{ V}
\]

Assuming \(Q_4 \) and \(Q_5 \) to be matched, we can write

\[
V_T = V_x = V_a = V_b
\]
which can be used to find \(V_{IH} \) as

\[
V_{IH} = -1.205 \text{ V}
\]

To obtain \(V_{OL} \) we note that \(Q_A \) is off and \(Q_R \) carries the entire current \(I_E \), given by

\[
I_E = \frac{V_n - V_{BE}}{R_C} = \frac{-1.32 - 0.75 + 5.2}{0.779} = 4 \text{ mA}
\]

(If we wish, we can iterate to determine a better estimate of \(V_{BE} \) and hence of \(I_E \).)

Assuming that \(Q_R \) has a high \(\beta \) so that its \(\alpha = 1 \), its collector current will be approximately 4 mA.

If we neglect the base current of \(Q_2 \), we obtain for the collector voltage of \(Q_R \)

\[
y = -4 \times 0.245 = -0.98 \text{ V}
\]

Thus a first approximation for the value of the output voltage \(V_{OL} \) is

\[
V_{OL} = V_c - V_{BE} = -0.98 - 0.75 = -1.73 \text{ V}
\]

We can use this value to find the emitter current of \(Q_2 \) and then iterate to determine a better estimate of its base-emitter voltage. The result is \(V_{BE} = 0.79 \text{ V} \) and, correspondingly,

\[
V_{EC} = -1.77 \text{ V}
\]

At this value of output voltage, \(Q_2 \) supplies a load current of about 4.6 mA.

To find the value of \(V_{OH} \) we assume that \(Q_3 \) is completely cut off (because \(V_h = V_R \)). Thus the circuit for determining \(V_{OH} \) simplifies to that in Fig. 11.38. Analysis of this circuit assuming \(\beta_2 = 100 \) results in \(V_{BE} = 0.83 \text{ V} \), \(I_E = 22.4 \text{ mA} \), and

\[
V_{OH} = -0.88 \text{ V}
\]

\[\]
The slope of the segment of the transfer characteristic beyond point v_i is, however, not unity but is about 0.5 because as Q_s is driven deeper into saturation, a portion of the increment in v_i appears as an increment in the base-collector forward-bias voltage. The reader is urged to solve Exercise 11.21, which is concerned with the details of the NOR transfer characteristic.

EXERCISE

11.21 Consider the circuit in Fig. 11.40. (a) For $v_i = V_{on} = -1.205 \text{ V}$, find v_{out}. (b) For $v_i = V_{off} = 0.88 \text{ V}$, find v_{out}. (c) Find the slope of the transfer characteristic at the point $v_i = -0.88 \text{ V}$. (d) Find the value of v_i at which Q_s saturates (i.e., V_{CB}^s). Assume that $V_{on} = 0.75 \text{ V}$ at a current of 1 mA, $V_{off} = 0.3 \text{ V}$, and $B = 100$.

Ans. (a) -1.70 V; (b) -1.79 V; (c) -0.24 V/ V; (d) -0.58 V

Manufacturers’ Specifications

ECL manufacturers supply gate transfer characteristics of the form shown in Figs. 11.37 and 11.39. A manufacturer usually provides such curves measured at a number of temperatures. In addition, at each relevant temperature, worst-case values for the parameters V_{on}, V_{off}, and V_{up} are given. These worst-case values are specified with the inevitable component tolerances taken into account. As an example, Motorola specifies for MECL 10,000 at 25°C the following worst-case values apply:

- $V_{on} = -1.475 \text{ V}$
- $V_{off} = -1.105 \text{ V}$
- $V_{up} = -0.980 \text{ V}$

These values can be used to determine worst-case noise margins,

$$NM = 0.155 \text{ V} \quad NM = 0.125 \text{ V}$$

which are about half the typical values previously calculated.

For additional information on MECL specifications the interested reader is referred to the Motorola (1988, 1989) publications listed in the bibliography at the end of the book.

11.7.5 Fan-Out

When the input signal to an ECL gate is low, the input current is equal to the current that flows in the 50-kΩ pull-down resistor. Thus

$$I_{le} = \frac{-1.75 \times 5.2}{50} = 69 \mu\text{A}$$

When the input is high, the input current is greater because of the base current of the input transistor. Thus, assuming a transistor β of 100, we obtain

$$I_{lh} = \frac{-0.88 \times 5.2 + 0.4}{101} = 126 \mu\text{A}$$

Both these current values are quite small, which, coupled with the very small output resistance of the ECL gate, ensures that little degradation of logic-signal levels results from the input currents of fan-out gates. It follows that the fan-out of ECL gates is not limited by

*a MECL is the trade name used by Motorola for its ECL.
11.76 Speed of Operation and Signal Transmission

The speed of operation of a logic family is measured by the delay of its basic gate and by the rise and fall times of the output waveforms. Typical values of these parameters for ECL have already been given. Here we should note that because the output circuit is an emitter follower, the rise time of the output signal is shorter than its fall time, since on the rising edge of the output pulse the emitter follower functions and provides the output current required to charge up the load and parasitic capacitances. On the other hand, as the signal at the base of the emitter follower falls, the emitter follower cuts off, and the load capacitance discharges through the combination of load and pull-down resistances.

To take full advantage of the very high speed of operation possible with ECL, special attention should be paid to the method of interconnecting the various logic gates in a system. To appreciate this point, we shall briefly discuss the problem of signal transmission.

ECL deals with signals whose rise times may be 1 ns or even less, the time it takes for light to travel only 30 cm or so. For such signals a wire and its environment become a relatively complex circuit element along which signals propagate with finite speed (perhaps half the speed of light—i.e., 15 cm/ns). Unless special care is taken, energy that reaches the end of such a wire is not absorbed but rather returns as a reflection to the transmitting end, where (without special care) it may be re-reflected. The result of this process of reflection is what can be observed as ringing, a damped oscillatory excursion of the signal about its final value.

Unfortunately, ECL is particularly sensitive to ringing because the signal levels are so small. Thus it is important that transmission of signals be well controlled, and that energy absorbed, to prevent reflections. The accepted technique is to limit the nature of connecting wires in some way. One way is to insist that they be very short, where "short" is taken to mean with respect to the signal rise time. The reason for this is that if the wire connection is so short that reflections return before the output is still rising, the results become only a somewhat slowed and "bumpy" rising edge.

If, however, the reflection returns after the rising edge, it produces not simply a modification of the initiating edge but an independent second event. This is clearly bad! Thus the time taken for a signal to go from one end of a line and back is restricted to less than the rise time of the driving signal by some factor—say, 5. Thus for a signal with a 1-ns rise time and for propagation at the speed of light (30 cm/ns), a double path of only 0.2-ns equivalent length, or 6 cm, would be allowed, representing in the limit a wire only 3 cm from end to end.

Such transmission lines have a characteristic impedance, R_0, that ranges from a few tens of ohms to hundreds of ohms. Signals propagate on such lines somewhat more slowly than the speed of light, perhaps half as fast. When a transmission line is terminated at its receiving end in a resistance equal to its characteristic impedance, R_0, all the energy sent on the line is absorbed at the receiving end, and no reflections occur (since the termination acts as a limitless length of transmission line). Thus, signal integrity is maintained. Such transmission lines are said to be properly terminated. A properly terminated line appears at its sending end as a resistor of value R_0. The followers of ECL 10K with their open emitters and low output resistances (specified to be 7 Ω maximum) are ideally suited for driving transmission lines. ECL is also good as a line receiver. The simple gate with its high (50-kr) pull-down input resistor represents a very high resistance to the line. Thus a few such gates can be connected to a terminated line with little difficulty. Both of these ideas are represented in Fig. 11.35.

11.77 Power Dissipation

Because of the differential-amplifier nature of ECL, the gate current remains approximately constant and is simply steered from one side of the gate to the other depending on the input logic signals. Thus, the supply current and hence the gate power dissipation of unterminated ECL remains relatively constant, independent of the logic state of the gate. It follows that no voltage spikes are introduced on the supply line. Such spikes can be a dangerous source of noise in a digital system. It follows that in ECL, the need for supply-line bypassing is not as great as in, say, TTL. This is another advantage of ECL.

At this juncture we should reiterate a point we made earlier, namely, that although an ECL gate would operate with $V_{EE} = 0$ and $V_{CC} = -5.2$ V, the selection of $V_{EE} = -5.2$ V and $V_{CC} = 0$ V is recommended because in the circuit all signal levels are referenced to V_{CC}, and ground is certainly an excellent reference.

Exercise

11.22 For the ECL gate in Fig. 11.34, calculate an approximate value for the power dissipated in the circuit under the condition that all inputs are low and that the emitters of the logic followers are left open. Assume that the reference circuit supplies four identical gates, and hence only a quarter of the power dissipated in the reference circuit should be attributed to a single gate.

Ans. 22.4 mW

11.78 Thermal Effects

In our analysis of the ECL gate of Fig. 11.34, we found that at room temperature the reference voltage V_{EE} is +1.32 V. We have also shown that the midpoint of the output logic swing is approximately equal to this voltage, which is an ideal situation in that it results in equal high and low noise margins. In Example 11.4, we shall derive expressions for the temperature coefficients of the reference voltage and of the output low and high voltages. In this way, it will be shown that the midpoint of the output logic swing varies with temperature at the same rate as the reference voltage. As a result, although the magnitudes of the high and low noise margins change with temperature, their values remain equal. This is an added advantage of ECL and provides a demonstration of the high degree of design optimization of this gate circuit.
We wish to determine the temperature coefficient of the reference voltage \(V_R \) and of the midpoint between \(V_{OL} \) and \(V_{OH} \).

Solution

To determine the temperature coefficient of \(V_R \), consider the circuit in Fig. E11.18 and assume that the temperature changes by +1°C. Denoting the temperature coefficient of the diode and transistor voltage drops by \(\delta \), where \(\delta = -2 \text{ mV/°C} \), we obtain the equivalent circuit shown in Fig. 11.41. In the latter circuit the changes in device voltage drops are considered as signals, and hence the power supply is shown as a signal ground.

In the circuit of Fig. 11.41 we have two signal generators, and we wish to analyze the circuit to determine \(\Delta V_R \), the change in \(V_R \). We shall do so using the principle of superposition. Consider first the branch \(R_1, D_1, D_2, 2S, \) and \(R_0 \), and neglect the signal base current of \(Q \).

The voltage signal at the base of \(Q \) can be easily obtained from

\[
v_b = \frac{2 \delta \times R_1}{R_1 + r_{e1} + r_{e2} + R_2}
\]

where \(r_{e1} \) and \(r_{e2} \) denote the incremental resistances of diodes \(D_1 \) and \(D_2 \), respectively. The dc bias current through \(D_1 \) and \(D_2 \) is approximately 0.64 mA, and thus \(r_{e1} = r_{e2} = 39.5 \Omega \). Hence \(v_b = 0.35 \). Since the gain of the emitter follower \(Q \) is approximately unity, it follows that the component of \(\Delta V_R \) due to the generator \(2S \) is approximately equal to \(v_b \), that is, \(\Delta V_{R1} = 0.38 \).

Consider next the component of \(\Delta V_R \) due to the generator \(8 \). Reflection into the emitter circuit of the total resistance of the base circuit, \([R_1 r_{e1} + r_{e2} + R_2] \), by dividing it by \(100 \) results in the following component of \(\Delta V_R \):

\[
\Delta V_{R2} = \frac{\delta \times R_1}{[R_1 r_{e1} + r_{e2} + R_2]}
\]

Substituting the values given and those obtained throughout the analysis of this section, we find

\[
\Delta V_{R2} = -0.18
\]

The circuit for determining the temperature coefficient of \(V_{OH} \) is shown in Fig. 11.43, from which we obtain

\[
\Delta V_{OH} = -0.93 \delta
\]

We now can obtain the variation of the midpoint of the logic swing as

\[
\frac{\Delta V_{OL} + \Delta V_{OH}}{2} = -0.88 \delta
\]

which is approximately equal to that of the reference voltage \(V_R (-0.76) \).
11.7.9 The Wired-OR Capability

The emitter-follower output stage of the ECL family allows an additional level of logic to be performed at very low cost by simply wiring the outputs of several gates in parallel. This is illustrated in Fig. 11.44, where the outputs of two gates are wired together: Note that the base-emitter diodes of the output followers realize an OR function: This wired-OR connection can be used to provide gates with high fan-in as well as to increase the flexibility of ECL in logic design.

11.7.10 Final Remarks

We have chosen to study ECL by focusing on a commercially available circuit family. As high-speed processors such as those used in supercomputers, as well as high-speed and very-high-performance family of SSI and MSI logic circuits. As already mentioned, ECL has been demonstrated, a great deal of design optimization has been applied to create a high-speed, high-fan-out circuit. In VLSI circuit design, the current-source and some of its variants are also used in VLSI circuit design. Applications include very-high-speed processors, such as those used in supercomputers, as well as high-speed and high-frequency communication systems. When employed in VLSI design, current-source biasing is almost always utilized. Further, a variety of circuit configurations are employed to provide gates with high fan-in as well as to increase the flexibility of ECL in logic design.

11.8 BiCMOS DIGITAL CIRCUITS

In this section, we provide an introduction to a VLSI circuit technology that is becoming increasingly popular, BiCMOS. As its name implies, BiCMOS technology combines bipolar and CMOS circuits on one IC chip. The aim is to combine the low power, high input impedance, and wide noise margins of CMOS with the high current-driving capability of bipolar transistors. Specifically, CMOS, although a nearly ideal logic-circuit technology in many respects, has a limited current-driving capability. This is not a serious problem when the CMOS gate has to drive a few other CMOS gates. It becomes a serious issue, however, when relatively large capacitive loads (e.g., greater than 0.5 pf or so) are present. In such cases, one has to either resort to the use of elaborate CMOS buffer circuits or face the usually unacceptable consequence of long propagation delays. On the other hand, we know that by virtue of its much larger transconductance, the BJT is capable of large output currents. We have seen a practical illustration of that in the emitter-follower output stage of ECL. Indeed, the high current-driving capability contributes to making ECL two to five times faster than CMOS (under equivalent conditions)—of course, at the expense of high power dissipation. In summary, then, BiCMOS seeks to combine the best of the CMOS and bipolar technologies to obtain a class of circuits that is particularly useful when output currents that are higher than possible with CMOS are needed. Furthermore, since BiCMOS technology is well suited for the implementation of high-performance analog circuits, it makes possible the realization of both analog and digital functions on the same IC chip, making the "system on a chip" an attainable goal. The price paid is a more complex, and hence more expensive (than CMOS) processing technology.

11.8.1 The BiCMOS Inverter

A variety of BiCMOS inverter circuits have been proposed and are in use. All of these are based on the use of npn transistors to increase the output current available from a CMOS inverter. This can be most simply achieved by cascading each of the Q_1 and Q_2 devices of the CMOS inverter with an npn transistor, as shown in Fig. 11.45(a). Observe that this circuit can be thought of as utilizing the pair of complementary composite MOS-BJT devices shown in Fig. 11.45(b). These composite devices retain the high input impedance of the MOS transistor while in effect multiplying its rather low g_m, by the g_m of the BJT. It is also useful to observe that the output stage formed by Q_1 and Q_2 has what is known as the totem-pole configuration utilized by TTL.

The circuit of Fig. 11.45(a) operates as follows: When v_1 is low, both Q_2 and Q_3 are off while Q_1 conducts and supplies Q_3 with base current, thus turning it on. Transistor Q_1 then provides a large output current to charge the load capacitance. The result is a very fast charging of the load capacitance and correspondingly a short low-to-high propagation delay, t_{PLH}. Transistor Q_2 then turns off, providing its drain current into the base of Q_3. Transistor Q_3 then turns on and provides a large output current that quickly discharges the load capacitance. Here again the result is a short high-to-low propagation delay, t_{PHL}. On the positive side, Q_2 turns off when v_1 reaches a value about $V_{DD} - V_{CE}$, and thus the output high level is lower than V_{DD}, a disadvantage. When v_1 goes high, Q_3 and Q_2 turn on, and Q_1 then turns off, providing its drain current into the base of Q_3. The result is a very fast discharging of the load capacitance. Here again the result is a short high-to-low propagation delay, t_{PHL}.

It is interesting to note that these composite devices were proposed as early as 1969 [see Lin et al. (1969)].

11.8.2 The BiCMOS Gate

A variety of BiCMOS gate circuits have been proposed and are in use. All of these are based on the use of npn transistors to increase the output current available from a CMOS gate. This can be most simply achieved by cascading each of the Q_1 and Q_2 devices of the CMOS gate with an npn transistor, as shown in Fig. 11.46(a). Observe that this circuit can be thought of as utilizing the pair of complementary composite MOS-BJT devices shown in Fig. 11.46(b). These composite devices retain the high input impedance of the MOS transistor while in effect multiplying its rather low g_m, by the g_m of the BJT. It is also useful to observe that the output stage formed by Q_1 and Q_2 has what is known as the totem-pole configuration utilized by TTL.

The circuit of Fig. 11.46(a) operates as follows: When v_1 is low, both Q_2 and Q_3 are off while Q_1 conducts and supplies Q_3 with base current, thus turning it on. Transistor Q_1 then provides a large output current to charge the load capacitance. The result is a very fast charging of the load capacitance and correspondingly a short low-to-high propagation delay, t_{PLH}. Transistor Q_2 then turns off, providing its drain current into the base of Q_3. Transistor Q_3 then turns on and provides a large output current that quickly discharges the load capacitance. Here again the result is a short high-to-low propagation delay, t_{PHL}. On the positive side, Q_2 turns off when v_1 reaches a value about $V_{DD} - V_{CE}$, and thus the output high level is lower than V_{DD}, a disadvantage.

11 Refer to the CD accompanying this book for a description of the basic TTL logic-gate circuit and the totem-pole output stage.
which the base charge can be removed. This problem can be solved by adding a resistor between the base of each of Q_1 and Q_2 and ground, as shown in Fig. 11.45(c). Now when either Q_1 or Q_2 is turned off, its stored base charge is removed to ground through R_4 or R_2, respectively. Resistor R_2 provides an additional benefit: With v_1 high, and after Q_2 cuts off, v_2 continues to fall below V_{TH}, and the output node is pulled to ground through the series path of Q_2 and R_4. Thus R_4 functions as a pull-down resistor. The Q_2-R_4 path, however, is a high-impedance one with the result that pulling v_2 to ground is a rather slow process. Incorporating the resistor R_4, however, is disadvantageous from a static power-dissipation standpoint. When v_1 is low, a dc path exists between V_{DD} and ground through the conducting Q_2 and R_4. Finally, it should be noted that R_1 and R_2 take some of the drain currents of Q_1 and Q_2 away from the bases of Q_1 and Q_2, and thus slightly reduce the gate output current available to charge and discharge the load capacitance.

Figure 11.45(d) shows the way in which R_1 and R_2 are usually implemented. As indicated, NMOS devices Q_{on} and Q_{off} are used to realize R_1 and R_2. As an added innovation, these two transistors are made to conduct only when needed. Thus, Q_{on} will conduct only when v_1 rises, at which time its drain current constitutes a reverse base current for Q_2, speeding up its turn-off. Similarly, Q_{off} will conduct only when v_2 falls and Q_2 conducts, pulling the gate of Q_2 high. The drain current of Q_{off} then constitutes a reverse base current for Q_2, speeding up its turn-off.

As a final circuit for the BiCMOS inverter, we show the so-called R-circuit in Fig. 11.45(e). This circuit differs from that in Fig. 11.45(c) in only one respect: Rather than returning R_4 to ground, we have connected R_4 to the output node of the inverter. This simple change has two benefits. First, the problem of static power dissipation is now solved. Second, R_4 now functions as a pull-up resistor, pulling the output node voltage up to V_{DD} (through the conducting Q_2) after Q_2 has turned off. Thus, the R-circuit in Fig. 11.45(d) does in fact have output levels very close to V_{DD} and ground.

As a final remark on the BiCMOS inverter, we note that the circuit is designed so that transistors Q_1 and Q_2 are never simultaneously conducting and neither is allowed to saturate. Unfortunately, sometimes the resistance of the collector region of the BJT in conjunction with large capacitive-charging currents causes saturation to occur. Specifically, at large output currents, the voltage developed across r_C (which can be of the order of 100 Ω) can lower the voltage at the intrinsic collector terminal and cause the CBJ to become forward biased. As the reader will recall, saturation is a harmful effect for two reasons: It limits the collector current to a value less than βI_E and it slows down the transistor turn-off.

11.8.2 Dynamic Operation

A detailed analysis of the dynamic operation of the BiCMOS inverter circuit is a rather complex undertaking. Nevertheless, an estimate of its propagation delay can be obtained by considering only the time required to charge and discharge a load capacitance C. Such an approximation is justified when C is relatively large and thus its effect on inverter dynamics is dominant. In other words, when we are able to neglect the time required to charge the parasitic capacitances present at internal circuit nodes. Fortunately, this is usually the case in practice, for if the load capacitance is not large, one would use the simpler CMOS inverter.

In fact, it has been shown [Emshiti, Belloutou, and Elshamy (1993)] that the speed advantage of BiCMOS (over CMOS) becomes evident only when the gate is required to drive a large fan-out or a large load capacitance. For instance, at a load capacitance of 50 μF to 100 μF, BiCMOS and CMOS typically feature equal delays. However, at a load capacitance of 1 pF, t_p of a BiCMOS inverter is 0.3 ns, whereas that of an otherwise comparable CMOS inverter is about 1 ns.
Finally, in Fig. 11.46, we show simplified equivalent circuits that can be employed in obtaining rough estimates of t_{PLH} and t_{PHL} of the n-type BiCMOS inverter (see Problem 11.55).

11.8.3 BiCMOS Logic Gates

In BiCMOS, the logic is performed by the CMOS part of the gate, with the bipolar portion simply functioning as an output stage. It follows that BiCMOS logic-gate circuits can be generated following the same approach used in CMOS. As an example, we show in Fig. 11.47 a BiCMOS two-input NAND gate.

As a final remark, we note that BiCMOS technology is applied in a variety of products including microprocessors, static RAMs, and gate arrays [see Alvarez (1993)].

11.9 SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of bipolar digital circuits.

Example 11.5

STATIC AND DYNAMIC OPERATION OF AN ECL GATE

In this example, we use PSpice to investigate the static and dynamic operation of the ECL gate (studied in Section 11.7) whose Capture schematic is shown in Fig. 11.48. Having no access to the actual values for the SPICE model parameters of the BJTs utilized in commercially available ECL, we have selected parameter values representative of the technology utilized that, from our experience, would lead to reasonable agreement between simulation...
results and the measured performance data supplied by the manufacturer. It should be noted that this problem would not be encountered by an IC designer using SPICE as an aid; presumably, the designer would have full access to the proprietary process parameters and the corresponding device model parameters. In any case, for the simulations we conducted, we utilized the following BTM model parameter values: \(I_e = 0.26 \, \text{mA}, \, B_e = 100, \, \beta_e = 1, \, \gamma_e = 0.1 \, \text{ns}, \, C_e = 1 \, \text{pF}, \, C_c = C_1 = 1.5 \, \text{pF}, \) and \(|V_e| = 100 \, \text{V}.

We use the circuit arrangement of Fig. 11.49 to compute the voltage transfer characteristics of the ECL gate shown in Fig. 11.48. Also indicated is the reference voltage, \(V_r = -1.32 \, \text{V}. \) PSpice also determined that the voltage \(V_r \) at the base of the reference transistor \(Q_r \) has exactly this value \((-1.32 \, \text{V}), \) which is also identical to the value we determined by hand analysis of the reference-voltage circuit.

Temperature Parameter OR NOR OR NOR

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Parameter</th>
<th>OR</th>
<th>OR</th>
<th>OR</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>(V_{OL})</td>
<td>-1.77 V</td>
<td>-1.79 V</td>
<td>-1.76 V</td>
<td>-1.79 V</td>
</tr>
<tr>
<td></td>
<td>(V_{OH})</td>
<td>-0.914 V</td>
<td>-0.992 V</td>
<td>-0.914 V</td>
<td>-0.992 V</td>
</tr>
<tr>
<td></td>
<td>(V_{OL} + V_{OH})</td>
<td>-1.346 V</td>
<td>-1.551 V</td>
<td>-1.350 V</td>
<td>-1.551 V</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>V_{OL} - V_{OH}</td>
<td>)</td>
<td>1.6 mV</td>
<td>9.1 mV</td>
</tr>
<tr>
<td>70°C</td>
<td>(V_{OL})</td>
<td>-1.742 V</td>
<td>-1.759 V</td>
<td>-1.729 V</td>
<td>-1.759 V</td>
</tr>
<tr>
<td></td>
<td>(V_{OH})</td>
<td>-0.835 V</td>
<td>-0.923 V</td>
<td>-0.835 V</td>
<td>-0.923 V</td>
</tr>
<tr>
<td></td>
<td>(V_{OL} + V_{OH})</td>
<td>-1.268 V</td>
<td>-1.294 V</td>
<td>-1.285 V</td>
<td>-1.294 V</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>V_{OL} - V_{OH}</td>
<td>)</td>
<td>17 mV</td>
<td>23 mV</td>
</tr>
</tbody>
</table>

\(V_r \) is no longer maintained, as demonstrated in Fig. 11.51(b). Finally, we show some of the values obtained. Observe that for the temperature-compensated case, the

```plaintext
TABLE 11.1 PSpice-Computed Parameter Values of the ECL Gate, With and Without Temperature-Compensated, at Two Different Temperatures
```

In PSpice, we have created a part called QECL based on these BTM model parameter values. Readers can find this part in the SEDRA .obl library which is available on the CD accompanying this book as well as on-line at www.sedrasmith.org.
CHAPTER 11 MEMORY AND ADVANCED DIGITAL CIRCUITS

FIGURE 11.51 Comparing the voltage transfer characteristics of the OR and NOR outputs (see Fig. 11.49) of the ECL gate shown in Fig. 11.48, with the reference voltage \(V_R \) generated using: (a) the temperature-compensated bias network of Fig. 11.48. (b) a temperature-independent voltage source.

The dynamic operation of the ECL gate is investigated using the arrangement of Fig. 11.52. Here, two gates are connected by a 1.5-m coaxial cable having a characteristic impedance \(Z_0 = 50 \) \(\Omega \) and a propagation delay \(t_d = 10 \) ns. Resistor \(R_{T1} \) (50 \(\Omega \)) provides proper termination for the coaxial cable.

The manufacturer specifies that signals propagate along this cable (when it is properly terminated) at about half the speed of light, or 15 cm/ns. Thus we would expect the 1.5-m cable we are using to introduce a delay \(t_d \) of 10 ns. Observe that in this circuit (Fig. 11.52), resistor \(R_{T1} \) provides the proper cable termination. The cable is assumed to be lossless and is modeled in PSpice using the transmission line element (the T part in the Analog library) with \(Z_0 = 50 \) \(\Omega \) and \(t_d = 10 \) ns. A voltage step, rising from -1.77 V to -0.884 V in 1 ns, is applied to the input of the first gate, and a transient analysis over a 30-ns interval is requested. Figure 11.53 shows plots of the waveforms of the input, the voltage at the output of the first gate, the voltage at the input of the second gate, and the output. Observe that despite the very high edge-speeds involved, the waveforms are reasonably clean and free of excessive ringing and reflections. This is particularly remarkable.

FIGURE 11.52 Circuit arrangement for investigating the dynamic operation of ECL. Two ECL gates (Fig. 11.49) are connected in cascade via a 1.5-m coaxial cable which has a characteristic impedance \(Z_0 = 50 \) \(\Omega \) and a propagation delay \(t_d = 10 \) ns. Resistor \(R_{T1} \) (50 \(\Omega \)) provides proper termination for the coaxial cable.

50 \(\Omega \). The manufacturer specifies that signals propagate along this cable (when it is properly terminated) at about half the speed of light, or 15 cm/ns. Thus we would expect the 1.5-m cable we are using to introduce a delay \(t_d \) of 10 ns. Observe that in this circuit (Fig. 11.52), resistor \(R_{T1} \) provides the proper cable termination. The cable is assumed to be lossless and is modeled in PSpice using the transmission line element (the T part in the Analog library) with \(Z_0 = 50 \) \(\Omega \) and \(t_d = 10 \) ns. A voltage step, rising from -1.77 V to -0.884 V in 1 ns, is applied to the input of the first gate, and a transient analysis over a 30-ns interval is requested. Figure 11.53 shows plots of the waveforms of the input, the voltage at the output of the first gate, the voltage at the input of the second gate, and the output. Observe that despite the very high edge-speeds involved, the waveforms are reasonably clean and free of excessive ringing and reflections. This is particularly remarkable.

FIGURE 11.53 Transient response of a cascade of two ECL gates interconnected by a 1.5-m coaxial cable having a characteristic impedance of 50 \(\Omega \) and a delay of 10 ns (see Fig. 11.52).
MEMORY AND ADVANCED DIGITAL CIRCUITS

11. Memory and advanced digital circuits

11.1 Flip-flops employ one or more latches. The basic static latch is bistable circuit implemented using two inverters connected in a positive-feedback loop. The latch can retain its state, but it requires some master-slave D flip-flops. A monostable multivibrator has one stable state, which it can remain indefinitely, and one quasi-stable state, which it can remain in either stable state indefinitely.

11.2 An astable multivibrator has no stable states. Rather, it has a characteristic time at which it switches back and forth. An astable circuit, in its operation, is, in effect, a square-wave oscillator.

11.3 Read-only memory (ROM) contains fixed data patterns and is used to store information that cannot be changed by the user.

11.4 When sense amplifiers are utilized in SRAMs to speed up operation, they are essential in DRAMs. A typical sense amplifier is a differential circuit that employs positive feedback to obtain an output signal that grows exponentially toward either VDD or 0 V.

11.5 Because of the high refresh rates of DRAMs, care should be taken in connecting the output of one gate to the input of another. Transmission-line techniques are usually employed.

11.6 The design of the ECL gate is optimized so that the noise margins are equal and remain equal in temperature changes.

11.7 The ECL gate provides two complementary outputs, realizing the OR and NOR functions.

11.8 The output of an ECL gate can be wired together to realize the OR function of the individual output variables.

11.9 BiCMOS combines the low-power and wide noise margins of MOSFETs with the high-current-driving capability (and thus the short gate delays) of BITs to obtain a technology that is capable of implementing very dense, high-speed VLSI circuits that can also include analog functions.

PROBLEMS

PROBLEMS 1076

11.1 Consider the clocked SR flip-flop of Fig. 11.3 for which a minimum-area design is required. Thus Q1, Q2, Q3, and Q4 are minimum-size devices for which W/L = 2 μm/1 μm. All the other devices should be sized equal so as to barely ensure regeneration. For this design, VDD = 5 V, |Vp| = 1 V, and |Vn| = 2.5 V. Then W/L = 100 μm/1 μm. Calculate VDD, the power dissipation, and the total capacitance at each of nodes Q1, Q2, Q3, and Q4. (Hint: Follow the method outlined in Exercise 11.2.)

11.2 For a flip-flop of the type shown in Fig. 11.3, determine the minimum width required of the set and reset pulse. Let Q1, Q2, Q3, and Q4 be minimum-size devices for which W/L = 2 μm/1 μm and all other devices have W/L = 4 μm/1 μm. Calculate the power dissipation and the total capacitance at each of nodes Q1, Q2, Q3, and Q4. (Hint: Follow the method outlined in Exercise 11.2.)

11.3 Consider another possibility for the circuit in Fig. 11.3. Relate the input as S and the output as R. Let S and R normally return at relatively high voltages under the control of a relatively high-impedance source associated with “reading” the content of the flip-flop without changing its state. For "writing," that is, setting or resetting the flip-flop, S and R is brought low to 0 V with R held to VDD to force Q to Q low to VDD/2 at
which point representation proceeds rapidly. For $Q_1, Q_2, Q_3,$ and $Q_4,$ find the resistance with $W/L = 1, 2, 2, 2,$ and $V_{DD} = 5 \text{V}.$

11.1. The clocked SR flip-flop in Fig. 11.3 is not a fully complementary CMOS circuit. Sketch the fully complementary version by augmenting the circuit with the PMOS corresponding to the PNOS comprising $Q_2, Q_3,$ and $Q_4.$ Note that the fully complementary circuit utilizes 12 transistors. Although the circuit is more complex, it switches faster.

11.1.5 Sketch the complementary CMOS circuit implementation of the SR flip-flop of Fig. 11.2.

11.6 Sketch the logic gate symbolic representation of an SR flip-flop using NAND gates. Give the truth table and describe the operation. Also sketch a CMOS circuit implementation.

11.1.1.7 Consider the latch of Fig. 11.1 as implemented in CMOS technology. Let $V_{DD} = 5 \text{V}, V_T = 0.8 \text{V}, I_{PP} = 20 \mu A/V^2, I_{P} = 24 \mu A/V, I_{P} = -6 \mu A/V, V_{PD} = 1 \text{V},$ and $V_{PD} = 5 \text{V}.$

(a) Plot the transfer characteristic of each inverter—that is, V_{PD} versus V_{PD} and V_{PD} versus $V_{PD}.$ Determine the output of each inverter at input voltages of 1.5, 2.25, 2.5, 2.75, 3, 3.5, and 4 V, and $V_{PD} = 0.5 \text{V}.$

(b) Use the characteristics in (a) to determine the loop voltage-transfer curve of the latch—that is, V_{PD} versus $V_{PD}.$ Find the coordinates of points A, B, and C as defined in Fig. 11.1(c).

(c) If the finite output resistance of the saturated MOSFET is considered, what is the maximum voltage drop across the MOSFET?

11.1.4 Consider the write operation of the SRAM cell of Fig. 11.18. If Q_5 is nominally 0.5 μA, but can vary due to process variations in the range $0.4 \mu A$ to $0.6 \mu A$, find the corresponding variation in T expressed as a percentage of the nominal value.

11.1.11 The waveforms for the monostable circuit of Fig. 11.10 are given in Fig. 11.13. Let $V_{DD} = 10 \text{V}, V_{PD} = V_{PD}/2, I_{PD} = 10 \mu A, I_{PD} = 0 \text{mV},$ and $R_{PD} = 200 \text{k}.$ Find the values of $V_{PD}, V_{PD},$ and $V_{PD}.$ How much does V_{PD} change during the quasi-stable state? What is the peak current that Q_5 is required to sink to source?

11.1.12 Using the circuit of Fig. 11.10 design a monostable circuit with CMOS logic for which $R_{PD} = 100 \text{ k} \Omega, V_{PD} = 5 \text{V},$ and $V_{PD} = 0.4 \text{V}.$ Use $C = 1 \mu F$ to generate an output pulse of duration $T = 1 \text{s}.$ What value of R should be used?

11.1.13 (a) Use the expression given in Exercise 11.5 to find an expression for the frequency of oscillation f_z for the astable multivibrator of Fig. 11.13 under the condition that $V_{PD} = V_{PD}/2.$

(b) Find suitable values for R and C to obtain $f_z = 100 \text{kHz}.$

11.1.14 Variations in manufacturing result in the CMOS gates used in implementing the avalanche circuit of Fig. 11.15 to have threshold voltages in the range $0.4 \text{V} / 2$ to $0.6 \text{V} / 2$ with $V_{PD} = 0.9 \text{mV}$ being the nominal value. Express the expected correspond­ing variation in the value of f_z from nominal as a percentage of the nominal value. (You may use the expression given in Exercise 11.5.)

11.1.15 Consider a modification of the circuit in Fig. 11.13 in which a resistor equal to $10 \text{ k} \Omega$ is inserted between the common node of C and P and the input node of $G.$ This resistor allows the voltage labeled V_0 to rise above V_{PD} and below ground. Sketch the resulting modified waveforms of V_0 and show that the period T is now given by

$$T = CR \ln \left[2 \left(V_{PD} - V_0 \right) / 0.5 \right]$$

11.1.16 Consider a ring oscillator consisting of five inverters, each having $I_{PD} = 40 \mu A$ and $I_{PD} = 40 \mu A.$ Sketch one of the output waveforms, and specify in frequency and the percentage of the cycle during which the output is high.

11.1.17 A ring-of-eleven oscillator is found to oscillate at 20 MHz. Find the propagation delay of the inverter.

11.1.18 A particular 1 M-bit square memory array has its 11.18 20 MHz. Find the propagation delay of the inverter.

11.1.19 For the memory chip described in Problem 11.18, how many word lines must be supplied by the new decoder? How many sense amplifiers will be required?

11.1.20 How many sense amplifiers would a straightforward implementation require? If the chip power dissipation is limited to 500 mW with a 5-V supply for continuous operation with a 200-ns cycle time, and all the power loss is dynamic, estimate the total capacitance of all logic activated in any one cycle. If we assume that 90% of this power loss occurs in array access, and that the major capacitance contributor will be the bit line itself, calculate the capacitance per bit line and per for this design. If closer manufacturing control allows the array memory to operate at 3 V, how much larger a memory array can be designed in the same technology at about the same power level?

11.1.21 In a particular 1 G-bit memory of the dynamic type (called DRAM) under development by Samsung, using a 0.16-μm 2-V technology, the cell array occupies about 90% of the area of the 21 mum x 31 mum chip. Estimate the cell area. If two cells form a square, estimate the cell dimensions.

11.1.22 An experimental 1.5-V, 1-Gbit dynamic RAM (called D-RAM) by Hitachi uses a 0.18-μm process with a cell size of 0.38 x 0.76 μm² in a 19 x 38 mm² chip. What fraction of the chip is occupied by the I/O connections, peripheral circuits, and interconnect?

11.1.23 A 256-MBit RAM chip with a 16-bit readout employs a 16-bit design with square cell arrays. How many address bits are needed for the block decoder, the decoder, and the column decoder?

SECTION 11.4: RANDOM-ACCESS MEMORY (RAM) CELLS

11.1.24 Consider the circuit in Fig. 11.20(a), and assume that the device dimensions and process technology parameters are as specified in Example 11.2. We wish to determine the inter­val of C_2 required for C_2 to charge, and its voltage to rise from 0 to $V_{PD}/2.$

(a) At the beginning of interval $A_1,$ find the values of $I_1, I_2,$ and $I_3.$

(b) At the end of interval $A_1,$ find the values of $I_1, I_2,$ and $I_3.$

(c) Find an estimate of the average value of C_2 during interval $A_1.$

(d) If $C_2 = 50 \text{F},$ estimate $A_1.$ Compare this value to that found in Example 11.9 for V_{PD} to reach $V_{PD}/2.$

Recalling that regeneration begins when either I_2 or I_3 reaches $V_{PD}/2,$ what do you estimate the delay to be?

11.1.25 Recompute the analysis of the read operation of the SRAM cell in Example 11.2. This time, assume that bit and line times are precharged to $V_{PD}/2.$ Also consider the dis­charge of C_2 (see Fig. 11.10(a)) to begin at the instant the voltage on the word line matches $V_{PD}/2.$ (Recall that the resistance and capacitance of the word line causes its voltage to rise relatively slowly towards V_{PD}.) Using an approach similar to that in Example 11.2, determine the read delay, defined as the time required to reduce the voltage of the B line to 0.2 V. Assume all technology and device parameters are those specified in Example 11.2.

11.1.26 For a particular DRAM design, the cell capacitance is $C = 50 \text{F}, V_{PD} = 5 \text{V},$ and V_1 (including the body effect) = 1.4 V. Each cell represents a capacitive load on the bit line of 2 f. The sense amplifier and other circuitry attached to the bit line has a 200 f capacitance. What is the maximum num­ber of cells that can be attached to a bit line while ensuring a maximum bit-line signal of 0.1 V? How many bits of row addressing can be used? If the sense-amplifier gill is increased by a factor of 5, how many word-line address bits can be accommodated?

11.1.27 For a DRAM available for regular use 98% of the time, having a row-to-column ratio of 2 to 1, a cycle time of 20 ms, and a refresh cycle of 8 ms, estimate the total memory capacity.

11.1.28 In a particular dynamic memory chip, $C_2 = 25 \text{F}.$ (the bit-line capacitance per cell) is 1 f and bit-line control circuitry involves 12 f. For a 1-Mbit square array, what bit-line signals result when a stored 1 is read when a stored 0 is read? Assume that $V_{PD} = 5 \text{V},$ and V_1 (including the body effect) = 1.5 V. Recall that the bit lines are precharged to $V_{PD}/2.$

11.1.29 For a DRAM cell utilizing a capacitance of 20 f, refresh is required within 10 ms. If a signal loss on the capacitor of 0.1 V can be tolerated, what is the largest acceptable leakage current present at the cell?
11.31 Consider the operation of the differential sense amplifier of Fig. 11.23 following the rise of the sense control signal \(v_s \). Assume that a balanced differential signal of 0.1 V is established between the bit lines; each of which has a 1 pF capacitance. For \(V_{DD} = 3 \) V, what is the value of \(G_R \) of each of the inverters in the amplifier required to cause the outputs to reach 0.95\(V_{DD} \) and 0.9\(V_{DD} \) (from initial value of 0.5\(V_{DD} \)) with \(0.1 \) and \(0.5 \) \(V_{DD} \), respectively, in \(2 \) ms? For the matched inverters, \(|V_H| = 0.8 \) V and \(K_{CO} = 3 \mu \) S. What are the device widths required? If the input signal is 0.2 V, what does the amplifier response time become?

11.32 A particular version of the regenerative sense amplifier of Fig. 11.23 is a 0.5-\(\mu \)m technology, uses transistors for which \(|V_H| = 0.8 \) V, \(K_{CO} = 2.5 \mu \) S, \(V_{DD} = 3.3 \) V, \(W/L = 6 \times 1.5 \) \(\mu \)m and \(0.6 \times 15 \times 1.5 \) \(\mu \)m. For each inverter, find the value of \(G_R \). For a bit-line capacitance of 0.8 pF, and a delay until an output of 0.95\(V_{DD} \) is reached of 3 ns, find the internal difference-voltage required between the two bit lines. If the time can be relaxed by 1 ns, what input signal can be handled? With the increased delay in and with the input signal at the original level, by what percentage can the bit-line capacitance, and correspondingly the bit-line length, be increased? If the delay time required for the bit-line capacitances to charge to the constant current available from the storage cell, and thus develop the difference-voltage signal needed by the sense amplifier, was 5 ns, what does it increase to when longer lines are used?

11.33 (a) For the sense amplifier of Fig. 11.23, show that the time required for the bit lines to reach 0.95\(V_{DD} \) and 0.9\(V_{DD} \) is given by \(t = \frac{1}{2} \left(G_R + G_{IN} \right) \left(0.5 V_{DD}/2 \right) \) where \(G_R \) is the initial difference-voltage between the two bit lines.
(b) If the response time of the sense amplifier is to be reduced to one half the value of an original design, by what factor must the width of all transistors be increased?
(c) If for a particular design, \(V_{DD} = 5 \) V and \(K_{CO} = 0.2 \) V, find the factor by which the width of all transistors must be increased so that \(t \) is reduced by a factor of 4 while keeping \(G_R \) unchanged?

11.33 It is required to design a sense amplifier of the type shown in Fig. 11.23 to operate with a DRAM using the memory-cell technique illustrated in Fig. 11.25. The DRAM cell provides readout voltages of \(-100 \) mV when a 0 is stored and \(+400 \) mV when a 1 is stored. The sense amplifier is required to provide a differential output voltage of 2 V in 5 ns at most 5 mV. Find the \(W/L \) ratios of the transistors in the amplifier inverters assuming that the processing technology is characterized by \(K_{CO} = 2.5 \mu \) S and \(100 \) pA/cm. \(|V_H| = 1 \) V, and \(V_{DD} = 5 \) V. The capacitance of each half bit-line is 1 pF. What will be the amplifier response time when a 0 is read? When a 1 is read?

11.34 Consider a 512-bit NOR decoder. To how many address lines does this correspond? How many output lines does it have? How many input lines does the NOR array require? How many NMOS and PMOS transistors does such a design need?

11.35 For the column decoder shown in Fig. 11.27, how many column-address bits are needed in a 256-kbit square array? How many NMOS pass transistors are needed in the multiplexer? How many NMOS transistors are needed in the NOR decoder? How many PMOS transistors? What is the total number of NMOS and PMOS transistors needed?

11.36 Consider the use of the tree column decoder shown in Fig. 11.28 for application with a square 256-kbit array. How many address lines are involved? How many levels of pass transistors are required? How many NMOS and PMOS transistors does such a design need?

11.37 (c) If we approximate the exponential rise of the word-line pulse, what is the frequency at which the amplifier response time increases when a 0 is read? When a 1 is read?

11.38 For the NOR decoder of Fig. 11.29, find the number of addresses involved, the number of levels of pass transistors, the number of PMOS transistors, and the total number of transistors needed.

11.39 Consider a 512-row NOR decoder. To how many address bits does this correspond? How many output lines are required? How many NMOS and PMOS transistors does such a design need?

11.40 Consider the implementation of the ROM array using a form of the ECL circuit in Fig. P11.40. The transistors exhibit \(V_{TH} = 0.75 \) V at an emitter current \(I_E \) and have very high \(|B| \).
(a) Find \(V_{TH} \) and \(I_E \).
(b) For the input at \(B \) sufficiently negative for \(Q_2 \) to be cut off, what is the voltage at \(V_A \) at the output of the sense control signal? For a current in \(B \) of 0.997, find \(V_{TH} \) and \(I_E \).
(c) Repeat (b) for a current in \(Q_2 \) of 0.997.
(d) Repeat (c) for a current in \(B \) of 0.997.
(e) Use the results of (c) and (d) to specify \(I_E \).
(f) Find \(V_{TH} \) and \(I_E \).
(g) Find the value of \(R \) that makes the noise margins equal to the minimum of the transition region, \(V_{TH} = 0.2 \) V.

11.41 Three logic inverters are connected in a ring. Specifications for this family of gates indicate a typical propagation delay of 5 ns for high-to-low output transitions and 10 ns for low-to-high transitions. Assume that for some reason the input to one of the gates undergoes a low-to-high transition. By sketching the waveforms at the outputs of the three gates and keeping track of their relative positions, show how the circuit functions as an oscillator. What is the frequency of oscillation of this ring oscillator? In each cycle, how long is the output high? low?

11.42 Recognize the logic of a ring oscillator introduced in Problem 11.41, consider an implementation using a ring of five ECL 100K inverters. Assume that the inverters have linearly rising and falling edges (and thus the waveforms are trapezoidal in shape). Let the 0 to 100K rise and fall times be equal to 1 ns. Also, let the propagation delay (for both transitions) be equal to 1 ns. Provide a labeled sketch of the five output signals, taking care that relevant phase information is provided. What is the frequency of oscillation?

11.43 Using the logic and circuit flexibility of ECL, indicated by Figs. 11.34 and 11.44, sketch an ECL logic circuit that realizes the exclusive OR function, \(F = AB + \overline{A}B \).

11.44 For the circuit in Fig. 11.36, whose transfer characteristic is shown in Fig. 11.37, calculate the incremental voltage gain from input to the OR output at points \(a, b, \) and \(c \) of the transfer characteristic. Assume \(B = 0.1 \). Use the results of Exercise 11.20, and let the output at \(a \) be \(+1 \) V and that at \(b \) be \(-0.88 \) V. Hint: Recall that \(a \) and \(b \) are defined by a 1V, 99% current split.

11.45 For the circuit in Fig. 11.36, whose transfer characteristic is shown in Fig. 11.37, find \(V_{TH} \) and \(I_E \) if \(a \) and \(b \) are defined as the points at which \((a) 90\% \) of the current at \(a \) is switched.
(b) 99.9\% of the current at \(a \) is switched.

11.46 For the symmetrically loaded circuit of Fig. 11.36 and for typical output signal levels \(V_{OL} = 0.688 \) V and \(V_{OH} = 1.77 \) V, calculate the power loss in both load resistors \(R \) and both output followers. What then is the total power?
dissipation of a single ECL gate including its symmetrical output terminations?

11.47 Considering the circuit of Fig. 11.38, what is the value of β of Q0, for which the high noise margin (NM) is reduced by 50%?

11.48 Consider an ECL gate whose inverting output is terminated in a 50-Ω resistance connected to a –2-V supply. Let the total load capacitance be denoted C. As the input of the gate rises, the output emitter follower cuts off and the load capacitance C discharges through the 50-Ω load (until the emitter follower conducts again). Find the value of C that will result in a discharge time of 1 ns. Assume the high noise margin is 0.7 V, and the voltage at 0 V, what is the voltage at 0 V, and what is the value of β? Assume |VBE| = 0.7 V and β = 50. Express E as a logic function of A, B, C, and D.

SECTION 11.8: BICMOS DIGITAL CIRCUITS

11.51 Consider the conceptual BICMOS circuit of Fig. 11.45(a), for the conditions that VDD = 5 V, |VBE| = 1 V, VEE = 0.7 V, β = 100, k = 2.54 μA/√V², and (W/L) = 2 μm/1 μm. For V1 = V2 = 0.5 V, find (W/L), so that |VBE| = 1.0 V. What is this symmetrical transient current?

11.52 Consider the conceptual BICMOS circuit of Fig. 11.45(a) for the conditions stated in Problem 11.51. What is the threshold voltage of the inverter if both Q0 and Q1 have = 2 μm/1 μm? What is the rise time as V1 equal to the threshold voltage?

11.53 Consider the choice of values for R0 and R1 in the circuit of Fig. 11.45(c). An important consideration in making this choice is that the loss of base drive current be limited. This loss becomes particularly acute when the current through Q0 and Q1 becomes small. This in turn happens near the end of the output signal swing when the associated MOS device is driven through a load capacitance (say at |V| = |VDD|/2). Determine values for R0 and R1 so that the loss of base current is limited to 50%. What is the ratio R0/R1? Repeat for a 20% loss in base drive.

11.54 For the circuit of Fig. 11.45(c) with parameters as in Problem 11.53, estimate the propagation delay tPD, tPLH, and tPHL obtained for 10-μF load capacitance of 2 pF. Assume that the internal node capacitances do not contribute much to this result. Use average values for the capacitor charging and discharging currents.

11.55 Repeat Problem 11.54 for the circuit in Fig. 11.45(c) assuming that R0 = R1 = 5 kΩ.

11.56 Consider the dynamic response of the NAND gate of Fig. 11.46 with a large external capacitive load. If the worst-case response is to be identical to that of the inverter of Fig. 11.45(c), how must the (W/L) ratio of Q0, Q1, Q0, Q1, Q0 be related?

11.57 Sketch the circuit of a BICMOS two-input NOR gate. If when loaded with a large capacitance the gate is to have worst-case delays equal to the corresponding values of the inverter of Fig. 11.45(c), find (W/L) of each transistor in terms of (W/L), and |VDD|.

FIGURE P11.50

Filters and Tuned Amplifiers

Introduction.

12.1 Filter Transformation, Types, and Specifications
12.2 The Filter Transfer Function
12.3 Butterworth and Chebyshev Filters
12.4 First-Order and Second-Order Filter Functions
12.5 The Second-Order LCR Resonator
12.6 Second-Order Active Filters Based on Inductor

| Filters Functions |
|-------------------|------------------|
| 1091 | 1098 |
| 1106 | 1125 |
| 1122 | 1127 |
| 1125 | 1152 |
| 1158 | 1159 |

INTRODUCTION

In this chapter, we study the design of an important building block of communications and instrumentation systems, the electronic filter. Filter design is one of the very few areas of engineering for which a complete design theory exists, starting from specification and ending with a circuit realization. A detailed study of filter design requires an entire book, and indeed such textbooks exist. In the limited space available here, we shall concentrate on a selection of topics that provide an introduction to the subject as well as a useful arsenal of filter circuits and design methods.

The oldest technology for realizing filters makes use of inductors and capacitors, and the resulting circuits are called passive LC filters. Such filters work well at high frequencies;
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

12.1 FILTER TRANSMISSION, TYPES, AND SPECIFICATION

12.1.1 Filter Transmission

The filters we are about to study are linear circuits that can be represented by the general two-port network shown in Fig. 12.1. The filter transfer function \(T(s) \) is the ratio of the output voltage \(V_o(s) \) to the input voltage \(V_i(s) \):

\[
T(s) = \frac{V_o(s)}{V_i(s)} \tag{12.1}
\]

The filter transmission is found by evaluating \(T(s) \) for physical frequencies, \(s = j\omega \) and can be expressed in terms of its magnitude and phase as:

\[
T(j\omega) = |T(j\omega)|e^{j\Phi} \tag{12.2}
\]

The magnitude of transmission is often expressed in decibels in terms of the gain function:

\[
G(\omega) = 20\log|T(j\omega)|, \text{ dB} \tag{12.3}
\]

or, alternatively, in terms of the attenuation function:

\[
A(\omega) = -20\log|T(j\omega)|, \text{ dB} \tag{12.4}
\]

A filter shapes the frequency spectrum of the input signal, \(V_i(j\omega) \), according to the magnitude of the transfer function \(|T(j\omega)| \), thus providing an output \(V_o(j\omega) \) with a spectrum:

\[
|V_o(j\omega)| = |T(j\omega)| |V_i(j\omega)| \tag{12.5}
\]

Also, the phase characteristics of the signal are modified as it passes through the filter according to the filter phase function \(\Phi(\omega) \).

12.1.2 Filter Types

We are specifically interested here in filters that perform a frequency-selection function: passing signals whose frequency spectrum lies within a specified range, and stopping signals whose frequency spectrum falls outside this range. Such a filter has ideally a frequency band (or bands) over which the magnitude of transmission is unity (the filter passband) and a frequency band (or bands) over which the transmission is zero (the filter stopband). Figure 12.2 depicts the ideal transmission characteristics of the four major filter types: low-pass (LP) in Fig. 12.2(a), high-pass (HP) in Fig. 12.2(b), bandpass (BP) in Fig. 12.2(c), and bandstop (BS) or band-reject in Fig. 12.2(d). These idealized characteristics, by virtue of their vertical edges, are known as brick-wall responses.

12.1.3 Filter Specification

The filter-design process begins with the filter user specifying the transmission characteristics required of the filter. Such a specification cannot be of the form shown in Fig. 12.2 because physical circuits cannot realize these idealized characteristics. Figure 12.3 shows realistic specifications for the transmission characteristics of a low-pass filter. Observe that since a physical circuit cannot provide constant transmission at all passband frequencies, the specifications allow for deviation at passband frequencies. Figure 12.3 shows a bandpass filter with a passband from 0.5 dB to 3 dB. Also, since a physical circuit cannot provide zero transmission at all stopband frequencies, the specifications in Fig. 12.3 allow for some transmission.
FIGURE 12.3 Specification of the transmission characteristics of a low-pass filter. The magnitude response of a filter that just meets specifications is also shown.

over the stopband. However, the specifications require the stopband signals to be attenuated by at least A_{min} (dB) relative to the passband signals. Depending on the filter application, A_{min} can range from 20 dB to 100 dB.

Since the transmission of a physical circuit cannot change abruptly at the edge of the passband, the specifications of Fig. 12.3 provide for a band of frequencies over which the attenuation increases from near 0 dB to A_{min}. This transition band extends from the passband edge ω_p to the stopband edge ω_s. The ratio ω_s/ω_p is usually used as a measure of the sharpness of the low-pass filter response and is called the selectivity factor. Finally, observe that for convenience the passband transmission is specified to be 0 dB. The final filter, however, can be given a passband gain, if desired, without changing its selectivity characteristics.

To summarize, the transmission of a low-pass filter is specified by four parameters:

1. The passband edge ω_p.
2. The maximum allowed variation in passband transmission A_{max}.
3. The stopband edge ω_s.
4. The minimum required stopband attenuation A_{min}.

The more tightly one specifies a filter—that is, lower A_{max}, higher A_{min}, and/or a selectivity ratio ω_s/ω_p closer to unity—the closer the response of the resulting filter will be to the ideal. However, the resulting filter circuit must be of higher order and thus more complex and expensive.

In addition to specifying the magnitude of transmission, there are applications in which the phase response of the filter is also of interest. The filter-design problem, however, is considerably complicated when both magnitude and phase are specified.

Once the filter specifications have been decided upon, the next step in the design is to find a transfer function whose magnitude meets the specification. To meet specification, the magnitude-response curve must lie in the unshaded area in Fig. 12.3. The curve shown in the figure is for a filter that just meets specifications. Observe that for this particular filter, the magnitude response ripples throughout the passband with the ripple peaks being all equal. Since the peak ripple is equal to A_{max}, it is usual to refer to A_{max} as the passband ripple and to ω_s as the ripple bandwidth. The particular filter response shown ripples also in the stopband; again, with the ripple peaks all equal and of such a value that the minimum stopband attenuation achieved is equal to the specified value, A_{min}. This particular response is said to be equiripple in both the passband and the stopband.

The process of obtaining a transfer function that meets given specifications is known as filter approximation. Filter approximation is usually performed using computer programs (Snelgrove, 1982; Ouslis and Sedra, 1995) or filter design tables (Zverev, 1967). In simpler cases, filter approximation can be performed using closed-form expressions, as will be seen in Section 12.3.

Finally, Fig. 12.4 shows transmission specifications for a bandpass filter and the response of a filter that meets these specifications. For this example we have chosen an approximation function that does not ripple in the passband; rather, the transmission decreases monotonically on both sides of the center frequency, attaining the maximum allowable deviation at the two edges of the passband.

EXERCISES

12.1 Find approximate values of attenuation (in dB) corresponding to filter transmissions of $1, 0.99, 0.9, 0.8, 0.7, 0.5, 0.1, 0$.

Ans. 0, 0.1, 1, 2, 3, 6, 20, 0 (dB)

12.2 If the magnitude of passband transmission is to remain constant to within $\pm 5\%$, and if the stopband transmission is to be no greater than 1% of the passband transmission, find A_{max} and A_{min}.

Ans. 0.9 dB; 40 dB

12.2 THE FILTER TRANSFER FUNCTION

The filter transfer function \(T(s) \) can be written as the ratio of two polynomials as

\[
T(s) = \frac{a_0 s^M + a_1 s^{M-1} + \ldots + a_M}{s^N + b_1 s^{N-1} + \ldots + b_N},
\]

(12.6)

The degree of the denominator, \(N \), is the **filter order**. For the filter circuit to be stable, the degree of the numerator must be less than or equal to that of the denominator; \(M \leq N \). The numerator and denominator coefficients, \(a_0, a_1, \ldots, a_M \) and \(b_1, b_2, \ldots, b_N \), are real numbers. The polynomials in the numerator and denominator can be factored, and \(T(s) \) can be expressed in the form

\[
T(s) = \frac{a_0(s-z_1)(s-z_2) \ldots (s-z_M)}{(s-p_1)(s-p_2) \ldots (s-p_N)}
\]

(12.7)

The numerator roots, \(z_1, z_2, \ldots, z_M \), are the transfer-function zeros, or transmission zeros, and the denominator roots, \(p_1, p_2, \ldots, p_N \), are the transfer-function poles, or the natural modes.\(^1\) Each transmission zero or pole can be either a real or a complex number. Complex zeros and poles, however, must occur in conjugate pairs. Thus, if \(-1 + j2 \) happens to be a zero, then \(-1 - j2 \) also must be a zero.

Since in the filter stopband the transmission is required to be zero or small, the filter transmission zeros are usually placed on the \(jw \) axis at stopband frequencies. This is indeed the case for the filter whose transmission function is sketched in Fig. 12.2. This particular filter can be seen to have infinite attenuation (zero transmission) at two stopband frequencies: \(\omega_1 \) and \(\omega_2 \). The filter then must have transmission zeros at \(s = j\omega_1 \) and \(s = j\omega_2 \).

However, since complex zeros occur in conjugate pairs, there must also be transmission zeros at \(s = -j\omega_1 \) and \(s = -j\omega_2 \). Thus the numerator polynomial of this filter will have the factors \((s + j\omega_1)(s - j\omega_1) \) (\(s + j\omega_2)(s - j\omega_2) \). For \(s = j\omega \) (physical frequencies) the numerator becomes \((-\omega^2 + \omega_1^2)(-\omega^2 + \omega_2^2) \), which indeed is zero at \(\omega = \omega_1 \) and \(\omega = \omega_2 \).

Continuing with the example in Fig. 12.2, we observe that the transmission decreases toward \(-\infty\) as \(\omega \) approaches \(-\infty \). Thus the filter must have one or more transmission zeros at \(s = \pm \infty \). In general, the number of transmission zeros at \(s = \pm \infty \) is the difference between the degree of the numerator polynomial, \(M \), and the degree of the denominator polynomial, \(N \), of the transfer function in Eq. (12.6). This is because as \(\omega \) approaches \(\pm \infty \), \(T(s) \) approaches \(a_0 s^M \) and thus is said to have \(N-M \) zeros at \(s = \pm \infty \).

For a filter circuit to be stable, all its poles must lie in the left half of the \(s \) plane, and thus \(p_1, p_2, \ldots, p_N \) must all have negative real parts. Figure 12.2 shows typical pole and zero locations for the low-pass filter whose transmission function is depicted in Fig. 12.2. We have assumed that this filter is of fifth order (\(N = 5 \)). It has two pairs of complex-conjugate poles and one real-axis pole, for a total of five poles. All the poles lie in the vicinity of the passband, which is what gives the filter its high transmission at passband frequencies. The five transmission zeros are at \(s = j\omega_1 \), \(s = -j\omega_1 \), and \(s = \infty \). Thus, the transfer function for this filter is of the form

\[
T(s) = \frac{a_0(s^2 + \omega_1^2)(s^2 + \omega_2^2)}{s^5 + b_1 s^4 + b_2 s^3 + b_3 s^2 + b_4 s + b_5}
\]

(12.8)

\(^1\) Throughout this chapter, we use the terms poles and natural modes interchangeably.

FIGURE 12.5 Pole-zero pattern for the low-pass filter whose transmission is sketched in Fig. 12.3. This is a fifth-order filter (\(N = 5 \)).

As another example, consider the bandpass filter whose magnitude response is shown in Fig. 12.4. This filter has transmission zeros at \(s = \pm j\omega_1 \) and \(s = \pm j\omega_2 \). It also has one or more zeros at \(s = 0 \) and one or more zeros at \(s = \infty \) (because the transmission decreases toward 0 as \(\omega \) approaches 0 and \(\infty \)). Assuming that only one zero exists at each of \(s = 0 \) and \(s = \infty \), the filter must be of sixth order, and its transfer function takes the form

\[
T(s) = \frac{a_0(s^2 + \omega_1^2)(s^2 + \omega_2^2)}{s^6 + b_1 s^5 + b_2 s^4 + b_3 s^3 + b_4 s^2 + b_5 s + b_6}
\]

(12.9)

A typical pole-zero plot for such a filter is shown in Fig. 12.6.

FIGURE 12.6 Pole-zero pattern for the bandpass filter whose transmission function is shown in Fig. 12.4. This is a sixth-order filter (\(N = 6 \)).
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

FILTERS AND TUNED AMPLIFIERS

FIGURE 12.7 (a) Transmission characteristics of a fifth-order low-pass filter having all transmission zeros at infinity. (b) Pole-zero pattern for the filter in (a).

12.3 BUTTERWORTH AND CHEBYSHEV FILTERS

In this section, we present two functions that are frequently used in approximating the transmission characteristics of low-pass filters. Closed-form expressions are available for the parameters of these functions, and thus one can use them in filter design without the need for computers or filter-design tables. Their utility, however, is limited to relatively simple applications. Although in this section we discuss the design of low-pass filters only, the approximation functions presented can be applied to the design of other filter types through the use of frequency transformations (see Sedra and Brackett [1978]).

12.3.1 The Butterworth Filter

Figure 12.8 shows a sketch of the magnitude response of a Butterworth filter. This filter exhibits a monotonically decreasing transmission with all the transmission zeros at

\[\omega = \infty, \]

such that the filter transfer function takes the form

\[T(s) = \frac{a_0}{s^{2N} + b_0 s^{2N-1} + \cdots + b_N}. \]

Such a filter is known as an all-pole filter. Typical pole-zero locations for a fifth-order all-pole low-pass filter are shown in Fig. 12.7(b).

Almost all the filters studied in this chapter have all their transmission zeros on the \(j\omega \) axis, in the filter stopband(s), including \(\omega_0 = 0 \) and \(\omega = \infty \). Also, to obtain high selectivity, all the natural modes will be complex conjugate (except for the case of odd-order filters, where one natural mode must be on the real axis). Finally we note that the more selective the required filter response is, the higher its order must be, and the closer its natural modes are to the \(j\omega \) axis.

EXERCISES

12.3.1.1 A second-order filter has its poles at \(\pm j(\sqrt{3}/2, 1/2) \). The transmission is zero at \(\omega = 2 \text{ rad/s} \) and is unity at \(\omega = 0 \). Find the transfer function.

\[T(s) = \frac{1}{s^2 + 2s + 1}. \]

12.4 A fourth-order filter has zero transmission at \(\omega = 0 \), \(\omega = 2 \text{ rad/s} \), and \(\omega = \infty \). The natural modes are \(\omega = 1, 2, 3, \) and \(\omega = \infty \). Find \(T(s) \).

\[T(s) = \frac{a_4 s^4 + a_2 s^2 + a_0}{s^4 + b_3 s^3 + b_2 s^2 + b_1 s + b_0} \]

12.5 Find the transfer function \(T(s) \) of a third-order all-pole low-pass filter whose poles are at a radial distance of \(1 \text{ rad/s} \) from the origin and whose complex poles are at \(30^\circ \) angles from the \(j\omega \) axis. The dc gain is unity. Show that \(|T(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2}} \) at \(\omega = 3 \text{ rad/s} \).

\[T(s) = \frac{1}{s^3 + 1 + \epsilon^2} \]

Thus, the parameter \(\epsilon \) determines the maximum variation in passband transmission, \(A_{\text{max}} \), according to

\[A_{\text{max}} = 20 \log_\epsilon \frac{1}{\sqrt{1 + \epsilon^2}} \]

Conversely, given \(A_{\text{max}} \), the value of \(\epsilon \) can be determined from

\[\epsilon = \frac{1}{10^\frac{A_{\text{max}}}{10} - 1} \]

Observe that in the Butterworth response the maximum deviation in passband transmission (from the ideal value of unity) occurs at the passband edge only. It can be shown that the first

\[\frac{\text{The Butterworth filter approximation is named after S. Butterworth, a British engineer who in 1930 was among the first to employ it.}}{\}
2N - 1 derivatives of $|T|$ relative to ω_0 are zero at $\omega = 0$ [see Van Valkenburg (1980)]. This property makes the Butterworth response very flat near $\omega = 0$ and gives the response the name maximally flat response. The degree of passband flatness increases as the order N is increased, as can be seen from Fig. 12.9. This figure indicates also that, as should be expected, as the order N is increased the filter response approaches the ideal brick-wall type of response.

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of

At the edge of the stopband, $\omega = \omega_s$, the attenuation of the Butterworth filter is given by

$$ A(\omega_s) = -20 \log \left[1 + e^{2 \pi^2 (\omega_s/\omega_0)^{2N}} \right] $$

This equation can be used to determine the filter order required, which is the lowest integer value of N that yields $A(\omega_s) \geq A_{\text{min}}$.

The natural modes of an Nth-order Butterworth filter can be determined from the graphical construction shown in Fig. 12.10(a). Observe that the natural modes lie on a circle of
radius \(a_0 (l/e)^{1/N} \) and are spaced by equal angles of \(\pi/N \), with the first mode at an angle \(K/2N \) from the \(+jco \) axis. Since the natural modes all have equal radial distance from the origin they all have the same frequency \(co_0 = co (l/e)^{VN} \). Figure 12.10(b), (c), and (d) shows the natural modes of Butterworth filters of order \(N = 2, 3, \) and 4, respectively. Once the \(N \) natural modes \(p_1, p_2, \ldots, p_N \) have been found, the transfer function can be written as

\[
T(s) = \frac{K a_0^N}{(s - p_1)(s - p_2) \cdots (s - p_N)}
\]

(12.16)

where \(K \) is a constant equal to the required dc gain of the filter.

To summarize, to find a Butterworth transfer function that meets transmission specifications of the form in Fig. 12.3 we perform the following procedure:

1. Determine \(e \) from Eq. (12.14).
2. Use Eq. (12.15) to determine the required filter order as the lowest integer value of \(N \) that results in \(A(co_s) > A_{max} \).
3. Use Fig. 12.10(a) to determine the \(N \) natural modes.
4. Use Eq. (12.16) to determine \(T(s) \).

Example 12.3

Find the Butterworth transfer function that meets the following low-pass filter specifications:

- \(f_p = 10 \) kHz, \(A_{max} = 1 \) dB, \(f_s = 15 \) kHz, \(A_{max} = 25 \) dB, dc gain = 1.

Solution

Substituting \(A_{max} = 1 \) dB into Eq. (12.14) yields \(e = 0.5088 \). Equations (12.15) is then used to determine the filter order by trying various values for \(N \). We find that \(N = 8 \) yields \(A(co_s) = 22.3 \) dB and \(N = 9 \) gives \(25.8 \) dB. We thus select \(N = 9 \).

Figure 12.11 shows the graphical construction for determining the poles. The poles all have the same frequency \(co_0 = co (l/e)^{VN} = 2\pi x 10^{10} (1/0.5088)^{1/9} = 6.773 \times 10^4 \) rad/s. The first pole \(p_1 \) is given by

\[p_1 = a_0 (l - \cos 80^\circ + j\sin 80^\circ) = 0.1736 - 0.9848j \]

Combining \(p_1 \) with its complex conjugate \(p_1^\ast \) yields the factor \((s + 0.1736 a_0 + a_0^\ast)(s + 0.9848 a_0 + a_0^\ast) \) in the denominator of the transfer function. The same can be done for the other complex poles, and the complete transfer function is obtained using Eq. (12.16),

\[
T(s) = \frac{a_0}{(s + a_0^\ast)(s + 1.8794 a_0 + a_0^\ast)(s + 5.5321 a_0 + a_0^\ast)}
\]

(12.17)

The magnitude of the transfer function of an \(N \)th-order Chebyshev filter with a passband edge (ripple bandwidth) \(a_p \) is given by

\[
|T(jo)| = \frac{1}{\sqrt{1 + e^2 \cos [N \cos^{-1}(as/a_p)]}} \quad \text{for } as \leq a_p
\]

(12.18)

and

\[
|T(jo)| = \frac{1}{\sqrt{1 + e^2 \cosh [N \cosh^{-1}(as/a_p)]}} \quad \text{for } as > a_p
\]

(12.19)

At the passband edge, \(as = a_p \), the magnitude function is given by

\[
|T(ja_p)| = \frac{1}{\sqrt{1 + e^2}}
\]

12.3.2 The Chebyshev Filter

Figure 12.12 shows representative transmission functions for Chebyshev filters of even and odd order. The Chebyshev filter exhibits an equiripple response in the passband and a monotonically decreasing transmission in the stopband. While the odd-order filter has \(|T(0)| = 1\), the even-order filter exhibits its maximum magnitude deviation at \(as = 0 \). In both cases the total number of passband maxima and minima equals the order of the filter, \(N \). All the transmission zeros of the Chebyshev filter are at \(co = \infty \), making it an all-pole filter.

Named after the Russian mathematician P. L. Chebyshev, who in 1899 used these functions in studying the construction of steam engines.
Thus, the parameter e determines the passband ripple according to

\[A_{\max} = 10 \log (1 + e^2) \]

Conversely, given A_{\max}, the value of e is determined from

\[A_{\max} = 10 \log (1 + e^2) \]

(12.20)

\[e = \frac{1}{10^{\frac{A_{\max}}{20}} - 1} \]

(12.21)

The attenuation achieved by the Chebyshev filter at the stopband edge ($\omega = \omega_s$) is found using Eq. (12.19) as

\[A(\omega_s) = 10 \log \left[1 + e^2 \cosh^2 \left(N \frac{\ln \left(\frac{\omega_s}{\omega_p} \right)}{\cosh^{-1} \left(\frac{\omega_p}{\omega_s} \right)} \right) \right] \]

(12.22)

With the aid of a calculator this equation can be used to determine the order N required to obtain a specified A_{\min} by finding the lowest integer value of N that yields $A(\omega_s) > A_{\min}$. As in the case of the Butterworth filter, increasing the order N of the Chebyshev filter causes its magnitude function to approach the ideal brick-wall low-pass response.

The poles of the Chebyshev filter are given by

\[p_k = -\omega_p \sin \left(\frac{2k - 1}{N} \pi \right) \cosh \left(\frac{1}{N} \ln \left(\frac{\omega_s}{\omega_p} \right) \right) \]

(12.23)

\[+ j \omega_p \cos \left(\frac{2k - 1}{N} \pi \right) \sinh \left(\frac{1}{N} \ln \left(\frac{\omega_s}{\omega_p} \right) \right) \]

$k = 1, 2, \ldots, N$

Finally, the transfer function of the Chebyshev filter can be written as

\[T(s) = \frac{K \omega_p^2}{\epsilon^2 e^{-1}(s - p_1)(s - p_2) \cdots (s - p_N)} \]

(12.24)

where K is the dc gain that the filter is required to have.

To summarize, given low-pass transmission specifications of the type shown in Fig. 12.3, the transfer function of a Chebyshev filter that meets these specifications can be found as follows:

1. Determine e from Eq. (12.21).
2. Use Eq. (12.22) to determine the order required.
3. Determine the poles using Eq. (12.23).
4. Determine the transfer function using Eq. (12.24).

The Chebyshev filter provides a more efficient approximation than the Butterworth filter. Thus, for the same order and the same A_{\max}, the Chebyshev filter provides greater stopband attenuation than the Butterworth filter. Alternatively, to meet identical specifications, one requires a lower order for the Chebyshev than for the Butterworth filter. This point will be illustrated by the following example.

Example 12.2

Find the Chebyshev transfer function that meets the same low-pass filter specifications given in Example 12.1; namely, $f_p = 10$ kHz, $A_{\max} = 1$ dB, $f_s = 15$ kHz, $A_{\min} = 25$ dB, dc gain = 1.

Solution

Substituting $A_{\max} = 1$ dB into Eq. (12.21) yields $e = 0.5088$. By trying various values for N in Eq. (12.22) we find that $N = 4$ yields $A(\omega_s) = 21.6$ dB and $N = 5$ provides 29.9 dB. We thus select $N = 5$. Recall that we required a ninth-order Butterworth filter to meet the same specifications in Example 12.1.

The poles are obtained by substituting in Eq. (12.23) as

\[p_1 = p_5 = \omega_p (-0.0895 \pm j 0.6119) \]

\[p_2, p_4 = \omega_p (-0.2342 \pm j 0.6119) \]

\[p_3 = \omega_p (-0.2895) \]

The transfer function is obtained by substituting these values in Eq. (12.24) as

\[T(s) = \frac{K \omega_p^2}{\epsilon^2 e^{-1}(s - p_1)(s - p_2) \cdots (s - p_5)} \]

(12.25)

where $\omega_p = 2 \pi \times 10^4$ rad/s.

EXERCISES

D12.6 Determine the order N of a Butterworth filter for which $A_{\max} = 1$ dB, $\omega_p/\omega_s = 1.5$, and $A_{\min} = 30$ dB. What is the actual value of minimum stopband attenuation realized? If A_{\max} is to be exactly 30 dB, what value can A_{\min} be reduced to?

Ans. $N = 11$, $A_{\min} = 32.65$ dB, 0.54 dB.

FIGURE 12.12 Sketches of the transmission characteristics of representative (a) even-order and (b) odd-order Chebyshev filters.
12.7 Find the natural modes and the transfer function of a Butterworth filter with \(f_0 = 1 \text{ rad/s} \) and \(A_{pass} = 3 \text{ dB} \) \((\epsilon = 1)\), and \(N = 3 \).

\[\omega_n = -0.5 \pm j\sqrt{3}/2 \text{ and } -1; T(s) = 1/(s + 1)(s^2 + 3s + 1) \]

12.8 Observe that Eq. (12.18) can be used to find the frequencies in the passband at which \(T \) is at its peaks and at its valleys. (The peaks are reached when the \(\cos' \text{ term is zero, and the valleys correspond to the } \cos' \text{ term equal to unity.}) Find these frequencies for a fifth-order filter.

\[\text{Ans. Peaks at } \omega = 0, 0.5993, \text{ and } 0.9553; \text{ the valleys at } \omega = 0.317, \text{ and } 0.817 \]

12.9 Find the attenuation provided at \(\omega = 2f_0 \) by a seventh-order Chebyshev filter with a 0.5-dB passband ripple. If the passband ripple is allowed to increase to 1 dB, by how much does the stopband attenuation increase?

\[\text{Ans. } 0.5 \text{ dB} \]

12.10 It is required to design a low-pass filter having \(f_2 = 1 \text{ kHz}, A_{pass} = 1 \text{ dB}, f = 1.5 \text{ kHz}, \text{ and } A_{stop} = 50 \text{ dB} \).

(a) Find the required order of a Chebyshev filter. What is the excess stopband attenuation obtained?

(b) Repeat for a Butterworth filter.

\[\text{Ans. } (a) N = 8, 5 \text{ dB}; (b) N = 16, 0.5 \text{ dB} \]

12.4 FIRST-ORDER AND SECOND-ORDER FILTER FUNCTIONS

In this section, we shall study the simplest filter transfer functions, those of first and second order. These functions are useful in their own right in the design of simple filters. First-and second-order filters can also be cascaded to realize a high-order filter. Cascade design is in fact one of the most popular methods for the design of active filters (those utilizing op amps and RC circuits). Because the filter poles occur in complex-conjugate pairs, a high-order transfer function \(T(s) \) is factored into the product of second-order functions. If \(T(s) \) is odd, there will also be a first-order function in the factorization. Each of the second-order functions \([\text{and the first-order function when } T(s) \text{ is odd}] \) is then realized using one of the op amp–RC circuits that will be studied in this chapter, and the resulting blocks are placed in cascade. If the output of each block is taken at the output terminal of an op amp where the impedance level is low (ideally zero), cascading does not change the transfer functions of the individual blocks. Thus the overall transfer function of the cascade is simply the product of the transfer functions of the individual blocks, which is the original \(T(s) \).

12.4.1 First-Order Filters

The general first-order transfer function is given by

\[T(s) = \frac{a_0 + a_1 s}{s + b_0} \]

(12.26)

This bilinear transfer function characterizes a first-order filter with a natural mode at \(s = -b_0 \), a transmission zero at \(s = -a_0/b_0 \), and a high-frequency gain that approaches \(a_0 \). The numerator coefficients, \(a_0 \) and \(a_1 \), determine the type of filter (e.g., low pass, high pass, etc.). Some special cases together with passive (RC) and active (op amp–RC) realizations are shown in Fig. 12.13. Note that the active realizations provide considerably more versatility than their passive counterparts; in many cases the gain can be set to a desired value, and some transfer-function parameters can be adjusted without affecting others. The output impedance of the active circuit is also very low, making cascading easily possible. The op amp, however, limits the high-frequency operation of the active circuits.
An important special case of the first-order filter function is the all-pass filter shown in Fig. 12.14. Here, the transmission zero and the natural mode are symmetrically located relative to the \(j\omega \) axis. (They are said to display mirror-image symmetry with respect to the \(j\omega \) axis.) Observe that although the transmission of the all-pass filter is (ideally) constant at all frequencies, its phase shows frequency selectivity. All-pass filters are used as phase shifters and in systems that require phase shaping (e.g., in the design of circuits called delay equalizers, which cause the overall time delay of a transmission system to be constant with frequency).

EXERCISES

12.11 Using \(R_1 = 10 \, \text{k} \Omega \), design the op amp-RC circuit of Fig. 12.13(b) to realize a high-pass filter with a corner frequency of \(10^4 \, \text{rad/s} \) and a high-frequency gain of 10.

Ans. \(R_2 = 10 \, \text{k} \Omega; \ C = 0.1 \, \mu\text{F} \)

12.12 Design the op amp-RC circuit of Fig. 12.14 to realize an all-pass filter with a 90° phase shift at \(\omega_0 \) rad/s.

Select suitable component values.

Ans. Possible choices: \(R_1 = R_2 = 10 \, \text{k} \Omega; \ C = 0.1 \, \mu\text{F} \)

12.4.2 Second-Order Filter Functions

The general second-order (or biquadratic) filter transfer function is usually expressed in the standard form

\[
T(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + (\omega_0/Q)s + \omega_0^2}
\]

where \(a_0 \) and \(Q \) determine the natural modes (poles) according to

\[
p_1, p_2 = -\omega_0/Q \pm j\omega_0\sqrt{1 - (1/Q^2)}
\]

We are usually interested in the case of complex-conjugate natural modes, obtained for \(Q > 0.5 \).

Figure 12.15 shows the location of the pair of complex-conjugate poles in the \(s \) plane. Observe that the radial distance of the natural modes (from the origin) is equal to \(\omega_0 \), which is known as

FIGURE 12.15 Definition of the parameters \(\omega_0 \) and \(Q \) of a pair of complex-conjugate poles.
as the pole frequency. The parameter \(Q \) determines the distance of the poles from the \(jw \) axis: the higher the value of \(Q \), the closer the poles are to the \(jw \) axis, and the more selective the filter response becomes. An infinite value for \(Q \) locates the poles on the \(jw \) axis and can yield sustained oscillations in the circuit realization. A negative value of \(Q \) implies that the poles are in the right half of the \(s \) plane, which certainly produces oscillations. The parameter \(Q \) is called the pole quality factor, or simply, pole \(Q \).

The transmission zeros of the second-order filter are determined by the numerator coefficients, \(a_0 \), \(a_1 \), and \(a_2 \). It follows that the numerator coefficients determine the type of second-order filter function (i.e., LP, HP, etc.). Seven special cases of interest are illustrated in Fig. 12.16. For each case we give the transfer function, the \(s \)-plane locations of the transfer-function singularities, and the magnitude response. Circuit realizations for the various second-order filter functions will be given in subsequent sections.

All seven special second-order filters have a pair of complex-conjugate natural modes characterized by a frequency \(\omega_0 \) and a quality factor, \(Q \).

In the low-pass (LP) case, shown in Fig. 12.16(a), the two transmission zeros are at \(s = \infty \). The magnitude response can exhibit a peak, with the details indicated. It can be shown that the peak occurs only for \(Q > \frac{1}{\sqrt{2}} \). The response obtained for \(Q = 1/\sqrt{2} \) is the Butterworth, or maximally flat, response.

The high-pass (HP) function shown in Fig. 12.16(b) has both transmission zeros at \(s = 0 \) (dc). The magnitude response shows a peak for \(Q > \frac{1}{\sqrt{2}} \), with the details of the response as indicated. Observe the duality between the LP and HP responses.

Next consider the bandpass (BP) filter function shown in Fig. 12.16(c). Here, one transmission zero is at \(s = 0 \) (dc), and the other is at \(s = \infty \). The magnitude response peaks at \(\omega = \omega_0 \). Thus the center frequency of the bandpass filter is equal to the pole frequency \(\omega_0 \). The selectivity of the second-order bandpass filter is usually measured by its 3-dB bandwidth. This is the difference between the two frequencies \(\omega_0 \) and \(\omega_1 \) at which the magnitude response is 3 dB below its maximum value (at \(\omega_0 \)). It can be shown that

\[
\omega_0, \omega_1 = \omega_0 \sqrt{1 + (1/4Q^2)} \pm \frac{\omega_0}{2Q} \tag{12.29}
\]

Thus,

\[
BW = \omega_0 - \omega_1 = \omega_0/2Q \tag{12.30}
\]

Observe that as \(Q \) increases, the bandwidth decreases and the passband filter becomes more selective.

If the transmission zeros are located on the \(jw \) axis, at the complex-conjugate locations \(\pm j\omega_n \), then the magnitude response exhibits zero transmission at \(\omega = \omega_n \). Thus a notch in the magnitude response occurs at \(\omega = \omega_n \) and \(\omega_n \) is known as the notch frequency. Three cases of the second-order notch filter are possible: the regular notch, obtained when \(\omega_n > \omega_0 \) (Fig. 12.16d); the low-pass notch, obtained when \(\omega_n > \omega_0 \) (Fig. 12.16e); and the high-pass notch, obtained when \(\omega_n < \omega_0 \) (Fig. 12.16f). The reader is urged to verify the response details given in these figures (a rather tedious task, though). Observe that in all notch cases, the transmission at dc and at \(s = \infty \) is finite. This is so because there are no transmission zeros at either \(s = 0 \) or \(s = \infty \).

The last special case of interest is the all-pass (AP) filter whose characteristics are illustrated in Fig. 12.16(g). Here the two transmission zeros are in the right half of the \(s \) plane, at the mirror-image locations of the poles. (This is the case for all-pass functions of any order.) The magnitude response of the all-pass function is constant over all frequencies; the flat gain, as it is called, is in our case equal to \(|a_2| \). The frequency selectivity of the all-pass function is in its phase response.
Filter Type and $T(s)$

<table>
<thead>
<tr>
<th>Type</th>
<th>$T(s)$</th>
<th>DC Gain</th>
<th>High-Frequency Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) Notch</td>
<td>$T(s) = a_2 - \frac{s^2 + a_0^2}{s^2 + \frac{s a_0}{Q} + a_0^2}$</td>
<td>a_2</td>
<td>a_2</td>
</tr>
<tr>
<td></td>
<td>DC gain: a_2, High-frequency gain: a_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) Low-pass notch (LPN)</td>
<td>$T(s) = a_2 - \frac{s^2 + a_0^2}{s^2 + \frac{s a_0}{Q} + a_0^2}$</td>
<td>a_2</td>
<td>a_2</td>
</tr>
<tr>
<td></td>
<td>DC gain: a_2, High-frequency gain: a_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) High-pass notch (HPN)</td>
<td>$T(s) = a_2 - \frac{s^2 + a_0^2}{s^2 + \frac{s a_0}{Q} + a_0^2}$</td>
<td>a_2</td>
<td>a_2</td>
</tr>
<tr>
<td></td>
<td>DC gain: a_2, High-frequency gain: a_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) All pass (AP)</td>
<td>$T(s) = a_2 - \frac{s^2 + a_0^2}{s^2 + \frac{s a_0}{Q} + a_0^2}$</td>
<td>a_2</td>
<td>a_2</td>
</tr>
</tbody>
</table>

FIGURE 12.16 (Continued)
1106 CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

EXERCISES

12.13 For a maximally flat second-order low-pass filter \(Q = \sqrt{2} \), show that at \(\omega = \omega_n \) the magnitude response is 3 dB below the value at dc.

12.14 Give the transfer function of a second-order highpass filter with a center frequency of \(10^5 \) rad/s, a center-frequency gain of 10, and a 3-dB bandwidth of \(10^3 \) rad/s.

\[H(s) = \frac{10^5}{s^2 + 10^5 s + 10^3} \]

12.15 (a) For the second-order notch function with \(\omega_n = \omega_0 \), show that for the attenuation to be greater than \(3\,\text{dB} \), the value of \(Q \) is given by

\[Q = \frac{10^5}{\omega_0 / 2} \]

(Note: Plot.)

(b) For the second-order notch function with \(\omega_n = \omega_0 \), show that for the attenuation to be greater than \(3\,\text{dB} \), the value of \(Q \) is given by

\[Q = \frac{10^5}{\omega_0 / 2} \]

12.16 Consider a low-pass notch with \(\omega_n = \omega_0 \) rad/s, \(Q = 10 \), \(\omega_n = 1.2 \) rad/s, and a dc gain of unity. Find the frequency and magnitude of the transmission peak. Also find the high-frequency transmission.

Ans. 0.986 rad/s, 3 dB, 0.69

12.5 THE SECOND-ORDER LCR RESONATOR

In this section we shall study the second-order LCR resonator shown in Fig. 12.17(a). The use of this resonator to derive circuit realizations for the various second-order filter functions will be demonstrated. It will be shown in the next section that replacing the inductor \(L \) by a simulated inductance obtained using an op amp–RC circuit results in an op amp–RC resonator. The latter forms the basis of an important class of active-RC filters to be studied in Section 12.6.

12.5.1 The Resonator Natural Modes

The natural modes of the parallel resonance circuit of Fig. 12.17(a) can be determined by applying an excitation that does not change the natural structure of the circuit. Two possible ways of exciting the circuit are shown in Fig. 12.17(b) and (c). In Fig. 12.17(b) the resonator is excited with a current source \(I \) connected in parallel. Since, as far as the natural response of a circuit is concerned, an independent ideal current source is equivalent to an open circuit, the excitation of Fig. 12.17(b) does not alter the natural structure of the resonator. Thus the circuit in Fig. 12.17(b) can be used to determine the natural modes of the resonator by simply finding the poles of any response function. We can for instance take the voltage \(V_x \) across the resonator as the response and thus obtain the response function \(\frac{V_x}{I} = Z \), where \(Z \) is the impedance of the parallel resonance circuit. It is obviously more convenient, however, to work in terms of the admittance \(Y \); thus,

\[V_x = \frac{1}{s} \cdot \frac{1}{(1/L) + sC + (1/R)} \cdot \frac{1}{Y/C} = \frac{1}{s^2 + (1/CR) + (1/LC)} \]

Equating the denominator to the standard form \([s^2 + s(a/Q) + a^2]^2 \) leads to

\[a = 1/LC \]

and

\[a_0/Q = 1/CR \]

Thus,

\[a_0 = 1/LC \]

and

\[Q = a_0 CR \]

These expressions should be familiar to the reader from studies of parallel resonance circuits in introductory courses on circuit theory.

An alternative way of exciting the parallel LCR resonator for the purpose of determining its natural modes is shown in Fig. 12.17(c). Here, node \(x \) of inductor \(L \) has been disconnected from ground and connected to an ideal voltage source \(V_x \). Now, as far as the natural response of a circuit is concerned, an ideal independent voltage source is equivalent to a short circuit; the excitation of Fig. 12.17(c) does not alter the natural structure of the resonator. Thus we can use the circuit in Fig. 12.17(c) to determine the natural modes of the resonator. These are the poles of any response function. For instance, we can select \(V_x \) as the response variable and find the transfer function \(V_x/V_c \). The reader can easily verify that this will lead to the natural modes determined earlier.

In a design problem, we will be given \(\omega_0 \) and \(Q \) and will be asked to determine \(L \), \(C \), and \(R \). Equations (12.34) and (12.35) are two equations in the three unknowns. The one available degree of freedom can be utilized to set the impedance level of the circuit to a value that results in practical component values.

12.5.2 Realization of Transmission Zeros

Having selected the component values of the LCR resonator to realize a given pair of complex-conjugate natural modes, we now consider the use of the resonator to realize a desired filter type (e.g., LP, HP, etc.). Specifically, we wish to find out where to inject the input voltage signal \(V_i \) so that the transfer function \(V_y/V_i \) is the desired one. Toward that end, note that in the resonator circuit in Fig. 12.17(a), any of the nodes labeled \(x \), \(y \), or \(z \) can be disconnected.
from ground and connected to V_j without altering the circuit's natural modes. When this is done the circuit takes the form of a voltage divider, as shown in Fig. 12.18(a). Thus the transfer function realized is

$$T(s) = \frac{V(s)}{V(s)} = \frac{Z(s)}{Z(s) + Z_x(s)}$$

We observe that the transmission zeros are the values of s at which $Z_x(s)$ is zero, provided $Z_s(s)$ is not simultaneously zero, and the values of s at which $Z_x(s)$ is infinite, provided $Z_s(s)$ is not simultaneously infinite. This statement makes physical sense: The output will be zero either when $Z_x(s)$ behaves as a short circuit or when $Z_s(s)$ behaves as an open circuit. If there is a value of s at which both Z_x and Z_s are zero, then V_j/V_t will be finite and no transmission zero is obtained. Similarly, if there is a value of s at which both Z_x and Z_s are infinite, then V_j/V_t will be finite and no transmission zero is realized.

12.5.3 Realization of the Low-Pass Function

Using the scheme just outlined we see that to realize a low-pass function, node x is disconnected from ground and connected to V_t, as shown in Fig. 12.18(b). The transmission zeros of this circuit will be at the value of s for which the series impedance becomes infinite (sL becomes infinite at $s = \infty$) and the value of s at which the shunt impedance becomes zero ($1/(sC + 1/R)$ becomes zero at $s = \infty$). Thus this circuit has two transmission zeros at $s = \infty$, as an LP is supposed to. The transfer function can be written either by inspection or by using the voltage-divider rule. Following the latter approach, we obtain

$$T(s) = \frac{V_s}{V_t} = \frac{a_2 s^2}{s^2 + s(a_0/Q) + a_2}$$

12.5.4 Realization of the High-Pass Function

To realize the second-order high-pass function, node y is disconnected from ground and connected to V_v, as shown in Fig. 12.18(c). Here the series capacitor introduces a transmission zero at $s = 0$ (dc), and the shunt inductor introduces another transmission zero at $s = 0$. Thus by inspection, the transfer function may be written as

$$T(s) = \frac{V_v}{V_t} = \frac{a_2 s^2}{s^2 + s(a_0/Q) + a_2}$$

where a_0 and Q are the natural mode parameters given by Eqs. (12.34) and (12.35) and a_2 is the high-frequency transmission. The value of a_2 can be determined from the circuit by observing that as s approaches ∞, the capacitor approaches a short circuit and V_v approaches V_t, resulting in $a_2 = 1$.

12.5.5 Realization of the Bandpass Function

The bandpass function is realized by disconnecting node z from ground and connecting it to V_b, as shown in Fig. 12.18(d). Here the series impedance is resistive and thus does not introduce any transmission zeros. These are obtained as follows: One zero at $s = 0$ is

FIGURE 12.18 Realization of various second-order filter functions using the LCR resonator of Fig. 12.17(b): (a) general structure, (b) LP, (c) HP, (d) BP, (e) notch at a_0, (f) general notch, (g) LPN ($a_0 > a_2$), (h) LPN as $s \rightarrow \infty$, (i) HPN ($a_0 < a_2$).
realized by the shunt inductor, and one zero at \(s = \infty \) is realized by the shunt capacitor. At the center frequency \(\omega_0 \), the parallel LC-circuit exhibits an infinite impedance, and thus no current flows in the circuit. It follows that at \(\omega = \omega_0 \), \(V_o = V_i \). In other words, the center-frequency gain of the bandpass filter is unity. Its transfer function can be obtained as follows:

\[
T(s) = \frac{Y_F s + Y_L + Y_C}{(1/R) + (1/L) + sC} = \frac{1/R}{1/C + 1/L + sC} \quad (12.39)
\]

12.5.6 Realization of the Notch Functions

To obtain a pair of transmission zeros on the \(\omega \) axis we use a parallel resonance circuit in the series arm, as shown in Fig. 12.18(e). Observe that this circuit is obtained by disconnecting both nodes \(x \) and \(y \) from ground and connecting them together to \(V_o \). The impedance of the LC circuit becomes infinite at \(\omega = \omega_0 = 1/\sqrt{LC} \), thus causing zero transmission at this frequency. The shunt impedance is resistive and thus does not introduce transmission zeros. It follows that the circuit in Fig. 12.18(e) will realize the notch transfer function

\[
T(s) = \frac{s^2 + a_0^2 s}{s^2 + s(\omega_0/Q) + \omega_0^2} \quad (12.40)
\]

The value of the high-frequency gain \(a_0 \) can be found from the circuit to be unity.

To obtain a notch-filter realization in which the notch frequency \(\omega_0 \) is arbitrarily placed relative to \(\omega_0 \), we adopt a variation on the scheme above. We still use a parallel LC circuit in the series branch, as shown in Fig. 12.18(f) where \(L_1 \) and \(C_1 \) are selected so that

\[
L_1C_1 = 1/\omega_0^2 \quad (12.41)
\]

Thus the \(L_1C_1 \) tank circuit will introduce a pair of transmission zeros at \(\pm j\omega_0 \), provided the \(L_2C_2 \) tank is not resonant at \(\omega_0 \). Apart from this restriction, the values of \(L_2 \) and \(C_2 \) must be selected to ensure that the natural modes have not been altered; thus,

\[
C_1 + C_2 = C \quad (12.42)
\]

\[
L_1L_2 = L \quad (12.43)
\]

In other words, when \(V_i \) is replaced by a short circuit, the circuit should reduce to the original LCR resonator. Another way of thinking about the circuit of Fig. 12.18(f) is that it is obtained from the original LCR resonator by lifting part of \(L \) and part of \(C \) off ground and connecting them to \(V_o \).

It should be noted that in the circuit of Fig. 12.18(f), \(L_2 \) does not introduce a zero at \(s = 0 \) because at \(s = 0 \), the \(L_1 \) circuit also has a zero. In fact, at \(s = 0 \) the circuit reduces to an inductive voltage divider with the dc transmission being \(L_2/L_1 + L_2 \). Similar concepts can be made about \(C_1 \) and the fact that it does not introduce a zero at \(s = \infty \).

The LPN and HPN filter realizations are special cases of the general notch circuit of Fig. 12.18(f). Specifically, for the LPN,

\[a_0 > \omega_0 \]

and thus

\[
L_1C_1 < (L_1/4L_2)(C_1 + C_2)
\]

This condition can be satisfied with \(L_2 \) eliminated (i.e., \(L_2 = \infty \) and \(L_1 = L \)), resulting in the LPN circuit in Fig. 12.18(g). The transfer function can be written by inspection as

\[
T(s) = \frac{Y_F}{Y_L} = \frac{s^2 + a_0^2}{s^2 + s(\omega_0/Q) + \omega_0^2} \quad (12.44)
\]

where \(a_0^2 = 1/LC_1 \), \(\omega_0^2 = 1/L(C_1 + C_2) \), \(\omega_0/Q = 1/CR \), and \(a_0 \) is the high-frequency gain. From the circuit we see that as \(s \to \infty \), the circuit reduces to that in Fig. 12.18(h), for which

\[
\frac{V_o}{V_i} = \frac{C_1}{C_1 + C_2} \quad (12.45)
\]

To obtain the HPN realization we start with the circuit of Fig. 12.18(f) and use the fact that \(a_0 < \omega_0 \) to obtain

\[
L_1C_1 > (L_1/4L_2)(C_1 + C_2)
\]

which can be satisfied while selecting \(C_2 = 0 \) (i.e., \(C_1 = C \)). Thus we obtain the reduced circuit shown in Fig. 12.18(i). Observe that as \(s \to \infty \), \(V_o \) approaches \(V_i \) and thus the high-frequency gain is unity. Thus, the transfer function can be expressed as

\[
T(s) = \frac{V_o}{V_i} = \frac{s^2 + s(1/LC)}{s^2 + s(1/CR) + 1/LC} \quad (12.46)
\]

12.5.7 Realization of the All-Pass Function

The all-pass transfer function

\[
T(s) = \frac{s^2 + s(\omega_0/Q) + \omega_0^2}{s^2 + s(\omega_0/Q) + \omega_0^2} \quad (12.47)
\]

can be written as

\[
T(s) = 1 - \frac{s^2(\omega_0/Q)}{s^2 + s(\omega_0/Q) + \omega_0^2} \quad (12.48)
\]

The second term on the right-hand side is a bandpass function with a center-frequency gain of 2. We already have a bandpass circuit (Fig. 12.18(d)) but with a center-frequency gain of unity. We shall therefore attempt an all-pass realization with a flat gain of 0.5, that is,

\[
T(s) = 0.5 - \frac{s^2(\omega_0/Q)}{s^2 + s(\omega_0/Q) + \omega_0^2}
\]

This function can be realized using a voltage divider with a transmission ratio of 0.5 together with the band-pass circuit of Fig. 12.18(d). To effect the subtraction, the output of the all-pass circuit is taken between the output terminals of the voltage divider and that of the
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

FIGURE 12.19 Realization of the second-order all-pass transfer function using a voltage divider and an LCR resonator.

A bandpass filter, as shown in Fig. 12.19. Unfortunately this circuit has the disadvantage of lacking a common ground terminal between the input and the output. An op amp-RC realization of the all-pass function will be presented in the next section.

EXERCISES

12.17 Use the circuit of Fig. 12.18(b) to realize a second-order low-pass function of the maximally flat type with a 3-dB frequency of 100 kHz.

Ans. Selecting $R = 1$ kΩ and $C = 113$ pF, we have $L = 3.25$ mH.

12.18 Use the circuit of Fig. 12.18(a) to design a notch filter to eliminate a bothersome power-supply hum at a 60-Hz frequency. The filter is to have a 3-dB bandwidth of 10 Hz (i.e., the attenuation is greater than 3 dB over a 10-Hz band around the 60-Hz center frequency). Use an $R = 10$ kΩ.

Ans. $C = 1.6$ µF and $L = 4.42$ H. (Note: the large inductor required. This is the reason passive filters are not practical in low-frequency applications.)

12.6 SECOND-ORDER ACTIVE FILTERS BASED ON INDUCTOR REPLACEMENT

In this section, we study a family of op amp-RC circuits that realize the various second-order filter functions. The circuits are based on an op amp-RC resonator obtained by replacing the inductor L in the LCR resonator with an op amp-RC circuit that has an inductive input impedance.

12.6.1 The Antoniou Inductance-Simulation Circuit

Over the years, many op amp-RC circuits have been proposed for simulating the operation of an inductor. Of these, one circuit invented by A. Antoniou\(^5\) (see Antoniou (1969)) has proved to be the "best." By "best" we mean that the operation of the circuit is very tolerant of the nonideal properties of the op amps, in particular their finite gain and bandwidth. Figure 12.20(a) shows the Antoniou inductance-simulation circuit. If the circuit is fed at its input (node 1) with a voltage source V_1 and the input current is denoted I_1, then for ideal op amps the input impedance can be shown to be

$$Z_{in} = \frac{V_1}{I_1} = sC_4R_3R_5/R_2$$

Figure 12.20(b) shows the analysis of the circuit assuming ideal op amps. The order of the analysis steps is indicated by the circled numbers.\(^6\)

\(^5\) Andreas Antoniou is a Canadian academic, currently (2003) a member of the faculty of the University of Victoria, British Columbia.

\(^6\) The analysis begins at node 1.
which is assumed to be fed by a voltage source V_h and proceeds step by step, with the order of the steps indicated by the circled numbers. The result of the analysis is the expression shown for the input current i_f from which Z_{in} is found.

The design of this circuit is usually based on selecting $R_x = R_2 - R_3 = R_5$ and $C_4 = C$, which leads to $L = CR$. Convenient values are then selected for C and R to yield the desired inductance value L. More details on this circuit and the effect of the nonidealities of the op amps on its performance can be found in Sedra and Brackett (1978).

12.6.2 The Op Amp–RC Resonator

Figure 12.21(a) shows the LCR resonator we studied in detail in Section 12.5. Replacing the inductor L with a simulated inductance realized by the Antoniou circuit of Fig. 12.20(a) results in the op amp–RC resonator of Fig. 12.21(b). (Ignore for the moment the additional amplifier drawn with broken lines.) The circuit of Fig. 12.21(b) is a second-order resonator having a pole frequency

$$\omega_0 = 1/\sqrt{C_6 L} = 1/\sqrt{C_6 C_5 R_1 R_5}$$

(12.51)

where we have used the expression for L given in Eq. (12.50), and a pole Q factor,

$$Q = \frac{\omega_0 C_6 R_1}{R_6}$$

(12.52)

Usually one selects $C_4 = C_6 = C$ and $R_1 = R_3 = R_5 = R$, which results in

$$\omega_0 = 1/CR$$

(12.53)

$$Q = R_6/\pi$$

(12.54)

Thus, if we select a practically convenient value for C, we can use Eq. (12.53) to determine the value of R to realize a given ω_0, and then use Eq. (12.54) to determine the value of R_6 to realize a given Q.

12.6.3 Realization of the Various Filter Types

The op amp–RC resonator of Fig. 12.21(b) can be used to generate circuit realizations for the various second-order filter functions by following the approach described in detail in Section 12.5 in connection with the LCR resonator. Thus to obtain a bandpass function we disconnect node z from ground and connect it to the signal source V_s. A high-pass function is obtained by injecting V_t to node y. To realize a low-pass function using the LCR resonator, the inductor terminal x is disconnected from ground and connected to V_s. The corresponding node in the active resonator is the node at which R_5 is connected to ground, labeled as node x in Fig. 12.21(b). A regular notch function ($\omega_0 = \omega_n$) is obtained by feeding V_t to nodes x and y. In all cases the output can be taken as the voltage across the resonance circuit, V_r. However, this is not a convenient node to use as the filter output terminal because connecting a load there would change the filter characteristics. The problem can be solved easily by utilizing a buffer amplifier. This is the amplifier of gain K, drawn with broken lines in Fig. 12.21(b).

6This point might not be obvious! The reader, however, can show that when V_t is fed to this node the function V_r/V_t is indeed low pass.
FIGURE 12.22 Realizations for the various second-order filter functions using the op amp-RC resonator of Fig. 12.21(b): (a) LP, (b) HP, (c) BP, (d) Notch at ω_0, (e) LPN, $\omega_0 > \omega_0$, (f) HPN, $\omega_0 < \omega_0$, and (g) LPN, $\omega_0 \approx \omega_0$. (Continued) (h) Notch at ω_0, (i) LPN, $\omega_0 \approx \omega_0$, (j) HPN, $\omega_0 \approx \omega_0$, and
performance. They can be used on their own to realize second-order filter functions, or they can be cascaded to implement high-order filters.

12.6.4 The All-Pass Circuit

An all-pass function with a flat gain of unity can be written as

\[T(s) = \frac{R_2}{s + R_1 + \frac{1}{s}} \]

(12.55)

(see Eq. 12.48). Two circuits whose transfer functions are related in this fashion are said to be complementary. Thus the all-pass circuit with unity flat gain is the complement of the bandpass circuit with a center-frequency gain of 2. A simple procedure exists for obtaining the complement of a given linear circuit: Disconnect all the circuit nodes that are connected to ground and connect them to the complement of a given linear circuit: Disconnect all the circuit nodes that are connected to ground and connect them to V, and disconnect all the nodes that are connected to V, and connect them to ground. That is, interchanging input and ground in a linear circuit generates a circuit whose transfer function is the complement of that of the original circuit.

Returning to the problem at hand, we first use the circuit of Fig. 12.22(c) to realize a BP with a gain of 2 by simply selecting \(K = 2 \) and implementing the buffer amplifier with the circuit of Fig. 12.22(c) with \(r_1 = r_2 \). We then interchange input and ground and thus obtain the all-pass circuit of Fig. 12.22(g).

Finally, in addition to being simple to design, the circuits in Fig. 12.22 exhibit excellent performance. They can be used on their own to realize second-order filter functions, or they can be cascaded to implement high-order filters.

More about complementary circuits will be presented later in conjunction with Fig. 12.31.
12.7 SECOND-ORDER ACTIVE FILTERS BASED ON THE TWO-INTEGRATOR-LOOP TOPOLOGY

In this section, we study another family of op amp RC circuits that realize second-order filter functions. The circuits are based on the use of two integrators connected in cascade in an overall feedback loop and are thus known as two-integrator-loop circuits.

12.7.1 Derivation of the Two-Integrator-Loop Biquad

To derive the two-integrator-loop biquadratic circuit, or biquad as it is commonly known,\(^5\) consider the second-order high-pass transfer function

\[
\frac{V_{hp}}{V_i} = \frac{Ks^2}{s^2 + (a_0/Q) + a_0} \tag{12.56}
\]

where \(K\) is the high-frequency gain. Cross-multiplying Eq. (12.56) and dividing both sides of the resulting equation by \(s^2\) (to get all the terms involving \(s\) in the form \(1/s\), which is the transfer function of an integrator) gives

\[
V_{hp} = \frac{1}{Qs} \left[\frac{a_0}{s} V_i + \frac{a_0}{s} V_{hp} \right] = KV_{hp} \tag{12.57}
\]

In this equation we observe that the signal \((a_0/s)V_{hp}\) can be obtained by passing \(V_{hp}\) through an integrator with a time constant equal to \(1/a_0\). Furthermore, passing the resulting signal through another identical integrator results in the third signal involving \(V_{hp}\) in Eq. (12.57)—namely, \((a_0/s)V_{hp}\). Figure 12.23(a) shows a block diagram for such a two-integrator arrangement. Note that in anticipation of the use of the inverting op-amp Miller integrator circuit to implement each integrator, the integrator blocks in Fig. 12.23(a) have been assigned negative signs.

The problem still remains, however, of how to form \(V_{hp}\), the input signal feeding the two cascaded integrators. Toward that end, we rearrange Eq. (12.57), expressing \(V_{hp}\) in terms of its single- and double-integrated versions, and of \(V_i\) as

\[
V_{hp} = KV_{hp} - \frac{1}{Qs} V_i - \frac{1}{s} V_{hp} \tag{12.58}
\]

Fig. 12.23 Derivation of a block diagram realization of the two-integrator-loop biquad.

which suggests that \(V_{hp}\) can be obtained by using the weighted summer of Fig. 12.23(b). Now it should be easy to see that a complete block diagram realization can be obtained by combining the integrator blocks of Fig. 12.23(a) with the summer block of Fig. 12.23(b), as shown in Fig. 12.23(c).

- In the realization of Fig. 12.23(c), \(V_{hp}\), obtained at the output of the summer, realizes the high-pass transfer function \(T_{hp} = V_{hp}/V_i\) of Eq. (12.56). The signal at the output of the first integrator is \((-a_0/s)V_{hp}\), which is a bandpass function.

\[
\frac{-a_0/s}{V_i} V_{hp} = -\frac{K a_0 s}{s^2 + (a_0/Q) + a_0} = T_{hp}(s) \tag{12.59}
\]

Therefore the signal at the output of the first integrator is labeled \(V_{hp}\) (Note that the center-frequency gain of the bandpass filter realized is equal to \(-KQ\)).

In a similar fashion, we can show that the transfer function realized at the output of the second integrator is the low-pass function,

\[
\frac{a_0/s}{V_i} V_{hp} = \frac{K a_0 s}{s^2 + (a_0/Q) + a_0} = T_{lp}(s) \tag{12.60}
\]

Thus the output of the second integrator is labeled \(V_{lp}\). Note that the dc gain of the low-pass filter realized is equal to \(K\).

We conclude that the two-integrator-loop biquad shown in block diagram form in Fig. 12.23(c) realizes the three basic second-order filtering functions, LP, BP, and HP,
This versatility has made the circuit very popular and has given it the name universal active filter.

12.7.2 Circuit Implementation

To obtain an op-amp circuit implementation of the two-integrator-loop biquad of Fig. 12.23(c), we replace each integrator with a Miller integrator circuit having \(RC = 1/\omega_0 \) and we replace the summer block with an op-amp summing circuit that is capable of assigning both positive and negative weights to its inputs. The resulting circuit, known as the Kerwin-Henderson-Newcomb or KHN biquad after its inventors, is shown in Fig. 12.24(a). Given values for \(\omega_0, Q, \) and \(K, \) the design of the circuit is straightforward: We select suitably practical values for the components of the integrators \(C \) and \(R \) so that \(CR = 1/\omega_0 \). To determine the values of the resistors associated with the summer, we first use superposition to express the output of the summer \(V_{op} \) in terms of its inputs, \(V_{hp} \) and \(V_{bp} \),

\[
V_{op} = \frac{R_1}{R_1 + R_2} \left(1 + \frac{R_2}{R_1} \right) V_{hp} + \frac{R_1}{R_1 + R_2} \left(1 + \frac{R_2}{R_1} \right) \left(\frac{\omega_0}{4} V_{hp} \right) - \frac{R_1}{R_1 + R_2} \left(\frac{\omega_0}{4} V_{hp} \right) \tag{12.61}
\]

Equating the last right-hand-side terms of Eqs. (12.61) and (12.58) gives

\[
R_2/R_1 = 1 \tag{12.62}
\]

The KHN biquad can be used to realize notch and all-pass functions by summing weighted versions of the three outputs, \(LP, BP, \) and \(HP \). Such an op-amp summer is shown in Fig. 12.24(b); for this summer we can write

\[
V_o = -\left(\frac{R_2}{R_3} V_{hp} + \frac{R_4}{R_5} V_{hp} + \frac{R_6}{R_7} V_{hp} \right) \tag{12.65}
\]

Substituting for \(T_{hp} \) and \(T_{bp} \) from Eqs. (12.56), (12.59), and (12.60), respectively, gives the overall transfer function

\[
V_o/V_i = -k \left(\frac{R_2}{R_3} \right)^2 \left(s(R_4/R_5)^2 \omega_0 + \left(\frac{R_1}{R_2} \right)^2 \omega_0^2 \right) \tag{12.66}
\]

from which we can see that different transmission zeros can be obtained by the appropriate selection of the values of the summing resistors. For instance, a notch is obtained by selecting \(R_2 = \infty \) and

\[
\frac{R_2}{R_3} = \frac{\omega_0}{\omega_0^2} \tag{12.67}
\]

12.7.3 An Alternative Two-Integrator-Loop Biquad Circuit

An alternative two-integrator-loop biquad circuit in which all three op amps are used in a single-ended mode can be developed as follows: Rather than using the input summer to add signals with positive and negative coefficients, we can introduce an additional inverter, as shown in Fig. 12.25(a). Now all the coefficients of the summer have the same sign, and we can dispense with the summing amplifier altogether and perform the summation at the virtual-ground input of the first integrator. The resulting circuit is shown in Fig. 12.25(b), from which we observe that the high-pass function is no longer available! This is the price paid for obtaining a circuit that utilizes all op amps in a single-ended mode. The circuit of Fig. 12.25(b) is known as the Tow-Thomas biquad, after its originators.

Rather than using a fourth op amp to realize the finite transmission zeros required for the notch and all-pass functions, as was done with the KHN biquad, an economical feedforward scheme can be employed with the Tow-Thomas circuit. Specifically, the virtual ground available at the input of each of the three op amps in the Tow-Thomas circuit permits the input signal to be fed to all three op amps, as shown in Fig. 12.26. If \(V_i \) is taken at the output
apter 12

FILTERS AND TUNED AMPLIFIERS

(a) Derivation of an alternative two-integrator-loop biquad in which all op amps are used in a single-ended fashion. (b) The resulting circuit, known as the Tow-Thomas biquad.

FIGURE 12.26 The Tow-Thomas biquad with feedforward. The transfer function of Eq. (12.68) is realized by feeding the input signal through appropriate components to the inputs of the three op amps. This circuit can realize all special second-order functions. The design equations are given in Table 12.2.

TABLE 12.2 Design Data for the Circuit in Fig. 12.26

<table>
<thead>
<tr>
<th>All cases</th>
<th>C = arbitrary, R = 1/\omega C, \omega = arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>C = 0, R = \infty, R = R Q/\omega gain, R = \infty</td>
</tr>
<tr>
<td>Positive BP</td>
<td>C = 0, R = \infty, R = R Q/\omega gain, R = \infty</td>
</tr>
<tr>
<td>Negative BP</td>
<td>C = 0, R = R Q/\omega gain, R = \infty</td>
</tr>
<tr>
<td>HP</td>
<td>C = C x high frequency gain, R = \infty</td>
</tr>
<tr>
<td>Notch</td>
<td>C = C x high frequency gain, R = \infty</td>
</tr>
<tr>
<td>(All types)</td>
<td>R = R \omega/\omega Q/high frequency gain, R = \infty</td>
</tr>
<tr>
<td>AP</td>
<td>C = C x flat gain, R = \infty, R = R Q gain, R = \infty</td>
</tr>
</tbody>
</table>

12.7.4 Final Remarks

Two-integrator-loop biquads are extremely versatile and easy to design. However, their performance is adversely affected by the finite bandwidth of the op amps. Special techniques exist for compensating the circuit for such effects [see the SPICE simulation in Section 12.12 and Sedra and Brackett (1978)].

EXERCISES

D12.21 Design the KHN circuit to realize a high-pass function with \(f_0 = 10 \) kHz and \(Q = 2 \). Choose \(C = 1 \) nF. What is the value of high-frequency gain obtained? What is the center-frequency gain of the bandpass function that is simultaneously available at the output of the first integrator?

Ans. \(R = 25.9 \) kQ, \(R = R Q/\omega Q = 10 \) kQ, \(R = \infty \), \(R = \infty \)

D12.22 Use the KHN circuit together with an output summing amplifier to design a low-pass notch filter with \(f_0 = 5 \) kHz, \(f_0 = 9 \) kHz, and \(Q = 5 \). Use \(C = 1 \) nF and \(R = 10 \) kQ.

Ans. \(R = R \omega/\omega Q = 5 \) kQ, \(R = R \omega/\omega Q = 5 \) kQ, \(R = R \omega/\omega Q = 5 \) kQ

D12.23 Use the Tow-Thomas biquad (Fig. 12.25b) to design a second-order bandpass filter with \(f_0 = 10 \) kHz, \(Q = 20 \), and unity center-frequency gain. If \(R = 10 \) kQ, give the values of \(C, R, \) and \(R \).

Ans. \(R = 10 \) kQ, \(C = 10 \) nF; \(C = 10 \) nF, \(R = 10 \) kQ, \(R = 10 \) kQ

D12.24 Use the data of Table 12.2 to design the biquad circuit of Fig. 12.26 to realize an all-pass filter with \(Q = 3 \), and flat gain \(= 1 \). Use \(C = 30 \) nF and \(R = 10 \) kQ.

Ans. \(R = R \omega/\omega Q = 30 \) kQ, \(R = R \omega/\omega Q = 30 \) kQ, \(R = R \omega/\omega Q = 30 \) kQ

12.8 SINGLE-AMPLIFIER BIQUADRATIC ACTIVE FILTERS

The op amp–RC biquad circuits studied in the two preceding sections provide good performance, are versatile, and are easy to design and to adjust (tune) after final assembly. Unfortunately, however, they are not economic in their use of op amps, requiring three or four amplifiers per second-order section. This can be a problem, especially in applications where power-supply current is to be conserved: for instance, in a battery-operated instrument. In this section we shall study a class of second-order filter circuits that requires only one op amp per biquad. These minimal realizations, however, suffer a greater dependence
on the limited gain and bandwidth of the op amp and can also be more sensitive to the
unavoidable tolerances in the values of resistors and capacitors than the multiple-op-amp
biquads of the preceding sections. The single-amplifier biquads (SABs) are therefore lim-
ited to the less stringent filter specifications—for example, pole Q factors less than about 10.
The synthesis of SAB circuits is based on the use of feedback to move the poles of an
RC circuit from the negative real axis, where they naturally lie, to the complex-conjugate
locations required to provide selective filter response. The synthesis of SABs follows a two-
step process:
1. Synthesis of a feedback loop that realizes a pair of complex-conjugate poles charac-
terized by a frequency \(\omega_0 \) and a Q factor Q.
2. Injecting the input signal in a way that realizes the desired transmission zeros.

12.8.1 Synthesis of the Feedback Loop

Consider the circuit shown in Fig. 12.27(a), which consists of a two-port RC network \(n \) placed in the negative-feedback path of an op amp. We shall assume that, except for having
a finite gain \(A \), the op amp is ideal. We shall denote by \(\xi(s) \) the open-circuit voltage transfer
function of the RC network \(n \), where the definition of \(\xi(s) \) is illustrated in Fig. 12.27(b). The
transfer function \(\xi(s) \) can in general be written as the ratio of two polynomials \(N(s) \) and \(D(s) \):

\[
\xi(s) = \frac{N(s)}{D(s)}
\]

The roots of \(N(s) \) are the transmission zeros of the RC network, and the roots of \(D(s) \) are its
poles. Study of network theory shows that while the poles of an RC network are restricted to
lie on the negative real axis, the zeros can in general lie anywhere in the \(s \)-plane.

The loop gain \(L(s) \) of the feedback circuit in Fig. 12.27(a) can be determined using
the method of Section 8.7. It is simply the product of the op-amp gain \(A \) and the transfer
function \(\xi(s) \),

\[
L(s) = A \xi(s) = \frac{AN(s)}{D(s)}
\]

Substituting for \(L(s) \) into the characteristic equation

\[
1 + L(s) = 0
\]

results in the poles \(s_p \) of the closed-loop circuit obtained as solutions to the equation

\[
N(s_p) = 0
\]

In the ideal case, \(A = \infty \) and the poles are obtained from

\[
N(s_p) = 0
\]

That is, the filter poles are identical to the zeros of the RC network.

Since our objective is to realize a pair of complex-conjugate poles, we should select an RC
network that can have complex-conjugate transmission zeros. The simplest such networks are
the bridged-T networks shown in Fig. 12.28 together with their transfer functions \(\xi(s) \) from \(b \) to
\(a \), with \(a \) open-circuited. As an example, consider the circuit generated by placing the bridged-T
network of Fig. 12.28(a) in the negative-feedback path of an op amp, as shown in Fig. 12.29.
The pole polynomial of the active-filter circuit will be equal to the numerator polynomial of the bridged-T network; thus,

\[s^2 + \frac{s}{Q} + \frac{1}{Q} = s^2 + \frac{1}{C_1 R_3} + \frac{1}{C_2 R_3 R_4} \]

which enables us to obtain \(\omega_0 \) and \(Q \) as

\[\frac{\omega_0}{Q} = \frac{1}{C_1 R_3 R_4} \quad \text{(12.73)} \]

\[Q = \left(\frac{C_2 R_3 R_4}{R_2} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \right)^{\frac{1}{2}} \quad \text{(12.74)} \]

If we are designing this circuit, \(\omega_0 \) and \(Q \) are given and Eqs. (12.73) and (12.74) can be used to determine \(C_1 \) and \(R_3 \), and \(R_4 \). It follows that there are two degrees of freedom. Let us exhaust one of these by selecting \(C_1 = C_2 = C \). Let us also denote \(R_3 = R \) and \(R_4 = R/m \). By substituting in Eqs. (12.73) and (12.74) and with some manipulation, we obtain

\[m = 4Q^2 \quad \text{(12.75)} \]

\[CR = 2Q^2 \quad \text{(12.76)} \]

Thus if we are given the value of \(Q \), Eq. (12.75) can be used to determine the ratio of the two resistances \(R_3 \) and \(R_4 \). Then the given values of \(\omega_0 \) and \(Q \) can be substituted in Eq. (12.76) to determine the time constant \(CR \). There remains one degree of freedom—the value of \(C \) or \(R \) can be arbitrarily chosen. In an actual design, this value, which sets the impedance level of the circuit, should be chosen so that the resulting component values are practical.

EXERCISES

D12.25 Design the circuit of Fig. 12.29 to realize a pair of poles with \(\omega_0 = 10^8 \) rad/s and \(Q = 1 \). Select \(C_1 = C_2 = 1 \) nF. Ans. \(R_3 = 200 \) k\(\Omega \); \(R_4 = 90 \) k\(\Omega \)

D12.26 For the circuit designed in Exercise 12.25, find the location of the poles of the RC network in the feedback loop. Ans. \(-6.382 \times 10^8\) and \(-2.618 \times 10^8\) rad/s

12.8.2 Injecting the Input Signal

Having synthesized a feedback loop that realizes a given pair of poles, we now consider connecting the input signal source to the circuit. We wish to do this, of course, without altering the poles.

Since, for the purpose of finding the poles of a circuit, an ideal voltage source is equivalent to a short circuit, it follows that any circuit node that is connected to ground can instead be connected to the input voltage source without causing the poles to change. Thus the method of injecting the input voltage signal into the feedback loop is simply to disconnect a component (or several components) that is (are) connected to ground and connect it (them) to the input source. Depending on the component(s) through which the input signal is injected, different transmission zeros are obtained. This is, of course, the same method we used in Section 12.5 with the LCR resonator and in Section 12.6 with the biquads based on the LCR resonator.

As an example, consider the feedback loop of Fig. 12.29. Here we have two grounded nodes (one terminal of \(R_2 \) and the positive input terminal of the op amp) that can serve for injecting the input signal. Figure 12.30(a) shows the circuit with the input signal injected through part of the resistance \(R_3 \). Note that the two resistances \(R_3/\alpha \) and \(R_4/(1 - \alpha) \) have a parallel equivalent of \(R_3 \).

Analysis of the circuit to determine its voltage transfer function \(T(s) = V_i(s)/V_1(s) \) is illustrated in Fig. 12.30(b). Note that we have assumed the op amp to be ideal, and have indicated the order of the analysis steps by the circled numbers. The final step, number 9,
consists of writing a node equation at X and substituting for \(V_x \) by the value determined in step 5. The result is the transfer function

\[
\frac{V_y}{V_x} = \frac{-s(\alpha/C, R_a)}{s^2 + \frac{1}{C_1 C_2 R_1 R_2} + \frac{1}{C_1 C_2 R_a R_b}}
\]

We recognize this as a bandpass function whose center-frequency gain can be controlled by the value of \(\alpha \). As expected, the denominator polynomial is identical to the numerator polynomial of \(t(s) \) given in Fig. 12.28(a).

EXERCISE

12.27 Use the component values obtained in Exercise 12.25 to design the bandpass circuit of Fig. 12.30(a). Determine the values of \((R_a/\alpha) \) and \(R_b/(1-\alpha) \) to obtain a center-frequency gain of unity.

Ans. 100 k\(\Omega \); 10 k\(\Omega \)

12.8.3 Generation of Equivalent Feedback Loops

The **complementary transformation** of feedback loops is based on the property of linear networks illustrated in Fig. 12.31 for the two-port (three-terminal) network \(n \). In Fig. 12.31(a), terminal \(c \) is grounded and a signal \(V_b \) is applied to terminal \(b \). The transfer function from \(b \) to \(a \) with \(c \) grounded is denoted \(t \). Then, in Fig. 12.31(b), terminal \(b \) is grounded and the input signal is applied to terminal \(c \). The transfer function from \(c \) to \(a \) with \(b \) grounded can be shown to be the complement of \(t \)—that is, \(1 - t \). (Recall that we used this property in generating a circuit realization for the all-pass function in Section 12.6.)

Application of the complementary transformation to a feedback loop to generate an equivalent feedback loop is a two-step process:

1. Nodes of the feedback network and any of the op-amp inputs that are connected to ground should be disconnected from ground and connected to the op-amp output. Conversely, those nodes that were connected to the op-amp output should be now connected to ground. That is, we simply interchange the op-amp output terminal with ground.
2. The two input terminals of the op-amp should be interchanged.

![FIGURE 12.31 Interchanging input and ground results in the complement of the transfer function.](image)

FIGURE 12.32 Application of the complementary transformation to the feedback loop in (a) results in the equivalent loop (same poles) shown in (b).

The feedback loop generated by this transformation has the same characteristic equation, and hence the same poles, as the original loop.

To illustrate, we show in Fig. 12.32(a) the feedback loop formed by connecting a two-port RC network in the negative-feedback path of an op amp. Application of the complementary transformation to this loop results in the feedback loop of Fig. 12.32(b). Note that in the latter loop the op amp is used in the unity-gain follower configuration. We shall now show that the two loops of Fig. 12.32 are equivalent.

If the op amp has an open-loop gain \(A \), the follower in the circuit of Fig. 12.32(b) will have a gain of \(A/(A+1) \). This, together with the fact that the transfer function of network \(n \) from \(c \) to \(a \) is \(1 - t \) (see Fig. 12.31), enables us to write for the circuit in Fig. 12.32(b) the characteristic equation

\[
1 - \frac{A}{A+1}(1 - t) = 0
\]

This equation can be manipulated to the form

\[
1 + At = 0
\]

which is the characteristic equation of the loop in Fig. 12.32(a). As an example, consider the application of the complementary transformation to the feedback loop of Fig. 12.29. The feedback loop of Fig. 12.33(a) results. Injecting the input signal through \(C_x \) results in the circuit in Fig. 12.33(b), which can be shown (by direct analysis) to realize a second-order high-pass function. This circuit is one of a family of SABs known as the Sallen-and-Key circuits, after their originators. The design of the circuit in Fig. 12.33(b) is based on Eqs. (12.73) through (12.76); namely, \(R_1 = R_a/4Q^2 \), \(C_1 = C_2 \), \(CR = 2Q/\omega_0 \), and the value of \(C \) is arbitrarily chosen to be practically convenient.

As another example, Eq. 12.34(a) shows the feedback loop generated by placing the two-port RC network of Fig. 12.28(b) in the negative-feedback path of an op amp. For an ideal op amp, this feedback loop realizes a pair of complex-conjugate natural modes having the same location as the zeros of \(t(s) \) of the RC network. Thus, using the expression for \(t(s) \)
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

FIGURE 12.33 (a) Feedback loop obtained by applying the complementary transformation to the loop in Fig. 12.29. By injecting the input signal through C_2 realizes the high-pass function. This is one of the Sallen-and-Key family of circuits.

(b) When substituted in Eqs. (12.77) and (12.78), these yield

$$m = 4Q^2$$

$$CR = 2Q/\omega_0$$

with the remaining degree of freedom (the value of C or R) left to the designer to choose.

Injecting the input signal to the C_4 node that is connected to ground can be shown to result in a bandpass realization. If, however, we apply the complementary transformation to the feedback loop in Fig. 12.34(a), we obtain the equivalent loop in Fig. 12.34(b). The loop equivalence means that the circuit of Fig. 12.34(b) has the same poles and thus the same ω_0 and Q and the same design equations (Eqs. 12.77 through 12.80). The new loop in Fig. 12.34(b) can be used to realize a low-pass function by injecting the input signal as shown in Fig. 12.34(c).

EXERCISES

12.28 Analyze the circuit in Fig. 12.34(c) to determine its transfer function $V_u(s)/V_s(s)$ and thus show that ω_0 and Q are indeed those in Eqs. (12.77) and (12.78). Also show that the dc gain is unity.

12.29 Design the circuit in Fig. 12.34(c) to realize a low-pass filter with $\omega_0 = 4$ kHz and $Q = 1$. Use 10-kΩ resistors.

Ans. $R = R_2 = R_3$.

12.9 SENSITIVITY

Because of the tolerances in component values and because of the finite op-amp gain, the response of the actual assembled filter will deviate from the ideal response. As a means for predicting such deviations, the filter designer employs the concept of sensitivity. Specifically, for second-order filters one is usually interested in finding how sensitive their poles are relative to variations (both initial tolerances and future drifts) in RC component values and amplifier gain. These sensitivities can be quantified using the classical sensitivity function S_y^x, defined as

$$S_y^x = \lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x}$$

Thus,

$$S_y^x = \frac{\partial y}{\partial x}$$

(12.82)
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

12.9 SENSITIVITY

Here, \(x \) denotes the value of a component (a resistor, a capacitor, or an amplifier gain) and \(y \) denotes a circuit parameter of interest (say, \(Q \)). For small changes

\[S_y^x = \frac{\Delta y}{\Delta x} \]

(12.83)

Thus we can use the value of \(S_y^x \) to determine the per-unit change in \(y \) due to a given per-unit change in \(x \).

For instance, if the sensitivity of \(Q \) relative to a particular resistance \(R_x \) is 5, then a 1% increase in \(R_x \) results in a 5% increase in the value of \(Q \).

EXAMPLE 12.3

For the feedback loop of Fig. 12.29, find the sensitivities of \(Q \) relative to all the passive components and the op-amp gain. Evaluate these sensitivities for the design considered in the preceding section for which \(Q = C_0^2 \).

Solution

To find the sensitivities with respect to the passive components, called passive sensitivities, we assume that the op-amp gain is infinite. In this case, \(Q \) is given by Eqs. (12.73) and (12.74). Thus for \(Q \), we have

\[Q = \frac{1}{C_1 C_2 R_3 R_4} \]

which can be used together with the sensitivity definition of Eq. (12.82) to obtain

\[S_Q^u = S_Q^v = S_Q^w = \frac{1}{C_1 C_2 R_3 R_4} \]

For \(Q \) we have

\[Q = \left(\frac{1}{C_1 C_2 R_3 R_4} \right) \left(\frac{1}{C_1 R_3} + \frac{1}{C_2 R_4} \right)^{-1} \]

to which we apply the sensitivity definition to obtain

\[S_Q^u = \frac{1}{C_1 C_2 R_3 R_4} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \]

For the design with \(C_1 = C_2 \) we see that \(S_Q^u = 0 \). Similarly, we can show that

\[S_Q^u = 0, \quad S_Q^v = \frac{1}{2}, \quad S_Q^w = \frac{1}{2} \]

It is important to remember that the sensitivity expression should be derived before values corresponding to a particular design are substituted.

Next we consider the sensitivities relative to the amplifier gain. If we assume the op amp to have a finite gain \(A \), the characteristic equation for the loop becomes

\[1 + A \tau(s) = 0 \]

(12.84)

where \(\tau(s) \) is given in Fig. 12.28(a). To simplify matters we can substitute for the passive components by their design values, since we are now finding the sensitivity with respect to the amplifier gain. Using the design values obtained earlier—namely, \(C_1 = C_2 = C, R_1 = R, R_2 = R/4Q^2 \), and \(C R = 2Q/C_0 \)—we get

\[\tau(s) = \frac{s^2 + sQ/Q_0 + Q_0/\tau}{s^2 + (1/Q_0/\tau + 1) + Q_0} \]

(12.85)

where \(\tau \) and \(Q \) denote the nominal or design values of the pole frequency and \(Q \) factor. The actual values are obtained by substituting for \(\tau(s) \) in Eq. (12.84):

\[s^2 + sQ/Q_0 + Q_0 = 0 \]

Assuming the gain \(A \) to be real and dividing both sides by \(A + 1 \), we get

\[s^2 + \frac{Q_0}{Q} + Q_0 = 0 \]

(12.86)

From this equation we see that the actual pole frequency, \(\omega_a \), and the pole \(Q_a \), are

\[\omega_a = \omega_a \]

(12.87)

\[Q_a = \frac{1}{2Q} \]

(12.88)

Thus

\[S_Q^u = 0 \]

\[S_Q^v = \frac{1}{2Q} \]

\[S_Q^w = \frac{1}{2Q} \]

For \(A > 2Q \) we obtain

\[S_Q^v = \frac{2Q}{A + 1} \]

\[S_Q^w = \frac{2Q}{A} \]

(12.89)

It is usual to drop the subscript \(u \) in this expression and write

\[S_Q^v = \frac{2Q}{A} \]

(12.89)

Note that if \(Q \) is high (\(Q > 5 \)), its sensitivity relative to the amplifier gain can be quite high.6

12.9.1 A Concluding Remark

The results of Example 12.3 indicate a serious disadvantage of single-amplifier biquads—the sensitivity of \(Q \) relative to the amplifier gain is quite high. Although a technique exists for reducing \(S_Q^v \) in SABs [see Sedra et al. (1980)], this is done at the expense of increased passive sensitivities. Nevertheless, the resulting SABs are used extensively in many applications. However, for filters with \(Q \) factors greater than about 10, one usually opts for one of the multiamplifier biquads studied in Sections 12.6 and 12.7. For these circuits \(S_Q^v \) is proportional to \(Q \), rather than to \(Q^2 \) as in the SAB case (Eq. 12.89).

6 Because the open-loop gain \(A \) of op amps usually has wide tolerance, it is important to keep \(S_Q^v \) and \(S_Q^w \) very small.
12.10 SWITCHED-CAPACITOR FILTERS

The active-RC filter circuits presented above have two properties that make their production in monolithic IC form difficult, if not practically impossible; these are the need for large-valued capacitors and the requirement of accurate RC time constants. The search therefore has continued for a method of filter design that would lend itself more naturally to IC implementation. In this section we shall introduce one such method.

12.10.1 The Basic Principle

The switched-capacitor filter technique is based on the realization that a capacitor switched between two circuit nodes at a sufficiently high rate is equivalent to a resistor connecting these two nodes. To be specific, consider the active-RC integrator of Fig. 12.35(a). This is the familiar Miller integrator, which we used in the two-integrator-loop biquad in Section 12.7. In Fig. 12.35(b) we have replaced the input resistor \(R \) by a grounded capacitor \(C \).

![Figure 12.35](image)

Figure 12.35 Basic principle of the switched-capacitor filter technique. (a) Active-RC integrator. (b) Switched-capacitor integrator. (c) Two-phase clock (nonoverlapping). (d) During \(\phi_1 \), \(C \) discharges into \(C \) and then, during \(\phi_2 \), charges up to the current value of \(v \) and then, during \(\phi_2 \), discharges into \(C \).

Together with two MOS transistors acting as switches, in some circuits, more elaborate switch configurations are used, but such details are beyond our present need.

The two MOS switches in Fig. 12.35(b) are driven by a nonoverlapping two-phase clock. Figure 12.35(c) shows the clock waveforms. We shall assume in this introductory exposition that the clock frequency \(f_c \) is much higher than the frequency of the signal being filtered. Thus during clock phase \(\phi_1 \), when \(C \) is connected across the input signal source \(v \), the variations in the input signal are negligibly small. It follows that during \(\phi_1 \), capacitor \(C \) charges up to the voltage \(v \).

Then, during clock phase \(\phi_2 \), capacitor \(C \) is connected to the virtual-ground input of the op-amp, as indicated in Fig. 12.35(d). Capacitor \(C \) is thus forced to discharge, and its previous charge \(q \) is transferred to \(C \) in the direction indicated in Fig. 12.35(d).

From the description above we see that during each clock period \(T_c \), an amount of charge \(q \) is extracted from the input source and supplied to the integrator capacitor \(C \). Thus the average current flowing between the input node (IN) and the virtual-ground node (VG) is

\[
I_{av} = \frac{q}{T_c} = C \frac{v}{T_c}
\]

If \(T_c \) is sufficiently short, one can think of this process as almost continuous and define an equivalent resistance \(R_{eq} \) that is in effect present between nodes IN and VG:

\[
R_{eq} = \frac{T_c}{C}
\]

Thus,

\[
R_{eq} = \frac{v}{I_{av}}
\]

Using \(R_{eq} \) we obtain an equivalent time constant for the integrator:

\[
\tau = C R_{eq} = \frac{T_c}{C}
\]

Thus the time constant that determines the frequency response of the filter is established by the clock period \(T_c \) and the capacitor ratio \(C/C \). Both these parameters can be well controlled in an IC process. Specifically, note the dependence on capacitor ratios rather than on absolute values of capacitors. The accuracy of capacitor ratios in MOS technology can be controlled to within 0.1%.

Another point worth observing is that with a reasonable clocking frequency (such as 100 kHz) and not-too-large capacitor ratios (say, 10), one can obtain reasonably large time constants (such as \(10^{-4} \) s) suitable for audio applications. Since capacitors typically occupy relatively large areas on the IC chip, one attempts to minimize their values. In this context, it is important to note that the ratio accuracies quoted earlier are obtainable with the smaller capacitor value as low as 0.1 pF.

12.10.2 Practical Circuits

The switched-capacitor (SC) circuit in Fig. 12.35(b) realizes an inverting integrator (note the direction of charge flow through \(C \) in Fig. 12.35d). As we saw in Section 12.7, a two-integrator-loop active filter is composed of one inverting and one noninverting integrator.
FIGURE 12.36 A pair of complementary stray-insensitive switched-capacitor integrators. (a) Noninverting switched-capacitor integrator. (b) Inverting switched-capacitor integrator.

To realize a switched-capacitor biquad filter we therefore need a pair of complementary switched-capacitor integrators. Figure 12.36(a) shows a noninverting, or positive, integrator circuit. The reader is urged to follow the operation of this circuit during the two clock phases and thus show that it operates in much the same way as the basic circuit of Fig. 12.35(b), except for a sign reversal.

In addition to realizing a noninverting integrator function, the circuit in Fig. 12.36(a) is insensitive to stray capacitances; however, we shall not explore this point any further. The interested reader is referred to Schaumann, Ghausi, and Laker (1990). By reversal of the clock phases on two of the switches, the circuit in Fig. 12.36(b) is obtained. This circuit realizes the inverting integrator function, like the circuit of Fig. 12.35(b), but is insensitive to stray capacitances (which the original circuit of Fig. 12.35(b) is not). The pair of complementary integrators of Fig. 12.36 has become the standard building block in the design of switched-capacitor filters.

Let us now consider the realization of a complete biquad circuit. Figure 12.37(a) shows the active-RC two-integrator-loop circuit studied earlier. By considering the cascade of integrator 2 and the inverter as a positive integrator, and then simply replacing each resistor by its switched-capacitor equivalent, we obtain the circuit in Fig. 12.37(b). Ignore the damping around the first integrator (i.e., the switched capacitor C_5) for the time being and note that the feedback loop indeed consists of one inverting and one noninverting integrator. Then note the phasing of the switched capacitor used for damping. Reversing the phases here would convert the feedback to positive and move the poles to the right half of the s plane.
On the other hand, the phasing of the feed-in switched capacitor \(C_2\) is not that important, a reversal of phases would result only in an inversion in the sign of the function realized.

Having identified the correspondences between the active-RC biquad and the switched-capacitor biquad, we can now derive design equations. Analysis of the circuit in Fig. 12.37(a) yields

\[
a_0 = \frac{1}{C_1 C_2 R_2 R_2}
\]

Replacing \(R_1\) and \(R_2\) with their SC equivalent values, that is, \(R_1 = T_1/C_1\) and \(R_4 = T_4/C_4\),

\[
a_0 = \frac{1}{C_1 C_2 T_1 C_1 C_2}
\]

It is usual to select the time constants of the two integrators to be equal, that is,

\[
\frac{T_1}{C_1} = \frac{T_4}{C_4}
\]

If, further, we select the two integrating capacitors \(C_1\) and \(C_2\) to be equal,

\[
C_1 = C_2 = C
\]

then

\[
C_0 = C_0 = KC
\]

where from Eq. (12.93)

\[
K = a_0 T_T
\]

For the case of equal time constants, the \(Q\) factor of the circuit in Fig. 12.37(a) is given by \(R_1/R_4\). Thus the \(Q\) factor of the corresponding SC circuit in Fig. 12.37(b) is given by

\[
Q = \frac{T_1}{C_1} \cdot \frac{T_4}{C_4}
\]

Thus \(C_3\) should be selected from

\[
C_3 = C_3 = \frac{KC}{Q} = a_0 T_T C
\]

Finally, the center-frequency gain of the bandpass function is given by

\[
\text{Center-frequency gain} = \frac{C_0}{C_1} = \frac{C_0}{a_0 T_T C}
\]
parallel equivalent of R_L and the output resistance r_0 of the FET, and C is the parallel equivalent of C_L and the FET output capacitance (usually very small). From the equivalent circuit we can write

$$y_{LM} = \frac{1}{sC + \frac{1}{R} + \frac{1}{sL}}$$

Thus the voltage gain can be expressed as

$$\frac{V_o}{V_i} = \frac{-g_m V_i}{sC + \frac{1}{R_L} + \frac{1}{sL}}$$

which is a second-order bandpass function. Thus the tuned amplifier has a center frequency of

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

and a 3-dB bandwidth of

$$B = \frac{1}{\omega_0}$$

a Q factor of

$$Q = \frac{\omega_0 B}{g_m R}$$

and a center-frequency gain of

$$\frac{V_o(\omega_0)}{V_i(\omega_0)} = -g_m R$$

Note that the expression for the center-frequency gain could have been written by inspection; at resonance the reactances of L and C cancel out and the impedance of the parallel LCR circuit reduces to R.

Example 12.4

It is required to design a tuned amplifier of the type shown in Fig. 12.39, having $f_0 = 1$ MHz, 3-dB bandwidth $= 10$ kHz, and center frequency gain $=-10$ V/V. The FET available has an op amp point $g_m = 5$ mS and $r_0 = 10$ kΩ. The output capacitance is negligibly small. Determine the values of R_L, C_L, and L.

Solution

Center-frequency gain $=-10 = -5R$, thus $R = 2$ kΩ. Since $R = R_L$, then $R_L = 2.5$ kΩ.

Thus

$$B = 2\pi \times 10^3 \frac{1}{CR}$$

Since $\omega_0 = 2\pi \times 10^6 = 1/\sqrt{LC}$, we obtain

$$L = \frac{1}{4\pi^2 \times 10^{-12} \times 7958 \times 10^{-12}} = 5.18 \mu\text{H}$$

12.11.2 Inductor Losses

The power loss in the inductor is usually represented by a series resistance r_s as shown in Fig. 12.40(a). However, rather than specifying the value of r_s, the usual practice is to specify the inductor Q factor at the frequency of interest.

$$Q_0 = \frac{\omega_0 L}{r_s}$$

Typically, Q_0 is in the range of 50 to 200.

The analysis of a tuned amplifier is greatly simplified by representing the inductor loss by a parallel resistance R_p, as shown in Fig. 12.40(b). The relationship between R_p and Q_0 can be found by writing, for the admittance of the circuit in Fig. 12.40(a),

$$y(j\omega_0) = \frac{1}{\omega_0 R_p} + \frac{1}{j\omega_0 L}$$

Thus

$$\frac{1}{\omega_0 R_p} = \frac{1}{1 + j\omega_0 L}$$

or

$$\frac{1}{\omega_0 R_p} = \frac{1}{1 + j\omega_0 L + \frac{1}{(Q_0)^2}}$$

Figure 12.40 Inductor equivalent circuits.
For $Q_0 \gg 1$,
\[Y(jw_0) = \frac{1}{jw_0L} \left(1 + \frac{1}{Q_0} \right) \]

Equating this to the admittance of the circuit in Fig. 12.40(b) gives
\[Q_0 = \frac{R_L}{\alpha L} \]

or, equivalently,
\[R_L = \alpha L Q_0 \]

Finally, it should be noted that the coil Q factor poses an upper limit on the value of Q achieved by the tuned circuit.

EXERCISE

12.32 If the inductor in Example 12.4 has $Q_0 = 150$, find R_L, and then find the value to which R_L should be changed to keep the overall Q, and hence the bandwidth, unchanged.

Ans. 3 kΩ; 15 kΩ

12.11.3 Use of Transformers

In many cases it is found that the required value of inductance is not practical, in the sense that coils with the required inductance might not be available with the required high values of Q_0. A simple solution is to use a transformer to effect an impedance change. Alternatively, a tapped coil, known as an autotransformer, can be used, as shown in Fig. 12.41.

Provided the two parts of the inductor are tightly coupled, which can be achieved by winding on a ferrite core, the transformation relationships shown hold. The result is that the tuned circuit seen between terminals 1 and 1' is equivalent to that in Fig. 12.39(b). For example, if a turns ratio $n = 3$ is used in the amplifier of Example 12.4, then a coil with inductance $L' = 9 \times 3.18 = 28.6$ and a capacitance $C' = 7958/9 = 884$ pF will be required. Both these values are more practical than the original ones.

In applications that involve coupling the output of a tuned amplifier to the input of another amplifier, the tapped coil can be used to raise the effective input resistance of the latter amplifier stage. In this way, one can avoid reduction of the overall Q. This point is illustrated in Fig. 12.42 and in the following exercises.

EXERCISES

D12.33 Consider the circuit in Fig. 12.42(a), first without tapping the coil. Let $L = 5$ mH and assume that R_L is fixed at 1 kΩ. We wish to design a tuned amplifier with $f_0 = 455$ kHz and a 3-dB bandwidth of 10 kHz. This is the Intermediate Frequency (IF) amplifier of an AM radio. If the BIT has $R_L = 1$ kΩ and $C_m = 200$ pF, find the actual bandwidth obtained and the required value of C.

Ans. 13 kHz; 24.27 nF

D12.34 Since the bandwidth realized in Exercise 12.33 is greater than desired, find an alternative design utilizing a tapped coil as in Fig. 12.42(b). Find the value of n that allows the specifications to be just met. Also find the new required value of C_m and the current gain I_m/C_m. Assume that at the bias point the BJT has $g_m = 40$ mA/V.

Ans. 1.86; 24.36 pF; 19.1 A/A

12.11.4 Amplifiers with Multiple Tuned Circuits

The selectivity achieved with the single-tuned circuit of Fig. 12.39 is not sufficient in many applications—for instance, in the IF amplifier of a radio or a TV receiver. Greater selectivity is obtained by using additional tuned stages. Figure 12.43 shows a BIT with tuned circuits at both the input and the output. In this circuit the bias details are shown, from which we note that biasing is quite similar to the classical arrangement employed in low-frequency

Note that because the input circuit is a parallel resonant circuit, an input current source (rather than voltage source) signal is utilized.
discrete-circuit design. However, to avoid the loading effect of the bias resistors R_m and R_B on the input tuned circuit, a radio-frequency choke (RFC) is inserted in series with each resistor. Such chokes have high impedances at the frequencies of interest. The use of RFCs in biasing tuned RF amplifiers is common practice.

The analysis and design of the double-tuned amplifier of Fig. 12.43 is complicated by the Miller effect due to capacitance C_M. Since the load is not simply resistive, as was the case in the amplifiers studied in Section 6.4.4, the Miller impedance at the input will be complex. This reflected impedance will cause detuning of the input circuit as well as "skewing" of the response of the input circuit. Needless to say, the coupling introduced by C_M makes tuning (or aligning) the amplifier quite difficult. Worse still, the capacitor C_M can cause oscillations to occur [see Gray and Searle (1969) and Problem 12.75].

Methods exist for neutralizing the effect of C_M using additional circuits arranged to feed back a current equal and opposite to that through C_M. An alternative, and preferred, approach is to use circuit configurations that do not suffer from the Miller effect. These are discussed later. Before leaving this section, however, we wish to point out that circuits of the type shown in Fig. 12.43 are usually designed utilizing the γ-parameter model of the BJT (see Appendix B). This is done because here, in view of the fact that C_M plays a significant role, the γ-parameter model makes the analysis simpler (in comparison to that using the π model). Also, the γ parameters can easily be measured at the particular frequency of interest, f_0. For narrow-band amplifiers, the assumption is usually made that the γ parameters remain approximately constant over the passband.

12.11.5 The Cascode and the CC-CB Cascade

From our study of amplifier frequency response in Chapter 6 we know that two amplifier configurations do not suffer from the Miller effect. These are the cascode configuration and the common-collector common-base cascade. Figure 12.44 shows tuned amplifiers based on these two configurations. The CC-CB cascade is usually preferred in IC implementations because its differential structure makes it suitable for IC biasing techniques. (Note that the biasing details of the cascode circuit are not shown in Fig. 12.44(a). Biasing can be done using arrangements similar to those discussed in earlier chapters.)

12.11.6 Synchronous Tuning

In the design of a tuned amplifier with multiple tuned circuits the question of the frequency to which each circuit should be tuned arises. The objective, of course, is for the overall response to exhibit high passband flatness and skirt selectivity. To investigate this question, we shall assume that the overall response is the product of the individual responses: in other words, that the stages do not interact. This can easily be achieved using circuits such as those in Fig. 12.44.
Consider first the case of \(N\) identical resonant circuits, known as the synchronously tuned case. Figure 12.45 shows the response of an individual stage and that of the cascade. Observe the bandwidth "shrinkage" of the overall response. The 3-dB bandwidth \(B\) of the overall amplifier is related to that of the individual tuned circuits, \(\omega_0/Q\), by (see Problem 12.77)

\[
B = \frac{\omega_0}{Q} \left(\frac{1}{\sqrt{N}} - 1\right) \quad (12.110)
\]

The factor \(\frac{1}{\sqrt{N}} - 1\) is known as the bandwidth-shrinkage factor. Given \(B\) and \(N\), we can use Eq. (12.110) to determine the bandwidth required of the individual stages, \(\omega_0/Q\).

EXERCISE

Consider the design of an IF amplifier for an FM radio receiver. Using two synchronously tuned stages with \(\omega_0 = 10.7\) MHz, find the 3-dB bandwidth of each stage so that the overall bandwidth is 200 kHz. Using \(\omega_0/\sqrt{2}\) inductors find \(C\) and \(R\) for each stage.

Ans. 40.5 73.7 pi 46.0 kΩ

12.11.7 Stagger-Tuning

A much better overall response is obtained by stagger-tuning the individual stages, as illustrated in Fig. 12.46. Stagger-tuned amplifiers are usually designed so that the overall response exhibits maximal flatness around the center frequency \(\omega_0\). Such a response can be obtained by transforming the response of a maximally flat (Butterworth) low-pass filter up the frequency axis to \(\omega_0\).

The transfer function of a second-order bandpass filter can be expressed in terms of its poles as

\[
T(s) = \frac{a_1/2}{s + \omega_0/2Q - j\omega_0} = \frac{a_1/2}{(s-j\omega_0) + \omega_0/2Q} \quad (12.112)
\]

This is known as the narrow-band approximation.\(^{13}\) Note that the magnitude response, for \(s = j\omega\), has a peak value of \(a_1/\omega_0\) at \(\omega = \omega_0\), as expected.

Now consider a first-order low-pass network with a single pole at \(p = -\omega_0/2Q\) (we use \(p\) to denote the complex frequency variable for the low-pass filter). Its transfer function is

\[
T(p) = \frac{K}{p + \omega_0/2Q} \quad (12.113)
\]

where \(K\) is a constant. Comparing Eqs. (12.112) and (12.113) we note that they are identical for \(p = s - j\omega_0\) or, equivalently,

\[
s = p + j\omega_0 \quad (12.114)
\]

This result implies that the response of the second-order bandpass filter in the neighborhood of its center frequency \(\omega = \omega_0\) is identical to the response of a first-order low-pass filter with a pole at \((-\omega_0/2Q)\) in the neighborhood of \(p = 0\). Thus the bandpass response can be obtained by shifting the pole of the low-pass prototype and adding the complex-conjugate pole, as illustrated in Fig. 12.47(b). This is called a lowpass-to-bandpass transformation for narrow-band filters.

The transformation \(p = s - j\omega_0\) can be applied to low-pass filters of order greater than one. For instance, we can transform a maximally flat second-order low-pass filter \((Q = 1/\sqrt{2})\) to

\(^{13}\) The bandpass response is geometrically symmetrical around the center frequency \(\omega_0\). That is, each pair of frequencies \(\omega_0+\delta\) and \(\omega_0-\delta\), at which the magnitude response is equal are related by \(\omega_0+\delta = 2\omega_0-\delta\). For high \(Q\), the symmetry becomes almost exact for frequencies close to \(\omega_0\). That is, two frequencies with the same magnitude response are almost equally spaced from \(\omega_0\). The sym is true for higher-order bandpass filters designed using the transformation presented in this section.
12.11 TUNED AMPLIFIERS

Obtaining a second-order narrow-band bandpass filter by transforming a first-order low-pass filter. (a) Pole of the first-order filter in the p plane. (b) Applying the transformation $s = p + j\omega_0$ and adding a complex conjugate pole results in the poles of the second-order bandpass filter. (c) Magnitude response of the first-order low-pass filter. (d) Magnitude response of the second-order bandpass filter.

To obtain a maximally flat bandpass filter, if the 3-dB bandwidth of the bandpass filter is to be B rad/s, then the low-pass filter should have a 3-dB frequency (and thus a pole frequency) of $(B/2)$ rad/s, as illustrated in Fig. 12.48. The resulting fourth-order bandpass filter will be a stagger-tuned one, with its two tuned circuits (refer to Fig. 12.48) having

$$a_{q_1} = \alpha_1 \frac{B}{2\sqrt{2}}$$
$$a_{q_2} = \alpha_2 \frac{B}{2\sqrt{2}}$$

where

$$\alpha_1 = \frac{\alpha_0}{B}$$
$$\alpha_2 = \frac{\alpha_0}{B}$$

resulting in

$$Q_1 = \frac{\sqrt{2} \alpha_0}{B}$$
$$Q_2 = \frac{\sqrt{2} \alpha_0}{B}$$

Overall response

FIGURE 12.48 Obtaining the poles and the frequency response of a fourth-order stagger-tuned narrow-band-bandpass amplifier by transforming a second-order low-pass maximally flat response.
Note that for the overall response to have a normalized center-frequency gain of unity, the individual responses to have equal center-frequency gains of $\frac{1}{\sqrt{2}}$, as shown in Fig. 12.48(d).

EXERCISES

12.34 A stagger-tuned design for the IF amplifier specified in Exercise 12.35 is required. Find f_1, f_2, R_1, and R_2. Also give the value of C and R for each of the two stages. (Recall that $3\mu H$ inductors are to be used.)

Ans. 10.77 MHz; 141.4 kHz; 10.63 MHz; 141.4 kHz; 72.8 pF; 15.5 kHz; 74.7 pF; 15.1 kHz

12.37 Using the fact that the voltage gain at resonance is proportional to the value of R, find the ratio of the gain at 10.7 MHz of the stagger-tuned amplifier designed in Exercise 12.36 and the synchronously tuned amplifier designed in Exercise 12.35. (Hint: For the stagger-tuned amplifier, note that the gain at f_1 is equal to the product of the gains of the individual stages at their 3-dB frequencies.)

Ans. 2.42

12.12 SPICE SIMULATION EXAMPLES

Circuit simulation is employed in filter design for at least three purposes: (1) to verify the correctness of the design using ideal components, (2) to investigate the effects of the nonideal characteristics of the op amps on the filter response, and (3) to determine the percentage of circuits fabricated with practical components, whose values have specified tolerance statistics, that meet the design specifications (this percentage is known as the yield). In this section, we present two examples that illustrate the use of SPICE for the first two purposes. The third area of computer-aided design, though very important, is a rather specialized topic, and is considered beyond the scope of this textbook.

EXAMPLE 12.5

VERIFICATION OF THE DESIGN OF A FIFTH-ORDER CHEBYSHEV FILTER

Our first example shows how SPICE can be utilized to verify the design of a fifth-order Chebyshev filter. Specifically, we simulate the operation of the circuit whose component values were obtained in Exercise 12.20. The complete circuit is shown in Fig. 12.49(a). It consists of a cascade of two second-order simulated-LCR resonators using the Antoniou circuit and a first-order op amp-RC circuit. Using PSpice, we would like to compare the magnitude of the filter response with that computed directly from its transfer function. Here, we note that PSpice can also be used to perform the latter task by using the Laplace-transfer-function block in the analog-behavioral-modeling (ABM) library.

Since the purpose of the simulation is simply to verify the design, we assume ideal components. For the op amps, we utilize a near-ideal model, namely, a voltage-controlled voltage source (VCVS) with a gain of $10^6 V/V$, as shown in Fig. 12.49(b). \(^{14}\)

In SPICE, we apply a 1-V ac signal at the filter input, perform an ac-analysis simulation over the range 1 Hz to 20 kHz, and plot the output voltage magnitude versus frequency, as shown in Fig. 12.50. Both an expanded view of the passband and a view of the entire magnitude response are shown. These results are almost identical to those computed directly from the ideal transfer function, thereby verifying the correctness of the design.

\(^{14}\) SPICE models for the op amp are described in Section 2.9.
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

INVESTIGATING THE EFFECT OFFINITE OP-AMP BANDWIDTH ON THE OPERATION OF THE TWO-INTEGRATOR-LOOP FILTER

In this example, we investigate the effect of the finite bandwidth of practical op amps on the response of a two-integrator-loop bandpass filter utilizing the Tow-Thomas biquad circuit of Fig. 12.25(b). The circuit is designed to provide a bandpass response with $f_c = 10$ kHz, $Q = 20$, and a unity center-frequency gain. The op amps are assumed to be of the 741 type. Specifically, we model the terminal behavior of the op amp with the single-time-constant linear network shown in Fig. 12.51. Since the analysis performed here is a small-signal (ac) analysis that ignores nonlinearities, no nonlinearities are included in this op-amp macromodel. (If the effects of op-amp nonlinearities are to be investigated, a transient analysis should be performed.) The following values are used for the parameters of the op-amp macromodel in Fig. 12.51:

- $R_2 = 2 \text{ M\Omega}$
- $R_{inv} = 500 \text{ M\Omega}$
- $R_c = 75 \Omega$
- $G_m = 0.19 \text{ mA/V}$
- $R_b = 1.323 \times 10^9 \Omega$
- $C_b = 30 \text{ pF}$

These values result in the specified input and output resistances of the 741-type op amp. Further, they provide a dc gain $A_0 = 2.52 \times 10^5 \text{ V/V}$ and a 3-dB frequency f_c of 4 Hz, again equal to the values specified for the 741. Note that the selection of the individual values of G_m, R_b, and C_b is immaterial as long as $G_m R_b = A_0$ and $C_b R_b = 1/2 f_c$.

The Tow-Thomas circuit simulated is shown in Fig. 12.52. The circuit is simulated in PSpice for two cases: (1) assuming 741-type op amps and using the linear macromodel in Fig. 12.51; and (2) assuming ideal op amps with dc gain of $A_0 = 10^5 \text{ V/V}$ and using the near-ideal model in Fig. 12.49. In both cases, we apply a 1-V ac signal at the filter input, perform an ac-analysis simulation over the range 8 kHz to 12 kHz, and plot the output-voltage magnitude versus frequency.

The simulation results are shown in Fig. 12.53, from which we observe the significant deviation between the response of the filter using the 741 op amp and that using the near-ideal op-amp model. Specifically, the response with practical op amps shows a deviation in the center frequency.
CHAPTER 12 FILTERS AND TUNED AMPLIFIERS

FIGURE 12.53 Comparing the magnitude response of the Tow-Thomas biquad circuit (shown in Fig. 12.52) constructed with 741-type op-amps, with the ideal magnitude response. These results illustrate the effect of the finite dc gain and bandwidth of the 741 op-amp on the frequency response of the Tow-Thomas biquad circuit.

A frequency of about -100 Hz, and a reduction in the 3-dB bandwidth from 500 Hz to about 110 Hz. Thus, in effect, the filter Q factor has increased from the ideal value of 20 to about 90. This phenomenon, known as Q-enhancement, is predictable from an analysis of the two-integrator-loop biquad with the finite op-amp bandwidth taken into account (see Sedra and Brackett (1978)). Such an analysis shows that Q-enhancement occurs as a result of the excess phase lag introduced by the finite op-amp bandwidth. The theory also shows that the Q-enhancement effect can be compensated for by introducing phase lead around the feedback loop. This can be accomplished by connecting a small capacitor, \(C_c \), across resistor \(R_2 \). To investigate the potential of such a compensation technique, we repeat the PSpice simulation with various capacitance values. The results are displayed in Fig. 12.54(a). We observe that as the compensation capacitance is increased from 0 pF, both the filter Q and the resonance peak of the filter response move closer to the desired values. It is evident, however, that a compensation capacitance of 80 pF causes the response to deviate further from the ideal. Thus, optimum compensation is obtained with a capacitance value between 60 and 80 pF. Further experimentation using PSpice enabled us to determine that such an optimum is obtained with a compensation capacitance of 64 pF. The corresponding response is shown, together with the ideal response, in Fig. 12.54(b). We note that although the filter Q has been restored to its ideal value, there remains a deviation in the center frequency. We shall not pursue this matter any further here; our objective is not to present a detailed study of the design of two-integrator-loop biquads; rather, it is to illustrate the application of SPICE in investigating the nonideal performance of active-filter circuits, generally.

FIGURE 12.54 (a) Magnitude response of the Tow-Thomas biquad circuit with different values of compensation capacitance. For comparison, the ideal response is also shown. (b) Comparing the magnitude response of the Tow-Thomas biquad circuit using a 64-pF compensation capacitor and the ideal response.
SUMMARY

- A filter is a linear two-port network with a transfer function \(T(f) \). For physical frequencies, the filter transmission is expressed as \(T(f) = \text{magnitude}(T(f)) \text{angle}(T(f)) \).
- The magnitude of transmission can be expressed in decibels using either the gain function \(G(a) = 20 \log |T| \) or the attenuation function \(A(a) = -20 \log |T| \).
- The transmission characteristics of a filter are specified in terms of the edges of the passband(s) and the stopband(s); the magnitude allowed variation in passband transmission, \(A_{\text{pass}} \) (dB); and the minimum attenuation required in the stopband, \(A_{\text{stop}} \) (dB). In some applications, the phase characteristics are also specified.
- The filter transfer function can be expressed as the ratio of two polynomials in \(z \); the degree of the denominator polynomial, \(N \), is the filter order. The \(N \) roots of the denominator polynomial are the zeros (notional modes).
- To obtain a highly selective response, the poles are complex and occur in conjugate pairs (except for one real pole when \(N = 0 \)). The zeros are placed on the \(j \omega \)-axis in the stopband(s) including \(\gamma = 0 \) and \(\gamma = -\infty \).
- The Butterworth filter approximation provides a low-pass response that is maximally flat at \(\omega = 0 \). The transmission decreases monotonically as \(\omega \) increases, reaching \(T \approx 0 \) (finite attenuation) at \(\omega = \infty \), where all \(N \) transmission zeros lie. Eq. (12.11) gives \(T \), where \(e \) is given by Eq. (12.14) and the order \(N \) is determined using Eq. (12.15). The poles are found using the graphical construction of Fig. 12.10, and the transfer function is given by Eq. (12.16).
- The Chebyshev filter approximation provides a low-pass response that is equiripple in the passband and has transmission functions monotonically in the stopband. All the transmission zeros are at \(\omega = 0 \). Eq. (12.18) gives \(T \), in the passband and Eq. (12.19) gives \(T \) in the stopband, where \(q \) is given by Eq. (12.21). The order \(N \) can be determined using Eq. (12.22). The poles are given by Eq. (12.23) and the transfer function by Eq. (12.24).
- Figures 12.13 and 12.14 provide a summary of first-order filter functions and their realizations.
- Figures 12.16 provides the characteristics of seven special second-order filtering functions.
- The second-order LCR resonator of Fig. 12.17(c) allows a pair of complex-conjugate poles with \(e_1 = \sqrt{1/a} \), and \(e_2 = \sqrt{1/b} \).
- By replacing the inductor of an LCR resonator with a similar inductance obtained using the Antunes circuit of Fig. 12.20a, the op amp-RC resonator of Fig. 12.20b is obtained. This resonator can be used to realize the various second-order filter functions as shown in Fig. 12.22. The design equations for these circuits are given in Table 12.1.
- Biquads based on the two-integrator loop topology are the most versatile and popular second-order filter realizations. There are two varieties: the KHN circuit of Fig. 12.24(a), which realizes the LP, BP, and HP functions simultaneously and can be combined with the output steering amplifier of Fig. 12.28(b) to realize the notch and all-pass functions; and the Tow-Thomson circuit of Fig. 12.25(b), which realizes the BP and HP functions simultaneously. Feedforward can be applied to the Tow-Thomson circuit to obtain the circuit of Fig. 12.26, which can be designed to realize any of the second-order functions (see Table 12.2).
- The filter transfer function of a first-order low-pass filter (such as that realized by an RC circuit) can be expressed as \(T(f) = e^{2 \pi i \omega} + e \), where \(e \) is the 3-dB frequency of the filter. Give in table form the values of \(T \), \(G \), and \(e \) at \(e = 0, 0.5 \mu s, 0.05 \mu s, 0.005 \mu s \).
- A filter has a transfer function \(T(f) = 1/(z+1) \), and \(e \) is the frequency response at 0.1 dB. Find an expression for its phase response \(\phi \). Calculate the values of \(T \) and \(\phi \) for \(\omega = 0.1, 1, 10 \) rad/s and then find the output corresponding to each of the following input signals:
 - (a) 2 sin \(\omega \) (volts)
 - (b) 2 sin \(\omega \) (volts)
 - (c) 2 \sin \(\omega \) (volts)

PROBLEMS

SECTION 12.1: FILTER TRANSMISSION, TYPES AND SPECIFICATION

12.1 The transfer function of a first-order low-pass filter is specified to have a 3-dB frequency of 1 kHz and a stopband attenuation of 40 dB. Find the passband and stopband gains.

12.2 A low-pass filter is specified to have a 3-dB frequency of 1 kHz and a stopband attenuation of 40 dB. Find the passband and stopband gains.

12.3 A filter whose magnitude response is sketched in the colored curve in Fig. 12.17 at \(\omega = 0 \), gives \(a \) = 10 dB, and \(a \) = 20 dB. Draw the filter transfer function and its phase response.

12.4 A low-pass filter is required to pass all signals within its passband, extending from 0 to 4 kHz, with a transmission variation of at most 1% (i.e., the ratio of the maximum to minimum transmission in the passband should not exceed 1.1). The transmission in the stopband, which extends from 5 kHz to \(\omega \) = 0 should not exceed 1.1% of the maximum passband transmission. What are the values of \(A_{\text{pass}} \) and \(A_{\text{stop}} \) and the selectivity factor for this filter?

12.5 A low-pass filter is specified to have a passband of 1 kHz and a stopband of 10 dB. It is found that these specifications can be met with a single-time-constant RC circuit having a time constant of 0.1 and a dc transmission of unity. What must \(a \) and \(b \) be of this filter? What is the selectivity factor?

12.6 Sketch transmission specifications for a high-pass filter having a passband defined by \(f < 0.1 \) MHz and a stopband defined by \(f > 1 \) MHz. What is the selectivity factor?

12.7 Sketch transmission specifications for a bandpass filter that is a second-order low-pass filter over the bands 0.5 kHz to 10 kHz and 5 kHz to 0.1 MHz with \(A_{\text{pass}} \) of 10 dB. The stopband extends from \(f = 12 \) kHz to \(f = 16 \) kHz, with a minimum required attenuation of 40 dB.

SECTION 12.2: THE FILTER TRANSFER FUNCTION

12.8 Consider a fifth-order filter whose poles are all at a radius distance from the origin of 10 kHz, r = 10 kHz. One pair of complex-conjugate poles is at 90° angles from the origin, and the other pair is at 5° angles. Give the transfer function in each of the following cases:
 - (a) The transmission zeros are at \(\omega = 0 \) and the dc gain is unity.
 - (b) The transmission zeros are all at \(\omega = 0 \) and the high-frequency gain is unity.

What type of filter results in each case?

12.9 A third-order low-pass filter has transmission zeros at \(\omega = 3 \) kHz, and \(\omega = 10 \) kHz, and its natural modes are \(\omega = 0 \) and \(\omega = 9 \) kHz. Discuss the design of the filter.

12.10 Find the order \(N \) and the form of \(T \) for a bandpass filter having transmission zeros at \(\omega = 2 \) kHz, and \(\omega = 8 \) kHz, and its natural modes are \(\omega = +1 \) and \(\omega = -1 \). The dc gain is unity. Find \(T \).

12.11 Analyze the RLC network of Fig. 12.11 to determine its transfer function \(F(s) = V(s) \), and hence its poles and zeros. (Note: Begin the analysis at the output and work your way back to the input.)

FIGURE P12.11

SECTION 12.3: BUTTERWORTH and CHEBYSHEV FILTERS

12.12 Determine the order \(N \) of the Butterworth filter for which \(A_{\text{pass}} = 1 \) dB, \(A_{\text{stop}} = 20 \) dB, and the selectivity ratio \(a / A_{\text{pass}} = 3 \). What is the actual value of minimum stopband attenuation realized? If \(A_{\text{stop}} \) is to be exactly 20 dB, to what value can \(A_{\text{pass}} \) be reduced?

12.13 Calculate the value of attenuation obtained at a frequency 1.6 times the 3-dB frequency of a seventh-order Butterworth filter.

12.14 Find the natural modes of a Butterworth filter with a 1-dB bandwidth of 10 kHz and \(N = 5 \).

12.15 Design a Butterworth filter that meets the following low-pass specifications: \(f < 10 \) kHz, \(A_{\text{pass}} = 2 \) dB, \(f = 15 \) kHz, and \(A_{\text{stop}} = 15 \) dB. Find \(N \), the natural modes, and \(T(s) \).

What is the attenuation provided at 20 kHz?
12.25 Use the information in Fig. 12.16(a) to obtain the transfer function of a second-order low-pass filter with $\omega_c = 10^4$ rad/s and $A_d = 3$ dB. Note that there are two possible solutions. Find each of ω_c and Q. Also, if $\omega_c = 2$ rad/s, find the value of A_d obtained in each case.

FIGURE 12.27

12.26 Use the information in Fig. 12.16(b) to find the transfer function of a second-order bandpass filter that just meets the specifications defined in Fig. 12.13. $\omega_b = 1$ rad/s and $A_d = 1$ dB. Sketch the magnitude of the transfer function for both filters on the same axes.

PROBLEMS

12.19 Use the information displayed in Fig. 12.13 to design a first-order op amp RC low-pass filter with a 3-dB frequency of 10 kHz, a dc gain magnitude of 30, and an input resistance of 10 kΩ.

12.20 Use the information given in Fig. 12.13 to design a first-order op amp RC high-pass filter with a 3-dB frequency of 100 Hz, a high-frequency input resistance of 100 kΩ, and a high-frequency gain of unity.

12.21 Use the information given in Fig. 12.13 to design a first-order op amp RC high-pass filter with a 3-dB frequency of 1 kHz, a dc gain magnitude of 30, and an input resistance of 10 kΩ.

12.22 Consider the second-order all-pass filter in which errors in the component values result in the Q factor of the zeros being greater than the Q factor of the poles. Roughly sketch the expected behavior. Repeat for the case of the Q factor of the zeros being lower than the Q factor of the poles.

12.23 Consider a second-order all-pass filter in which errors in the component values result in the Q factor of the zeros being greater than the Q factor of the poles. Roughly sketch the expected behavior. Repeat for the case of the Q factor of the zeros being lower than the Q factor of the poles.

12.24 Use the information given in Fig. 12.13(b) to design a second-order bandpass filter with a 3-dB frequency of 2 kHz, a bandwidth of 1 kHz, and a dc gain of 1. Sketch the phase shift versus frequency.

12.25 Use the information in Fig. 12.16(a) to obtain the transfer function of a second-order low-pass filter with $\omega_c = 1$ rad/s and $A_d = 1$ dB. Use Eq. (12.18) to determine the values of a and b of the $T(s) = a + b/s$ expression. Indicate these values on your sketch. Use Eq. (12.19) to determine $T(s) = a + b/s$ and indicate this point on your sketch. For large values of a, use the result (in differential) does the transmission decrease?

12.26 Contrast the attenuation provided by a fifth-order Chebyshev filter at $\omega_c = 2$ rad/s, and at $\omega = 3$ rad/s, and indicate this point on your sketch. For large values of a, use the result (in differential) does the transmission decrease?

12.27 Sketch $|T|$ for a seventh-order low-pass Chebyshev worth filter of equal order. For both, $A_d = 1$ dB.

12.28 Consider the transfer function of a second-order bandpass filter that just meets the specifications defined in Fig. 12.13. With $\omega_b = 1$ rad/s and $A_d = 3$ dB. Note that there are two possible solutions. Find each of ω_c and Q. Also, if $\omega_b = 2$ rad/s, find the value of A_d obtained in each case.

12.29 Use the information in Fig. 12.16(b) to find the transfer function of a second-order high-pass filter with natural modes at $0.5, 3/2, 3$ and a high-frequency gain of unity.

12.30 Use the information given in Fig. 12.13 to design a first-order op amp RC low-pass filter with a 3-dB frequency of 1 kHz, a dc gain magnitude of 30, and an input resistance of 10 kΩ.

12.31 Use the information displayed in Fig. 12.13 to design a first-order op amp RC low-pass filter with a 3-dB frequency of 10 kHz, a dc gain magnitude of 30, and an input resistance of 10 kΩ.

12.32 Use the information in Fig. 12.16(a) to obtain the transfer function of a second-order low-pass filter with $\omega_c = 10^4$ rad/s and $A_d = 3$ dB. Use Eq. (12.18) to determine the values of a and b of the $T(s) = a + b/s$ expression. Indicate these values on your sketch. Use Eq. (12.19) to determine $T(s) = a + b/s$ and indicate this point on your sketch. For large values of a, use the result (in differential) does the transmission decrease?

12.33 Sketch $|T|$ for a seventh-order low-pass Chebyshev worth filter of equal order. For both, $A_d = 1$ dB.

12.34 Use the information given in Fig. 12.13 to design a first-order op amp RC high-pass filter with a 3-dB frequency of 100 Hz, a high-frequency input resistance of 100 kΩ, and a high-frequency gain of unity.

12.35 Use the information given in Fig. 12.13 to design a first-order op amp RC high-pass filter with a 3-dB frequency of 1 kHz, a dc gain magnitude of 30, and an input resistance of 10 kΩ.

12.36 Use the information given in Fig. 12.13 to design a first-order op amp RC spectrum-shaping network with a transmission zero frequency of 1 kHz, a pole frequency of 100 kHz, and a dc gain magnitude of unity. The low-frequency input resistance is to be 1 kΩ. When is the high-frequency gain that results? Sketch the magnitude of the transfer function versus frequency.

12.37 By cascading a first-order op amp RC low-pass circuit with a first-order op amp RC high-pass circuit one can design a wideband bandpass filter. Provide such a design for the case in which the midband gain is 12 dB and the 3-dB bandwidth extends from 100 Hz to 1 kHz. Select appropriate component values under the constraint that no resistor higher than 100 kΩ is to be used, and that the input resistance is to be as high as possible.

12.38 Consider the transfer function of a second-order bandpass filter with natural modes at $0.5, 3/2, 3$ and a high-frequency gain of unity. Use Eq. (12.18) to determine the values of a and b of the $T(s) = a + b/s$ expression. Indicate these values on your sketch. Use Eq. (12.19) to determine $T(s) = a + b/s$ and indicate this point on your sketch. For large values of a, use the result (in differential) does the transmission decrease?

12.39 Use the information given in Fig. 12.13 to design a first-order op amp RC high-pass filter with a 3-dB frequency of 100 Hz, a high-frequency input resistance of 100 kΩ, and a high-frequency gain of unity.

12.40 Use the information in Fig. 12.16(b) to find the transfer function of a second-order high-pass filter with natural modes at $0.5, 3/2, 3$ and a high-frequency gain of unity.

12.41 Start from first principles and assuming ideal op amp(s) design the transfer function of the circuit in Fig. 12.23(a). It is required to design a fifth-order Butterworth filter having a 3-dB bandwidth of 10 kHz and a unity dc gain. Use a cascade of two circuits of the type shown in Fig. 12.22(a) and a first-order op amp-RC circuit of the type shown in Fig. 12.13(a). Select appropriate component values.

12.42 Derive the transfer function of the LPN filter, given in Table 12.1, design the circuit of Fig. 12.23(b) to realize the specification in Fig. 12.13(a) and a second-order LPN circuit of the type shown in Fig. 12.22(a) to realize the specification in Fig. 12.13(a). Each section is to have a dc gain of unity. Select appropriate component values. Note: A filter with an appropriate response in both the passband and the stopband is known as an elliptic filter.

12.43 Derive the transfer function of the HPN filter, given in Table 12.1, design the circuit of Fig. 12.23(b) to realize the specification in Fig. 12.13(a) and a second-order HPN circuit of the type shown in Fig. 12.22(a) to realize the specification in Fig. 12.13(a). Each section is to have a dc gain of unity. Select appropriate component values. Note: A filter with an appropriate response in both the passband and the stopband is known as an elliptic filter.
(a) Use the KHN biigal with the output sum­­ming amplifier of Fig. 12.25(b) to show that all-pass function is realized by selecting . Show also that the flat gain obtained is .
(b) Design the all-pass circuit to obtain .

D12.51 Consider a notch filter with , realized using the KHN biigal with an output summing amplifier. If the sum­­ming resistors used have % tolerances, what is the worst-case percentage deviation between and ?

D12.52 Design the circuit of Fig. 12.25(a) to realize a low­­pass notch circuit with , gain 1, and . Use .

D12.53 In the all-pass realization using the circuit of Fig. 12.25(a), which component(s) does one need to trim to adjust (a) only and (b) only?

D12.54 Repeat Problem 12.48 using the Tow-Thomas biigal of Fig. 12.25(a) to realize the second-order section in the cascade.

SECTION 12.8: SINGLE-AMPLIFIER BIQUAD­RATIC ACTIVE FILTERS

D12.55 Design the circuit of Fig. 12.25(b) to realize a pair of poles with and .

D12.56 Consider the bridged-T network of Fig. 12.25(a) with . Design so that the zero and the poles of the bridged-T network are placed in the negative-feedback path of an ideal infinite-gain op­­amp, as in Fig. 12.25(b), find the poles of the closed-loop amplifier.

D12.57 Consider the bridged-T network of Fig. 12.25(a) with . Let the network be placed in the negative-feedback path of an infinite-gain op­­amp and be disconnected from ground and connected to the input signal source . Analyze the resulting circuit to determine its transfer function , where is the voltage at the op­­amp input. Show that the circuit realizes a bandpass filter and find its and the center-frequency gain.

D12.58 Consider the bandpass circuit shown in Fig. 12.25(a). Let and . Disconnect the positive input terminal of the op­­amp from ground and apply a voltage through a voltage divider to the positive input terminal. Analyze the circuit to find its transfer function and . Find the voltage divider ratio to realize the sensitivities of and and the amplifier gains.

D12.59 Derive the transfer function of the circuit in Fig. 12.25(b) assuming the op­­amp is ideal. Show that the circuit realizes a high­­pass function. What is the high­­frequency gain of the circuit? Design the circuit for a maximally flat response with a 3-dB frequency of . Use .

D12.60 Design a fifth-order Butterworth low­­pass filter with a 3-dB bandwidth of 6 kHz and a dc gain of unity using the cascade connection of two Salters-in­­key circuits (Fig. 12.34(a)) and a first-order section (Fig. 12.35(a)). Use a 10-dB gain for all resistors.

D12.61 The process of obtaining the complement of a transfer function by interchanging input and ground, as illustrated in Fig. 12.25(a), is called a simple inverter. Show that if the network is a bandpass, with a center-frequency gain of unity, then the obtained complement is a notch. Verify this by using the RLC circuits of Fig. 12.18(b) and (e).

SECTION 12.9: SENSITIVITY

D12.62 Evaluate the sensitivities of and and relative to and of the bandpass circuit in Fig. 12.18(b).

D12.63 Verify the following sensitivity identity:

(a) If , then

(b) If , then

(c) If , where is a constant, then

(d) If , where is a constant, then

(e) If and (a) is true, then

D12.64 For the high­­pass filter of Fig. 12.35(b), what are the sensitivities of and and the amplifier gain?

D12.65 For the feedback loop of Fig. 12.34(a), use the expressions in Eqs. (12.77) and (12.78) to determine the sensitivities of and and relative to all passive components for the design in which .

D12.66 For the op­­amp RC resonator of Fig. 12.21(b), use the expressions for and given in the top row of Table 12.1 to determine the sensitivities of and and to all resistors and capacitors.

SECTION 12.10: SWITCHED-CAPACITOR FILTERS

D12.67 For the switched­­capacitor input circuit of Fig. 12.35(b), in which a clock frequency of 10 kHz is used, what input resistances correspond to capacitance values of 10 nF and 10 pF?

D12.68 For a dc voltage of 1 V applied to the input of the circuit of Fig. 12.35(b), in which is 1 pF, what charge is transferred for each cycle of the two­­phase clock? For a 100-kHz clock, what is the average current drawn from the input source? For a feedback capacitance of 10 pF, what change would you expect in the output for each cycle of the clock?

For an amplifier that saturates at ±10 V and the feedback capacitive intuitively discharged, how many clock cycles would it take to saturate the amplifier? What is the average slope of the staircase output voltage produced?

D12.69 Repeat Exercise 12.31 for a clock frequency of 60 kHz.

D12.70 Repeat Exercise 12.31(a) for .

D12.71 Design the circuit of Fig. 12.37(b) to realize, at the output of the second (non­­inverting) integrator, a maximally flat low­­pass function with a 3-dB bandwidth of 1 MHz and a dc gain of 100. Use a clock frequency of 100 kHz and select . Give the values of , , and . (Hint: For a maximally flat response, .)

SECTION 12.11: TUNED AMPLIFIERS

D12.72 A voltage source with a resistance is connected to the input of a common­­emitter BJT amplifier. Between base and emitter is connected a tuned circuit with and . The transistor is biased at mA and has , . The transistor load is a resistance of 5 k. Find , the 3-dB bandwidth, and the center-frequency gain of this single­­tuned amplifier.

D12.73 A coil having an inductance of 10 µH is intended for applications around 1 MHz frequency. Its dc resistance is 50 Ω. The transistor load is a resistance of 5 k. Find and . What is the value of the capacitor required to produce resonance at 1 MHz? What additional parallel resistance is required to produce a 3-dB bandwidth of 10 kHz?

D12.74 An inductance of 36 µH is resonated with a 1000-pF capacitor. If the inductor is tapped at one­­third of its turns and a 2-kΩ resistor is connected outside the on­­chip transistor, find and of the resonator.

D12.75 Consider a common­­emitter transistor amplifier loaded with an inductance . Ignoring and , show that the amplifier input admittance is given by

D12.76 Consider a common­­emitter transistor amplifier loaded with a capacitor . Ignoring and , show that the amplifier input impedance is given by

D12.77 Consider a common­­emitter transistor amplifier loaded with a capacitance . Ignoring and , show that the amplifier input admittance is given by

D12.78 This problem investigates the sensitivity of maximally flat switched­­capacitor amplifiers derived in the manner illustrated in Fig. 12.48. (a) The low­­pass maximally flat (Butterworth) filters having a 3-dB bandwidth 10 kHz and order have the magnitude response

(b) Use the relationship derived in (a) together with Eq. (12.10) to show that a band­­pass amplifier with a 3-dB bandwidth 10 kHz designed using N synchronously tuned stages, has an overall transfer function given by

(c) Use the relationship derived in (b) to find the attenuation (in decibels) obtained at a bandwidth for . Also find the ratio of the 30-dB bandwidth to the 3-dB bandwidth for .

D12.79 Consider a sixth­­order staggered­­tuned band­­pass amplifier with center frequency and 3-dB bandwidth 10 kHz. The poles are to be obtained by shifting those of the third­­order maximally flat low­­pass filter, given in Fig. 12.10(c). For the three resonant circuits, find and of the 3-dB bandwidth limit, and .
Signal Generators and Waveform-Shaping Circuits

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Basic Principles of Sinusoidal Oscillators</td>
<td>1166</td>
</tr>
<tr>
<td>13.2</td>
<td>Op-Amp–RC Oscillator Circuits</td>
<td>1171</td>
</tr>
<tr>
<td>13.3</td>
<td>LC and Crystal Oscillators</td>
<td>1179</td>
</tr>
<tr>
<td>13.4</td>
<td>Bistable Multivibrators</td>
<td>1185</td>
</tr>
<tr>
<td>13.5</td>
<td>Generation of Square and Triangular Waveforms Using Astable Multivibrators</td>
<td>1192</td>
</tr>
<tr>
<td>13.6</td>
<td>Generation of a Standardized Pulse—The Monostable Multivibrator</td>
<td>1196</td>
</tr>
<tr>
<td>13.7</td>
<td>Integrated-Circuit Timers</td>
<td>1198</td>
</tr>
<tr>
<td>13.8</td>
<td>Nonlinear Waveform-Shaping Circuits</td>
<td>1203</td>
</tr>
<tr>
<td>13.9</td>
<td>Precision Rectifier Circuits</td>
<td>1208</td>
</tr>
<tr>
<td>13.10</td>
<td>SPICE Simulation Examples</td>
<td>1214</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>1219</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>1220</td>
</tr>
</tbody>
</table>

INTRODUCTION

In the design of electronic systems, the need frequently arises for signals having prescribed standard waveforms, for example, sinusoidal, square, triangular, or pulse. Systems in which standard signals are required include computer and control systems where clock pulses are needed for, among other things, timing; communication systems where signals of a variety of waveforms are utilized as information carriers; and test and measurement systems where signals, again of a variety of waveforms, are employed for testing and characterizing electronic devices and circuits. In this chapter, we study signal-generator circuits.

There are two distinctly different approaches for the generation of sinusoids, perhaps the most commonly used of the standard waveforms. The first approach, studied in Sections 13.1
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

where we note the negative sign in the denominator.

important to note that unlike the negative-feedback loop of Fig. 8.1, here the feedback signal is summed with a positive sign, thus resulting in the characteristic equation \(1 - L = 0 \).

For both the negative-feedback loop in Fig. 8.1 and the positive-feedback loop in Fig. 13.1, the loop gain \(L = A/B \). However, the negative sign with which the feedback signal is summed in the negative-feedback loop results in the characteristic equation being \(1 + L = 0 \). In the positive-feedback loop, the feedback signal is summed with a positive sign, thus resulting in the characteristic equation \(1 - L = 0 \).

FIGURE 13.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-selective network. An actual oscillator circuit, no input signal will be present; hence an input signal \(\varepsilon \) is employed to help explain the principle of operation.

According to the definition of loop gain in Chapter 8, the loop gain of the circuit in Fig. 13.1 is \(-A(j\omega)B(j\omega)\). However, for our purposes here it is more convenient to drop the minus sign and define the loop gain \(L(j\omega) \) as

\[
L(j\omega) = A(j\omega)B(j\omega)
\]

The characteristic equation thus becomes

\[
1 - L(j\omega) = 0
\]

Note that this new definition of loop gain corresponds directly to the actual gain seen around the feedback loop of Fig. 13.1.

13.1.2 The Oscillation Criterion

If at a specific frequency \(\omega_0 \), the loop gain \(A/B \) is equal to unity, it follows from Eq. (13.1) that \(A \) will be infinite. That is, at this frequency the circuit will have a finite output for zero input signal. Such a circuit is by definition an oscillator. Thus the condition for the feedback loop of Fig. 13.1 to provide sinusoidal oscillations of frequency \(\omega_0 \) is

\[
L(j\omega_0) = A(j\omega_0)B(j\omega_0) = 1
\]

That is, at \(\omega_0 \), the phase of the loop gain should be zero and the magnitude of the loop gain should be unity. This is known as the Barkhausen criterion. Note that for the circuit to oscillate at one frequency, the oscillation criterion should be satisfied only at one frequency (i.e., \(\omega_0 \)); otherwise the resulting waveform will not be a simple sinusoid.

An intuitive feeling for the Barkhausen criterion can be gained by considering once more the feedback loop of Fig. 13.1. For this loop to produce and sustain an output \(x_0 \) with no input applied \(\varepsilon = 0 \), the feedback signal \(x_f \) should be sufficiently large that when multiplied by \(A \) it produces \(x_0 \), that is,

\[
A x_f = x_0
\]
Consider a sinusoidal oscillator formed of an amplifier with again of 2 and a second-order bandpass filter.

Find the pole frequency and the center-frequency gain of the filter needed to produce sustained oscillations at a frequency \(f_0 \) due to a change in one of the circuit components. If \(\Delta f_0 / \Delta \omega_0 \) is large, the resulting change in \(\omega_0 \) will be small, as illustrated in Fig. 13.2.

An alternative approach to the study of oscillator circuits consists of examining the circuit poles, which are the roots of the characteristic equation (Eq. 13.3). For the circuit to produce sustained oscillations at a frequency \(\omega_0 \), the characteristic equation has to have roots at \(s = j\omega_0 \). Thus \(1 - A(s)B(s) \) should have a factor of the form \(s^2 + \omega_0^2 \).

EXERCISE

13. Consider a sinusoidal oscillator formed of an amplifier with a gain of 2 and a second-order bandpass filter. Find the pole frequency and the center-frequency gain of the filter needed to produce sustained oscillations at 1 kHz.

Ans. 1 kHz; 0.5

13.1 Basic Principles of Sinusoidal Oscillators

13.1.3 Nonlinear Amplitude Control

The oscillation condition, the Barkhausen criterion, just discussed, guarantees sustained oscillations in a mathematical sense. It is well known, however, that the parameters of any physical system cannot be maintained constant for any length of time. In other words, suppose we work hard to make \(AB = 1 \) at \(\omega = \omega_0 \), and then the temperature changes and \(AB \) becomes slightly less than unity. Obviously, oscillations will cease in this case. Conversely, if \(AB \) exceeds unity, oscillations will grow in amplitude. We therefore need a mechanism for forcing \(AB \) to remain equal to unity at the desired value of output amplitude. This task is accomplished by providing a nonlinear circuit for gain control.

Basically, the function of the gain-control mechanism is as follows: First, to ensure that oscillations will start, one designs the circuit such that \(AB \) is slightly greater than unity. This corresponds to designing the circuit so that the poles are in the right half of the \(s \) plane. Thus as the power supply is turned on, oscillations will grow in amplitude. When the amplitude reaches the desired level, the nonlinear network comes into action and causes the loop gain to be reduced to exactly unity. In other words, the poles will be "pulled back" to the \(s \) axis. This action will cause the circuit to sustain oscillations at this desired amplitude. If, for some reason, the loop gain is reduced below unity, the amplitude of the sine wave will diminish. This will be detected by the nonlinear network, which will cause the loop gain to increase to exactly unity.

As will be seen, there are two basic approaches to the implementation of the nonlinear amplitude-stabilization mechanism. The first approach makes use of a limiter circuit (see Chapter 3). Oscillations are allowed to grow until the amplitude reaches the level to which the limiter is set. When the limiter comes into operation, the amplitude remains constant. Obviously, the limiter should be "soft" to minimize nonlinear distortion. Such distortion, however, is reduced by the filtering action of the frequency-selective network in the feedback loop. In fact, in one of the oscillator circuits studied in Section 13.2, the sine waves are hard limited, and the resulting square waves are applied to a bandpass filter present in the feedback loop. The "purity" of the output sine waves will be a function of the selectivity of this filter.

The other mechanism for amplitude control utilizes an element whose resistance can be controlled by the amplitude of the output sinusoid. By placing this element in the feedback loop so that its resistance determines the loop gain, the circuit can be designed to ensure that the loop gain remains unity at the desired output amplitude. Diodes, or JFETs operated in the triode region, are commonly employed to implement the controlled-resistance element.

13.1.4 A Popular Limiter Circuit for Amplitude Control

We conclude this section by presenting a limiter circuit that is frequently employed for the amplitude control of op-amp oscillators, as well as in a variety of other applications. The circuit is more precise and versatile than those presented in Chapter 3. Oscillations are allowed to grow until the amplitude reaches the level to which the limiter is set. When the limiter comes into operation, the amplitude remains constant. Obviously, the limiter should be "soft" to minimize nonlinear distortion. Such distortion, however, is reduced by the filtering action of the frequency-selective network in the feedback loop. In fact, in one of the oscillator circuits studied in Section 13.2, the sine waves are hard limited, and the resulting square waves are applied to a bandpass filter present in the feedback loop. The "purity" of the output sine waves will be a function of the selectivity of this filter.

The other mechanism for amplitude control utilizes an element whose resistance can be controlled by the amplitude of the output sinusoid. By placing this element in the feedback loop so that its resistance determines the loop gain, the circuit can be designed to ensure that the loop gain remains unity at the desired output amplitude. Diodes, or JFETs operated in the triode region, are commonly employed to implement the controlled-resistance element.
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

As \(v_j \) goes positive, \(v_0 \) goes negative (Eq. 13.5), and we see from Eq. (13.7) that \(v\% \) will become more negative, thus keeping \(D_2 \) off. Equation (13.6) shows, however, that \(v_A \) becomes less positive. Then, if we continue to increase \(v_b \) to a negative value of \(v_0 \) will be reached at which \(v_A \) becomes -0.7 V or so and diode \(D_x \) conducts. If we use the constant-voltage-drop model for \(D_x \) and denote the voltage drop \(V_D \), the value of \(v_0 \) at which \(D_x \) conducts can be found from Eq. (13.6). This is the negative limiting level, which we denote \(L_- \).

The corresponding value of \(v_0 \) can be found by dividing \(L_- \) by the limiting gain \(-R_2/R_1\). If \(v_j \) is increased beyond this value, more current is injected into \(D_x \), and \(v_0 \) remains at approximately \(-V_D \). Thus the current through \(R_2 \) remains constant, and the additional diode current flows through \(R_1 \). Thus \(R_1 \) appears in effect in parallel with \(R_p \) and the incremental gain (ignoring the diode resistance) is \(-R_2/R_1/R_p \). To make the slope of the transfer characteristic small in the limiting region, a low value should be selected for \(R_p \).

The transfer characteristic for negative \(v_j \) can be found in a manner identical to that just employed. It can be easily seen that for negative \(v_j \) diode \(D_2 \) plays an identical role to that played by diode \(D_x \) for positive \(v_j \). The positive limiting level \(L_+ \) can be found to be

\[
L_+ = \frac{1}{1 + \frac{R_2}{R_1}} V_D \quad (13.9)
\]

and the slope of the transfer characteristic in the positive limiting region is \(-R_2/R_1 \). We thus see that the circuit of Fig. 13.3(a) functions as a soft limiter, with the limiting levels \(L_- \) and \(L_+ \), and the limiting gains, independently adjustable by the selection of appropriate resistor values.

Finally, we note that increasing \(R_1 \) results in a higher gain in the linear region while keeping \(L_- \) and \(L_+ \) unchanged. In the limit, removing \(R_1 \) altogether results in the transfer characteristic of Fig. 13.3(c), which is that of a comparator. That is, the circuit compares \(v_j \) with the comparator reference value of 0 V: \(v_j > 0 \) results in \(v_0 = L_- \), and \(v_j < 0 \) yields \(v_0 = L_+ \).

EXERCISE

13.2. For the circuit of Fig. 13.3(a) with \(V = 15 \) V, \(R_1 = 35 \) k\(\Omega \), \(R_2 = 30 \) k\(\Omega \), \(R_p = 0.7 \) k\(\Omega \), and \(R_3 = R_4 = 5 \) k\(\Omega \), find the limiting levels and the value of \(v_0 \) at which the limiting levels are reached. Also determine the limiting gain and the slope of the transfer characteristic in the positive and negative limiting regions.

Assume that \(V_D = 0.7 \) V.

Ans. \(L_- = 7 \) V, \(L_+ = 12.5 \) V; \(v_0 = 7 \) V. The corresponding value of \(v_0 \) can be found by dividing \(L_- \) by the limiting gain \(-R_2/R_1 \). If \(v_j \) is increased beyond this value, more current is injected into \(D_x \), and \(v_0 \) remains at approximately \(-V_D \). Thus the current through \(R_2 \) remains constant, and the additional diode current flows through \(R_1 \). Thus \(R_1 \) appears in effect in parallel with \(R_p \) and the incremental gain (ignoring the diode resistance) is \(-R_2/R_1/R_p \). To make the slope of the transfer characteristic small in the limiting region, a low value should be selected for \(R_p \).

The transfer characteristic for negative \(v_j \) can be found in a manner identical to that just employed. It can be easily seen that for negative \(v_j \) diode \(D_2 \) plays an identical role to that played by diode \(D_x \) for positive \(v_j \). The positive limiting level \(L_+ \) can be found to be

\[
L_+ = \frac{1}{1 + \frac{R_2}{R_1}} V_D \quad (13.9)
\]

and the slope of the transfer characteristic in the positive limiting region is \(-R_2/R_1 \). We thus see that the circuit of Fig. 13.3(a) functions as a soft limiter, with the limiting levels \(L_- \) and \(L_+ \), and the limiting gains, independently adjustable by the selection of appropriate resistor values.

Finally, we note that increasing \(R_1 \) results in a higher gain in the linear region while keeping \(L_- \) and \(L_+ \) unchanged. In the limit, removing \(R_1 \) altogether results in the transfer characteristic of Fig. 13.3(c), which is that of a comparator. That is, the circuit compares \(v_j \) with the comparator reference value of 0 V: \(v_j > 0 \) results in \(v_0 = L_- \), and \(v_j < 0 \) yields \(v_0 = L_+ \).

EXERCISE

13.2. For the circuit of Fig. 13.3(a) with \(V = 15 \) V, \(R_1 = 35 \) k\(\Omega \), \(R_2 = 30 \) k\(\Omega \), \(R_p = 0.7 \) k\(\Omega \), and \(R_3 = R_4 = 5 \) k\(\Omega \), find the limiting levels and the value of \(v_0 \) at which the limiting levels are reached. Also determine the limiting gain and the slope of the transfer characteristic in the positive and negative limiting regions.

Assume that \(V_D = 0.7 \) V.

Ans. \(L_- = 7 \) V, \(L_+ = 12.5 \) V; \(v_0 = 7 \) V.

13.2 OP AMP-RC OSCILLATOR CIRCUITS

In this section we shall study some practical oscillator circuits utilizing op amps and RC networks.

13.2.1 The Wien-Bridge Oscillator

One of the simplest oscillator circuits is based on the Wien bridge. Figure 13.4 shows a Wien-bridge oscillator without the nonlinear gain-control network. The circuit consists of an op amp connected in the noninverting configuration, with a closed-loop gain of \(1 + R_2/R_1 \). In the feedback path of this positive-gain amplifier an RC network is connected. The loop gain can be easily obtained by multiplying the transfer function \(V_a(s)/V_f(s) \) of the feedback network by the amplifier gain.

\[
L(s) = \frac{1 + R_2}{1 + R_1 \frac{Z_s}{Z_p} + 1} \quad (13.10)
\]
FIGURE 13.4 A Wien-bridge oscillator without amplitude stabilization.

Substituting \(s = j\omega \) results in

\[
L(j\omega) = \frac{1 + R_2/R_1}{3 + j\omega CR - 1/\omega CR}
\]

The loop gain will be a real number (i.e., the phase will be zero) at one frequency given by

\[
\omega_0 CR = \frac{1}{\omega_0 CR}
\]

That is,

\[
\omega_0 = 1/CR
\]

To obtain sustained oscillations at this frequency, one should set the magnitude of the loop gain to unity. This can be achieved by selecting

\[
R_2/R_1 = 2
\]

To ensure that oscillations will start, one chooses \(R_2/R_1 \) slightly greater than 2. The reader can easily verify that if \(R_2/R_1 = 2 + \delta \), where \(\delta \) is a small number, the roots of the characteristic equation \(1 - L(s) = 0 \) will be in the right half of the \(s \)-plane.

The amplitude of oscillation can be determined and stabilized by using a nonlinear control network. Two different implementations of the amplitude-controlling function are shown in Figs. 13.5 and 13.6. The circuit in Fig. 13.5 employs a symmetrical feedback limiter of the type studied in Section 13.1.3. It is formed by diodes \(D_x \) and \(D_2 \) together with resistors \(R_3 \), \(R_4 \), \(R_5 \), and \(R_6 \). The limiter operates in the following manner: At the positive peak of the output voltage \(v_0 \), the voltage at node \(b \) will exceed the voltage \(v_x \) (which is about \(1/2v_0 \)), and diode \(D_2 \) conducts. This will clamp the positive peak to a value determined by \(R_3, R_4 \), and the negative power supply. The value of the positive peak can be calculated by setting \(v_b = v_x + V_{DD} \) and writing a node equation at node \(b \) while neglecting the current through \(D_2 \). Similarly, the negative peak of the output sine wave will be clamped to the value that causes diode \(D_x \) to conduct. The value of the negative peak can be determined by setting \(v_x = v_0 - V_{DD} \) and writing an equation at node \(a \) while neglecting the current through \(D_x \). Finally, note that to obtain a symmetrical output waveform, \(R_3 \) is chosen equal to \(R_5 \), and \(R_4 \) equal to \(R_6 \).
EXERCISE 13.3
For the circuit in Fig. 13.5: (a) Disregarding the limiter circuit, find the location of the closed-loop poles, (b) Find the frequency of oscillation, (c) With the limiter in place, find the amplitude of the output sine wave (assume that the diode drop is 0.7 V).
Ans. (a) 160 Hz (±), 1 kHz; (b) 21.36 V (peak-to-peak)

The circuit of Fig. 13.6 employs an inexpensive implementation of the parameter-variation mechanism of amplitude control. Potentiometer P is adjusted until oscillations just start to grow. As the oscillations grow, the diodes start to conduct, causing the effective resistance between a and b to decrease. Equilibrium will be reached at the output amplitude that causes the loop gain to be exactly unity. The output amplitude can be varied by adjusting potentiometer P.

As indicated in Fig. 13.6, the output is taken at point a rather than at the op-amp output terminal because the signal at b has lower distortion than that at a. To appreciate this point, note that the voltage at b is proportional to the voltage at the op-amp input terminals and that the latter is a filtered (by the RC network) version of the voltage at node a. Node b, however, is a high-impedance node, and a buffer will be needed if a load is to be connected.

EXERCISE 13.4
For the circuit in Fig. 13.6 find the following: (a) The setting of potentiometer P at which oscillations just start, (b) The frequency of oscillation.
Ans. (a) 20 kΩ to ground; (b) 1 kHz

13.2.2 The Phase-Shift Oscillator
The basic structure of the phase-shift oscillator is shown in Fig. 13.7. It consists of a negative-gain amplifier (−K) with a three-section (third-order) RC ladder network in the feedback. The circuit will oscillate at the frequency for which the phase shift of the RC network is 180°. Only at this frequency will the total phase shift around the loop be 0° or 360°. Here we should note that the reason for using a three-section RC network is that three is the minimum number of sections (i.e., lowest order) that is capable of producing a 180° phase shift at a finite frequency.

For oscillations to be sustained, the value of K should be equal to the inverse of the magnitude of the RC network transfer function at the frequency of oscillation. However, to ensure that oscillations start, the value of K has to be chosen slightly higher than the value that satisfies the unity-loop-gain condition. Oscillations will then grow in magnitude until limited by some nonlinear control mechanism.

Figure 13.8 shows a practical phase-shift oscillator with a feedback limiter, consisting of diodes D1 and D2 and resistors R1, R2, R3, and R4 for amplitude stabilization. To start oscillations, R1 has to be made slightly greater than the minimum required value. Although the circuit stabilizes more rapidly, and provides sine waves with more stable amplitude, if R1 is made much larger than this minimum, the price paid is an increased output distortion.

EXERCISES
13.5 Consider the circuit of Fig. 13.8 without the limiter. Break the feedback loop at X and find the loop gain \(A_{\beta} = V_{\beta}(\beta)/V_{\alpha}(\alpha) \). To do this, it is easier to start at the output and work backward, finding the various currents and voltages, and eventually \(V_{\beta} \) in terms of \(V_{\alpha} \).
Ans. \(A_{\beta} = \frac{1}{C^2 R^2} \)

13.6 Use the expression derived in Exercise 13.5 to find the frequency of oscillation \(f_0 \) and the minimum required value of \(R_1 \) for oscillations to start in the circuit of Fig. 13.8.
Ans. 574 Hz; 120 kΩ
13.2.3 The Quadrature Oscillator

The quadrature oscillator is based on the two-integrator loop studied in Section 12.7. As an active filter, the loop is damped to locate the poles in the left half of the s-plane. Here, no such damping will be used, since we wish to locate the poles on the jω-axis to provide sustained oscillations. In fact, to ensure that oscillations start, the poles are initially located in the right half-plane and then "pulled back" by the nonlinear gain control.

Figure 13.9 shows a practical quadrature oscillator. Amplifier 1 is connected as an inverting Miller integrator with a limiter in the feedback for amplitude control. Amplifier 2 is connected as a noninverting integrator (thus replacing the cascade connection of the Miller integrator and the inverter in the two-integrator loop of Fig. 12.25b). To understand the operation of this noninverting integrator, consider the equivalent circuit shown in Fig. 13.9(b). Here, we have replaced the integrator input voltage v01 and the series resistance 2R by the Norton equivalent composed of a current source v0l/2R and a parallel resistance 2R. Now, since v02 = 2v, where v is the voltage at the input of op amp 2, the current through Rf will be (2v - v)/Rf = v/Rf in the direction from output to input. Thus Rf gives rise to a negative input resistance, -Rf, as indicated in the equivalent circuit of Fig. 13.9(b). Nominally, Rf is made equal to 2R, and thus -Rf cancels 2R, and in the input we are left with a current source v0l/2R feeding a capacitor C. The result is that v = -v0l/2R dt and v02 = 2v = v0l dt. That is, for Rf = 2R, the circuit functions as a perfect noninverting integrator. If, however, Rf is made smaller than 2R, a net negative resistance appears in parallel with C.

Returning to the oscillator circuit in Fig. 13.9(a), we note that the resistance Rf in the positive-feedback path of op amp 2 is made variable, with a nominal value of 2R. Decreasing the value of Rf moves the poles to the right half-plane (Problem 13.19) and ensures that the oscillations start. Too much positive feedback, although it results in better amplitude stability, also results in higher output distortion (because the limiter has to operate "harder"). In this regard, note that the output v02 will be "purer" than v01, because of the filtering action provided by the second integrator on the peak-limited output of the first integrator.

If we disregard the limiter and break the loop at X, the loop gain can be obtained as

\[L(s) = \frac{V_{02}}{V_x} = -\frac{1}{sC/2R} \]

Thus the loop will oscillate at frequency \(f_0 \), given by

\[f_0 = \frac{1}{2\pi \sqrt{C/2R}} \]

Finally, it should be pointed out that the name quadrature oscillator is used because the circuit provides two sinusoids with 90° phase difference. This should be obvious, since v02 is the integral of v01.

13.2.4 The Active-Filter-Tuned Oscillator

The last oscillator circuit that we shall discuss is quite simple both in principle and in design. Nevertheless, the approach is general and versatile and can result in high-quality (i.e., low-distortion) output sine waves. The basic principle is illustrated in Fig. 13.10. The circuit consists of a high-Q bandpass filter connected in a positive-feedback loop with a hard limiter. To understand how this circuit works, assume that oscillations have already started. The output of the bandpass filter will be a sine wave whose frequency is equal to the center frequency of the filter, \(f_0 \). The sine-wave signal v1 is fed to the limiter, which produces at its output a square wave whose levels are determined by the limiting levels and whose

![FIGURE 13.9](image-url) (a) A quadrature-oscillator circuit. (b) Equivalent circuit at the input of op amp 2.

![FIGURE 13.10](image-url) Block diagram of the active-filter-tuned oscillator.
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

Figure 13.11 A practical implementation of the active-filter-tuned oscillator.

The frequency of operation is \(f_0 \). The square wave in turn is fed to the bandpass filter, which filters out the harmonics and provides a sinusoidal output \(v_1 \) at the fundamental frequency \(f_0 \). Obviously, the purity of the output sine wave will be a direct function of the selectivity (or \(Q \) factor) of the bandpass filter.

The simplicity of this approach to oscillator design should be apparent. We have independent control of frequency and amplitude as well as of distortion of the output sinusoid. Any filter circuit with positive gain can be used to implement the bandpass filter. The frequency stability of the oscillator will be directly determined by the frequency stability of the bandpass-filter circuit. Also, a variety of limiter circuits (see Chapter 3) with different degrees of sophistication can be used to implement the limiter block.

Equation 13.11 shows one possible implementation of the active-filter-tuned oscillator. This circuit uses a variation on the bandpass circuit based on the Antoniou inductance-simulation circuit (see Fig. 12.22c). Here resistor \(R_2 \) and capacitor \(C_4 \) are interchanged. This makes the output of the lower op amp directly proportional to \((\text{in fact, twice as large as}) \) the voltage across the resonator, and we can therefore dispense with the buffer amplifier \(K \).

If the frequency of operation is sufficiently low that we can neglect the transistor capacitances, the frequency of oscillation will be determined by the resonance frequency of the parallel-tuned circuit (also known as a tank circuit) because it behaves as a reservoir for

EXERCISE

13.2 Using \(C = 16 \text{nF} \), find the value of \(R \) such that the circuit of Fig. 13.11 produces 1-KHz sine waves. (a) If the square wave has a peak-to-peak amplitude of 5 V, find the peak-to-peak amplitude of the output sine wave. (b) A square wave with a peak-to-peak amplitude of \(V \) volts has a fundamental component with \(4V/\pi \) volts peak-to-peak.

Ans. 10 kΩ, 5.6 V

13.2.5 A Final Remark

The op amp-RC oscillator circuits studied are useful for operation in the range 10 Hz to 100 kHz (or perhaps 1 MHz at most). Whereas the lower frequency limit is dictated by the size of passive components required, the upper limit is governed by the frequency-response and slew-rate limitations of op amps. For higher frequencies, circuits that employ transistors together with LC tuned circuits or crystals are frequently used. These are discussed in Section 13.3.

13.3 LC AND CRYSTAL OSCILLATORS

Oscillators utilizing transistors (FETs or BJTs), with LC-tuned circuits or crystals as feedback elements, are used in the frequency range of 100 kHz to hundreds of megahertz. They exhibit higher \(Q \) than the RC types. However, LC oscillators are difficult to tune over wide ranges, and crystal oscillators operate at a single frequency.

13.3.1 LC-Tuned Oscillators

Figure 13.12 shows two commonly used configurations of LC-tuned oscillators. They are known as the Colpitts oscillator and the Hartley oscillator. Both utilize a parallel LC circuit connected between collector and base (or between drain and gate if a FET is used) with a fraction of the tuned-circuit voltage fed to the emitter (the source in a FET). This feedback is achieved by way of a capacitive divider in the Colpitts oscillator and by way of an inductive divider in the Hartley circuit. To focus attention on the oscillator's structure, the bias details are not shown. In both circuits, the resistor \(R \) models the combination of the losses of the inductors, the load resistance of the oscillator, and the output resistance of the transistor.

If the frequency of operation is sufficiently low that we can neglect the transistor capacitances, the frequency of oscillation will be determined by the resonance frequency of the parallel-tuned circuit (also known as a tank circuit) because it behaves as a reservoir for

\[Q \]

\[3 \]

3 Of course, transistors can be used in place of the op amps in the circuits just studied. At higher frequencies, however, better results are obtained with LC-tuned circuits and crystals.
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

For oscillations to start, both the real and imaginary parts must be zero. Equating the imaginary part to zero gives the frequency of oscillation as

$$\omega_0 = \frac{1}{\sqrt{\frac{C_1 C_2}{(C_1 + C_2)}}} \quad (13.20)$$

which is the resonant frequency of the tank circuit, as anticipated.\(^4\) Equating the real part to zero together with using Eq. (13.20) gives

$$C_2/C_1 = g_m R \quad (13.21)$$

which has a simple physical interpretation: For sustained oscillations, the magnitude of the gain from base to collector \((g_m R)\) must be equal to the inverse of the voltage ratio provided by the capacitive divider, which from Fig. 13.12(a) can be seen to be \(V_o/V_{oc} = C_1/C_2\). Of course, for oscillations to start, the loop gain must be made greater than unity, a condition that can be stated in the equivalent form

$$g_m R > C_2/C_1 \quad (13.22)$$

As oscillations grow in amplitude, the transistor’s nonlinear characteristics reduce the effective value of \(g_m\) and, correspondingly, reduce the loop gain to unity, thus sustaining the oscillations.

Analysis similar to the foregoing can be carried out for the Hartley circuit (see later Exercise 13.8). At high frequencies, more accurate transistor models must be used. Alternatively, the \(y\) parameters of the transistor can be measured at the intended frequency \(f_0\) and the analysis can then be carried out using the \(y\)-parameter model (see Appendix B). This is usually simpler and more accurate, especially at frequencies above about 30% of the transistor cutoff frequency.

As an example of a practical LC oscillator we show in Fig. 13.14 the circuit of a Colpitts oscillator, complete with bias details. Here the radio-frequency choke (RFC) provides a high reactance at \(f_0\), and a low dc resistance. Reliance on the nonlinear characteristics of the BJT (or the FET) implies that the collector (drain) current waveform will be nonlinearly distorted. Nevertheless, the output voltage signal will still be a sinusoid of high purity because of the filtering action of the LC tuned circuit. Detailed analysis of amplitude control, which makes use of nonlinear-circuit techniques, is beyond the scope of this book.

\(^4\)If \(C_2\) is taken into account, the frequency of oscillation can be shown to shift slightly from the value given by Eq. (13.20).
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

FIGURE 13.14 Complete circuit for a Colpitts oscillator.

EXERCISES

13.8 Show that for the Hartley oscillator of Fig. 13.12(a), the frequency of oscillation is given by Eq. (13.17) and that for oscillations to start \(R > \frac{L}{L_1} \).

13.9 Using a BJT biased at \(I_c = 1 \) mA, design a Colpitts oscillator to operate at \(\omega_0 = 10^6 \) rad/s. Use \(C_2 = 0.01 \) \(\mu F \), and assume that the coil available has a \(Q \) of 100 (this can be represented by a resistance in parallel with \(C_1 \) given by \(Q/LC_1 \)). Also assume that there is a load resistance at the collector of 2 k\(\Omega \) and that for the BJT, \(r_e = 100 \) k\(\Omega \). Find \(C_2 \) and \(L \).

Ans. \(0.66 \) \(\mu F \); 100 \(\mu H \) (a somewhat smaller \(C_2 \) would be used to allow oscillations to grow in amplitude).

13.3.2 Crystal Oscillators

A piezoelectric crystal, such as quartz, exhibits electromechanical-resonance characteristics that are very stable (with time and temperature) and highly selective (having very high \(Q \) factors). The circuit symbol of a crystal is shown in Fig. 13.15(a), and its equivalent circuit model is given in Fig. 13.15(b). The resonance properties are characterized by a large inductance \(L \) (as high as hundreds of henrys), a very small series capacitance \(C_s \) (as small as 0.0005 \(\mu F \)), a series resistance \(r \) representing a \(Q \) factor \(Q_0 \) that can be as high as a few hundred thousand, and a parallel capacitance \(C_p \) (a few picofarads). Capacitor \(C_p \) represents the electrostatic capacitance between the two parallel plates of the crystal. Note that \(C_p > C_s \).

Since the \(Q \) factor is very high, we may neglect the resistance \(r \) and express the crystal impedance as

\[
Z(s) = \sqrt{\frac{s C_p}{s L + 1/s C_s}}
\]

which can be manipulated to the form

\[
Z(s) = \frac{1}{s C_p + \left(\frac{1}{L C_s} + \frac{1}{C_p} + \frac{1}{C_s}\right)}
\]

(13.23)

From Eq. (13.23) and from Fig. 13.15(b) we see that the crystal has two resonance frequencies: a series resonance at \(\omega_s \),

\[
\omega_s = \sqrt{\frac{L}{C_s}}
\]

(13.24)

and a parallel resonance at \(\omega_p \),

\[
\omega_p = \frac{1}{\sqrt{LC_p}}
\]

(13.25)

Thus for \(s = j\omega \) we can write

\[
Z(j\omega) = -\frac{1}{\omega C_p + \left(\frac{\omega^2}{LC} - \omega^2 - \omega_p^2\right)}
\]

(13.26)

From Eqs. (13.24) and (13.25) we note that \(\omega_s > \omega_p \). However, since \(C_p > C_s \), the two resonance frequencies are very close. Expressing \(Z(j\omega) = X(\omega) \), the crystal reactance \(X(\omega) \) will
In this section we begin the study of waveform-generating circuits of the other type—nonlinear oscillators or function generators. These devices make use of a special class of circuits known as multivibrators. As mentioned earlier, there are three types of multivibrator: bistable, monostable, and astable. This section is concerned with the first, the bistable multivibrator. As its name indicates, the bistable multivibrator has two stable states. The circuit can remain in either stable state indefinitely and moves to the other stable state only when appropriately triggered.

13.4.1 The Feedback Loop

Bistability can be obtained by connecting a dc amplifier in a positive-feedback loop having a loop gain greater than unity. Such a feedback loop is shown in Fig. 13.17; it consists of an op amp and a resistive voltage divider in the positive-feedback path. To see how bistability is obtained, consider operation with the positive input terminal of the op amp near ground potential. This is a reasonable starting point, since the circuit has no external excitation. Assume that the electrical noise that is inevitably present in every electronic circuit causes a small positive increment in the voltage \(v_u \). This incremental signal will be amplified by the large open-loop gain \(A \) of the op amp, with the result that a much greater signal will appear in the op amp’s output voltage \(v_o \). The voltage divider \((R_1, R_2)\) will feed a fraction \(\beta = R_1/(R_1 + R_2) \) of the output signal back to the positive input terminal of the op amp. If \(\beta \) is greater than unity, as is usually the case, the feedback signal will be greater than the original increment in \(v_u \). This regenerative process continues until eventually the op amp saturates with its output voltage at the positive saturation level, \(V_+ \). When this happens, the voltage at the positive input terminal, \(v_u \), becomes \(L_+ R_0/(R_1 + R_2) \), which is positive and thus keeps the op amp in positive saturation. This is one of the two stable states of the circuit.

In the description above we assumed that when \(v_u \) was near zero volts, a positive increment occurred in \(v_u \). Had we assumed the equally probable situation of a negative increment, the op amp would have ended up saturated in the negative direction with \(v_u = 0 \) and \(v_o = -L_+ R_0/(R_1 + R_2) \). This is the other stable state.

We thus conclude that the circuit of Fig. 13.17 has two stable states, one with the op amp in positive saturation and the other with the op amp in negative saturation. The circuit can exist in either of these two states indefinitely. We also note that the circuit cannot exist in the state for which \(v_u = 0 \) and \(v_o = 0 \) for any length of time. This is a state of metastable equilibrium (also known as a metastable state); any disturbance, such as that caused by electrical noise,
1186 CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

causes the bistable circuit to switch to one of its two stable states. This is in sharp contrast to the case when the feedback is negative, causing a virtual short circuit to appear between the op amp’s input terminals and maintaining this virtual short circuit in the face of disturbances.

A physical analogy for the operation of the bistable circuit is depicted in Fig. 13.18.

13.4.2 Transfer Characteristics of the Bistable Circuit

The question naturally arises as to how we can make the bistable circuit of Fig. 13.17 change state. To help answer this crucial question, we derive the transfer characteristics of the bistable. Reference to Fig. 13.17 indicates that either of the two circuit nodes that are connected to ground can serve as an input terminal. We investigate both possibilities.

Figure 13.19(a) shows the bistable circuit with a voltage \(v_j \) applied to the inverting input terminal of the op amp. To derive the transfer characteristic \(v_j \rightarrow v \), assume that \(v_j \) is at one of its two possible levels, say \(V_L \), and thus \(v = V_L \). Now as \(v \) is increased from 0 V we can see from the circuit that nothing happens until \(v \) reaches a value equal to \(V_j \) (i.e., \(V_j \)). As \(v \) begins to exceed this value, a net negative voltage develops between the input terminals of the op amp. This voltage is amplified by the open-loop gain of the op amp, and thus \(v \) goes negative. The voltage divider in turn causes \(v \) to go negative, thus increasing the net negative input to the op amp and keeping the regenerative process going. This process culminates in the op amp saturating in the negative direction that is, with \(v = v_j \) and, correspondingly, \(v = V_L \). It is easy to see that increasing \(v \) further has no effect on the acquired state of the bistable circuit. Figure 13.19(b) shows the transfer characteristic for increasing \(v \). Observe that the characteristic is that of a comparator, but with a threshold voltage \(V_T = V_j \).

Next consider what happens as \(v \) is decreased. Since now \(v = V_L \), we see that the circuit remains in the negative-saturation state until \(v \) goes negative to the point that it equals \(-V_L\). As \(v \) goes below this value, a net positive voltage appears between the op amp’s input terminals. This voltage is amplified by the op-amp gain and thus gives rise to a positive voltage at the op amp’s output. The regenerative action of the positive-feedback loop then sets in and causes the circuit eventually to go to its positive-saturation state, in which \(v = V_T \) and \(v = V_L \). The transfer characteristic for decreasing \(v \) is shown in Fig. 13.19(c). Here again we observe that the characteristic is that of a comparator with a threshold voltage \(V_T = V_j \).

The complete transfer characteristics, \(v_j \rightarrow v \), of the circuit in Fig. 13.19(a) can be obtained by combining the characteristics in Fig. 13.19(b) and (c), as shown in Fig. 13.19(d). As indicated, the circuit changes state at different values of \(v_j \) depending on whether \(v_j \) is increasing or decreasing. Thus the circuit is said to exhibit hysteresis; the width of the hysteresis is the difference between the high threshold \(V_{TH} \) and the low threshold \(V_{TL} \). Also note that the bistable circuit is in effect a comparator with hysteresis. As will be shown shortly, adding hysteresis to a comparator’s characteristics can be very beneficial in certain applications. Finally, observe that because the bistable circuit of Fig. 13.19 switches from the positive state \(v = V_T \) to the negative state \(v = V_L \) as \(v \) is increased past the positive threshold \(V_{TH} \), the circuit is said to be inverting. A bistable circuit with a noninverting transfer characteristic will be presented shortly.
13.4.4 The Bistable Circuit as a Memory Element

We observe from Fig. 13.19(d) that for input voltages in the range $V_{\text{TL}} < v < V_{\text{TH}}$, the output can be either L_+ or L_-, depending on the state that the circuit is already in. Thus, for this input range, the output is determined by the previous value of the trigger signal (the trigger signal that caused the circuit to be in its current state). Thus the circuit exhibits memory. Indeed, the bistable multivibrator is the basic memory element of digital systems, as we have seen in Chapter 11. Finally, note that in analog circuit applications, such as the ones of concern to us in this chapter, the bistable circuit is also known as a Schmitt trigger.

13.4.5 A Bistable Circuit with Noninverting Transfer Characteristics

The basic bistable feedback loop of Fig. 13.17 can be used to derive a circuit with noninverting transfer characteristics by applying the input signal v_j (the trigger signal) to the terminal of R_1 that is connected to ground. The resulting circuit is shown in Fig. 13.20(a). To obtain the transfer characteristics we first employ superposition to the linear circuit formed by R_1 and R_2, thus expressing v_+ in terms of v_j and v_0 as

$$v_+ = v_j \frac{R_2}{R_1 + R_2} + v_0 \frac{R_1}{R_1 + R_2}.$$ \hspace{1cm} (13.28)

From this equation we see that if the circuit is in the positive stable state with $v_0 = L_+$, positive values for v_j will have no effect. To trigger the circuit into the L_- state, v_j must be made negative and of such a value as to make v_+ decrease below zero. Thus the low threshold V_{TL} can be found by substituting in Eq. (13.28) $v_0 = L_+$, $v_+ = 0$, and $v_j = V_{\text{TL}}$. The result is

$$V_{\text{TL}} = -L_+ (R_1/R_2).$$ \hspace{1cm} (13.29)

Similarly, Eq. (13.28) indicates that when the circuit is in the negative-output state ($v_0 = L_-$), negative values of v_j will cause v_+ more negative with no effect on operation. To initiate the regeneration process that causes the circuit to switch to the positive state, v_+ must be made to go slightly positive. The value of v_j that causes this to happen is the high threshold voltage V_{TH}, which can be found by substituting in Eq. (13.28) $v_0 = L_-$ and $v_+ = 0$. The result is

$$V_{\text{TH}} = -L_+ (R_2/R_1).$$ \hspace{1cm} (13.30)

The complete transfer characteristic of the circuit of Fig. 13.20(a) is displayed in Fig. 13.20(b). Observe that a positive triggering signal v_j (of value greater than V_{TH}) causes the circuit to switch to the positive state (v_0 goes from L_- to L_+). Thus the transfer characteristic of this circuit is noninverting.

13.4.6 Application of the Bistable Circuit as a Comparator

The comparator is an analog-circuit building block that is used in a variety of applications ranging from detecting the level of an input signal relative to a preset threshold value, to the design of analog-to-digital (A/D) converters (see Section 9.1). Although one normally thinks of the comparator as having a single threshold value (see Fig. 13.21a), it is useful in many applications to add hysteresis to the comparator characteristics. If this is done, the comparator exhibits two threshold values, V_{TH} and V_{TM}, symmetrically placed about the

![FIGURE 13.20](image)

(a) A bistable circuit derived from the positive-feedback loop of Fig. 13.17 by applying v_j through R_1. (b) The transfer characteristic of the circuit in (a) is noninverting. (Compare it to the inverting characteristic in Fig. 13.19a.)

![FIGURE 13.21](image)

(a) Block diagram representation and transfer characteristic for a comparator having a reference, or threshold, voltage V_{TH}. (b) Comparator characteristic with hysteresis.
desired reference level, as indicated in Fig. 13.21(b). Usually \(V_{m} \) and \(V_{TL} \) are separated by a small amount, say 100 mV.

To demonstrate the need for hysteresis we consider a common application of comparators. It is required to design a circuit that detects and counts the zero crossings of an arbitrary waveform. Such a function can be implemented using a comparator whose threshold is set to 0 V. The comparator provides a step change at its output every time a zero crossing occurs. Each step change can be used to generate a pulse, and the pulses are fed to a counter circuit.

Imagine now what happens if the signal being processed has—as it usually does have—interference superimposed on it, say of a frequency much higher than that of the signal. It follows that the signal might cross the zero axis a number of times around each of the zero-crossing points we are trying to detect, as shown in Fig. 13.22. The comparator would thus change state a number of times at each of the zero crossings, and our count would obviously be in error. However, if we have an idea of the expected peak-to-peak amplitude of the interference, the problem can be solved by introducing hysteresis of appropriate width in the comparator characteristics. Then, if the input signal is increasing in magnitude, the comparator with hysteresis will remain in the low state until the input level exceeds the high threshold \(V_{m} \). Subsequently the comparator will remain in the high state even if, owing to interference, the signal decreases below \(V_{TH} \). The comparator will switch to the low state only if the input signal is decreased below the low threshold \(V_{TL} \). The situation is illustrated in Fig. 13.22, from which we see that including hysteresis in the comparator characteristics provides an effective means for rejecting interference (thus providing another form of filtering).

13.4.7 Making the Output Levels More Precise
The output levels of the bistable circuit can be made more precise than the saturation voltages of the op amp are by cascading the op amp with a limiter circuit (see Section 3.6 for a discussion of limiter circuits). Two such arrangements are shown in Fig. 13.23.

EXERCISES

D13.11 The op amp in the bistable circuit of Fig. 13.19(a) has output saturation voltages of \(\pm 13 \) V. Design the circuit to obtain threshold voltages of \(\pm 5 \) V. For \(A_{1} = 10 \text{ k} \Omega \), find the value required for \(R_{S} \).

D13.12 If the op amp in the circuit of Fig. 13.20(a) has \(\pm 10 \) V output saturation levels, design the circuit to obtain \(\pm 5 \) V thresholds. Give suitable component values. >

Ans. Possible choice: \(A_{1} = 10 \text{ k} \Omega \) and \(R_{S} = 20 \text{ k} \Omega \).

D13.13 Consider a bistable circuit with a noninverting transfer characteristic, and let \(L_{L} = -L_{T} = 10 \text{ V} \) and \(V_{m} = -V_{n} = 5 \text{ V} \). Sketch the waveform of \(v_{o} \). Find the time interval between the zero crossings of \(v_{o} \) and \(v_{o} \).

Ans. If \(v_{o} \) is a square wave with \(5 \text{ V} \) amplitude, \(10 \text{ V} \) amplitude, and \(10 \text{ ms} \) period and is delayed by \(125 \mu \text{s} \) relative to \(v_{o} \).

D13.14 Consider an op amp having saturation voltages of \(\pm 12 \) V used without feedback, with the inverting input terminal connected to \(+3 \) V and the noninverting input terminal connected to \(-3 \) V as a comparator. What are \(L_{L}, L_{T}, \) and \(V_{m} \), as defined in Fig. 13.21(a)?

Ans. \(+12 \text{ V}, -12 \text{ V}, -3 \text{ V} \).

D13.15 In the circuit of Fig. 13.20(a) let \(L_{L} = -L_{T} = 10 \text{ V} \) and \(R_{S} = 1 \text{ k} \Omega \). Find a value for \(R_{S} \) that gives a hysteresis of \(100 \text{ mV} \) width.

Ans. 200 \text{ k} \Omega.
13.5 GENERATION OF SQUARE AND TRIANGULAR WAVEFORMS USING ASTABLE MULTIVIBRATORS

A square waveform can be generated by arranging for a bistable multivibrator to switch states periodically. This can be done by connecting the bistable multivibrator with an RC circuit in a feedback loop, as shown in Fig. 13.24(a). Observe that the bistable multivibrator has an inverting transfer characteristic and can thus be realized using the circuit of Fig. 13.19(a). This results in the circuit of Fig. 13.24(b). We shall show shortly that this circuit has no stable states and thus is appropriately named an astable multivibrator.

13.5.1 Operation of the Astable Multivibrator

To see how the astable multivibrator operates, refer to Fig. 13.24(b) and let the output of the bistable multivibrator be at one of its two possible levels, say \(V^+ \). Capacitor \(C \) will charge toward this level through resistor \(R \). Thus the voltage across \(C \), which is applied to the negative input terminal of the op amp and thus is denoted \(v_- \), will rise exponentially toward \(V^+ \) with a time constant \(\tau = CR \). Meanwhile, the voltage at the positive input terminal of the op amp is \(V^+ \), which is applied to the negative input terminal of the op amp and thus is denoted \(V_+ \). This situation will continue until the capacitor voltage reaches the positive threshold \(V_T^+ = \beta L_+ \), at which point the bistable multivibrator will switch to the other stable state in which \(V_+ = V^- \) and \(V_- = V^+ \). The capacitor will then start discharging, and its voltage, \(v_- \), will decrease exponentially toward \(V^- \). This new state will prevail until \(v_- \) reaches the negative threshold \(V_T^- = \beta L_- \), at which time the bistable multivibrator switches to the positive-output state, the capacitor begins to charge, and the cycle repeats itself.

From the preceding description we see that the astable circuit oscillates and produces a square waveform at the output of the op amp. This waveform, and the waveforms at the two input terminals of the op amp, are displayed in Fig. 13.24(c). The period \(T \) of the square wave can be found as follows: During the charging interval \(T_1 \), the voltage \(v_- \) across the capacitor at any time \(t \), with \(t = 0 \) at the beginning of \(T_1 \), is given by (see Appendix D)

\[
v_-(t) = V_+ - (V_+ - V_T^+) e^{-t/\tau}
\]

where \(\tau = CR \). Substituting \(V_+ = \beta L_+ \) at \(t = T_1 \), gives

\[
T_1 = \frac{1}{\tau} \ln \left(1 - \frac{V_T^+}{\beta L_+} \right)
\]

Similarly, during the discharge interval \(T_2 \), the voltage \(v_- \) at any time \(t \), with \(t = 0 \) at the beginning of \(T_2 \), is given by

\[
v_-(t) = V_- - (V_- - V_T^-) e^{-t/\tau}
\]

The period \(T \) is given by

\[
T = T_1 + T_2
\]
Substituting \(v_c = \beta L_1 \) at \(t = T_p \) gives
\[
T_p = \tau \ln \frac{1 - \beta (L_2/L_1)}{1 - \beta}
\] (13.32)

Equations (13.31) and (13.32) can be combined to obtain the period \(T = T_1 + T_2 \), normally, \(L_1 = L_2 \), resulting in symmetrical square waves of period \(T \) given by
\[
T = 2 \tau \ln \frac{1 + \beta}{1 - \beta}
\] (13.33)

Note that this square-wave generator can be made to have variable frequency by switching different capacitors \(C \) (usually in decades) and by continuously adjusting \(R \) (to obtain continuous frequency control within each decade of frequency). Also, the waveform across \(C \) can be made almost triangular by using a small value for the parameter \(\beta \). However, triangular waveforms of superior linearity can be easily generated using the scheme discussed next.

Before leaving this section, however, note that although the astable circuit has no stable states, it has two quasi-stable states and remains in each for a time interval determined by the time constant of the RC network and the thresholds of the bistable multivibrator.

EXERCISES

13.38. For the circuit in Fig. 13.24(b), let the op-amp saturation voltages be \(\pm 10 \) V, \(R_1 = 100 \) k\(\Omega \), \(R_2 = R_1 = 1 \) M\(\Omega \), and \(C = 0.01 \) \(\mu F \). Find the frequency of oscillation.

Ans. 274 Hz

13.39. Consider a modification of the circuit of Fig. 13.24(b) in which \(R_1 \) is replaced by a pair of diodes connected in parallel in opposite directions. For \(L_1 = L_2 = 12 \) VAII, \(R_1 = R_2 = 10 \) k\(\Omega \), and a constant voltage \(V_D \) find an expression for frequency as a function of \(V_D \). If \(V_D = 0 \) V at 25°C with a TC of –2 mV/°C, find the frequency at 0°C, 25°C, 50°C, and 100°C. Note that the output of this circuit can be sent to a remotely connected frequency meter to provide a digital readout.

Ans. \(f = \frac{500}{\ln[(12 + V_D)/12]} \) Hz; 5995 Hz, 4281 Hz, 4611 Hz, 5451 Hz

13.5.2 Generation of Triangular Waveforms

The exponential waveforms generated in the astable circuit of Fig. 13.24 can be changed to triangular by replacing the low-pass RC circuit with an integrator. The integrator is, after all, a low-pass circuit with a corner frequency at dc. The integrator causes linear charging and discharging of the capacitor, thus providing a triangular waveform. The resulting circuit is shown in Fig. 13.25(a). Observe that because the integrator is inverting, it is necessary to invert the characteristics of the bistable circuit. Thus the bistable circuit required here is of the noninverting type and can be implemented using the circuit of Fig. 13.2.

We now proceed to show how the feedback loop of Fig. 13.25(a) oscillates and generates a triangular waveform \(v_1 \) at the output of the integrator and a square waveform \(v_2 \) at the output of the bistable circuit. Let the output of the bistable circuit be \(L_+ \). A current equal to \(L_+ / R \) will flow into the resistor \(R \) and through capacitor \(C \), resulting in a triangular waveform \(v_1 \) at the output of the integrator. From the discussion above it is relatively easy to derive an expression for the period \(T \) of the square and triangular waveforms. During the interval \(T_1 \), we have, from Fig. 13.25(c),
\[
\frac{V_{TH} - V_T}{T_1} = \frac{L_+}{CR}
\]
from which we obtain
\[
T_1 = CR V_{TH} - V_T
\]

Similarly, during \(T_2 \) we have
\[
\frac{V_{TH} - V_T}{T_2} = -\frac{L_+}{CR}
\]
13.6 GENERATION OF A STANDARDIZED PULSE—THE MONOSTABLE MULTIVIBRATOR

In some applications the need arises for a pulse of known height and width generated in response to a trigger signal. Because the width of the pulse is predictable, its trailing edge can be used for timing purposes—that is, to initiate a particular task at a specified time. Such a standardized pulse can be generated by the third type of multivibrator, the monostable multivibrator.

The monostable multivibrator has one stable state in which it can remain indefinitely. It also has a quasi-stable state to which it can be triggered and in which it stays for a predetermined interval equal to the desired width of the output pulse. When this interval expires, the monostable multivibrator returns to its stable state and remains there, awaiting another triggering signal. The action of the monostable multivibrator has given rise to its alternative name, the one shot.

Figure 13.26(a) shows an op-amp monostable circuit. We observe that this circuit is an augmented form of the astable circuit of Fig. 13.24(b). Specifically, a clamping diode D_2 is added across the capacitor C, and a trigger circuit composed of capacitor C_4, resistor R_5, and diode D_3 is connected to the noninverting input terminal of the op amp. The circuit operates as follows: In the stable state, which prevails in the absence of the triggering signal, the output of the op amp is at L, and node D_3 is conducting through R_5 and thus clamping the voltage v_C to one diode drop above ground. We select R_5 much larger than R_4, so that diode D_3 will be conducting a very small current and the voltage v_C will be very closely determined by the voltage divider R_4/R_5. Thus $v_C = \beta L_+$, where $\beta = R_4/(R_4 + R_5)$. The stable state is maintained because βL_+ is greater than V_{OL}. Now consider the application of a negative-going step at the trigger input and refer to the signal waveforms shown in Fig. 13.26(b). The negative triggering edge will be coupled to the cathode of diode D_3 via capacitor C_4, and thus D_3 conducts heavily and pulls node C down. If the trigger signal is of sufficient height to cause v_C to go below V_T, the op amp will see a net negative input voltage and its output will switch to L. This in turn will cause v_C to go negative to βL_+, keeping the op amp in its newly acquired state. Note that D_3 will then cut off, thus isolating the circuit from any further changes at the trigger input terminal.

The negative voltage at A causes D_3 to cut off, and C_4 begins to discharge exponentially toward L, with a time constant $C_4 R_5$. The monostable multivibrator is now in its quasi-stable state, which will prevail until the declining v_C goes below the voltage at node C, which is βL_+. At this instant the op-amp output switches back to L, and the voltage at node C goes back to βL_+. Capacitor C_4 then charges toward L until diode D_3 turns on and the circuit returns to its stable state.

From Fig. 13.26(b), we observe that a negative pulse is generated at the output during the quasi-stable state. The duration T of the output pulse is determined from the exponential waveform of v_C.

$$v_C(t) = L_+ - (L_+ - V_{OL}) e^{-t/C_4 R_5}$$

by substituting $v_C(T) = 0$

$$\beta L_+ = L_+ - (L_+ - V_{OL}) e^{-T/C_4 R_5}$$

which yields

$$T = C_4 R_5 \ln \left(\frac{V_{OL}}{\beta L_+} \right)$$

For $V_{OL} \ll L_+$, this equation can be approximated by

$$T = C_4 R_5 \ln \left(\frac{1}{1 - \beta} \right)$$

EXERCISE

13.18 Consider the circuit of Fig. 13.25(a) with the bistable circuit realized by the circuit in Fig. 13.20(a). If the op amps have saturation voltages of ±10 V and if a capacitor $C = 0.01 \mu F$ and a resistor $R = 10 \, k\Omega$ are used, find the values of R and R' such that the frequency of oscillation is 1 kHz and the triangular waveform has a 10-V peak-to-peak amplitude.
Finally, note that the monostable circuit should not be triggered again until capacitor C, has been recharged to VCC; otherwise the resulting output pulse will be shorter than normal. This recharging time is known as the recovery period. Circuit techniques exist for shortening the recovery period.

EXERCISE

13.19 For the monostable circuit of Fig. 13.26(a) find the value of R1 that will result in a 100-μs output pulse for C, = 0.1 μF.

Ans:

13.7 INTEGRATED-CIRCUIT TIMERS

Commercially available integrated-circuit packages exist that contain the bulk of the circuitry needed to implement monostable and astable multivibrators with precise characteristics. In this section we discuss the most popular of such ICs, the 555 timer. Introduced in 1972 by the Signetics Corporation as a bipolar integrated circuit, the 555 is also available in CMOS technology and from a number of manufacturers.

13.7.1 The 555 Circuit

Figure 13.27 shows a block-diagram representation of the internal circuit of the 555 timer circuit ([for the actual circuit, refer to Ge brute (1984)]). The circuit consists of two comparators, an SR flip-flop, and a transistor Q2, that operates as a switch. One power supply (VCC) is required for operation, with the supply voltage typically 5 V. A negative input divider, consisting of the three equal-valued resistors labeled R1, is connected across VCC and establishes the reference (threshold) voltages for the two comparators. These are VTH = VCC/3 for comparator 1 and VTT = 2VCC/3 for comparator 2.

We studied SR flip-flops in Chapter 11. For our purposes here we note that an SR flip-flop (also called a latch) is a bistable circuit having complementary outputs, denoted Q and Q'. In the set state, the output at Q is “high” (approximately equal to VCC) and that at Q' is “low” (approximately equal to 0 V). In the other stable state, termed the reset state, the output at Q is low and that at Q' is high. The flip-flop is set by applying a high level (VCC) to its set input terminal, labeled S. To reset the flip-flop, a high level is applied to the reset input terminal, labeled R. Note that the reset and set input terminals of the flip-flop in the 555 circuit are connected to the outputs of comparator 1 and comparator 2, respectively.

The positive-input terminal of comparator 1 is brought out to an external terminal of the 555 package, labeled Threshold. Similarly, the negative-input terminal of comparator 2 is connected to an external terminal labeled Trigger, and the collector of transistor Q2 is connected to a terminal labeled Discharge. Finally, the Q' output of the flip-flop is connected to the output terminal of the timer package, labeled Out.

13.7.2 Implementing a Monostable Multivibrator

Using the 555 IC

Figure 13.28(a) shows a monostable multivibrator implemented using the 555 IC together with an external resistor R and an external capacitor C. In the stable state the flip-flop will be in the reset state, and thus its Q' output will be high, turning on transistor Q2. Transistor Q2 will then be saturated, and thus Vt will be close to 0 V, resulting in a low level at the output of comparator 1. The voltage at the trigger input terminal, labeled Trigger, is kept high (greater than VCC/2), and thus the output of comparator 2 is low. Finally, note that since the flip-flop is in the reset state, Q will be low and thus Vt will be close to 0 V.

To trigger the monostable multivibrator, a negative input pulse is applied to the trigger input terminal. As Vt goes below VCC, the output of comparator 2 goes to the high level, thus turning off transistor Q2. Capacitor C now begins to charge up through resistor R, and its voltage Vt rises exponentially toward VCC, as shown in Fig. 13.28(b). The monostable multivibrator is now in its quasi-stable state. This state prevails until Vt reaches, and begins to exceed, the threshold of comparator 1. VCC, at which time the output of comparator 1 goes high, resetting the flip-flop. Output Q of the flip-flop now goes high and turns on transistor Q2, causing Vt to go to 0 V. Also, when the flip-flop sets its Q output goes low, and thus Vt goes back to 0 V. The monostable multivibrator is now back in its stable state and is ready to receive a new triggering pulse.

From the description above we see that the monostable multivibrator produces an output pulse Vt as indicated in Fig. 13.28(b). The width of the pulse, T, is the time interval that the monostable multivibrator spends in the quasi-stable state; it can be determined by reference to the waveforms in Fig. 13.28(b) as follows: Denoting the instant at which the trigger pulse is applied as t = 0, the exponential waveform of Vt can be expressed as

\[V_t = V_{CC}(1 - e^{-t/RC}) \]

\[T = RC \ln \left(\frac{V_{CC} - V_t}{V_{CC}} \right) \]
Substituting $v_c = V_{OH} = \frac{1}{2}V_{CC}$ at $t = T$ gives

$$T = CR \ln 3 = 1.1CR$$

(13.39)

Thus the pulse width is determined by the external components C and R, which can be selected to have values as precise as desired.

13.7.3 An Astable Multivibrator Using the 555 IC

Figure 13.29(a) shows the circuit of an astable multivibrator employing a 555 IC, two external resistors, R_1 and R_2, and an external capacitor C. To see how the circuit operates refer to the waveforms depicted in Fig. 13.29(b). Assume that initially C is discharged and the flip-flop is reset. Thus v_0 is high and Q is off. Capacitor C will charge up through the series combination of R_1 and R_2, and the voltage across it, v_C, will rise exponentially toward V_{CC}. As v_C crosses the level equal to V_{TH}, the output of comparator 2 goes low. This, however, has no effect on the circuit operation, and the flip-flop remains set. Indeed, this state continues until v_C reaches and begins to exceed the threshold of comparator 1, V_{TH}. At this instant of time, the output of comparator 1 goes high and resets the flip-flop. Thus v_0 goes low, Q goes high, and transistor Q_1 is turned on. The saturated transistor Q_1 causes a voltage of approximately zero volts to appear at the common node of Q_2 and the collector of Q_1. The voltage v_C decreases exponentially with a time constant CR, toward 0 V. When v_C reaches the threshold of comparator 2, V_{TH}, the output of comparator 2 goes high, and the flip-flop. The output v_0 then goes high, and Q goes low, turning off Q_1. Capacitor C begins to charge through the series equivalent of R_1 and R_2, and its voltage rises exponentially toward V_{CC} with a time constant CR. This rise continues until v_C reaches V_{OH}, at which time the output of comparator 1 goes high, resetting the flip-flop, and the cycle continues.

From the description above we see that the circuit of Fig. 13.29(a) oscillates and produces a square waveform at the output. The frequency of oscillation can be determined as follows. Reference to Fig. 13.29(b) indicates that the output will be high during the interval T_H, in which v_C rises from V_{TH} to V_{CC}. The exponential rise of v_C can be described by

$$v_C = V_{CC} - (V_{CC} - V_{TH})e^{-t/T_H}$$

(13.40)

where $t = 0$ is the instant at which the interval T_H begins. Substituting $v_C = V_{TH} = \frac{1}{2}V_{CC}$ at $t = T_H$ and V_{CC} results in

$$T_H = C(R_1 + R_2)\ln 2 = 0.69 CR(H + R_2)$$

(13.41)

We also note from Fig. 13.29(b) that v_0 will be low during the interval T_L, in which v_C falls from V_{OH} to V_{TH}. The exponential fall of v_C can be described by

$$v_C = V_{OH}e^{-t/T_L}$$

(13.42)

where we have taken $t = 0$ as the beginning of the interval T_L. Substituting $v_C = V_{TH} = \frac{1}{2}V_{CC}$ at $t = T_L$ and V_{TH} results in

$$T_L = CR_L\ln 2 = 0.69 CR_L$$

(13.43)

Equations (13.41) and (13.43) can be combined to obtain the period T of the output square wave as

$$T = T_L + T_H = 0.69 CR(H + 2R_2)$$

(13.44)
Also, the duty cycle of the output square wave can be found from Eqs. (13.41) and (13.43):

$$\text{Duty cycle} = \frac{T_u}{T_u + T_d} = \frac{R_A + R_D}{R_A + 2R_D}$$ \hspace{1cm} (13.45)

Note that the duty cycle will always be greater than 0.5 (50%); it approaches 0.5 if R_A is selected to be much smaller than R_D (unfortunately, at the expense of supply current).

EXERCISES

13.20 Using a 10-nF capacitor C, find the value of R that yields an output pulse of 1.00 ms in the monostable circuit of Fig. 13.28(a).

Ans. 9.1 kΩ

13.21 For the circuit in Fig. 13.29(a), with a 1000-pF capacitor, and find the values of R_A and R_B that result in an oscillation frequency of 100 kHz and a duty cycle of 75%.

Ans. 7.2 kΩ, 3.6 kΩ

13.8 NONLINEAR WAVEFORM-SHAPING CIRCUITS

Diodes or transistors can be combined with resistors to synthesize two-port networks having arbitrary nonlinear transfer characteristics. Such two-port networks can be employed in waveform shaping—that is, changing the waveform of an input signal in a prescribed manner to produce a waveform of a desired shape at the output. In this section we illustrate this application by a concrete example: the sine-wave shaper, This is a circuit whose purpose is to change the waveform of an input triangular-wave signal to a sine wave. Though simple, the sine-wave shaper is a practical building block used extensively in function generators. This method of generating sine waves should be contrasted to that using linear oscillators (Sections 13.1-13.3). Although linear oscillators produce sine waves of high purity, they are not convenient at very low frequencies. Also, linear oscillators are in general more difficult to tune over wide frequency ranges. In the following we discuss two distinctly different techniques for designing sine-wave shapers.

13.8.1 The Breakpoint Method

In the breakpoint method the desired nonlinear transfer characteristic (in our case the sine function shown in Fig. 13.30) is implemented as a piecewise linear curve. Diodes are utilized as switches that turn on at the various breakpoints of the transfer characteristic, thus switching into the circuit additional resistors that cause the transfer characteristic to change slope.

Consider the circuit shown in Fig. 13.31(a). It consists of a chain of resistors connected across the entire symmetrical voltage supply $+V, -V$. The purpose of this voltage divider is to generate reference voltages that will serve to determine the breakpoints in the transfer characteristic. In our example these reference voltages are denoted $+V_h, +V_c, -V_c, -V_h$. Note that the entire circuit is symmetrical; driven by a symmetrical triangular wave and generating a symmetrical sine-wave output. The circuit approximates each quarter-cycle of the sine wave by three straight-line segments; the breakpoints between these segments are determined by the reference voltages V_h and V_c.
FIGURE 13.31 (a) A three-segment sine-wave shaper. (b) The input triangular waveform and the output approximately sinusoidal waveform.

The circuit works as follows: Let the input be the triangular wave shown in Fig. 13.31(b), and consider first the quarter-cycle defined by the two points labeled 0 and 1. When the input signal is less in magnitude than \(V_1 \), none of the diodes conduct. Thus zero current flows through \(R_4 \), and the output voltage at B will be equal to the input voltage. But as the input rises to \(V_1 \) and above, \(D_2 \) (assumed ideal) begins to conduct. Assuming that the conducting \(D_2 \) behaves as a short circuit, we see that, for \(\nu_0 > V_1 \),

\[
\nu_0 = V_1 + \frac{(\nu_1 - V_1 - R_1)}{R_3 + R_4}
\]

This implies that as the input continues to rise above \(V_1 \), the output follows but with a reduced slope. This gives rise to the second segment in the output waveform, as shown in Fig. 13.31(b). Note that in developing the equation above we have assumed that the resistances in the voltage divider are low enough in value to cause the voltages \(V_1 \) and \(V_2 \) to be constant independent of the current coming from the input.

Next consider what happens as the voltage at point B reaches the second breakpoint determined by \(V_2 \). At this point, \(D_3 \) conducts, thus limiting the output \(\nu_0 \) to \(V_2 \). This gives rise to the third segment, which is flat, in the output waveform. The overall result is to "bend" the waveform and shape it into an approximation of the first quarter-cycle of a sine wave. Then, beyond the peak of the input triangular wave, as the input voltage decreases, the process unfolds, the output becoming progressively more like the input. Finally, when the input goes sufficiently negative, the process begins to repeat at \(-V_1\) and \(-V_2\) for the negative half-cycle.

Although the circuit is relatively simple, its performance is surprisingly good. A measure of goodness usually taken is to quantify the purity of the output sine wave by specifying the percentage total harmonic distortion (THD). This is the percentage ratio of the rms voltage of all harmonic components above the fundamental frequency (which is the frequency of the triangular wave) to the rms voltage of the fundamental (see also Chapter 14). Interestingly, one reason for the good performance of the diode shaper is the beneficial effects produced by the nonideal \(-\nu\) characteristics of the diodes—that is, the exponential knee of the junction diode as it goes into forward conduction. The consequence is a relatively smooth transition from one line segment to the next.

Practical implementations of the breakpoint sine-wave shaper employ six to eight segments (compared with the three used in the example above). Also, transistors are usually employed to provide more versatility in the design, with the goal being increased precision and lower THD. [See Grebene (1984), pages 592–597.]

13.8.2 The Nonlinear-Amplification Method

The other method we discuss for the conversion of a triangular wave into a sine wave is based on feeding the triangular wave to the input of an amplifier having a nonlinear transfer characteristic that approximates the sine function. One such amplifier circuit consists of a differential pair with a resistance connected between the two emitters, as shown in Fig. 13.32. With appropriate choice of the values of the bias current \(I \) and the resistance \(R \), the differential amplifier can be made to have a transfer characteristic that closely approximates that shown in Fig. 13.30. Observe that for small \(\nu \) the transfer characteristic of the circuit of Fig. 13.32 is almost linear, as a sine waveform is near its zero crossings. At large values of \(\nu \) the nonlinear characteristics of the BJTs reduce the gain of the amplifier and cause the transfer characteristic to bend, approximating the sine wave as it approaches its peak. [More details on this circuit can be found in Grebene (1984), pages 593–597.]
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

FIGURE 13.32 A differential pair with an emitter degeneration resistance used to implement a triangular-wave to sine-wave converter. Operation of the circuit can be graphically described by Fig. 13.30.

The circuit in Fig. 13.22 is required to provide a three-segment approximation to the nonlinear characteristic $i = 0.1 j^2$, where v is the voltage in volts and i is the current in milliamperes. Find the values of R_1, R_2, and R_3 such that the approximation is perfect at $v = 2$ V, 4 V, and 8 V. Calculate the error in current value at $v = 3$ V, 5 V, 7 V, and 10 V. Assume ideal diodes.

Ans. 5 kΩ, 1.25 kΩ, 1.25 kΩ; -0.3 mA, +0.1 mA, -0.3 nA.

A detailed analysis of the circuit in Fig. 13.32 shows that its optimum performance occurs when the values of R_1, R_2, and R_3 are selected so that $R_1 = 2.5 V_0$, where V_0 is the thermal voltage. Find the values of R_1, R_2, and R_3 for the circuit shown in Fig. 13.33(a).

Ans. 4.86 kΩ.

In this section we study circuits that combine diodes and op amps to implement a variety of rectifier circuits with precise characteristics. Precision rectifiers, which can be considered a special class of wave-shaping circuits, find application in the design of instrumentation systems. An introduction to precision rectifiers was presented in Chapter 3. This material, however, is repeated here for the reader's convenience.

13.9.1 Precision Half-Wave Rectifier—The "Superdiode"

Figure 13.33(a) shows a precision half-wave-rectifier circuit consisting of a diode placed in the negative-feedback path of an op amp, with R being the rectifier load resistance. The circuit works as follows: If v_h goes positive, the output voltage v_A of the op amp will go positive and the diode will conduct, thus establishing a closed feedback path between the op amp's output terminal and the negative input terminal. This negative-feedback path will cause a virtual short circuit to appear between the two input terminals of the op amp. Thus the voltage at the negative input terminal, which is also the output voltage v_0, will equal (to within a few millivolts) that at the positive input terminal, which is the input voltage v_h.

$$v_0 = v_h \quad v_h \geq 0$$

Note that the offset voltage ($= 0.5$ V) exhibited in the simple half-wave rectifier circuit is no longer present. For the op-amp circuit to start operation, v_h has to exceed only a negligibly small voltage equal to the diode drop divided by the op amp's open-loop gain. In other words, the straight-line transfer characteristic $v_0 = v_h$ almost passes through the origin. This makes the circuit suitable for applications involving very small signals.

Consider now the case when v_h goes negative. The op amp's output voltage v_A will tend to follow and go negative. This will reverse-bias the diode, and no current will flow through resistance R_2, causing v_0 to remain equal to 0 V. Thus for $v_h < 0$, $v_0 = 0$. Since in this case the diode is off, the op amp will be operating in an open-loop fashion and its output will be at the negative saturation level.

The transfer characteristic of this circuit will be that shown in Fig. 13.33(b), which is almost identical to the ideal characteristic of a half-wave rectifier. The nonideal diode

13.9 PRECISION RECTIFIER CIRCUITS

Rectifier circuits were studied in Chapter 3, where the emphasis was on their application in power-supply design. In such applications the voltages being rectified are usually much greater than the diode voltage drop, rendering the exact value of the diode drop unimportant to the proper operation of the rectifier. Other applications exist, however, where this is not the case. For instance, in instrumentation applications, the signal to be rectified can be of a very small amplitude, say 0.1 V, making it impossible to employ the conventional rectifier circuits. Also, in instrumentation applications the need arises for rectifier circuits with very precise transfer characteristics.

In this section we study circuits that combine diodes and op amps to implement a variety of rectifier circuits with precise characteristics. Precision rectifiers, which can be considered a special class of wave-shaping circuits, find application in the design of instrumentation systems. An introduction to precision rectifiers was presented in Chapter 3. This material, however, is repeated here for the reader's convenience.

FIGURE 13.33 (a) The "superdiode" precision half-wave rectifier and (b) its almost ideal transfer characteristic. Note that when $v_h > 0$ and the diode conducts, the op amp supplies the load current, and the source is conveniently buffered, an added advantage.
characteristics have been almost completely masked by placing the diode in the negative-feedback path of the op amp. This is another dramatic application of negative feedback. The combination of diode and op amp, shown in the dashed box in Fig. 13.33(a), is appropriately referred to as a "superdiode."

As usual, though, not all is well. The circuit of Fig. 13.33 has some disadvantages. When \(v_j \) goes negative and \(v_0 = 0 \), the entire magnitude of \(v_j \) appears between the two input terminals of the op amp. If this magnitude is greater than a few volts, the op amp may be damaged unless it is equipped with what is called "overvoltage protection" to feature that most modern IC op amps have. Another disadvantage is that when \(v_j \) is negative, the op amp will be saturated. Although not harmful to the op amp, saturation should usually be avoided, since getting the op amp out of the saturation region and back into its linear region of operation requires some time. This time delay will obviously slow down circuit operation and limit the frequency of operation of the superdiode half-wave-rectifier circuit.

13.9.2 An Alternative Circuit

An alternative precision rectifier circuit that does not suffer from the disadvantages mentioned above is shown in Fig. 13.34. The circuit operates in the following manner: For positive \(v_j \), diode \(D \) conducts and closes the negative-feedback loop around the op amp. A virtual ground therefore will appear at the inverting input terminal, and the op amp's output will be clamped at one diode drop below ground. This negative voltage will keep diode \(D \) off, and no current will flow in the feedback resistance \(R_j \). It follows that the rectifier output voltage will be zero.

As \(v_j \) goes negative, the voltage at the inverting input terminal will tend to go negative, causing the voltage at the op amp's output terminal to go positive. This will cause \(D \) to be reverse-biased and hence cut off. Diode \(D \), however, will conduct through \(R_j \), thus establishing a negative-feedback loop around the op amp and forcing a virtual ground to appear at the inverting input terminal. The current through the feedback resistance \(R_j \) will be equal to the current through the input resistance \(R_i \). Thus for \(R_i = R_j \) the output voltage \(v_0 \) will be

\[
v_0 = -v_j \quad v_j \leq 0
\]

FIGURE 13.34

(a) An improved version of the precision half-wave rectifier. Diode \(D \) is included to keep the feedback loop closed around the op amp during the off times of the rectifier diode. \(D \) prevents the op amp from saturating. (b) The transfer characteristic for \(R_i = R_j \).

The transfer characteristic of the circuit is shown in Fig. 13.34(b). Note that unlike the situation for the circuit shown in Fig. 13.33, here the slope of the characteristic can be set to any desired value, including unity, by selecting appropriate values for \(R_i \) and \(R_j \).

As mentioned before, the major advantage of the improved half-wave-rectifier circuit is that the feedback loop around the op amp remains closed at all times. Hence the op amp remains in its linear operating region, avoiding the possibility of saturation and the associated time delay required to "get out" of saturation. Diode \(D \) "catches" the op-amp output voltage as it goes negative and clamps it to one diode drop below ground, hence \(D \) is called a "catching diode."

13.9.3 An Application: Measuring AC Voltages

As one of the many possible applications of the precision rectifier circuits discussed in this section, consider the basic ac voltmeter circuit shown in Fig. 13.35. The circuit consists of a half-wave rectifier—formed by op amp \(A_2 \), diodes \(D \) and \(D \), and resistors \(R_1 \) and \(R_2 \)—and a first-order low-pass filter—formed by op amp \(A_2 \), resistors \(R_2 \) and \(R_3 \), and capacitor \(C \). For an input sinusoid having a peak amplitude \(V \), the output \(v \) of the rectifier will consist of a half sine wave having a peak amplitude of \(V/\sqrt{2} \). It can be shown using Fourier series analysis that the waveform of \(v \) has an average value of \(V/\sqrt{2} \), in addition to harmonics of the frequency \(f \) of the input signal. To reduce the amplitudes of all these harmonics to negligible levels, the corner frequency of the low-pass filter should be chosen much smaller than the lowest expected frequency \(f_{\text{max}} \) of the input sine wave. This leads to

\[
1/CR_1 < f_{\text{max}}
\]

Then the output voltage \(v \) will be mostly dc, with a value

\[
v = V(\pi R_2)/(\pi R_2 + R_3)
\]

where \(R_2/R_3 \) is the dc gain of the low-pass filter. Note that this voltmeter essentially measures the average value of the negative parts of the input signal but can be calibrated to provide rms readings for input sinusoids.

FIGURE 13.35

A simple ac voltmeter consisting of a precision half-wave rectifier followed by a first-order low-pass filter.
13.24 Consider the operational amplifier circuit of Fig. 13.3(a), with $R = 1 \text{ kOhm}$. For $v_T = 0.1 \text{ mV}$, what are the voltages that result at the rectifier output and at the output of the op amp? Assume that the op amp is ideal and that its output saturates at $\pm 12 \text{ V}$. The diode has a 0.7-V drop at 1-mA current, and the voltage drop changes by 0.1 V per decade of current change.

Ans. $v_{LM} = 51 \text{ V}$; $v_{OL} = -11 \text{ V}$.

13.25 If the diode in the circuit of Fig. 13.33(a) is reversed, what is the transfer characteristic v_0 as a function of v_I?

Ans. $v_0 = 0$ for $v_I > 0$; $v_0 = v_I$ for $v_I < 0$.

13.26 Consider the circuit in Fig. 13.34(a) with $R_x = 1 \text{ kOhm}$ and $R_2 = 10 \text{ kOhm}$. Find v_0 and the voltage at the amplifier output for $v_I = 4 \text{ V}$, -10 mV, and -1 V. Assume the op amp to be ideal with saturation voltages of $\pm 12 \text{ V}$. The diodes have 0.7-V voltage drops at 1 mA, and the voltage drop changes by 0.1 V per decade of current change.

Ans. $v_0 = 0$, -0.7 V, -1.0 V, 0.6 V, 3.0 V, 10.7 V.

13.27 If the diodes in the circuit of Fig. 13.34(a) are reversed, what is the transfer characteristic v_0 as a function of v_I?

Ans. $v_0 = -(R_2/R_x)v_I$ for $v_I \geq 0$; $v_0 = 0$ for $v_I \leq 0$.

13.28 Find the transfer characteristic for the circuit in Fig. E13.28.

Ans. $v_0 = 0$ for $v_I \geq -5 \text{ V}$; $v_0 = -5$ for $v_I \leq -5 \text{ V}$.

13.8.4 Precision Full-Wave Rectifier

We now derive a circuit for a precision full-wave rectifier. From Chapter 3 we know that full-wave rectification is achieved by inverting the negative halves of the input-signal waveform and applying the resulting signal to another diode rectifier. The outputs of the two rectifiers are then joined to a common load. Such an arrangement is depicted in Fig. 13.36, which also shows the waveforms at various nodes. Now replacing diode D_A with a superdiode, and replacing diode D_B and the inverting amplifier with the inverting precision half-wave rectifier of Fig. 13.34 but without the catching diode, we obtain the precision full-wave-rectifier circuit of Fig. 13.37(a).

To see how the circuit of Fig. 13.37(a) operates, consider first the case of positive input at A. The output of A_x will go positive, turning D_x on, which will conduct through R_L and thus close the feedback loop around A_x. A virtual short circuit will thus be established between the two input terminals of A_x, and the voltage at the negative-input terminal, which is the output voltage of the circuit, will become equal to the input. Thus no current will flow through R_1 and R_2, and the voltage at the inverting input of A_1 will be equal to the input and hence positive. Therefore the output terminal (F) of A_2 will go negative until A_x saturates. This causes D_x to be turned off.

Next consider what happens when A goes negative. The tendency for a negative voltage at the negative input of A, causes F to rise, making D_x conduct to supply R_L and allowing the feedback loop around A_x to be closed. Thus a virtual ground appears at the negative input of A_x, and the two equal resistances R_1 and R_2 force the voltage at C, which is the output voltage, to be equal to the negative of the input voltage at A and thus positive. The combination of positive voltage at C and negative voltage at A causes the output of A_x to saturate in the negative direction, thus keeping D_x off.

The overall result is perfect full-wave rectification, as represented by the transfer characteristic in Fig. 13.37(b). This precision is, of course, a result of placing the diodes in op-amp feedback loops, thus masking their nonidealities. This circuit is one of many possible precision full-wave-rectifier or absolute-value circuits. Another related implementation of this function is examined in Exercise 13.30.
The block diagram shown in Fig. E13.30(a) gives another possible arrangement for implementing the absolute-value operation depicted symbolically in Fig. E13.30(b). The block diagram consists of two boxes: a half-wave rectifier, which can be implemented by the circuit in Fig. 13.34(a), after reversing both diodes, and a weighted inverting summer. Convince yourself that this block diagram does in fact realize the absolute-value operation. Then draw a complete circuit diagram, giving reasonable values for all components.

FIGURE E13.30

13.9.5 A Precision Bridge Rectifier for Instrumentation Applications

The bridge rectifier circuit studied in Chapter 3 can be combined with an op amp to provide useful precision circuits. One such arrangement is shown in Fig. 13.38. This circuit causes a current equal to \(I_{m} = \frac{V_{m}}{R} \) to flow through the moving-coil meter \(M \). Thus the meter provides a reading that is proportional to the average of the absolute value of the input voltage \(V_{m} \). All the nonidealities of the meter and of the diodes are masked by placing the bridge circuit in the negative-feedback loop of the op amp. Observe that when \(V_{m} \) is positive, current flows from the op-amp output through \(D_{1}, M, D_{2} \), and \(R \). When \(V_{m} \) is negative, current flows into the op-amp output through \(R, D_{3}, M, \) and \(D_{4} \). Thus the feedback loop remains closed for both polarities of \(V_{m} \). The resulting virtual short circuit at the input terminals of the op amp causes a replica of \(V_{m} \) to appear across \(R \). The circuit of Fig. 13.38 provides a relatively accurate high-input-impedance ac voltmeter using an inexpensive moving-coil meter.

EXERCISE

E13.31 In the circuit of Fig. 13.38, find the value of \(R \) that would cause the meter to provide a full-scale reading when the input voltage is a sine wave of 5 V rms. Let meter \(M \) have a 1-mA, 50-Q movement (i.e., its resistance is 50 Q) and it provides full-scale deflection when the average current through it is 1 mA. What are the approximate maximum and minimum voltages at the op amp's output? Assume that the diodes have constant 0.7-V drops when conducting.

Ans. 4.5 k\(\Omega \); 55 V; -55 V.

13.9.6 Precision Peak Rectifiers

Including the diode of the peak rectifier studied in Chapter 3 inside the negative-feedback loop of an op amp, as shown in Fig. 13.39, results in a precision peak rectifier. The diode-op-amp combination will be recognized as the superdiode of Fig. 13.33(a). Operation of the circuit in Fig. 13.39 is quite straightforward. For \(V_{m} \) greater than the output voltage, the op amp will drive the diode on, thus closing the negative-feedback path and causing the op amp to act as a follower. The output voltage will therefore follow that of the input, with the op amp supplying the capacity-charging current. This process continues until the input reaches its peak value. Beyond the positive peak, the op amp will see a negative voltage between its input terminals. Thus its output will go negative to the saturation level and the diode will turn off. Except for possible discharge through the load resistance, the capacitor will remain at a voltage equal to the positive peak of the input. Inclusion of a load resistance is essential if the circuit is required to detect reductions in the magnitude of the positive peak.

13.9.7 A Buffered Precision Peak Detector

When the peak detector is required to hold the value of the peak for a long time, the capacitor should be buffered, as shown in the circuit of Fig. 13.40. Here op amp \(A_{2} \), which should have high input impedance and low input bias current, is connected as a voltage follower. The remainder of the circuit is quite similar to the half-wave-rectifier circuit of Fig. 13.34.

FIGURE 13.38 Use of the diode bridge in the design of an ac voltmeter.

FIGURE 13.39 A precision peak rectifier obtained by placing the diode in the feedback loop of an op amp.
CHAPTER 13 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

FIGURE 13.40 A buffered precision peak rectifier.

While diode D₁ is the essential diode for the peak-rectification operation, diode D₂ acts as a catching diode to prevent negative saturation, and the associated delays, of op amp A₁. During the holding state, follower A₂ supplies D₂ with a small current through R. The output of op amp A₁ will then be clamped at one diode drop below the input voltage. Now if the input v₁ increases above the value stored on C, which is equal to the output voltage v₀, op amp A₁ sees a net positive input that drives its output toward the positive saturation level, turning off diode D₂. Diode D₁ is then turned on and capacitor C is charged to the new positive peak of the input, after which time the circuit returns to the holding state. Finally, note that this circuit has a low-impedance output.

13.9.8 A Precision Clamping Circuit

By replacing the diode in the clamping circuit studied in Chapter 3 with a “superdiode,” the precision clamp of Fig. 13.41 is obtained. Operation of this circuit should be self-explanatory.

13.10 SPICE SIMULATION EXAMPLES

The circuits studied in this chapter make use of the nonlinear operation of devices to perform a variety of tasks, such as the stabilization of the amplitude of a sine-wave oscillator and the shaping of a triangular waveform into a sinusoid. Although we have been able to devise simplified methods for the analysis and design of these circuits, a complete pencil-and-paper analysis is nearly impossible. The designer must therefore rely on computer simulation to obtain greater insight into detailed circuit operation, to experiment with different component values, and to optimize the design. In this section, we present two examples that illustrate the use of SPICE in the simulation of oscillator circuits.

EXAMPLE 13.1

WIEN-BRIDGE OSCILLATOR

For our first example, we shall simulate the operation of the Wien-bridge oscillator whose Capture schematic is shown in Fig. 13.42. The component values are selected to yield oscillations at 1 kHz. We would like to investigate the operation of the circuit for different settings of R₁a and R₁b, with R₁a = 10 kΩ and R₁b = 50 kΩ. Since oscillation just starts when (R₁a + R₁b)/R₁a = 2 (see Exercise 13.4), that is, when R₁a ≥ 20 kΩ and R₁b ≥ 30 kΩ, we consider three possible settings: (a) R₁a = 15 kΩ, R₁b = 35 kΩ; (b) R₁a = 18 kΩ, R₁b = 32 kΩ; and (c) R₁a = 25 kΩ, R₁b = 25 kΩ. These settings correspond to loop gains of 1.33, 1.1, and 0.8, respectively.

In PSpice, a 741-type op amp and 1N4148-type diodes are used to simulate the circuit in Fig. 13.42. A transient-analysis simulation is performed with the capacitor voltages initially set to zero. This demonstrates that the op-amp offset voltage is sufficient to cause the oscillations to start without the need for special start-up circuitry. Figure 13.43 shows the simulation results.

PARAMETERS:
C₁ = 16 nF
C₂ = 16 nF
R₁a = 18 kΩ
R₁b = (50 kΩ - (R₁a))
R₂ = 10 kΩ
R₃ = 10 kΩ
R₄ = 10 kΩ
VCC = 15 V
VEE = -15 V

In PSpice, a 741-type op amp and 1N4148-type diodes are used to simulate the circuit in Fig. 13.42. A transient-analysis simulation is performed with the capacitor voltages initially set to zero. This demonstrates that the op-amp offset voltage is sufficient to cause the oscillations to start without the need for special start-up circuitry. Figure 13.43 shows the simulation results.

13.10 SPICE SIMULATION EXAMPLES

Wien-Bridge Oscillator

For our first example, we shall simulate the operation of the Wien-bridge oscillator whose Capture schematic is shown in Fig. 13.42. The component values are selected to yield oscillations at 1 kHz. We would like to investigate the operation of the circuit for different settings of R₁a and R₁b, with R₁a = 10 kΩ and R₁b = 50 kΩ. Since oscillation just starts when (R₁a + R₁b)/R₁a = 2 (see Exercise 13.4), that is, when R₁a ≥ 20 kΩ and R₁b ≥ 30 kΩ, we consider three possible settings: (a) R₁a = 15 kΩ, R₁b = 35 kΩ; (b) R₁a = 18 kΩ, R₁b = 32 kΩ; and (c) R₁a = 25 kΩ, R₁b = 25 kΩ. These settings correspond to loop gains of 1.33, 1.1, and 0.8, respectively.

In PSpice, a 741-type op amp and 1N4148-type diodes are used to simulate the circuit in Fig. 13.42. A transient-analysis simulation is performed with the capacitor voltages initially set to zero. This demonstrates that the op-amp offset voltage is sufficient to cause the oscillations to start without the need for special start-up circuitry. Figure 13.43 shows the simulation results.

PARAMETERS:
C₁ = 16 nF
C₂ = 16 nF
R₁a = 18 kΩ
R₁b = (50 kΩ - (R₁a))
R₂ = 10 kΩ
R₃ = 10 kΩ
R₄ = 10 kΩ
VCC = 15 V
VEE = -15 V

The SPICE models for the 741 op amp and the 1N4148 diode are available in PSpice. The 741 op amp was characterized in Example 2.9. The 1N4148 diode was used in Example 3.10.
The graph in Fig. 13.43(a) shows the output waveform obtained for a loop gain of 1.33. Observe that although the oscillations grow and stabilize rapidly, the distortion is considerable. The output obtained for a loop gain of 1.1, shown in Fig. 13.43(b), is much less distorted. However, as expected, as the loop gain is reduced toward unity, it takes longer for the oscillations to build up and for the amplitude to stabilize. For this case, the frequency is 986.6 Hz, which is reasonably close to the design value of 1 kHz, and the amplitude is 7.37 V. Finally, for a loop gain of 0.8, the output shown in Fig. 13.43(c) confirms our expectation that sustained oscillations cannot be obtained when the loop gain is less than unity.

PSpice can be used to investigate the spectral purity of the output sine wave. This is achieved using the Fourier analysis facility. It is found that in the steady state the output for the case of a loop gain of 1.1 has a THD figure of 1.88%. When the oscillator output is taken at the op-amp output (voltage V_{OUT}), a THD of 2.57% is obtained, which as expected is higher than that for the voltage V_{OUT} but not by very much. The output terminal of the op amp is of course a much more convenient place to take the output.

ACTIVE-FILTER-TUNED OSCILLATOR

In this example, we use PSpice to verify our contention that a superior op amp-oscillator can be realized using the active-filter-tuned circuit of Fig. 13.11. We also investigate the effect of changing the value of the filter Q factor on the spectral purity of the output sine wave.

Consider the circuit whose Capture schematic is shown in Fig. 13.44. For this circuit, the center frequency is 1 kHz, and the filter Q is 5 when $R = 50 \, k\Omega$ and 20 when $R = 200 \, k\Omega$. As in the case of the Wien-bridge circuit in Example 13.1, 741-type op amps and 1N4148-type diodes are utilized. In PSpice a transient-analysis simulation is performed with the capacitor voltages initially set to zero. To be able to compute the Fourier components of the output, the analysis interval chosen may be long enough to allow the oscillator to reach a steady state. The time to reach a steady state is in turn determined by the value of the filter Q; the higher the Q, the longer it takes the output to settle. For $Q = 5$, it was determined, through a combination of approximate calculations and experimentation using PSpice, that 50 ms is a reasonable estimate for the analysis interval. For plotting purposes, we use 200 points per period of oscillation.

The results of the transient analysis are plotted in Fig. 13.45. The upper graph shows the sinusoidal waveform at the output of op amp A_1 (voltage V_{OUT}). The lower graph shows the waveform across the diode limiter (voltage V_2). The frequency of oscillation is found to be very close to the design value of 1 kHz. The amplitude of the sine wave is determined using Probe (the graphical interface of PSpice) to be 1.15 V (or 2.3 V p-p). Note that this is lower than the 3.6 V estimated in Exercise 13.7. The latter value, however, was based on an estimate of 0.7-V drop across each conducting diode in the limiter. The lower waveform in Fig. 13.45 indicates that the diode drop is closer to 0.5 V, for a 1-V peak-to-peak amplitude of the pseudo-square wave. We should therefore expect the peak-to-peak amplitude of the output sinusoid to be lower than 3.6 V by the same factor, and indeed it is approximately the case.

In PSpice, the Fourier analysis of the output sine wave indicates that THD = 1.61%. Repeating the simulation with Q increased to 20 (by increasing R to 200 kΩ), we find that the value of THD is reduced to 1.01%. Thus, our expectations that the value of the filter Q can be used as an effective means for controlling the THD of the output waveform are confirmed.
FIGURE 13.45: Output waveforms of the active-filter-tuned oscillator shown in Fig. 13.44 for \(q = 5 \) (\(R_0 = 50 \, \text{k} \Omega \)).

SUMMARY

There are two distinctly different types of signal generators: linear oscillators, which utilize some form of resonance, and nonlinear oscillators or function generators, which employ a switching mechanism implemented with a multivibrator circuit.

A linear oscillator can be realized by placing a frequency-selective network in the feedback path of an amplifier (an op amp or a transistor). The circuit will oscillate at the frequency at which the total phase shift around the loop is zero, provided that the magnitude of loop gain at this frequency is equal to, or greater than, unity.

If in an oscillator the magnitude of loop gain is greater than unity, the amplitude will increase until a nonlinear amplitude-control mechanism is activated.

The Wien-bridge oscillator, the phase-shift oscillator, the quadrature oscillator, and the active-filter-tuned oscillator are popular configurations for frequencies up to about 1 MHz. These circuits employ RC networks together with op-amps or transistors. For higher frequencies, LC-tuned or crystal-tuned oscillators are utilized. A popular configuration is the Colpitts circuit.

Crystal oscillators provide the highest possible frequency accuracy and stability.

There are three types of multivibrator: bistable, monostable, and astable. Op-amp circuit implementations of multivibrators are useful in analog-circuit applications that require high precision. Implementations using digital logic gates are studied in Chapter 11.

The bistable multivibrator has two stable states and can remain in either state indefinitely. It changes state when triggered. A comparator with hysteresis is bistable.

A monostable multivibrator, also known as a one-shot multivibrator, has one stable state, in which it can remain indefinitely. When triggered, it goes into a quasistable state in which it remains for a predetermined interval, thus generating, at its output, a pulse of known width.

An astable multivibrator has no stable state. It oscillates between two quasi-stable states, remaining in each for a predetermined interval. It thus generates a periodic waveform at the output.
A feedback loop consisting of an integrator and a bipolar multivibrator can be used to generate triangular and square waveforms.

The 555 timer, a commercially available IC, can be used with external resistors and a capacitor to implement high-quality monostable and astable multivibrators.

A sine waveform can be generated by feeding a triangular waveform to a sine-wave shaper. A sine-wave shaper can be implemented either by using diodes (or transistors) and resistors, or by using an amplifier having a nonlinear transfer characteristic that approximates the sine function.

Diodes can be combined with op amps to implement precision rectifier circuits in which negative feedback serves to mask the nonidealities of the diode characteristics.

PROBLEMS

SECTION 13.1: BASIC PRINCIPLES OF SINUSOIDAL OSCILLATORS

13.3 Consider a sinusoidal oscillator consisting of an amplifier having a frequency-independent gain A (where A is positive) and a second-order bandpass filter with a pole frequency ω_0, a pole Q (denoted Q_0), and a center-frequency gain A. What are the conditions that A and Q must satisfy for sustained oscillation?

13.4 An oscillator is formed by loading a transconductance amplifier having a frequency-independent gain A (where A is positive) and a second-order bandpass filter with a pole frequency ω_0, a pole Q (denoted Q_0), and a center-frequency gain A. What are the conditions that A and Q must satisfy for sustained oscillation?

13.5 In a particular oscillator characterized by the structure of Fig. 13.1, the frequency-selective network exhibits a loss of 20 dB and a phase shift of 180° at ω_0. What is the minimum gain and the phase shift that the amplifier must have, for oscillation to begin?

13.6 Consider the circuit of Fig. 13.3(a) with R removed to realize the comparator function. Find suitable values for all resistors so that the comparator output levels are $\pm 6 \, V$ and the slope of the limiting characteristic is 0.1. Use power supply voltages of $\pm 15 \, V$ and assume the voltage drop of a conducting diode to be $0.7 \, V$.

13.7 Consider the circuit of Fig. 13.3(a) with R, removed to realize the comparator function. Sketch the transfer characteristics. Show that by connecting a dc source V_D in the virtual ground of the op amp through a resistor R_2, the transfer characteristic is shifted along the ω axis in the point ω_0 by V_D. Enabling available $\pm 15 \, V$ dc supplies for V_D and for V_C, find suitable component values so that the limiting levels are $\pm 5 \, V$ and the comparator threshold is at $\pm 4.5 \, V$. Neglect the diode voltage drop. Assume that $V_D = 0$. The input resistance of the comparator is to be $100 \, k\Omega$, and the slope in the limiting regions is to be $0.05 \, V/V$. Use standard $5 \, k\Omega$ resistors (see Appendix G).

13.8 Denoting the zero voltages of Z_1 and Z_2 by V_1 and V_2 and assuming that in the forward direction the voltage drop is approximately $0.7 \, V$, sketch and clearly label the transfer characteristic of the circuits in Fig. 13.8. Assume the op amps to be ideal.

13.9 For the Wien-bridge oscillator circuit in Fig. 13.4, show that the transfer function of the feedback network

$H(s) = \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1 + x^2}$

13.10 For the Wien-bridge oscillator of Fig. 13.4, let the closed-loop gain (determined by the op amp and the resistors R_1 and R_2) exhibit a phase shift of $-90°$ at the neighborhood of $\omega = 1/CR$. Find the frequency at which oscillation can occur in this case, in terms of CR (? Hint: Use Eq. 13.11.)

13.11 For the Wien-bridge oscillator of Fig. 13.4, use the expression for loop gain in Eq. (13.10) to find the poles of the closed-loop system. Give the expression for the pole Q_0 and use it in the equation to show that the poles lie in the right half of the s plane. R_1/ω must be selected to be greater than 2.

13.12 Consider the circuit of Fig. 13.3 with R_1 and R_2 increased to reduce the output voltage. What values are required for a peak-to-peak output of $10 \, V$? What results if R_1 and R_2 are open-circuited?

13.13 For the circuit in Fig. P13.12, find L, L/C, and the frequency for zero loop phase, and R_2/ω for oscillation.

13.14 Repeat Problem 13.13 for the circuit in Fig. P13.14.

13.15 Consider the circuit of Fig. 13.6 with the $50 \, k\Omega$ potentiometer replaced by two fixed resistors: $10 \, k\Omega$ between the op amp's negative input and ground, and $18 \, k\Omega$. Modeling each diode as a $0.65 \, V$ battery in series with a $100 \, \Omega$ resistance, find the peak-to-peak amplitude of the output sinusoid.

13.16 Redesign the circuit of Fig. 13.6 for operation at $10 \, kHz$ using the same values of resistance. If $R = 10 \, k\Omega$, the op amp provides an excess phase shift (lag) of $5.7°$, what will be the frequency of oscillation? (Assume that the phase shift introduced by the op amp remains constant for frequencies around $10 \, kHz$.) To restore operation to $10 \, kHz$, what change must be made to the shunt resistor of the Wien bridge? Also, to what value must R_1/R_2 be changed?

13.17 For the circuit of Fig. 13.8, connect an additional $R = 10 \, k\Omega$ resistor in series with the rightmost capacitor C. For this modification (and ignoring the amplitude stabilization circuitry) find the loop gain A_l by breaking the circuit at node X. Find R_2 for oscillation to begin, and find f_o.
D13.18 For the circuit in Fig. P13.18, break the loop at node X and find the loop gain (working backward for simplicity to find V_x in terms of V_0). For $R = 10 \, \text{k}\Omega$, find C and R_f to obtain sinusoidal oscillations at 10 kHz.

*13.19 Consider the quadrature-oscillator circuit of Fig. 13.9 without the limiter. Let the resistance R_f be equal to $2R/(1 + A)$, where $A > 1$. Show that the poles of the characteristic equation are in the right-half s-plane and given by $s = (1/C)/(4A) \pm j/2$.

*13.20 Assuming that the diode-clipped waveform in Exercise 13.7 is nearly an ideal square wave and that the resonator Q is 20, provide an estimate of the distortion in the output sine wave by calculating the magnitude (relative to the fundamental) of
(a) the second harmonic
(b) the third harmonic
(c) the fifth harmonic
(d) the rms of harmonics to the tenth

SECTION 13.3: LC AND CRYSTAL OSCILLATORS

**13.21 Figure P13.21 shows four oscillator circuits of the Colpitts type, complete with bias detail. For each circuit, derive an equation governing circuit operation, and find the frequency of oscillation and the gain condition that ensures that oscillations start.

**13.22 Consider the oscillator circuit in Fig. P13.22, and assume for simplicity that $\beta = \infty$.
(a) Find the frequency of oscillation and the minimum value of R_c (in terms of the bias current I) for oscillation to start.

(b) If R_c is selected equal to $1/\beta \, \text{k}\Omega$, where I is in milliamperes, convince yourself that oscillations will start. If oscillations grow to the point that V_a is large enough to turn the BJTs on and off, show that the voltage at the collector of Q_2 will be a square wave of 1 V peak to peak. Estimate the peak-to-peak amplitude of the output sine wave V_0.

13.23 Consider the Pierce crystal oscillator of Fig. 13.16 with the crystal as specified in Exercise 13.10. Let C_1 be variable in the range 1 pF to 10 pF, and let C_2 be fixed at 10 pF. Find the range over which the oscillation frequency can be tuned. (Hint: Use the result in the statement leading to the expression in Eq. 13.27.)

SECTION 13.4: BISTABLE MULTIVIBRATORS

13.24 Consider the bistable circuit of Fig. 13.19(a) with the op amp's positive-input terminal connected to a positive-voltage source V through a resistor R_c.
(a) Derive expressions for the threshold voltages V_{TH} and V_{TR} in terms of the op amp's saturation levels L_+ and L_-, R_c, R_1, and V.
(b) Let $L_+ = L_- = 13 \, \text{V}$, $V = 15 \, \text{V}$, and $R_1 = 10 \, \text{k}\Omega$. Find the values of R_c and R_1 that result in $V_{TH} = 4.9 \, \text{V}$ and $V_{TR} = 5.1 \, \text{V}$.

13.25 Consider the bistable circuit of Fig. 13.20(a) with the op amp's negative-input terminal disconnected from ground and connected to a reference voltage V_R.
(a) Derive expressions for the threshold voltages V_{TH} and V_{TR} in terms of the op amp's saturation levels L_+ and L_-, R_c, R_1, and V_R.
(b) Let $L_+ = L_- = V$ and $R_1 = 10 \, \text{k}\Omega$. Find R_c and V_R that result in threshold voltages of 0 and 9 V.

FIGURE P13.21
![Diagram of oscillator circuit](image)

FIGURE P13.22
![Diagram of bistable multivibrator](image)
13.26 For the circuit in Fig. P13.26, sketch and label the transfer characteristics v_0 vs. V_1. The diodes are assumed to have a constant 0.7-V drop when conducting. The output of the op amp is ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.27 Consider the circuit of Fig. P13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.28 Consider a bistable circuit having a noninverting transfer characteristic v_0 vs. V_1. Assume that a 0.7-V drop is present when conducting, and that the op amp saturates at ±12 V.

FIGURE P13.26

13.29 For the circuit in Fig. P13.26, sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.30 Find the frequency of oscillation of the circuit in Fig. 13.24(b) for the case $R_1 = 10$ kΩ, $R_2 = 16$ kΩ, $C = 10$ nF, and $R = 62$ kΩ.

D13.31 Consider the circuit of Fig. 13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V.

FIGURE P13.26

13.32 Find the frequency of oscillation of the circuit in Fig. 13.24(b) for the case $R_1 = 10$ kΩ, $R_2 = 16$ kΩ, $C = 10$ nF, and $R = 62$ kΩ.

D13.31 Consider the circuit of Fig. 13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V.

FIGURE P13.26

13.32 Design the circuit of Fig. 13.25, design a circuit that provides square waves of 10 mV peak to peak and triangular waves of 10 mV peak to peak. The frequency is to be 1 kHz. Implement the bistable circuit with the circuit of Fig. 13.25(b). Use a 0.01-μF capacitor, and design for a current in the resistive divider approximately equal to the average current in the RC network over a half cycle. Assume 0.1-V op-amp saturation voltages, arrange for the zener to operate at a current of 1 mM.

D13.33 Consider the circuit of Fig. 13.23(a) to realize a transfer characteristic v_0 vs. V_1 with an output limiter of the type shown in Fig. 13.24(b). Assume that the op amp saturates at 0.7-V drop when conducting and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.34 Consider the circuit of Fig. 13.25, design a circuit that provides square waves of 10 mV peak to peak and triangular waves of 10 mV peak to peak. The frequency is to be 1 kHz. Implement the bistable circuit with the circuit of Fig. 13.25(b). Use a 0.01-μF capacitor, and design for a current in the resistive divider approximately equal to the average current in the RC network over a half cycle. Assume 0.1-V op-amp saturation voltages, arrange for the zener to operate at a current of 1 mM.

D13.33 Consider the circuit of Fig. 13.23(a) to realize a transfer characteristic v_0 vs. V_1 with an output limiter of the type shown in Fig. 13.24(b). Assume that the op amp saturates at 0.7-V drop when conducting and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.35 Derive the expressions for V_{TH} and V_{TH} for the circuit of Fig. 13.34. Specify the required values of all resistors and the required zener voltage. Design for a minimum zener current of 0.1 mA and a maximum zener current of 1 mA.

D13.35 Design so that when $v_0 = 0$ V a current of 1 mA flows in the feedback resistor and a current of 1 mA flows through the threshold diodes. Assume that the output saturation levels of the zener diodes and give the values of all resistors.

FIGURE P13.26

13.36 Find the frequency of oscillation of the circuit in Fig. 13.24(b) for the case $R_1 = 10$ kΩ, $R_2 = 16$ kΩ, $C = 10$ nF, and $R = 62$ kΩ.

D13.31 Consider the circuit of Fig. 13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.32 Design the circuit of Fig. 13.25, design a circuit that provides square waves of 10 mV peak to peak and triangular waves of 10 mV peak to peak. The frequency is to be 1 kHz. Implement the bistable circuit with the circuit of Fig. 13.25(b). Use a 0.01-μF capacitor, and design for a current in the resistive divider approximately equal to the average current in the RC network over a half cycle. Assume 0.1-V op-amp saturation voltages, arrange for the zener to operate at a current of 1 mM.

D13.33 Consider the circuit of Fig. 13.23(a) to realize a transfer characteristic v_0 vs. V_1 with an output limiter of the type shown in Fig. 13.24(b). Assume that the op amp saturates at 0.7-V drop when conducting and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.34 Consider the circuit of Fig. 13.25, design a circuit that provides square waves of 10 mV peak to peak and triangular waves of 10 mV peak to peak. The frequency is to be 1 kHz. Implement the bistable circuit with the circuit of Fig. 13.25(b). Use a 0.01-μF capacitor, and design for a current in the resistive divider approximately equal to the average current in the RC network over a half cycle. Assume 0.1-V op-amp saturation voltages, arrange for the zener to operate at a current of 1 mM. Design for a minimum zener current of 0.1 mA and a maximum zener current of 1 mA.

D13.35 Consider the circuit of Fig. 13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.35 Derive the expressions for V_{TH} and V_{TH} for the circuit of Fig. 13.34. Specify the required values of all resistors and the required zener voltage. Design for a minimum zener current of 0.1 mA and a maximum zener current of 1 mA.

D13.35 Design so that when $v_0 = 0$ V a current of 1 mA flows in the feedback resistor and a current of 1 mA flows through the threshold diodes. Assume that the output saturation levels of the zener diodes and give the values of all resistors.

FIGURE P13.26

13.36 Find the frequency of oscillation of the circuit in Fig. 13.24(b) for the case $R_1 = 10$ kΩ, $R_2 = 16$ kΩ, $C = 10$ nF, and $R = 62$ kΩ.

D13.31 Consider the circuit of Fig. 13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V. Specify the voltages of all resistors.

FIGURE P13.26

13.32 Design the circuit of Fig. 13.25, design a circuit that provides square waves of 10 mV peak to peak and triangular waves of 10 mV peak to peak. The frequency is to be 1 kHz. Implement the bistable circuit with the circuit of Fig. 13.25(b). Use a 0.01-μF capacitor, and design for a current in the resistive divider approximately equal to the average current in the RC network over a half cycle. Assume 0.1-V op-amp saturation voltages, arrange for the zener to operate at a current of 1 mM. Design for a minimum zener current of 0.1 mA and a maximum zener current of 1 mA.

D13.35 Consider the circuit of Fig. 13.26 with R_1 eliminated and R_2 short-circuited. Sketch and label the transfer characteristic v_0 vs. V_1. Assume that the diodes have a constant 0.7-V drop when conducting, and that the op amp saturates at ±12 V. Specify the voltages of all resistors.
values obtained to determine the values of the exact sine wave (i.e., \(0.7 \sin \theta\)), and thus find the percentage error of this circuit as a sine shaper. Provide your results in tabular form.

D13.42 Design a two-segment sine-wave shaper using a 10-kΩ input resistor, two diodes, and two clamping voltages. The circuit, fed by a 10-V peak-to-peak triangular wave, should limit the amplitude of the output signal via a 0.7-V drop at 1-mA current and that of a sine wave whose zero-crossing slope matches that of the triangle. What are the clamping voltages you have chosen?

D13.43 Show that the output voltage of the circuit in Fig. P13.43 is given by

\[V_o = -n V_T \ln \left(\frac{I}{I_R} \right) \quad n > 0 \]

where \(I\) and \(n\) are the diode parameters and \(V_T\) is the thermal voltage. Since the output voltage is proportional to the logarithm of the input voltage, the circuit is known as a logarithmic amplifier. Such amplifiers find application in situations where it is desired to compress the signal range.

13.44 Verify that the circuit in Fig. P13.44 implements the transfer characteristic \(V_o = \frac{1}{m} V_i\) for \(V_i > 0\). Such a circuit is known as an analog multiplier. Check the circuit's performance for various combinations of input voltage of values, say, 0.5 V, 1 V, 2 V, and 3 V. Assume all diodes to be identical, with 700-mV drop at 1-mA current and \(n = 2\). Note that a squarer can easily be produced using a single input (e.g., \(V_i\) connected via a 0.5-kΩ resistor (rather than the 1-kΩ resistor shown).

D13.45 Detailed analysis of the circuit in Fig. 13.32 shows that optimum performance (as a sine shaper) occurs when the values of \(R_2\) and \(R_1\) are selected so that \(2R_1 = 2.5V_T\), where \(V_T\) is the thermal voltage, and the peak amplitude of the input triangular wave is \(0.6V_T\). If the output is taken across \(R_1\) (i.e., between the two emitters), find \(V_o\) corresponding to \(V_i = 0.25V_T, 0.5V_T, V_T, 1.5V_T, 2V_T, 2.4V_T,\) and 2.42\(V_T\). Plot \(V_o\) vs. \(V_i\) and compare to the ideal curve given by

\[V_o = 2.42 V_T \sin \left(\frac{V_i}{0.6V_T} \times 90^\circ \right) \]

SECTION 13.9: PRECISION RECTIFIER CIRCUITS

D13.46 Two superdiode circuits connected to a common-load resistor and having the same input signal have their diodes reversed, one with anode to the load, the other with cathode to the load. For a sine-wave input of 10 V peak to peak, what is the output waveform? Note that each half-cycle of the load current is provided by a separate amplifier, and that while one amplifier supplies the load current, the other amplifier idles. This idea, called class-B operation (see Chapter 14), is important in the implementation of power amplifiers.

D13.47 The superdiode circuit of Fig. 13.33(a) can be made to have gain by connecting a resistor \(R_i\) in place of the short circuit between the cathode of the diode and the negative-input terminal of the op amp, and a resistor \(R_o\) between the negative-input terminal and ground. Design the circuit for a gain of 2. For a 10-V peak-to-peak input sine wave, what is the average output voltage resulting?

D13.48 Provide a design of the inverting precision rectifier shown in Fig. 13.34(a) in which the gain is -2 for negative inputs and zero otherwise, and the input resistance is 100 kΩ. What values of \(R_i\) and \(R_o\) do you choose?

D13.49 Provide a design for a voltmeter circuit similar to the one in Fig. 13.35, which is intended to function at frequencies of 10 Hz and above. It should be calibrated for sine-wave input signals to provide an output of +10 V for an input of 1 V rms. The input resistance should be as high as possible. To extend the bandwidth of operation, keep the gain in the ac part of the circuit reasonably small. As well, the design should result in reduction of the size of the capacitor \(C\) required. The largest value of resistor available is 1 MΩ.

D13.50 Plot the transfer characteristics of the circuit in Fig. P13.50.
A circuit related to that in Fig. 13.38 is to be used to provide a current proportional to \(v_A \) (\(v_A > 0 \)) to a light-emitting diode (LED). The value of the current is to be independent of the diode's nonlinearities and variability. Indicate how this may be done easily.

In the precision rectifier of Fig. 13.38, the resistor \(R \) is replaced by a capacitor \(C \). What happens? For equivalent performance with a sine-wave input of 60-Hz frequency with \(R = 1 \) k\(\Omega \), what value of \(C \) should be used? What is the response of the modified circuit at 120 Hz? At 180 Hz? If the amplitude of \(v_A \) is kept fixed, what new function does this circuit perform? Now consider the effect of a waveform change on both circuits (the one with \(R \) and the one with \(C \)). For a triangular-wave input of 60-Hz frequency that produces an average meter current of 1 mA in the circuit with \(R \), what does the average meter current become when \(R \) is replaced with the \(C \) whose value was just calculated?

Consider the buffered precision peak rectifier shown in Fig. 13.40 when connected to a triangular input of 1-V peak-to-peak amplitude and 1000-Hz frequency. It utilizes an op amp whose bias current (directed into \(A_2 \)) is 10 nA and diodes whose reverse leakage current is 1 nA. What is the smallest capacitor that can be used to guarantee an output ripple less than 1%?

The most challenging requirement in the design of the output stage is that it deliver the required amount of power to the load in an efficient manner. This implies that the power dissipated in the output-stage transistors must be as low as possible. This requirement stems mainly from the fact that the power dissipated in a transistor raises its internal junction temperature, and there is a maximum temperature (in the range of 150°C to 200°C for silicon
Output stages are classified according to the collector current waveform that results when an input signal is applied. Figure 14.1 illustrates the classification for the case of a sinusoidal input signal. The class A stage, whose associated waveform is shown in Fig. 14.1(a), is biased at a current I_c greater than the amplitude of the signal current, I_s. Thus the transistor in a class A stage conducts for the entire cycle of the input signal; that is, the conduction angle is 360°. In contrast, the class B stage, whose associated waveform is shown in Fig. 14.1(b), is biased at zero dc current. Thus a transistor in a class B stage conducts for only half the cycle of the input sine wave, resulting in a conduction angle of 180°. As will be seen later, the negative halves of the sinusoid will be supplied by another transistor that also operates in the class B mode and conducts during the alternate half-cycles.

An intermediate class between A and B, appropriately named class AB, involves biasing the transistor at a nonzero dc current much smaller than the peak current of the sine-wave signal. As a result, the transistor conducts for an interval slightly greater than half a cycle, as illustrated in Fig. 14.1(c). The resulting conduction angle is greater than 180° but much less than 360°. The class AB stage has another transistor that conducts for an interval slightly greater than that of the negative half-cycle, and the currents from the two transistors are combined in the load. It follows that, during the intervals near the zero crossings of the input sinusoid, both transistors conduct.

Figure 14.1(d) shows the collector-current waveform for a transistor operated as a class C amplifier. Observe that the transistor conducts for an interval shorter than that of a half-cycle; that is, the conduction angle is less than 180°. The result is the periodically pulsating current waveform shown. To obtain a sinusoidal output voltage, this current is passed through a parallel LC circuit, tuned to the frequency of the input sinusoid. The tuned circuit acts as a bandpass filter and provides an output voltage proportional to the amplitude of the fundamental component in the Fourier-series representation of the current waveform.

Class A, AB, and B amplifiers are studied in this chapter. They are employed as output stages of op amps and audio power amplifiers. In the latter application, class AB is the preferred choice, for reasons that will be explained in the following sections. Class C amplifiers are usually employed for radio-frequency (RF) power amplification (required, e.g., in mobile phones and radio and TV transmitters). The design of class C amplifiers is a rather specialized topic and is not included in this book.

Although the BJT has been used to illustrate the definition of the various output-stage classes, the same classification applies to output stages implemented with MOSFETs. Furthermore, the classification above extends to amplifier stages other than those used at the output. In this regard, all the common-emitter, common-base, and common-collector amplifiers (and their FET counterparts) studied in earlier chapters fall into the class A category.

14.2 CLASS A OUTPUT STAGE

Because of its low output resistance, the emitter follower is the most popular class A output stage. We have already studied the emitter follower in Chapters 5 and 6; in the following we consider its large-signal operation.

14.2.1 Transfer Characteristic

Figure 14.2 shows an emitter follower Q_1 biased with a constant current I_s supplied by transistor Q_2. Since the emitter current $I_{E1} = I_s + I_T$, the bias current I_s must be greater than the...
largest negative load current; otherwise, \(Q \) cuts off and class A operation will no longer be maintained.

The linear transfer curve shown in Fig. 14.3 results. As indicated, the positive limit of the linear region is determined by the saturation of \(BE_1 \); thus

\[
\text{v}_{\text{CE}} = \text{V}_{\text{CE} \text{sat}} \quad (14.2)
\]

where \(\text{v}_{\text{CE}} \) depends on the emitter current \(i_e \) and thus on the load current \(i_L \). If we neglect fluctuations of \(i_L \) and thus on the load current \(i_L \), the operation will no longer be maintained. The transfer characteristic of the emitter follower of Fig. 14.2 is described by

\[
\text{v}_{\text{CE}} = \text{V}_{\text{CC}} - i_L R_L \quad (14.3)
\]

The maximum positive output is determined by the saturation of \(BE_1 \); thus

\[
\text{v}_{\text{CE}} = \text{V}_{\text{CE} \text{sat}} \quad (14.4)
\]

The absolutely lowest output voltage is that given by Eq. (14.4) and is achieved provided the bias current \(I_e \) is greater than the magnitude of the corresponding load current, \(i_L \).

EXERCISES

1. For the emitter follower in Fig. 14.2, \(V_{\text{CC}} = +15 \text{ V}, V_{\text{BE}} = 0.2 \text{ V}, V_{\text{REF}} = 0.7 \text{ V} \), and \(R \) is very high. Find the value of \(R \) that will establish a bias current sufficiently large to allow the largest possible output signal swing for \(R_L = 1 \text{ k} \Omega \). Determine the resulting output signal swing and the maximum and minimum emitter currents.

Ans. 0.957 k\(\Omega \); -14.8 V to +14.8 V; 0.1 \text{ mA} to 29.6 mA.

2. For the emitter follower of Exercise 14.1, in which \(I_e = 14.8 \text{ mA} \), consider the case in which \(i_e \) is limited to the range -10 V to +10 V. Let \(Q_1 \) have \(v_{\text{BE}} = 0.6 \text{ V} \) and \(v_{\text{CE}} = 1 \text{ mA} \), and assume of \(Q_2 \). Find the resulting output signal swing for the collector current of \(Q_2 \) will have the waveform shown in Fig. 14.4(c). Finally, Fig. 14.4(d) shows the waveform of the instantaneous power dissipation in \(Q_2 \).

Ans. 0.97 k\(\Omega \); -14.8 V to +14.8 V; 0.1 \text{ mA} to 29.6 mA.

14.2 Signal Waveforms

Consider the operation of the emitter-follower circuit of Fig. 14.2 for sine-wave input. Neglecting \(V_{\text{BE}} \), we see that if the bias current \(I_e \) is properly selected, the output voltage can swing from \(-V_{\text{CE} \text{sat}} \) to \(+V_{\text{CE} \text{sat}} \) with the quiescent value being zero, as shown in Fig. 14.4(a).

Figure 14.4(b) shows the corresponding waveform of \(v_{\text{CE}} = V_{\text{CC}} - v_{\text{BE}} \). Now, assuming that the bias current \(I_e \) is selected to allow a maximum negative load current of \(i_L \), the collector current of \(Q_2 \) will have the waveform shown in Fig. 14.4(c). Finally, Fig. 14.4(d) shows the waveform of the instantaneous power dissipation in \(Q_2 \).

\[
\text{p}_{\text{DI}} = \text{v}_{\text{CE} \text{sat}} i_L \quad (14.5)
\]

14.2.2 Signal Waveforms

Consider the operation of the emitter-follower circuit of Fig. 14.2 for sine-wave input. Neglecting \(V_{\text{BE}} \), we see that if the bias current \(I_e \) is properly selected, the output voltage can swing from \(-V_{\text{CE} \text{sat}} \) to \(+V_{\text{CE} \text{sat}} \) with the quiescent value being zero, as shown in Fig. 14.4(a).

Figure 14.4(b) shows the corresponding waveform of \(v_{\text{CE}} = V_{\text{CC}} - v_{\text{BE}} \). Now, assuming that the bias current \(I_e \) is selected to allow a maximum negative load current of \(i_L \), the collector current of \(Q_2 \) will have the waveform shown in Fig. 14.4(c). Finally, Fig. 14.4(d) shows the waveform of the instantaneous power dissipation in \(Q_2 \).

\[
\text{p}_{\text{DI}} = \text{v}_{\text{CE} \text{sat}} i_L \quad (14.5)
\]

14.2.3 Power Dissipation

Figure 14.4(d) indicates that the maximum instantaneous power dissipation in \(Q_2 \) is \(V_{\text{CE} \text{sat}} i_L \). This is equal to the quiescent power dissipation in \(Q_2 \). Thus the emitter-follower transistor dissipates the largest amount of power when \(v_{\text{CE}} = 0 \). Since this condition (no input signal) can easily prevail for prolonged periods of time, transistor \(Q_2 \) must be able to withstand a continuous power dissipation of \(V_{\text{CE} \text{sat}} i_L \).

The power dissipation in \(Q_2 \) depends on the value of \(R_L \). Consider the extreme case of an open circuit, then \(i_L = 0 \). If we neglect fluctuations of \(i_L \), then the instantaneous power dissipation in \(Q_2 \) will depend on the instantaneous value of \(v_{\text{CE}} \).

\[
\text{p}_{\text{DI}} = \text{v}_{\text{CE} \text{sat}} i_L \quad (14.5)
\]
Chapter 14: Output Stages and Power Amplifiers

14.2 Output Stages

The power-conversion efficiency of an output stage is defined as

$$\eta = \frac{\text{Load power (P_L)}}{\text{Supply power (P_S)}}$$

For the emitter follower of Fig. 14.2, assuming that the output voltage is a sinusoid with the peak value V_0, the average load power will be

$$P_L = \frac{V_0^2}{2R_L} = \frac{1}{2}V_0^2$$

Since the current in Q_2 is constant I, the power drawn from the negative supply is $V_{CC}I$. Thus the total average supply power is

$$P_S = 2V_{CC}I$$

Equations (14.8) and (14.9) can be combined to yield

$$\eta = \frac{1}{4R_LV_{CC}}$$

Since $V_0 \leq V_{CC}$ and $V_{CC} \leq IR_L$, maximum efficiency is obtained when $V_0 = V_{CC} = IR_L$.

The maximum efficiency attainable is 25%. Because this is a rather low figure, the class A output stage is rarely used in high-power applications (>1 W). Note also that in practice the output voltage swing is limited to lower values to avoid transistor saturation and associated nonlinear distortion. Thus the efficiency achieved is usually in the 10% to 20% range.

EXERCISE

14.3 CLASS B OUTPUT STAGE

Figure 14.5 shows a class B output stage. It consists of a complementary pair of transistors (an npn and a pnp) connected in such a way that both cannot conduct simultaneously.

1. Consider the emitter follower in Fig. 14.2 with $V_{CC} = 10 \text{ V}$, $I = 100 \text{ mA}$, and $R_L = 100 \Omega$. If the output voltage is a 5-V peak sinusoid, find the average power delivered to the load.

2. Find the load power.

3. Find the power dissipated in Q_2 under quiescent conditions.

4. Find the maximum instantaneous power dissipation in Q_2.

5. Find the average power dissipation in Q_2.

6. Find the power-conversion efficiency.

7. Consider the output stage of Fig. 14.2 with $V_{CC} = 10 \text{ V}$, $I = 100 \text{ mA}$, and $R_L = 100 \Omega$. If the output voltage is a 5-V peak sinusoid, find the average power delivered to the load. Also find the average power drawn from the supplies. (c) The power conversion efficiency.

8. Ignore the loss in Q_3 and R_3. The maximum efficiency is obtained when

$$V_0 = V_{CC} = IR_L$$

9. The maximum efficiency obtainable is 25%. Because this is a rather low figure, the class A output stage is rarely used in high-power applications (>1 W). Note also that in practice the output voltage swing is limited to lower values to avoid transistor saturation and associated nonlinear distortion. Thus the efficiency achieved is usually in the 10% to 20% range.

EXERCISE

14.3 CLASS B OUTPUT STAGE

Figure 14.5 shows a class B output stage. It consists of a complementary pair of transistors (an npn and a pnp) connected in such a way that both cannot conduct simultaneously.

1. This does not include the power drawn by the biasing resistor R and the diode-connected transistor Q_3.

Figure 14.4 Maximum signal waveforms in the class A output stage of Fig. 14.2 under the condition $I = V_{CC}/R_L$ or, equivalently, $R_L = V_{CC}/I$. The power dissipation in Q_x also must be taken into account in designing an emitter-follower output stage. Since Q_2 conducts a constant current I, the maximum value of v_{CE2} is $2V_{CC}$, the maximum instantaneous power dissipation in Q_2 is $2V_{CC}I$. This maximum, however, occurs when $v_o = V_{CC}$, a condition that would not normally prevail for a prolonged period of time. A more significant quantity for design purposes is the average power dissipation in Q_2, which is $V_{CC}I$.
14.3.1 Circuit Operation
When the input voltage \(v_1 \) is zero, both transistors are cut off and the output voltage \(v_0 \) is zero. As \(v_1 \) goes positive and exceeds about 0.5 V, \(Q_N \) conducts and operates as an emitter follower. In this case \(v_0 \) follows \(v_1 \) (i.e., \(v_0 = v_1 + v_{EB} \)) and \(Q_N \) supplies the load current. Meanwhile, the emitter-base junction of \(Q_P \) will be reverse-biased by the \(V_{BE} \) of \(Q_N \), which is approximately 0.7 V. Thus \(Q_P \) will be cut off.

If the input goes negative by more than about 0.5 V, \(Q_P \) turns on and acts as an emitter follower. Again \(v_0 \) follows \(v_1 \) (i.e., \(v_0 = v_1 + v_{EB} \)), but in this case \(Q_P \) supplies the load current and \(Q_N \) will be cut off.

We conclude that the transistors in the class B stage of Fig. 14.5 are biased at zero current and conduct only when the input signal is present. The circuit operates in a push-pull fashion: \(Q_N \) pushes (sources) current into the load when \(v_1 \) is positive, and \(Q_P \) pulls (sinks) current from the load when \(v_1 \) is negative.

14.3.2 Transfer Characteristic
A sketch of the transfer characteristic of the class B stage is shown in Fig. 14.6. Note that there exists a range of \(v_1 \) centered around zero where both transistors are cut off and \(v_0 \) is zero. This dead band results in the crossover distortion illustrated in Fig. 14.7 for the case of an input sine wave. The effect of crossover distortion will be most pronounced when the amplitude of the input signal is small. Crossover distortion in audio power amplifiers gives rise to unpleasant sounds.

14.3.3 Power-Conversion Efficiency
To calculate the power-conversion efficiency, \(\eta \), of the class B stage, we neglect the crossover distortion and consider the case of an output sinusoid of peak amplitude \(V_0 \). The average load power will be

\[
P_{\text{load}} = \frac{1}{2} \frac{V_0^2}{R_L} \tag{14.12}
\]

The current drawn from each supply will consist of half-sine waves of peak amplitude \((V_0 / R_c)\). Thus the average current drawn from each of the two power supplies will be

\[
I_c = \frac{V_0}{2 R_c} \tag{14.13}
\]

and the total supply power will be

\[
P_S = \frac{1}{2} \frac{V_0^2}{R_c} V_{CC} \tag{14.14}
\]
Thus the efficiency will be given by

$$\eta = \frac{1}{2} \left(\frac{V_{CC}^2}{R_L} \right) \frac{1}{V_{CE}} = \frac{\pi V_{CE}}{4 V_{CC}}$$ \hspace{1cm} (14.15)$$

It follows that the maximum efficiency is obtained when V_{CE} is at its maximum. This maximum is limited by the saturation of Q_N and Q_P to $V_{CC} - V_{CE}$ max. At this value of peak output voltage, the power-conversion efficiency is

$$\eta_{max} = \frac{\pi}{4} = 78.5\%$$ \hspace{1cm} (14.16)$$

This value is much larger than that obtained in the class A stage (25\%). Finally, we note that the maximum average power available from a class B output stage is obtained by substituting $V_{CE} = V_{CC}$ in Eq. (14.12),

$$P_{DN} = \frac{1}{2} \frac{V_{CC}^2}{R_L}$$ \hspace{1cm} (14.17)$$

14.3.4 Power Dissipation

Unlike the class A stage, which dissipates maximum power under quiescent conditions ($i_0 = 0$), the quiescent power dissipation of the class B stage is zero. When an input signal is applied, the average power dissipated in the class B stage is given by

$$P_D = P_S - P_L$$ \hspace{1cm} (14.18)$$

Substituting for P_S from Eq. (14.14) and for P_L from Eq. (14.12) results in

$$P_D = \frac{1}{2} \frac{V_{CC}^2}{R_L} - \frac{1}{2} \frac{V_P^2}{R_L}$$ \hspace{1cm} (14.19)$$

From symmetry we see that half of P_D is dissipated in Q_N and the other half in Q_P. Thus Q_N and Q_P must be capable of safely dissipating P_D watts. Since P_D depends on V_P, we must find the worst-case power dissipation, $P_{D_{\text{max}}}$. Differentiating Eq. (14.19) with respect to V_P and equating the derivative to zero gives the value of V_P that results in maximum average power dissipation as

$$V_P |_{P_{\text{D_{\text{max}}}}} = \frac{1}{\pi} V_{CC}$$ \hspace{1cm} (14.20)$$

Substituting this value in Eq. (14.19) gives

$$P_{D_{\text{max}}} = \frac{2 V_{CC}^2}{\pi R_L}$$ \hspace{1cm} (14.21)$$

Thus,

$$P_{D_{\text{max}}} = \frac{V_{CC}^2}{\pi R_L}$$ \hspace{1cm} (14.22)$$

At the point of maximum power dissipation the efficiency can be evaluated by substituting for V_P from Eq. (14.20) into Eq. (14.15); hence, $\eta = 50\%$.

Figure 14.8 shows a sketch of P_D (Eq. 14.19) versus the peak output voltage V_P. Curves such as this are usually given on the data sheets of IC power amplifiers. (Usually, however, P_D is plotted versus P_L, as $P_L = \left(\frac{V_P^2}{R_L} \right)$, rather than V_P.) An interesting observation follows from Fig. 14.8: Increasing V_P beyond V_{CC}/n decreases the power dissipated in the class B stage while increasing the load power. The price paid is an increase in nonlinear distortion as a result of approaching the saturation region of operation of Q_N and Q_P. Transistor saturation flattens the peaks of the output sine waveform. Unfortunately, this type of distortion cannot be significantly reduced by the application of negative feedback (see Section 8.2), and thus transistor saturation should be avoided in applications requiring low THD.

Example 14.3

It is required to design a class B output stage to deliver an average power of 20 W to an 8Ω load. The power supply is to be selected such that V_{CC} is about 5 V greater than the peak output voltage. This avoids transistor saturation and the associated nonlinear distortion, and allows for including short-circuit protection circuitry. (The latter will be discussed in Section 14.7.) Determine the supply voltage required, the peak current drawn from each supply, the total supply power, and the power-conversion efficiency. Also determine the maximum power that each transistor must be able to dissipate safely.

Solution

Since

$$P_L = \frac{1}{2} \frac{V_{CC}^2}{R_L}$$

then

$$V_P = \sqrt{2P_L R_L} = \frac{\sqrt{2 \times 20 \times 8}}{8} = 17.9 \text{ V}$$

Therefore we select $V_{CC} = 23 \text{ V}$. The peak current drawn from each supply is

$$I_i = \frac{V_P}{R_L} = \frac{17.9}{8} = 2.24 \text{ A}$$
The average power drawn from each supply is
\[P_{\text{dc}} = P_{\text{ac}} = \frac{1}{2} \times 2.24 \times 23 = 16.4 \text{ W} \]
for a total supply power of 32.8 W. The power-conversion efficiency is
\[\eta = \frac{P_{\text{dc}}}{P_{\text{ac}}} = \frac{20}{32.8} \times 100 = 61\% \]
The maximum power dissipated in each transistor is given by Eq. (14.22); thus
\[P_{\text{diss}} = P_{\text{diss, max}} = \frac{V_{\text{cc}}^2}{\pi^2 R_L} = \frac{23^2}{\pi^2} \approx 6.7 \text{ W} \]

14.3.5 Reducing Crossover Distortion

The crossover distortion of a class B output stage can be reduced substantially by employing a high-gain op amp and overall negative feedback, as shown in Fig. 14.9. The 0.7-V dead band is reduced to \(\pm 0.7/A_0 \) volt, where \(A_0 \) is the dc gain of the op amp. Nevertheless, the slew-rate limitation of the op amp will cause the alternate turning on and off of the output transistors to be noticeable, especially at high frequencies. A more practical method for reducing and almost eliminating crossover distortion is found in the class AB stage, which will be studied in the next section.

14.3.6 Single-Supply Operation

The class B stage can be operated from a single power supply, in which case the load is capacitively coupled, as shown in Fig. 14.10. Note that to make the formulas derived in Section 14.3.4 directly applicable, the single power supply is denoted \(2V_{\text{CC}} \).

14.4 CLASS AB OUTPUT STAGE

Crossover distortion can be virtually eliminated by biasing the complementary output transistors at a small nonzero current. The result is the class AB output stage shown in Fig. 14.11. A bias voltage \(V_{\text{BB}} \) is applied between the bases of \(Q_N \) and \(Q_P \). For \(V_0 = 0 \), \(V_0 = 0 \), and a voltage \(V_{\text{BB}}/2 \) appears across the base-emitter junction of each of \(Q_N \) and \(Q_P \). Assuming...
matched devices,
\[I_Q = I_T = I_L = I_R \] \(\text{(14.23)}\)

The value of \(V_{BB}\) is selected to yield the required quiescent current \(I_Q\).

14.4.1 Circuit Operation

When \(v_0\) goes positive by a certain amount, the voltage at the base of \(Q_N\) increases by the same amount and the output becomes positive at an almost equal value,
\[v_0 = v_T + V_T = 2V_T \] \(\text{(14.24)}\)

The positive \(v_0\) causes a current \(i_L\) to flow through \(R_L\), and thus \(i_N\) must increase; that is,
\[i_N = i_T + i_L \] \(\text{(14.25)}\)

The increase in \(i_N\) will be accompanied by a corresponding increase in \(V_{BE}\) (above the quiescent value of \(V_{BB}/2\)). However, since the voltage between the two bases remains constant at \(V_{BB}\), the increase in \(V_{BE}\) will result in an equal decrease in \(V_{EB}\) and hence in \(i_P\).

The relationship between \(i_N\) and \(i_P\) can be derived as follows:
\[V_{BE} + V_{EB} = 2V_T \] \(\text{(14.26)}\)

Thus, as \(i_N\) increases, \(i_P\) decreases by the same ratio while the product remains constant.

Equations (14.25) and (14.26) can be combined to yield \(i_N\) for a given \(i_L\) as the solution to the quadratic equation
\[i_N^2 - i_L i_N - I_Q^2 = 0 \] \(\text{(14.27)}\)

From the equations above, we can see that for positive output voltages, the load current is supplied by \(Q_N\), which acts as the output emitter follower. Meanwhile, \(Q_P\) will be conducting a current that decreases as \(v_0\) increases; for large \(v_0\), the current in \(Q_P\) can be ignored altogether.

For negative input voltages the opposite occurs: The load current will be supplied by \(Q_P\), which acts as the output emitter follower, while \(Q_N\) conducts a current that gets smaller as \(v_0\) becomes more negative. Equations (14.25) and (14.26) hold for negative inputs as well.

We conclude that the class AB stage operates in much the same manner as the class B circuit, with one important exception: For small \(v_0\) both transistors conduct, and as \(v_0\) is increased or decreased, one of the two transistors takes over the operation. Since the transition is a smooth one, crossover distortion will be almost totally eliminated. Figure 14.12 shows the transfer characteristic of the class AB stage.

14.4.2 Output Resistance

If we assume that the source supplying \(v_0\) is ideal, then the output resistance of the class AB stage can be determined from the circuit in Fig. 14.13 as
\[r_{out} = r_{en} || r_{ep} \] \(\text{(14.28)}\)

where \(r_{en}\) and \(r_{ep}\) are the small-signal emitter resistances of \(Q_N\) and \(Q_P\), respectively. At a given input voltage, the currents \(i_N\) and \(i_P\) can be determined, and \(r_{en}\) and \(r_{ep}\) are given by
\[r_{en} = \frac{V_T}{I_{en}} \] \(\text{(14.29)}\)
\[r_{ep} = \frac{V_T}{I_{ep}} \] \(\text{(14.30)}\)

Thus
\[R_{out} = \frac{V_T}{I_{en}} || \frac{V_T}{I_{ep}} = \frac{V_T}{I_{en} + I_{ep}} \] \(\text{(14.31)}\)
Consider a class AB circuit with $V_C = 15$ V, $I_C = 2$ mA, and $R_L = 100$ Ω. Determine V_{BB}. Construct a table giving I_B, V_B, V_{BE}, I_C, V_C, R_E, and V_{Q1} versus V_{BB} for $V_{BB} = 0$, 0.1, 0.2, 0.5, 1.5, 10 V. Note that the large-signal voltage gain and is the incremental gain is equal to the slope of the transfer curve at the operating point. Assume Q_1 and Q_2 to be matched, with $I_C = 10^{-11}$ A.

The current through the biasing diodes will decrease when the output stage is sourcing current to the load. Thus the bias voltage V_{BB} will also decrease, and the analysis of Section 14.4 must be modified to take this effect into account.

The diode biasing arrangement has an important advantage: It can provide thermal stabilization of the quiescent current in the output stage. To appreciate this point recall that the class AB output stage dissipates power under quiescent conditions. Power dissipation raises the internal temperature of the BJTs. From Chapter 5 we know that a rise in transistor temperature results in a decrease in I_C, and since $I_C = I_B$, we cannot make I_B large enough to increase the diodes much smaller than the output devices. This is a disadvantage of the diode biasing scheme.

From the discussion above we see that the current through the biasing diodes will decrease when the output stage is sourcing current to the load. Thus the bias voltage V_{BB} will also decrease, and the analysis of Section 14.4 must be modified to take this effect into account.

The diode biasing arrangement has an important advantage: It can provide thermal stabilization of the quiescent current in the output stage. To appreciate this point recall that the class AB output stage dissipates power under quiescent conditions. Power dissipation raises the internal temperature of the BJTs. From Chapter 5 we know that a rise in transistor temperature results in a decrease in I_C, and since $I_C = I_B$, we cannot make I_B large enough to increase the diodes much smaller than the output devices. This is a disadvantage of the diode biasing scheme.

From the discussion above we see that the current through the biasing diodes will decrease when the output stage is sourcing current to the load. Thus the bias voltage V_{BB} will also decrease, and the analysis of Section 14.4 must be modified to take this effect into account.

The diode biasing arrangement has an important advantage: It can provide thermal stabilization of the quiescent current in the output stage. To appreciate this point recall that the class AB output stage dissipates power under quiescent conditions. Power dissipation raises the internal temperature of the BJTs. From Chapter 5 we know that a rise in transistor temperature results in a decrease in I_C, and since $I_C = I_B$, we cannot make I_B large enough to increase the diodes much smaller than the output devices. This is a disadvantage of the diode biasing scheme.

From the discussion above we see that the current through the biasing diodes will decrease when the output stage is sourcing current to the load. Thus the bias voltage V_{BB} will also decrease, and the analysis of Section 14.4 must be modified to take this effect into account.

The diode biasing arrangement has an important advantage: It can provide thermal stabilization of the quiescent current in the output stage. To appreciate this point recall that the class AB output stage dissipates power under quiescent conditions. Power dissipation raises the internal temperature of the BJTs. From Chapter 5 we know that a rise in transistor temperature results in a decrease in I_C, and since $I_C = I_B$, we cannot make I_B large enough to increase the diodes much smaller than the output devices. This is a disadvantage of the diode biasing scheme.

From the discussion above we see that the current through the biasing diodes will decrease when the output stage is sourcing current to the load. Thus the bias voltage V_{BB} will also decrease, and the analysis of Section 14.4 must be modified to take this effect into account.
Solution

The maximum current through Q_N is approximately equal to $i_{max} = 10 V / 0.1 k\Omega = 100 mA$. Thus, the maximum base current in Q_N is approximately 2 mA. To maintain a minimum of 1 mA through the diodes, we select $i_{bias} = 3 mA$. The area ratio of 3 yields a quiescent current of 9 mA through Q_N and Q_P. The quiescent power dissipation is

$$P_{QN} = 2 \times 15 \times 9 = 270 mW$$

For $v_0 = 0$, the base current of Q_N is $9/51 = 0.18 mA$, leaving a current of $3 - 0.18 = 2.82 mA$ to flow through the diodes. Since the diodes have $I_s = 1 \times 10^{-13} A$, the voltage V_{BB} will be

$$V_{BB} = 2V_{BE} \ln \left(\frac{2.82 mA}{I_s} \right) = 1.26 V$$

At $v_0 = +10 V$, the current through the diodes will decrease to 1 mA, resulting in $V_{BB} = 1.21 V$. At the other extreme of $v_0 = -10 V$, Q_N will be conducting a very small current; thus its base current will be negligibly small and all of I_{bias} (3 mA) flows through the diodes, resulting in $V_{BB} = 1.26 V$.

EXERCISES

14.7 For the circuit of Example 14.1, find I_B and I_C for $v_0 = +10 V$ and $v_0 = 0 V$.

14.8 If the collector current of a transistor is held constant, its V_{BE} decreases by 2 mV for every 1°C rise in temperature. Alternately, it V_{BE} is held constant, then I_C increases by approximately $2 mA$ for every 1°C rise in temperature. For a device operating in $I_C = 10 mA$, find the change in collector current resulting from an increase in temperature of 5°C.

Ans. 4 mA

14.5.2 Biasing Using the V_{BE} Multiplier

An alternative biasing arrangement that provides the designer with considerably more flexibility in both discrete and integrated designs is shown in Fig. 14.15. The bias circuit consists of transistor Q_2 with a resistor R_1 connected between base and emitter and a feedback resistor R_2 connected between collector and base. The resulting two-terminal network is fed with a constant-current source i_{bias}. If we neglect the base current of Q_2, then R_1 and R_2 will carry the same current i_B, given by

$$i_B = \frac{V_{BE}}{R_1}$$

and the voltage V_{BB} across the bias network will be

$$V_{BB} = i_B (R_1 + R_2) = V_{bias} \left(1 + \frac{R_1}{R_2} \right)$$

Thus the circuit simply multiplies V_{bias} by the factor $(1 + R_1/R_2)$ and is known as the "V_{BE} multiplier." The multiplication factor is obviously under the designer's control and can be controlled.
Consider a Q_B utilizing a transistor that has a multiplier with $I_{C1} = 0.6 \, \text{mA}$ at $R_{BEX} = R_{BE}$ terminal voltage of 1.2 V.

(b) Find the value of I_B that will result in the terminal voltage changing (from the 1.2-V value) by $+50 \, \text{mV}, +100 \, \text{mV}, +200 \, \text{mV}, -50 \, \text{mV}, -100 \, \text{mV}, -200 \, \text{mV}$.

We can now determine $R_1 + R_2$ as follows:

$$R_1 + R_2 = \frac{V_{BB}}{I_B} \cdot \frac{1.19}{0.5} = 2.38 \, \text{k} \Omega$$

As a collector current of 2.5 mA, Q_1 has

$$V_{BE1} = V_T \ln \frac{2.5 \times 10^{-3}}{10^{-4}} = 0.66 \, \text{V}$$

The value of R_1 can now be determined as

$$R_1 = \frac{0.66}{0.5} = 1.32 \, \text{k} \Omega$$

and R_2 as

$$R_2 = 2.38 - 1.32 = 1.06 \, \text{k} \Omega$$

14.6 POWER BJTs

Transistors that are required to conduct currents in the ampere range and withstand power dissipation in the watts and tens-of-watts ranges differ in their physical structure, packaging, and specification from the small-signal transistors considered in earlier chapters. In the present section we consider some of the important properties of power transistors; especially those aspects that pertain to the design of circuits of the type discussed earlier. There are, of course, other important applications of power transistors, such as their use as switching elements in power inverters and motor-control circuits. Such applications are not studied in this book.

14.6.1 Junction Temperature

Power transistors dissipate large amounts of power in their collector-base junctions. The dissipated power is converted into heat, which raises the junction temperature. However, the junction temperature T_J must not be allowed to exceed a specified maximum, T_{Jmax}, otherwise the transistor could suffer permanent damage. For silicon devices, T_{Jmax} is in the range of 150°C to 200°C.

14.6.2 Thermal Resistance

Consider first the situation of a transistor operating in free air—that is, with no special arrangements for cooling. The heat dissipated in the transistor junction will be conducted away from the junction to the transistor case, and from the case to the surrounding environment. In a steady state in which the transistor is dissipating P_J watts, the temperature rise of the junction relative to the surrounding ambience can be expressed as

$$T_J = T_x = \theta_J P_J$$

where θ_J is the thermal resistance between junction and ambience, having the units of degrees Celsius per watt. Note that θ_J simply gives the rise in junction temperature over the ambient temperature for each watt of dissipated power. Since we wish to be able to dissipate large amounts of power without raising the junction temperature above T_{Jmax}, it is desirable to have, for the thermal resistance θ_J, as small a value as possible. For operation in free air.
CHAPTER 14 OUTPUT STAGES AND POWER AMPLIFIERS

The electrical equivalent circuit of the thermal-conduction process is analogous to Ohm's law, which describes the electrical-conduction process. In this analogy, power dissipation corresponds to current, temperature difference corresponds to voltage difference, and thermal resistance corresponds to electrical resistance. Thus, we may represent the thermal-conduction process by the electric circuit shown in Fig. 14.17.

14.6.3 Power Dissipation Versus Temperature

The transistor manufacturer usually specifies the maximum junction temperature \(T_{Jmax} \), the maximum power dissipation at a particular ambient temperature \(T_A \) (usually, 25°C), and the thermal resistance \(\theta_{JA} \). In addition, a graph such as that shown in Fig. 14.18 is usually provided. The graph simply states that for operation at ambient temperatures below \(T_{DRO} \), the device can safely dissipate the rated value of \(P_{DMAX} \) watts. However, if the device is to be operated at higher ambient temperatures, the maximum allowable power dissipation must be derated according to the straight line shown in Fig. 14.18. The power-derating curve is a graphical representation of Eq. (14.36). Specifically, note that if the ambient temperature is \(T_A \), and the power dissipation is at the maximum allowed \(P_{DMAX} \), then the junction temperature will be \(T_{Jmax} \). Substituting these quantities in Eq. (14.36) results in

\[
\theta_{JA} = \frac{T_{Jmax} - T_A}{P_{DMAX}} \tag{14.37}
\]

which is the inverse of the slope of the power-derating straight line. At an ambient temperature \(T_A \), higher than \(T_{DRO} \), the maximum allowable power dissipation \(P_{DMAX} \) can be obtained from Eq. (14.36) by substituting \(T_A = T_{DRO} \), thus,

\[
P_{DMAX} = \frac{T_{Jmax} - T_A}{\theta_{JA}} \tag{14.38}
\]

Example 14.4

A BIT is specified to have a maximum power dissipation \(P_{DMAX} \) of 2 W at an ambient temperature \(T_A \) of 25°C, and a maximum junction temperature \(T_{Jmax} \) of 150°C. Find the following:

(a) The thermal resistance \(\theta_{JA} \).

(b) The maximum power that can be safely dissipated at an ambient temperature of 50°C.

(c) The junction temperature if the device is operating at \(T_A = 25°C \) and is dissipating 1 W.

Solution

(a) \(\theta_{JA} = \frac{T_{Jmax} - T_A}{P_{DMAX}} = \frac{150 - 25}{2} = 62.5°C/W \)

(b) \(P_{DMAX} = \frac{T_{Jmax} - T_A}{\theta_{JA}} = \frac{150 - 50}{62.5} = 1.6 \text{ W} \)

(c) \(T_J = T_A + \theta_{JA} P = 25 + 62.5 \times 1 = 87.5°C \)

14.6.4 Transistor Case and Heat Sink

The thermal resistance between junction and ambient, \(\theta_{JC} \), can be expressed as

\[
\theta_{JC} = \theta_{JA} + \theta_{CA} \tag{14.39}
\]

where \(\theta_{JA} \) is the thermal resistance between junction and transistor case (package) and \(\theta_{CA} \) is the thermal resistance between case and ambient. For a given transistor, \(\theta_{CA} \) is fixed by the device design and packaging. The device manufacturer can reduce \(\theta_{JA} \) by encapsulating the device in a relatively large metal case and placing the collector (where most of the heat is dissipated) in direct contact with the case. Most high-power transistors are packaged in this fashion. Figure 14.19 shows a sketch of a typical package.

Although the circuit designer has no control over \(\theta_{CA} \) (once a particular transistor has been selected), the designer can considerably reduce \(\theta_{JA} \) below its free-air value (specified by the manufacturer as part of \(\theta_{JA} \)). Reduction of \(\theta_{JA} \) can be effected by providing means to facilitate heat transfer from case to ambient. A popular approach is to bolt the transistor to the chassis or to an extended metal surface. Such a metal surface then functions as a heat sink. Heat is easily conducted from the transistor case to the heat sink; that is, the thermal resistance \(\theta_{JA} \) is usually very small. Also, heat is efficiently transferred by convection and

FIGURE 14.19 The popular TO2 package for power transistors. The case is metal with a diameter of about 22 cm; the outside dimension of the "sealing plane" is about 4 cm. The sealing plane has two holes for screws to bolt it to a heat sink. The collector is electrically connected to the case. Therefore an electrically insulating but thermally conducting spacer is used between the transistor case and the "heat sink."
radiation) from the heat sink to the ambiance, resulting in a low thermal resistance \(\theta_{ja} \). Thus, if a heat sink is utilized, the case-to-ambience thermal resistance given by

\[
\theta_{CA} = \theta_{jc} + \theta_{sa}
\]

(14.40)

can be small because its two components can be made small by the choice of an appropriate heat sink.\(^2\) For example, in very high-power applications the heat sink is usually equipped with fans that further facilitate cooling by radiation and convection.

The electrical analog of the thermal-conduction process when a heat sink is employed is shown in Fig. 14.20, from which we can write

\[
T_j - T_a = P_{d_{max}} (\theta_{jc} + \theta_{cs})
\]

(14.41)

As well as specifying \(\theta_{ja} \), the device manufacturer usually supplies a derating curve for \(P_{d_{max}} \) versus the case temperature, \(T_C \). Such a curve is shown in Fig. 14.21. Note that the slope of the power-derating straight line is \(-1/\theta_{jc}\). For a given transistor, the maximum power dissipation at a case temperature \(T_C \) (usually 25°C) is much greater than that at an ambient temperature \(T_A \) (usually 25°C). If the device can be maintained at a case temperature \(T_C \), \(T_C \leq T_c \leq T_{max} \), then the maximum safe power dissipation is obtained when

\[
P_{d_{max}} = \frac{T_{max} - T_c}{\theta_{jc}}
\]

(14.42)

Example 14.5

A BJT is specified to have \(T_{max} = 150^\circ C \) and to be capable of dissipating maximum power as follows:

- 40 W at \(T_C = 25^\circ C \)
- 2 W at \(T_C = 50^\circ C \)

Above 25°C, the maximum power dissipation is to be derated linearly with \(\theta_{jc} = 3.12^\circ C/W \) and \(\theta_{sa} = 62.5^\circ C/W \). Find the following:

(a) The maximum power that can be dissipated safely by this transistor when operated in free air at \(T_A = 50^\circ C \).

(b) The maximum power that can be dissipated safely by this transistor when operated at an ambient temperature of \(50^\circ C \), but with a heat sink for which \(\theta_{cs} = 0.5^\circ C/W \) and \(\theta_{sa} = 4^\circ C/W \).

Find the temperature of the case and of the heat sink.

(c) The maximum power that can be dissipated safely if an infinite heat sink is used and \(T_A = 50^\circ C \).

Solution

(a)

\[
P_{d_{max}} = \frac{T_{max} - T_c}{\theta_{jc}} = \frac{150 - 50}{3.12} = 1.6 \text{ W}
\]

(b) With a heat sink, \(\theta_{ja} \) becomes

\[
\theta_{ja} = \theta_{jc} + \theta_{cs} + \theta_{sa}
\]

\[
= 3.12 + 0.5 + 4 = 7.62^\circ C/W
\]

Thus,

\[
P_{d_{max}} = \frac{150 - 50}{7.62} = 13.1 \text{ W}
\]

Figure 14.22 shows the thermal equivalent circuit with the various temperatures indicated.

(c) An infinite heat sink, if it existed, would cause the case temperature \(T_C \) to equal the ambient temperature \(T_A \). The infinite heat sink has \(\theta_{ja} = 0 \). Obviously, one cannot buy an infinite heat sink; nevertheless, this terminology is used by some manufacturers to describe the power-derating curve of Fig. 14.21. The abscissa is then labeled \(T_A \) and the curve is called "power dissipation versus ambient temperature with an infinite heat sink." For our example, with infinite heat sink,

\[
P_{d_{max}} = \frac{T_{max} - T_A}{\theta_{jc}} = \frac{150 - 50}{3.12} = 32 \text{ W}
\]
The advantage of using a heat sink is clearly evident from Example 14.5: With a heat sink, the maximum allowable power dissipation increases from 1.6 W to 13.1 W. Also note that although the transistor considered can be called a "40-W transistor," this level of power dissipation cannot be achieved in practice; it would require an infinite heat sink and an ambient temperature $T_A < 25\, ^\circ C$.

EXERCISE 14.10

The 2N6306 power transistor is specified to have $T_{J,\text{max}} = 150\, ^\circ C$ and $P_{D,\text{max}} = 125\, W$ for $T_c < 25\, ^\circ C$. For $T_c > 25\, ^\circ C$, $P_D = 40\, W$ if $T_c = 65\, ^\circ C$. Assume a maximum allowable current of $1\, A$, and a maximum allowable power dissipation of $40\, W$ at $T_c = 75\, ^\circ C$. What is the case temperature, T_c ?

Ans. $1\, A$ at $15\, ^\circ C$; $20\, ^\circ C$.

14.6.5 The BJT Safe Operating Area

In addition to specifying the maximum power dissipation at different case temperatures, power-transistor manufacturers usually provide a plot of the boundary of the safe operating area (SOA) in the $i_C-\text{v}_{CE}$ plane. The SOA specification takes the form illustrated by the sketch in Fig. 14.23; the following paragraph numbers correspond to the boundaries on the sketch.

1. The maximum allowable current $i_{C,\text{max}}$. Exceeding this current on a continuous basis can result in melting the wires that bond the device to the package terminals.

2. The maximum power dissipation hyperbola. This is the locus of the points for which $P_D = P_{\text{max}}$ at T_{max}. For temperatures $T_c > T_{\text{max}}$, the power-degrading curves described in Section 14.6.4 should be used to obtain the applicable P_{max} and thus a correspondingly lower hyperbola. Although the operating point can be allowed to move temporarily above the hyperbola, the average power dissipation should not be allowed to exceed P_{max}.

3. The second-breakdown limit. Second breakdown is a phenomenon that results because current flow across the emitter-base junction is not uniform. Rather, the current density is greatest near the periphery of the junction. This "current crowding" gives rise to increased localized power dissipation and hence temperature rise (at locations called hot spots). Since a temperature rise causes an increase in current, a localized form of thermal runaway can occur, leading to junction destruction.

4. The collector-emitter breakdown voltage, $B V_{CE}$; the instantaneous value of v_{CE} should never be allowed to exceed $B V_{CE}$, otherwise, avalanche breakdown of the collector-base junction may occur (see Section 5.2.5).

Finally, it should be mentioned that logarithmic scales are usually used for i_C and v_{CE}, leading to an SOA boundary that consists of straight lines.

14.6.6 Parameter Values of Power Transistors

Owing to their large geometry and high operating currents, power transistors display typical parameter values that can be quite different from those of small-signal transistors. The important differences are as follows:

1. At high currents, the exponential $i_C = I_C \cdot e^{V_{BE}}$ relationship exhibits a constant $n = 2$; that is, $i_C = I_C \cdot e^{^{2 \cdot V_{BE}}}$.

2. β is low, typically 30 to 80, but can be as low as 5. Here, it is important to note that β has a positive temperature coefficient.

3. At high currents, r_e becomes very small (a few ohms) and r_b becomes important (r_b is defined and explained in Section 5.8.4).

4. r_i is low (a few megohms), C_E is large (hundreds of picofarads), and C_b is even larger. (These parameters are defined and explained in Section 5.8).

5. $C_{\text{ Impossible is large (a few tens of microamps) and, as usual, doubles for every 10°C rise in temperature.}}$

6. $B V_{CE}$ is typically 50 to 100 V but can be as high as 500 V.

7. $\text{I}_{\text{C, max}}$ is typically in the ampere range but can be as high as 100 A.
14.7 VARIATIONS ON THE CLASS AB CONFIGURATION

In this section, we discuss a number of circuit improvements and protection techniques for the class AB output stage.

14.7.1 Use of Input Emitter Followers

Figure 14.24 shows a class AB circuit biased using transistors \(Q_x \) and \(Q_2 \), which also function as emitter followers, thus providing the circuit with a high input resistance. In effect, the circuit functions as a unity-gain buffer amplifier. Since all four transistors are usually matched, the quiescent current \((v_0 = 0, R_L = \infty) \) in \(Q_3 \) and \(Q_4 \) is equal to that in \(Q_x \) and \(Q_2 \). Resistors \(R_3 \) and \(R_4 \) are usually very small and are included to compensate for possible mismatches between \(Q_3 \) and \(Q_4 \) and to guard against the possibility of thermal runaway due to temperature differences between the input- and output-stage transistors. The latter point can be appreciated by noting that an increase in the current of, say, \(Q_3 \) causes an increase in the voltage drop across \(R_3 \) and a corresponding decrease in \(V_{BE3} \). Thus \(R_3 \) provides negative feedback that helps stabilize the current through \(Q_3 \).

Because the circuit of Fig. 14.24 requires high-quality \(pnp \) transistors, it is not suitable for implementation in conventional monolithic IC technology. However, excellent results have been obtained with this circuit implemented in hybrid thick-film technology (Wong and Sherwin, 1979). This technology permits component trimming, for instance, to minimize the output offset voltage. The circuit can be used alone or together with an op amp to provide increased output driving capability. The latter application will be discussed in the next section.

EXERCISE

Exercise 14.11 (Note: Although very instructive, this exercise is rather long.) Consider the circuit of Fig. 14.24 with \(R_1 = R_2 = R_3 = R_4 = 0 \), \(V_{CC} = 15 \text{ V} \), and \(\beta = 200 \). These are the values used in the LH002 manufactured by National Semiconductor, except that \(R_3 = R_4 = 2 \Omega \) there. (a) For \(v_o = 0 \) and \(R_L = \infty \), find the quiescent current in each of the four transistors and \(V_{BE} \). (b) For \(R_L = \infty \), find \(I_{Q1}, I_{Q2}, I_{Q3}, I_{Q4} \), and \(V_{BE} \) for \(v_o = -10 \text{ V} \) and \(-10 \text{ V} \). (c) Repeat (b) for \(R_L = 10 \Omega \).

14.7.2 Use of Compound Devices

To increase the current gain of the output-stage transistors, and thus reduce the required base current drive, the Darlington configuration shown in Fig. 14.25 is frequently used to replace the \(npn \) transistor of the class AB stage. The Darlington configuration (Section 6.11.2) is equivalent to a single \(npn \) transistor having \(\beta = \beta_1 \beta_2 \), but almost twice the value of \(V_{BE} \).

The Darlington configuration can be also used for \(pnp \) transistors, and this is indeed done in discrete-circuit design. In IC design, however, the lack of good-quality \(pnp \) transistors prompted the use of the alternative compound configuration shown in Fig. 14.26. This compound device is equivalent to a single \(pnp \) transistor having \(\beta = \beta_1 \beta_2 \). When fabricated with standard IC technology, \(Q_1 \) is usually a lateral \(pnp \) having a low \(\beta (\beta = 5 - 10) \) and poor high-frequency response \((f_T = 5 \text{ MHz}) \); see Appendix A. The compound device, although it has a relatively high equivalent \(\beta \), still suffers from a poor high-frequency response. It also suffers from another problem: The feedback loop formed by \(Q_1 \) and \(Q_2 \) is prone to high-frequency oscillations (with frequency near \(f_T \) of the \(pnp \) device, i.e., about 5 MHz). Methods exist for preventing such oscillations. The subject of feedback-amplifier stability was studied in Chapter 8.
CHAPTER 14 OUTPUT STAGES AND POWER AMPLIFIERS

Eo

e
Bo-

4'

ß ~ ßißi

o

C

FIGURE 14.26 The compound pnp configuration.

To illustrate the application of the Darlington configuration and of the compound pnp, we show in Fig. 14.27 an output stage utilizing both. Class AB biasing is achieved using a V_{BE} multiplier. Note that the Darlington npn adds one more V_{BE} drop, and thus the V_{BE} multiplier is required to provide a bias voltage of about 2 V. The design of this class AB stage is investigated in Problem 14.39.

FIGURE 14.27 A class AB output stage utilizing a Darlington npn and a compound pnp. Biasing is obtained using a V_{BE} multiplier.

EXERCISE

14.32 (a) Refer to Fig. 14.26. Show that, for the composite pnp transistor,

$$I_C = I_C \cdot \beta$$

and

$$I_C = I_C \cdot \beta$$

Hence show that

$$I_C = I_C \cdot \beta \cdot \beta \cdot V_{BE}$$

and thus the transistor has an effective scale current

$$I_C = I_C \cdot \beta \cdot \beta \cdot V_{BE}$$

where I_E is the saturation current of the pnp transistor Q_1.

(b) For $\beta_1 = 20$, $\beta_2 = 50$, $I_{SE} = 10^{-14}$ A, find the effective current gain of the compound device and its V_{BE} when $I_C = 100$ mA. Let $n = 1$.

Ans. (b) 1000; 0.651 V

14.7 VARIATIONS ON THE CLASS AB CONFIGURATION

14.7.3 Short-Circuit Protection

Figure 14.28 shows a class AB output stage equipped with protection against the effect of short-circuiting the output while the stage is sourcing current. The large current that flows through Q_1 in the event of a short circuit will develop a voltage drop across R_L of sufficient

FIGURE 14.28 A class AB output stage with short-circuit protection. The protection circuit shown operates in the event of an output short circuit while v_o is positive.
value to turn Q_1 on. The collector of Q_1 will then conduct most of the current I_{Q1}, robbing Q_1 of its base drive. The current through Q_1 will thus be reduced to a safe operating level.

This method of short-circuit protection is effective in ensuring device safety, but it has the disadvantage that under normal operation about 0.5 V drop might appear across each R_i. This means that the voltage swing at the output will be reduced by that much, in each direction. On the other hand, the inclusion of emitter resistors provides the additional benefit of protecting the output transistors against thermal runaway.

EXERCISE

Problem: In the circuit of Fig. 14.28 let $I_{Q1} = 0.2$ mA. Find the value of R_1 that causes Q_1 to turn on and absorb all 0.3 mA when the output current being sourced reaches 150 mA. For Q_1, $I_{Q1} = 0.165$ A and $n = 1$. If the normal peak output current is 100 mA, find the voltage drop across R_1 and the collector current of Q_1. Ans. 4.3 Ω; 430 mV; 0.3 μA

14.7.4 Thermal Shutdown

In addition to short-circuit protection, most IC power amplifiers are usually equipped with a circuit that senses the temperature of the chip and turns on a transistor in the event that the temperature exceeds a safe preset value. The turned-on transistor is connected in such a way that it absorbs the bias current of the amplifier, thus virtually shutting down its operation. Figure 14.29 shows a thermal-shutdown circuit. Here, transistor Q_1 is normally off. As the chip temperature rises, the combination of the positive temperature coefficient of zener diode Z_i and the negative temperature coefficient of V_{BE} causes the voltage at the emitter of Q_2 to rise. This in turn raises the voltage at the base of Q_1 to the point at which Q_1 turns on.

![Figure 14.29 Thermal-shutdown circuit.](image)

14.8 IC POWER AMPLIFIERS

A variety of IC power amplifiers are available. Most consist of a high-gain small-signal amplifier followed by a class AB output stage. Some have overall negative feedback already applied, resulting in a fixed closed-loop voltage gain. Others do not have on-chip feedback and are, in effect, op amps with large output-power capability. In fact, the output current-driving capability of any general-purpose op amp can be increased by cascading it with a class B or class AB output stage and applying overall negative feedback. The additional output stage can be either a discrete circuit or a hybrid IC such as the buffer discussed in the preceding section. In the following we discuss some power amplifier examples.

14.8.1 A Fixed-Gain IC Power Amplifier

Our first example is the LM380 (a product of National Semiconductor Corporation), which is a fixed-gain monolithic power amplifier. A simplified version of the internal circuit of the amplifier is shown in Fig. 14.30. The circuit consists of an input differential amplifier utilizing Q_1 and Q_3 as emitter followers for input buffering, and Q_1 and Q_2 as a differential pair with an emitter resistor R_1. The two resistors R_1 and R_2 provide dc paths to ground for the base currents of Q_1 and Q_2, thus enabling the input signal source to be capacitively coupled to either of the two input terminals.

The differential amplifier transistors Q_1 and Q_2 are biased by two separate direct currents: Q_2 is biased by a current from the dc supply V_C through the diode-connected transistor Q_1, and resistor R_1. Q_2 is biased by a dc current from the output terminal through R_2. Under quiescent conditions (i.e., with no input signal applied) the bias currents will be equal, and the current through and the voltage across R_1 will be zero. For the emitter current of Q_2 we can write

\[I_2 = \frac{V_C - V_{BE} - V_{Z_i} - 2V_{BE}}{R_1} \]

where we have neglected the small dc voltage drop across R_1. Assuming, for simplicity, all V_{BE} to be equal,

\[I_2 = \frac{V_C - 3V_{BE}}{R_1} \quad (14.43) \]

For the emitter current of Q_1 we have

\[I_1 = \frac{V_C - V_{BE} - V_{Z_i}}{R_1} \]

\[= \frac{V_C - 2V_{BE}}{R_2} \quad (14.44) \]

where V_C is the dc voltage at the output and we have neglected the small drop across R_1. Equating I_1 and I_2 and using the fact that $R_1 = 3R_2$ results in

\[V_C = 3V_{BE} + \frac{1}{2}V_C \quad (14.45) \]

Thus the output is biased at approximately half the power-supply voltage, as desired for maximum output voltage swing. An important feature is the feedback from the output to

\[3 \]

The main objective of showing this circuit is to point out some interesting design features. The circuit is not a detailed schematic diagram of what is actually on the chip.
FIGURE 14.30 The simplified internal circuit of the LM380 IC power amplifier. (Courtesy National Semiconductor Corporation.)

The emitter of Q_4 through R_2. This dc feedback acts to stabilize the output dc bias voltage at the value in Eq. (14.45). Qualitatively, the dc feedback functions as follows: If for some reason V_0 increases, a corresponding current increment will flow through R_2 and into the emitter of Q_4. Thus the collector current of Q_4 increases, resulting in a positive increment in the voltage at the base of Q_{12}. This, in turn, causes the collector current of Q_{12} to increase, thus bringing down the voltage at the base of Q_2 and hence V_0. Continuing with the description of the circuit in Fig. 14.30, we observe that the differential amplifier (Q_3, Q_4) has a current mirror load composed of Q_5 and Q_6 (refer to Section 7.5.5 for a discussion of active loads). The single-ended output voltage signal of the first stage appears at the collector of Q_6 and thus is applied to the base of the second-stage common-emitter amplifier Q_{12}. Transistor Q_{12} is biased by the constant-current source Q_u, which also acts as its active load. In actual operation, however, the load of Q_{12} will be dominated by the reflected resistance due to R_L. Capacitor C provides frequency compensation (see Chapter 8).

The output stage is class AB, utilizing a compound pnp transistor (Q_8 and Q_9). Negative feedback is applied from the output to the emitter of Q_4 via resistor R_2. To find the closed-loop gain consider the small-signal equivalent circuit shown in Fig. 14.31. Here, we have replaced the second-stage common-emitter amplifier and the output stage with an inverting amplifier block with gain A. We shall assume that the amplifier A has high gain and high input resistance, and thus the input signal currents into A are negligibly small. Under this assumption, Fig. 14.31 shows the analysis details with an input signal v_i applied to the inverting input terminal. The order of the analysis steps is indicated by the circled numbers. Note that since the input differential amplifier has a relatively large resistance, R_3, in the emitter circuit, most of the applied input voltage appears across R_3. In other words, the signal voltages across the emitter-base junctions of Q_1, Q_2, Q_3, and Q_4 are small in comparison to the voltage across R_3. Accordingly, the voltage gain can be found by writing a node equation at the collector of Q_6:

$$\frac{v_6}{v_i} = \frac{R_3}{R_2} = -50 \text{ V/V}$$

which yields

$$v_6 = -\frac{2R_2}{R_3} v_i - 50 \text{ V}$$

EXERCISE

E138 Deriving the base resistance between the collector of Q_2 and ground by R_2 shows using Fig. 14.31 that

$$\frac{v_8}{v_i} = \frac{-2R_2}{R_3}$$

which reduces to $(-2R_2/R_3)$ under the condition that $AR \gg R_2$.

FIGURE 14.31 Small-signal analysis of the circuit in Fig. 14.30. The circled numbers indicate the order of the analysis steps.
Figure 14.32 shows the general structure of a power op amp. It consists of a low-power op amp followed by a class AB buffer similar to that discussed in Section 14.7.1. The buffer consists of transistors Q1, Q2, Q4, and Q5 with bias resistors R1 and R2 and emitter degeneration resistors R3 and R6. The buffer supplies the required load current until the current increases to the point that the voltage drop across R3 (in the current-sourcing mode) becomes sufficiently large to turn Q3 on. Transistor Q5 then supplies the additional load current required. In the current-sinking mode, Q4 supplies the load current until sufficient voltage develops across R6 to turn Q4 on. Then Q4 sinks the additional load current. Thus the stage formed by Q1 and Q2 acts as a current booster. The power op amp is intended to be used with negative feedback in the usual closed-loop configurations. A circuit based on the structure of Fig. 14.33 is commercially available from National Semiconductor as LMH0101. This op amp is capable of providing a continuous output current of 2 A and with appropriate heat sinking can provide 40 W of output power (Wong and Johnson, 1981). The LMH0101 is fabricated using hybrid thick-film technology.

14.8.3 The Bridge Amplifier

We conclude this section with a discussion of a circuit configuration that is popular in high-power applications. This is the bridge amplifier configuration shown in Fig. 14.34 utilizing...
two power op amps, A_1 and A_2. While A_1 is connected in the noninverting configuration with a gain $K = 1 + (R_2/R_1)$, A_2 is connected as an inverting amplifier with a gain of equal magnitude $K = R_4/R_3$. The load R_L is floating and is connected between the output terminals of the two op amps.

If v_i is a sinusoid with amplitude V_i, the voltage swing at the output of each op amp will be $\pm KV_i$, and that across the load will be $\pm 2KV_i$. Thus, with op amps operated from ± 15-V supplies and capable of providing, say a ± 12-V output swing, an output swing of ± 24 V is obtained across the load of the bridge amplifier.

In designing bridge amplifiers, note should be taken of the fact that the peak current drawn from each op amp is $\frac{2KV_i}{R_L}$. This effect can be taken into account by considering the load seen by each op amp (to ground) to be $\frac{R_L}{2}$.

EXERCISE

Consider the circuit of Fig. 14.34 with $R_1 = R_2 = 10 \text{ kQ}$, $R_3 = 5 \text{ kQ}$, $R_4 = 15 \text{ kQ}$, and $R_c = 9 \text{ kQ}$. Find the voltage gain and the input resistance. The power supply used is ± 15 V. If v_i is a 20-V peak-to-peak sine wave, what is the peak-to-peak output voltage? What is the peak load current? What is the load power?

Ans.

3 V/V; 10 kΩ; 60 V; 3.25 W

14.9 MOS POWER TRANSISTORS

Although, thus far in this chapter we have dealt exclusively with BJT circuits there exist MOS power transistors with specifications that are quite competitive with those of BJTs. In this section we consider the structure, characteristics, and application of power MOSFETs.

14.9.1 Structure of the Power MOSFET

The MOSFET structure studied in Chapter 4 (Fig. 4.1) is not suitable for high-power applications. To appreciate this fact, recall that the drain current of an n-channel MOSFET operating in the saturation region is given by

$$i_D = \frac{1}{2} \mu C_w \left(\frac{W}{L} \right) (V_G - V_T)^2$$

(14.46)

It follows that to increase the current capability of the MOSFET, its width W should be made large and its channel length L should be made as small as possible. Unfortunately, however, reducing the channel length of the standard MOSFET structure results in a drastic reduction in its breakdown voltage. Specifically, the depletion region of the reverse-biased body-to-drain junction spreads into the short channel, resulting in breakdown at a relatively low voltage. Thus the resulting device would not be capable of handling the high voltages typical of power-transistor applications. For this reason, new structures had to be found for fabricating short-channel (1- to 2-μm) MOSFETs with high breakdown voltages.

At the present time the most popular structure for a power MOSFET is the double-diffused or DMOS transistor shown in Fig. 14.35. As indicated, the device is fabricated on a lightly doped n-type substrate with a heavily doped region at the bottom for the drain contact. Two diffusions are employed, one to form the p-type body region and another to form the n-type source region.

The DMOS device operates as follows. Application of a positive gate voltage, v_{GS}, greater than the threshold voltage V_T induces a lateral n-channel in the p-type body region underneath the gate oxide. The resulting channel is short: its length is denoted L in Fig. 14.35. Current is then conducted by electrons from the source moving through the resulting short channel to the substrate and then vertically down the substrate to the drain. This should be contrasted with the lateral current flow in the standard small-signal MOSFET structure (Chapter 4).

Even though the DMOS transistor has a short channel, its breakdown voltage can be very high (as high as 600 V). This is because the depletion region between the substrate and the body extends mostly in the lightly doped substrate and does not spread into the channel. The result is a MOS transistor that simultaneously has a high current capability (50 A is possible).

1 See Appendix A for a description of the IC fabrication process.
as well as the high breakdown voltage just mentioned. Finally, we note that the vertical structure of the device provides efficient utilization of the silicon area.

An earlier structure used for power MOS transistors deserves mention. This is the V-groove MOS device [see Severns (1984)]. Although still in use, the V-groove MOSFET has lost application ground to the vertical DMOS structure of Fig. 14.35, except possibly for high-frequency applications. Because of space limitations, we shall not describe the V-groove MOSFET.

14.9.2 Characteristics of Power MOSFETs

In spite of their radically different structure, power MOSFETs exhibit characteristics that are quite similar to those of the small-signal MOSFETs studied in Chapter 4. Important differences exist, however, and these are discussed next.

Power MOSFETs have threshold voltages in the range of 2 V to 4 V. In saturation, the drain current is related to V_{GS} by the square-law characteristic of Eq. (14.46). However, as shown in Fig. 14.36, the i_D-V_{GS} characteristic becomes linear for larger values of V_{GS}. The linear portion of the characteristic occurs as a result of the high electric field along the short channel, causing the velocity of charge carriers to reach an upper limit, a phenomenon known as velocity saturation. The drain current is then given by

$$i_D = \frac{1}{2} C_{ox} W U_{th}(V_{GS} - V_T)$$

where U_{th} is the saturated velocity value (5×10^6 cm/s for electrons in silicon). The linear i_D-V_{GS} relationship implies a constant g_m in the velocity-saturation region. It is interesting to note that g_m is proportional to W, which is usually large for power devices, thus power MOSFETs exhibit relatively high transconductance values.

The i_D-V_{GS} characteristic shown in Fig. 14.36 includes a segment labeled "subthreshold." Though of little significance for power devices, the subthreshold region of operation is of interest in very-low-power applications (see Section 4.1.9).

14.9.3 Temperature Effects

Of considerable interest in the design of MOS power circuits is the variation of the MOSFET characteristics with temperature, illustrated in Fig. 14.37. Observe that there is a value of V_{GS} (in the range of 4 V to 6 V for most power MOSFETs) at which the temperature coefficient of i_D is zero. At higher values of V_{GS}, i_D exhibits a negative temperature coefficient. This is a significant property: It implies that a MOSFET operating beyond the zero-temperature-coefficient point does not suffer from the possibility of thermal runaway. This is not the case, however, at low currents (i.e., lower than the zero-temperature-coefficient point). In the (relatively) low-current region, the temperature coefficient of i_D is positive, and the power MOSFET can easily suffer thermal runaway (with unhappy consequences). Since class AB output stages are biased at low currents, means must be provided to guard against thermal runaway.

The reason for the positive temperature coefficient of i_D at low currents is that V_{tof} is relatively low, and the temperature dependence is dominated by the negative temperature coefficient of V_T (in the range of -3 mV/°C to -6 mV/°C), which causes V_{tof} to rise with temperature.

14.9.4 Comparison with BJTs

The power MOSFET does not suffer from second breakdown, which limits the safe operating area of BJTs. Also, power MOSFETs do not require the large base-drive currents of power BJTs. Note, however, that the driver stage in a MOS power amplifier should be capable of supplying sufficient current to charge and discharge the MOSFET's large and nonlinear input capacitance in the time allotted. Finally, the power MOSFET features, in general, a
higher speed of operation than the power BJT. This makes MOS power transistors especially suited to switching applications—for instance, in motor-control circuits.

14.9.5 A Class AB Output Stage Utilizing MOSFETs

As an application of power MOSFETs, we show in Fig. 14.38 a class AB output stage utilizing a pair of complementary MOSFETs and employing BJTs for biasing and in the driver stage. The latter consists of complementary Darlington emitter followers formed by Q_i through g and has the low output resistance necessary for driving the output MOSFETs at high speeds.

Of special interest in the circuit of Fig. 14.38 is the bias circuit utilizing two V_{BE} multipliers formed by Q_5 and Q_6 and their associated resistors. Transistor Q_6 is placed in direct thermal contact with the output transistors; this is achieved by simply mounting Q_6 on their common heat sink. Thus, by the appropriate choice of the V_{BE} multiplication factor of g_6, the bias voltage V_{GG} (between the gates of the output transistors) can be made to decrease with temperature at the same rate as that of the sum of the threshold voltages ($V_{thN} + V_{thP}$).

FIGURE 14.38 A class AB amplifier with MOS output transistors and BJT drivers. Resistor R_3 is adjusted to provide temperature compensation while R_4 is adjusted to yield the desired value of quiescent current in the output transistors. Resistors R_a are used to suppress parasitic oscillations at high frequencies. Typically, $R_a = 100$ kΩ.

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of output circuits.

14.10 SPICE SIMULATION EXAMPLE

We investigate the operation of the class B output stage whose Capture schematic is shown in Fig. 14.39 for the power transistors, we use the discrete BJTs MJE243 and MJE253 (from ON Semiconductor) which are rated for a maximum continuous collector current $I_{Cmax} = 4$ A and a maximum collector-emitter voltage of $V_{Cmax} = 100$ V. To permit comparison with the hand analysis performed in Example 14.11, we use, in the simulation, component and voltage values identical of the output MOSFETs. In this way the quiescent current of the output transistors can be stabilized against temperature variations.

Analytically, V_{GG} is given by

$$V_{GG} = (1 + \frac{R_1}{R_2})V_{BE} + (1 + \frac{R_3}{R_4})V_{BE} - 4V_t$$

(14.48)

Since V_{BE} is thermally coupled to the output devices while the other BJTs remain at constant temperature, we have

$$\frac{\partial V_{GG}}{\partial T} = \frac{\partial V_{BE}}{\partial T} = \frac{\partial V_{BE}}{\partial T} = -2 \text{ mV/°C}$$

(14.49)

which is the relationship needed to determine R_1/R_2 so that $\partial V_{GG}/\partial T = \partial V_{BE}/\partial T$. The other V_{BE} multiplier is then adjusted to yield the value of V_{GG} required for the desired quiescent current in Q_N and Q_P.

EXERCISES

14.18 For the circuit in Fig. 14.38, find the ratio R_1/R_2 that provides temperature stabilization of the quiescent current in Q_N and Q_P. Assume that $|V_t|$ changes at -3 mV/°C and that $\partial V_{BE}/\partial T = -2 \text{ mV/°C}$.

14.19 For the circuit in Fig. 14.38 assume that the BJTs have a nominal V_{BE} of 0.7 V and that the MOSFETs have $V_{th} = 3$ V and $g_6 = 100$ mS. It is required to establish a quiescent current of 100 mA in the output stage and 20 mA in the driver stage. Find V_{CC}, V_{GG}, R_1, and R_2/R_3. Use the values of V_{BE} found in Exercise 14.18.

14.10 SPICE SIMULATION EXAMPLE

We conclude this chapter by presenting an example that illustrates the use of SPICE in the analysis of output circuits.

EXAMPLE 14.10

CLASS B OUTPUT STAGE

We investigate the operation of the class B output stage whose Capture schematic is shown in Fig. 14.39. For the power transistors, we use the discrete BJTs MJE243 and MJE253 (from ON Semiconductor) which are rated for a maximum continuous collector current $I_{Cmax} = 4$ A and a maximum collector-emitter voltage of $V_{Cmax} = 100$ V. To permit comparison with the hand analysis performed in Example 14.11, we use, in the simulation, component and voltage values identical
PARAMETERS:

\[RL = 8 \]

\[VCC = 23 \]

\[V_{CC} = -V_{CC} \]

\[V_{OFF} = 0 \]

\[FREQ = 1k \]

\[I_{1} \approx \frac{V_{IN}}{2RL} \]

\[Q_{MJE243} \]

\[Q_{MJE253} \]

\[R_{L} \]

\[I(RL) \]

\[V(OUT) \]

\[VCC \]

\[Q_{P} \]

\[D \]

\[VCC \]

\[V_{CC} \]

\[OUT \]

\[IN \]

\[VIN \]

\[VAMPL = 17.9 \]

\[FREQ = 1k \]

\[(R_L) \]

\[VCC \]

\[0 \]

\[0 \]

FIGURE 14.39 Capture schematic of the class B output stage in Example 14.6.

FIGURE 14.40 Several waveforms associated with the class B output stage (shown in Fig. 14.39) when excited by a 17.9-V, 1-kHz sinusoidal signal. The upper graph displays the voltage across the load resistance, the middle graph displays the load current, and the lower graph displays the instantaneous and average power dissipated by the load.

FIGURE 14.41 The voltage (upper graph), current (middle graph), and instantaneous and average power (bottom graph) supplied by the positive voltage supply (+V_{CC}) in the circuit of Fig. 14.39.
CHAPTER 14 OUTPUT STAGES AND POWER AMPLIFIERS

- IC (QP) • (V (QP:C) - V (QP:E)) o AVG (IC (QP) • (V (QP:C) - V (QP:E)))

Time (ms)

FIGURE 14.42 Waveforms of the voltage across, the current through, and the power dissipated in the pnp transistor (QP) of the output stage shown in Fig. 14.39.

Various Power Terms Associated with the Class B Output Stage Shown in Fig. 14.39 as Computed by Hand and by PSpice Analysis.

<table>
<thead>
<tr>
<th>Power/Efficiency</th>
<th>Equation</th>
<th>Hand Analysis (Example 14.1)</th>
<th>PSpice</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_s</td>
<td>$\frac{2}{\pi} V^2 \cdot \frac{1}{2} R_L$</td>
<td>31.2 W</td>
<td>30.0 W</td>
<td>4</td>
</tr>
<tr>
<td>P_d</td>
<td>$\frac{2}{\pi} V^2 \cdot \frac{1}{2} R_L$</td>
<td>13.0 W</td>
<td>12.4 W</td>
<td>4.6</td>
</tr>
<tr>
<td>P_i</td>
<td>$\frac{1}{2} R_L$</td>
<td>18.2 W</td>
<td>17.6 W</td>
<td>3.3</td>
</tr>
<tr>
<td>η</td>
<td>$\frac{P_d}{P_s} \times 100%$</td>
<td>58.3%</td>
<td>58.6%</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Relative percentage error between the values predicted by hand and by PSpice.

Table 14.1 provides a comparison of the results found from the PSpice simulation and the corresponding values obtained using hand analysis in Example 14.1. Observe that the two sets of results are quite close.

To investigate the crossover distortion further, we present in Fig. 14.43 a plot of the voltage transfer characteristic (VTC) of the class B output stage. This plot is obtained through a dc-analysis simulation with m_s swept over the range -10 V to +10 V in 1.0-mV increments. Using

![Figure 14.43](image)

Probe we determine that the slope of the VTC is nearly unity and that the dead band extends from -0.60 to +0.58 V. The effect of the crossover distortion can be quantified by performing a Fourier analysis on the output voltage waveform in PSpice. This analysis decomposes the waveform generated through a transient analysis into its Fourier-series components. Further, PSpice computes the total harmonic distortion (THD) of the output waveform. The results obtained from the simulation output file are as follows:

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(OUT)

<table>
<thead>
<tr>
<th>NO</th>
<th>FREQUENCY</th>
<th>MAGNITUDE</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000E+03</td>
<td>8.744E-06</td>
<td>2.199E-03</td>
</tr>
<tr>
<td>2</td>
<td>2.000E+03</td>
<td>9.888E-03</td>
<td>8.064E-03</td>
</tr>
<tr>
<td>3</td>
<td>3.000E+03</td>
<td>4.174E-03</td>
<td>9.195E-02</td>
</tr>
<tr>
<td>4</td>
<td>4.000E+03</td>
<td>1.809E-03</td>
<td>2.431E-01</td>
</tr>
<tr>
<td>5</td>
<td>5.000E+03</td>
<td>3.179E-01</td>
<td>9.409E-02</td>
</tr>
<tr>
<td>6</td>
<td>6.000E+03</td>
<td>5.633E-04</td>
<td>9.159E+01</td>
</tr>
<tr>
<td>7</td>
<td>7.000E+03</td>
<td>9.196E-04</td>
<td>-1.799E-02</td>
</tr>
<tr>
<td>8</td>
<td>8.000E+03</td>
<td>1.436E-04</td>
<td>9.129E+01</td>
</tr>
<tr>
<td>9</td>
<td>9.000E+03</td>
<td>2.437E-02</td>
<td>9.129E+01</td>
</tr>
<tr>
<td>10</td>
<td>1.000E+04</td>
<td>3.243E-04</td>
<td>9.129E+01</td>
</tr>
</tbody>
</table>

TOTAL HARMONIC DISTORTION = 2.140017E+00 PERCENT

These Fourier components are used to plot the line spectrum shown in Fig. 14.44. We note that the output waveform is rather rich in odd harmonics and that the resulting THD is rather high (2.14%).
Output stages are classified according to the transistor conduction angle: class A (360°), class AB (slightly more than 180°), class B (180°), and class C (less than 180°).

The most common class A output stage is the emitter follower. It is biased at a current greater than the peak load current.

The class AB output stage dissipates its maximum power under quiescent conditions ($v_v = 0$). It achieves a maximum power conversion efficiency of 25%.

The class B stage is biased at zero current, and thus dissipates no power in quiescence.

The class C output stage reduces the base-current drive requirement. In integrated circuits, the corresponding npn configuration is commonly used.

Problems

Section 14.2: Class A Output Stage

14.1 A class A emitter follower, biased using the circuit shown in Fig. 14.2, uses $V_{cc} = 5 \, \text{V}$, $R = R_c = 1 \, \text{k}\Omega$, with all transistors (including Q_3) identical. Assume $V_T = 0.7 \, \text{V}$, $V_{be} = 0.7 \, \text{V}$, and V_B to be very large. For linear operation, what are the upper and lower limits of output voltage, and the corresponding inputs? How do these values change if the emitter-base junction area of Q_3 is made twice as big as that of Q_2? Half as big?

14.2 A source-follower circuit using NMOS transistors is constructed following the pattern shown in Fig. 14.2. Assume $V_{cc} = 5 \, \text{V}$, $I_{DD} = 20 \, \text{mA}$, $V_{dd} = 5 \, \text{V}$, $R = R_c = 1 \, \text{k}\Omega$. For linear operation, what are the upper and lower limits of the output voltage, and the corresponding inputs?

14.3 Using the follower configuration shown in Fig. 14.2 with $29 \, \text{V}$ supplies, provide a design capable of ±7 V outputs with a 1-kΩ load, using the smallest possible total supply current. You are provided with four identical, high-$

14.4 Consider the operation of the follower circuit of Fig. 14.2, for which the output voltage range is ±5 V, is required using $V_{cc} = 10 \, \text{V}$. The circuit is to be designed such that the current variation in the emitter-follower transistor is no greater than a factor of 10, for load resistances as low as 500 Ω. What is the value of R required? Find the incremental voltage gain of the resulting follower at $V_{cc} = +5 \, \text{V}$, and $-5 \, \text{V}$, with a 100-Ω load. What is the percentage change in gain over this range of R?

14.5 Consider the operation of the follower circuit of Fig. 14.2 for which $R = V_{cc}/I$, when driven by a square wave such that the output ranges from $+V_{cc}$ to $-V_{cc}$ (ignoring $V_{ce(sat)}$). For this situation, sketch the equivalent of Fig. 14.4 for R_L, V_{cc}, and V_T. Repeat for a square-wave output that has peak levels of $2V_{cc}$.

14.6 Consider the situation described in Exercise 14.4 for square-wave outputs having peak-to-peak values of $2V_{cc}$ and V_{cc}, and for sine waves of the same peak-to-peak values, find the average power loss in the current-source transistor Q_2.

14.7 Reconsider the situation described in Exercise 14.4 for variation in V_{cc}—specifically for $V_{cc} = 16 \, \text{V}$, 12 V, 8 V, and 5 V. Assume V_{be} is nearly zero. What is the power conversion efficiency in each case?

14.8 The BiCMOS follower shown in Fig. P14.8 uses devices for which $V_{be} = 0.7 \, \text{V}$, $V_{cc} = 0.3 \, \text{V}$, $\mu C_{ox} W/L = 20 \, \text{mAs}^2/\text{V}^2$.
and \(v = -2 \text{ V} \). For linear operation, what is the range of output voltage for which the amplifier gain \(L \) is constant? Assume that the amplifier gain is \(100 \text{ V/V} \). What is the smallest value of load resistance that can be tolerated, if the amplifier gain is allowed to vary by more than \(10\% \)? What is the maximum power-conversion efficiency of the amplifier?

SECTION 14.3: CLASS B OUTPUT STAGE

14.9 Consider the circuit of a complementary-BJT class B output stage. For what value of input signal does the crossover distortion represent a 10% loss in peak amplitude?

14.10 Consider the feedback configuration with a class B output stage shown in Fig. 14.9. Let the amplifier gain \(A_2 = 100 \text{ V/V} \). Derive an expression for \(v_C \) versus \(v_0 \), assuming that \(|V_{CE}| = 0.7 \text{ V} \). Sketch the transfer characteristic \(v_C \) versus \(v_0 \) and compare it with that without feedback.

14.11 Consider the class B output stage, using enhancement MOSFETs, shown in Fig. P14.11. Let the devices have \(|V| = 1 \text{ V} \) and \(\mu C/W \). With a 10-kHz sine-wave input of 5-V peak and a high value of load resistance, what peak output voltage would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistance is the peak output voltage reduced to half the input?

SECTION 14.4: CLASS AB OUTPUT STAGE

14.14 A class B output stage is required to deliver an average power of 100 W into a 16-\(\Omega \) load. The peak supply voltage is \(20 \text{ V} \). For what value of input signal does the crossover distortion represent a 10% loss in peak amplitude? What is the maximum power-conversion efficiency?

14.15 Consider the class B output stage with a square-wave output voltage of amplitude \(v_0 \) across a load \(R_1 \) and employing power supplies \(V_{DC} \). Neglecting the effects of finite \(V_{BE} \) and \(V_{CE} \), determine the peak load power, the power-supply voltage required, the maximum attainable power-conversion efficiency, and the output voltage amplitude for which the crossover distortion reaches its peak, and the corresponding value of power-conversion efficiency.

SECTION 14.5: BIASING THE CLASS AB CIRCUIT

14.19 Consider the diode-based class B circuit of Fig. 14.14. For \(I_{SAT} = 100 \text{ mA} \) and the input signal is 1 mA, find the largest possible output power available, in each case?

14.20 A class AB output stage using two-diode bias network as shown in Fig. 14.14 utilizes diodes having the same anode area as the output transistors. For \(R_L = 10 \text{ \(\Omega \)} \) and \(V_{CC} = 0.5 \text{ V} \), \(R_h = 100 \text{ \(\Omega \)} \), \(R_b = 50 \), and \(V_{CE} = 0 \text{ V} \), what is the quiescent current? What is the maximum positive and negative output signal levels? To achieve a positive peak output level equal to the negative peak level, what value of \(R_b \) is needed if \(I_B \) is held at 50 mA? For this value, what does \(L \) become?

SECTION 14.6: POWER BJTs

14.24 A class AB output stage using a two-diode bias network as shown in Fig. 14.14 utilizes diodes having the same anode area as the output transistors. As a room temperature of about 20°C the quiescent current is 1 mA and \(V_{CE} = 0.6 \text{ V} \). Through a manufacturing error, the thermal coupling between the output transistors and the biasing diode-connected transistors is omitted. After some output activity, the devices heat up to 70°C while the biasing devices remain at 20°C. Thus while the power dissipated in the output transistors increases, the quiescent current in the output devices decreases. To calculate the new current value, recall that there are two effects: \(I_T \) increases by about 14%/°C and \(V_T \) is 47°C lower for each 1°C change, where \(T = (273° + \text{ temperature in °C}) \). With \(T = 25°C \) operating at an ambient temperature of 30°C. How can you improve the power dissipation in each transistor for a sine-wave input with a factor-of-2 safety margin is to be used, what is the maximum attainable power-conversion efficiency?

14.25 A power transistor operating at an ambient temperature of 30°C with a collector-emitter voltage of 20 V. What is the mean power rating at 25°C of the power transistor when dissipating 100 mW at 100°C? How can you improve the power dissipation in each transistor for a sine-wave input with a factor-of-2 safety margin is to be used, what is the maximum attainable power-conversion efficiency?

14.26 A power transistor is specified to have a maximum junction-temperature of 150°C. What is the power rating operating at an ambient temperature of 70°C? How can you improve the power dissipation in each transistor for a sine-wave input with a factor-of-2 safety margin is to be used, what is the maximum attainable power-conversion efficiency?
14.30 A power transistor for which \(V_{BO} = 180 \)°C can dissipate 50 W at a case temperature of 55°C. If it is connected to a heat sink using an insulating washer for which the thermal resistance is 0.6°C/W, what is the thermal resistance of the device? What is the thermal resistance of the device, \(R_{th} \), from junction to case?

14.31 A pin power transistor operating at \(I_c = 10 \) A is found to have a base current of 0.5 A and an incremental base input resistance of 0.95 \(\Omega \). What value of \(r_i \) do you suspect? (At this high current density, \(n = 2 \).)

14.32 A base spreading resistance \(r_s \) of 0.8 \(\Omega \) has been measured for an npn power transistor operating at \(I_c = 5 \) A, with a base-emitter voltage of 1.05 V and a base current of 150 mA. Assuming that \(n = 2 \) for high-current-density operation, what base-emitter voltage would you expect for operation at \(I_c = 2 \) A?

SECTION 14.7: VARIATIONS ON THE CLASS AB CONFIGURATION

14.33 Use the results given in the answer to Exercise 14.11 to determine the input current of the circuit in Fig. 14.24 for \(V_{CC} = 0 \) and 30 V with infinite and 100-\(\Omega \) loads.

14.34 Consider the circuit of Fig. 14.24 in which \(Q_1 \) and \(Q_2 \) are matched, and \(Q_1 \) and \(Q_2 \) are matched but have three times the junction area of the others. For \(V_{CC} = 10 \) V, find values for resistors \(R_c \) and \(R_e \) which allow for a base current of at least 10 mA in \(Q_1 \) and \(Q_2 \) at \(V_T = 45 \) V (when a load demand \(I_c \)) with a 2:1 variation in currents in \(Q_1 \) and \(Q_2 \) and a no-load quiescent current of 40 mA in \(Q_1 \) and \(Q_2 \). \(R_e \) \(\geq \) 150, and \(R_c \). 50. For input voltages around 5 V, estimate the output resistance of the overall follower driven by a source having zero resistance. For an input voltage of 5 V and a load resistance of 2 \(\Omega \), what output voltage results? \(Q_1 \) and \(Q_2 \) have \(V_{BE} = 0.7 \) V at a current of 10 mA and exhibit a constant gain of 10. What is the output voltage of the circuit in Fig. 14.24 for \(V_{CC} = 5 \) V, \(R_e = 100 \) \(\Omega \), and \(R_c = 1 \) k\(\Omega \)?

14.35 A circuit resembling that in Fig. 14.21 uses four matched transistors for which \(V_{BE} = 0.7 \) V at 10 mA, \(n = 1 \), and \(\beta = 50 \). Resistors \(R_1 \) and \(R_2 \) are replaced by 2 \(\Omega \)-current sources, and \(R_3 \) is removed. What quiescent current flows in the output transistors? What bias current flows in the bases of the input transistors? Where does it flow? What is the net input current (the offset current) for a \(\beta \) mismatch of 10%? For a load resistance \(R_L = 100 \) \(\Omega \), what is the input resistance? What is the small signal voltage gain?

14.36 Characterize a Darlington compound transistor formed from two npn BJTs for which \(\beta_1 = 50, V_{BE1} = 0.7 \) V at 1 mA, and \(n = 1 \). For operation at 10 mA, what values would you expect for \(V_{BE}, \beta_1, V_{BE1}, \) and \(V_{BE2} \)?

14.37 For the circuit in Fig. 14.37 in which the transistors have \(V_{BE} = 0.7 \) V and \(\beta = 100, \) find \(I_c, R_c, V_{CE}, I_B, \) and \(R_B \).

14.38 The BJTs in the circuit of Fig. 14.38 have \(\beta = 10, \) \(V_{BE} = 0.7 \) V, and \(V_{CE} = 100 \) V.

FIGURE P14.37

FIGURE P14.38

(a) Find the collector current of each transistor and the value of \(V_{CE} \).

(b) Replacing each BJT with its hybrid-\(\pi \) model, show that

\[
\frac{V_{CE}}{V_{BE}} = \frac{\beta}{\beta + 1} \left(R_c + R_b \right)
\]

(c) Find the values of \(V_{CE} \) and \(I_c \).

14.39 Consider the compound-transistor class AB output stage shown in Fig. 14.37 in which \(Q_1 \) and \(Q_2 \) are matched transistors with \(V_{BE} = 0.7 \) V at 10 mA and \(\beta = 100, \) and \(Q_1 \) and \(Q_2 \) have \(V_{BE} = 0.7 \) V at 1 mA and \(\beta = 10, \) and \(Q_1 \) has \(V_{BE} = 0.7 \) V at 1-mA current and \(\beta = 10. \) All transistors have \(n = 1. \) Design the circuit for a quiescent current of 2 mA in \(Q_1 \) and \(Q_2 \) that is 10 times the standby base current in \(Q_1 \) and a current in \(Q_2 \) that is nine times that in the associated resistors. Find the values of the input voltage required to produce outputs of ±10 V for a 1-k\(\Omega \) load. Use \(V_{CC} = 15 \) V.

14.40 Repeat Exercise 14.13 for a design in which the load is increased in size by a factor of 10, all other conditions remaining the same.

14.41 Repeat Exercise 14.13 for a design in which the load is increased in size by a factor of 10, all other conditions remaining the same.

14.42 The circuit shown in Fig. 14.42 operates in a manner analogous to that in Fig. 14.28 to limit the output current from \(Q_1 \) in the event of a short circuit or other mishap. It has the advantage that the current-limiting resistor \(R \) does not appear directly at the output. Find the value of \(R \) that causes \(Q_2 \) to turn on and absorb all of \(I_{FEQ} = 2 \) mA, when the current being sourced reaches 250 mA. For \(Q_2 \), \(I_{CE} = 10 \) mA and \(n = 1. \) If the normal peak output current is 100 mA, find the voltage drop across \(R \) and the collector current in \(Q_2 \).

14.43 Consider the thermal shutdown circuit shown in Fig. 14.29. At 25°C, \(T_s \) is 6.8 V, and \(V_{CE} = 100 \) V. Design the circuit so that at 150°C, a current of 100 \(\mu \)A flows in each of \(Q_1 \) and \(Q_2 \). What is the current in \(Q_2 \) at 25°C?

SECTION 14.8: IC POWER AMPLIFIERS

14.44 In the power-amplifier circuit of Fig. 14.30 two transistors are important in controlling the overall voltage gain. Which are they? Which controls the gain alone? Which affects both the dc output level and the gain? A new design is being considered in which the output dc level is approximately \(V_{CC} \) (rather than approximately \(V_{CC} \) with a gain of 50 or so before). What changes are needed?

14.45 Consider the front end of the circuit in Fig. 14.30. For \(V_{CC} = 20 \) V, calculate approximate values for the bias currents in \(Q_1 \) through \(Q_6 \). Assume \(\beta = 100, V_{BE} = 0.7 \) V, and \(|V_S| = 0.7 \) V. Also find the dc voltage at the output.

14.46 Assume that the output voltage of the circuit of Fig. 14.30 is at signal ground (and thus the signal feedback is deactivated) and find the differential and common-mode input resistances. For this purpose do not include \(R_1 \) and \(R_2 \). \(R_1 = 20 \) \(\Omega \), \(R_2 = 100 \) \(\Omega \), and \(R_{MB} = 20 \) \(\Omega \). Find the transistor current from the input to the output of the first stage (at the connection of the collectors of \(Q_1 \) and \(Q_2 \) and the base of \(Q_3 \)).

14.47 It is required to use the LM380 power amplifier to drive an 8-\(\Omega \) loudspeaker while limiting the maximum possible device dissipation to 1.5 W. Use the graph of Fig. 14.32 to determine the maximum possible power-supply voltage that can be used. (Use only the given graphs; do not interpolate.) If the maximum allowed THD is to be 3%, what is the maximum possible load power? To deliver this power to the loudspeaker what peak-to-peak output sinusoidal voltage is required?

14.48 Consider the LM380 amplifier. Assume that when the amplifier is operated with a 20-V supply, the transconductance of the first stage is 1.6 mA/V. Find the unity-gain
D14.49 Consider the power-op-amp output stage shown in Fig. 14.33. Using a ±15-V supply, provide a design that provides an output of ±11 V or more, with currents up to ±20 mA provided primarily by Q3 and Q4, with a 10% contribution by Q5 and Q6, and peak output currents of 1 A at full output (+11 V). As the basis of an initial design, use $\beta = 50$ and $|V_{BE}| = 0.7$ V for all devices at all currents. Also use $R_S = R_G = 0$.

D14.50 For the circuit in Fig. P14.50, assuming all transistors to have large β, show that $i_o = v_o/R$. (This voltage-to-current converter is an application of a versatile circuit building block known as the current conveyor; see Sedra and Roberts (1990).) For $\beta = 100$, by what approximate percentage is i_o actually lower than this ideal value?

D14.51 For the bridge amplifier of Fig. 14.34, let $R_1 = R_2 = 10$ kΩ. Find R_3 and R_4 to obtain an overall gain of 10.

D14.52 An alternative bridge amplifier configuration, with high input resistance, is shown in Fig. P14.52. (Note the similarity of this circuit to the front end of the instrumentation amplifier circuit shown in Fig. 2.20b.) What is the gain v_o/v_i? For op-amps (using ±15-V supplies) that limit at ±15 V, what is the largest sine wave you can provide across R_L?

B14.54 Consider the design of the class AB amplifier of Fig. 14.38 under the following conditions: $|V_i| = 2$ V, $\mu C_m W/L = 200$ mA/V², $|V_{beat}| = 0.7$ V, β is high, $I_C = I_B = 10$ mA, $I_{max} = 100$ µA, $I_C = I_B = I_{CS}/2$, $R_1 = R_2$, the temperature coefficient of $V_{BE} = -2$ mV/C, and the temperature coefficient of $V_t = -3$ mV/C in the low-current region. Find the values of R, R_1, R_2, R_3, and R_4. Assume Q_5, Q_6, and Q_7 to be thermally coupled. (R_{BIAS} used to suppress parasitic oscillation at high frequency, is usually 100 Ω or so.)

SECTION 14.9: MOS POWER TRANSISTORS

14.53 A particular power DMOS device for which $C_{ox} = 400$ µF/cm², W is 100 µm, and $V_{DSS} = 2$ V, enters velocity saturation at $v_{gs} = 5$ V. Use Eqs. (14.46) and (14.47) to find an expression for L and its value for this transistor. At what value of drain current does velocity saturation begin? For electrons in silicon, $U_a = 5 \times 10^4$ cm/s and $\mu_n = 500$ cm²/Vs. What is g_m for this device at high currents?
APPENDIXES

APPENDIX A
VLSI Fabrication Technology A-1

APPENDIX B
Two-Port Network Parameters B-1

APPENDIX C
Some Useful Network Theorems C-1

APPENDIX D
Single-Time-Constant Circuits D-1

APPENDIX E
s-Domain Analysis: Poles, Zeros, and Bode Plots E-1

APPENDIX F
Bibliography F-1

APPENDIX G
Standard Resistance Values and Unit Prefixes G-1

APPENDIX H
Answers to Selected Problems H-1
VLSI Fabrication Technology

INTRODUCTION
The purpose of this appendix is to familiarize the reader with VLSI (very-large-scale integrated circuit) fabrication technology. Brief explanations of standard silicon VLSI processing steps are given. The characteristics of devices available in CMOS and BICMOS fabrication technologies are also presented. In particular, the aspects of IC (integrated circuit) design that are distinct from discrete-circuit design will be discussed. To take proper advantage of the economics of integrated circuits, designers have had to overcome some serious device limitations (such as poor tolerances) while exploiting device advantages (such as good component matching). An understanding of device characteristics is therefore essential in designing good custom VLSIs or application-specific ICs (ASICs). This understanding is also very helpful when selecting commercially available ICs to implement a system design.

This appendix will consider only silicon-based technologies. Although gallium arsenide (GaAs) is also used to implement VLSI chips, silicon (Si) is by far the most popular material, forming a wide range of cost-performance trade-offs. Recent development in SiGe and strained-silicon technologies will further strengthen the position of Si-based fabrication processes in the microelectronics industry in the coming years.

Silicon is an abundant element, which occurs naturally in the form of sand. It can be refined using well-established techniques of purification and crystal growth. Silicon also exhibits suitable physical properties for fabricating active devices with good electrical characteristics. Moreover, silicon can be easily oxidized to form an excellent insulator, SiO₂ (glass). This native oxide is useful for constructing capacitors and MOSFETs. It also serves as a diffusion barrier that can mask against the diffusion of unwanted impurities into nearby high-purity silicon material. This masking property of silicon oxide allows the electrical properties of silicon to be easily altered in predefined areas. Therefore, active and passive elements can be built on the same piece of material (substrate). The components can then be interconnected using metal layers (similar to those used in printed-circuit boards) to form a so-called monolithic IC, which is essentially a single piece of material (rock!).

A.1 IC FABRICATION STEPS
The basic IC fabrication steps will be described in the following subsections. Some of these steps may be carried out many times, in different combinations and under different processing conditions during a complete fabrication run.
A.1 Wafer Preparation

The starting material for modern integrated circuits is very-high-purity silicon. The material is grown as a single-crystal ingot. It takes the form of a steel gray solid cylinder 10 cm to 30 cm in diameter (Fig. A.1) and can be 1 m to 2 m in length. This crystal is then sliced (like a loaf of bread) to produce circular wafers that are 400 µm to 600 µm thick (a micrometer or micron is a millionth of a meter). The surface of the wafer is then polished to a mirror finish using chemical and mechanical polishing (CMP) techniques. Semiconductor manufacturers usually purchase ready-made silicon wafers from a supplier and rarely start their process at the ingot stage.

The basic electrical and mechanical properties of the wafer depend on the orientation of the crystalline planes, as well as the concentration and type of impurities present. These variables are strictly controlled during crystal growth. Controlled amounts of impurities can be added to the pure silicon in a process known as doping. This allows the alteration of the electrical properties of the silicon, in particular its resistivity. It is also possible to control the conduction carrier type, either holes (in p-type silicon) or electrons (in n-type silicon), that is responsible for electrical conduction. If a large number of impurity atoms is added, then the silicon is said to be heavily doped (e.g., concentration > 10^18 atoms/cm^3). When designing the relative doping concentrations in semiconductor device structures, it is common to use n- and p-symbols. A heavily doped (low-resistivity) n-type silicon wafer would be referred to as n+ material, while a lightly doped region may be referred to as n-. The ability to control the type of impurity and the doping concentration in the silicon permits the formation of diodes, transistors, and resistors in flexible integrated-circuit form.

A.1.2 Oxidation

Oxidation refers to the chemical process of silicon reacting with oxygen to form silicon dioxide (SiO₂). To speed up the reaction, it is necessary to use special high-temperature furnaces. To avoid the introduction of even small quantities of contaminants (which could significantly alter the electrical properties of the silicon), it is necessary to maintain a clean environment. This is true for all processing steps involved in the fabrication of an integrated circuit. Specially filtered air is circulated in the processing area, and all personnel must wear special lint-free clothing.

The oxidant used in the reaction can be introduced either as a high-purity gas (in a process referred to as "dry oxidation") or as steam (for "wet oxidation"). In general, wet oxidation has a faster growth rate, but dry oxidation gives better electrical characteristics. In either case, the thermal oxidation process is critical to the formation of the oxide layer. The dielectric strength for a CVD oxide layer are not as good as those of a thermally grown oxide, but such a layer is reproducible and can be performed at room temperature. Ion implantation normally is used when accurate control of transportation is essential for device operation.

A.1.3 Diffusion

Diffusion is the process by which atoms move from a high-concentration region to a low-concentration region through the semiconductor crystal. The diffusion process is of great importance to the semiconductor industry. Diffusion is a method by which to introduce impurity atoms (dopants) into silicon to change its resistivity. The rate at which dopants diffuse in silicon is a strong function of temperature. Thus, for speed, diffusion of impurities is usually carried out at high temperatures (1000°C-1200°C) to obtain the desired doping profile. When the wafer is cooled to room temperature, the impurities are essentially "frozen" in position. The diffusion process is performed in furnaces similar to those used for oxidation. The depth to which the impurities diffuse depends both on the temperature and the time allocated.

The most common impurities used as dopants are boron, phosphorus, and arsenic. Boron is a p-type dopant, while phosphorus and arsenic are n-type dopants. These dopants can be effectively masked by thin silicon dioxide layers. By diffusing boron into an n-type substrate, a p-n junction (diode) is formed. If the doping concentration is heavy enough, the diffused layer can also be used as a conductor.

A.1.4 Ion Implantation

Ion implantation is another method used to introduce impurity atoms into the semiconductor crystal. An ion implanter produces ions of the desired dopant, accelerates them by an electric field, and allows them to strike the semiconductor surface. The ions become embedded in the crystal lattice. The depth of penetration is related to the energy of the ion beam, which can be controlled by the accelerating-field voltage. The quantity of ions implanted can be controlled by varying the beam current (flow of ions). Since both voltage and current can be accurately measured and controlled, ion implantation results in much more accurate and reproducible impurity profiles than can be obtained by diffusion. In addition, ion implantation can be performed at room temperature. Ion implantation normally is used when accurate control of the doping profile is essential for device operation.

A.1.5 Chemical-Vapor Deposition

Chemical-vapor deposition (CVD) is a process by which gases or vapors are chemically reacted, leading to the formation of solids on a substrate. CVD can be used to deposit various materials on a silicon substrate including SiO₂, Si₃N₄, and polysilicon. For instance, if silane gas and oxygen are allowed to react above a silicon substrate, the end product, silicon dioxide, will be deposited as a solid film on the silicon wafer surface. The properties of the CVD oxide layer are not as good as those of a thermally grown oxide, but such a layer is sufficiently thin to act as an electrical insulator. The advantage of a CVD layer is that the oxide depositions at a fast rate and a low temperature (below 500°C).

If silane gas alone is used, then a silicon layer will be deposited on the wafer. If the reaction temperature is high enough, the layer deposited will be a crystalline silicon layer (assuming that there is an exposed crystalline silicon substrate). Such a layer is called an epitaxial layer, and the deposition process is referred to as epitaxy, rather than CVD. At lower temperatures, or if the substrate surface is not single-crystal silicon, the atoms will not be able to align in the same crystalline direction. Such a layer is called polycrystalline.
silicon (poly Si), since it consists of many small crystals of silicon whose crystalline axes are oriented in random directions. These layers are normally doped very heavily to form highly conductive regions that can be used for electrical interconnections.

A.1.6 Metallization

The purpose of metallization is to interconnect the various components (transistors, capacitors, etc.) to form the desired integrated circuit. Metallization involves the deposition of a metal over the entire surface of the silicon. The required interconnection pattern is then selectively etched. The metal layer is normally deposited via a sputtering process. A pure metal disk (e.g., 99.99% aluminum) is placed under an argon (Ar) ion gun inside a vacuum chamber. The wafers are also mounted inside the chamber above the target. The Ar ions will not react with the metal, since Ar is a noble gas. However, their ions are made to physically bombard the target and literally knock atoms out of it. These metal atoms will then coat all the surface inside the chamber, including the wafers. The thickness of the metal film can be controlled by the length of time for sputtering, which is normally in the range of 1 to 2 minutes.

A.1.7 Photolithography

The surface geometry of the various integrated-circuit components is defined photographically. First, the wafer surface is coated with a photosensitive layer (called photoresist) using a spin-on technique. After this, a photographic plate with drawn patterns (e.g., a quartz plate with a chromium pattern) is used to selectively expose the photoresist under ultraviolet (UV) illumination. The exposed areas will be softened (for positive photoresist) or hardened (for negative photoresist). The exposed layer can then be removed using a chemical developer, causing the mask pattern to appear on the wafer. Very fine surface geometries can be reproduced accurately by this technique. Photolithography requires some of the most expensive equipment in VLSI fabrication. Currently, we are already approaching the physical limits of the photolithographic process. Deep UV light, for example, can be used to define patterns with resolution as fine as 50 nm. However, another technological breakthrough will be needed to achieve further geometry downscaling.

The patterned photoresist layer can be used as an effective masking layer to protect materials below (form wet chemical etching or reactive ion etching. Correspondingly, silicon dioxide, silicon nitride, polysilicon, and metal layers can be selectively removed using the appropriate etching methods. After the etching step(s), the photoresist is stripped away, leaving behind a permanent pattern, an image of the photomask, on the wafer surface.

To make this process even more challenging, multiple masking layers (here can be more than 20 layers in advanced VLSI fabrication processes) must be aligned precisely on top of previous layers. This must be done with even greater precision than is associated with the minimum dimensions of the masking patterns. This requirement imposes very critical mechanical and optical constraints on the photolithography equipment.

A.1.8 Packaging

A finished silicon wafer may contain several hundred or more finished circuits on chips. Each chip may contain from 10 to 10^6 or more transistors in a rectangular shape, typically between 1 mm and 10 mm on a side. The circuits are first tested electrically (while still in wafer form) using an automatic probing station. Bad circuits are marked for later identification. The circuits are then separated from each other (by dicing), and the good circuits (called dies) are mounted in packages or (headers). Examples of such IC packages are given in Fig. A.2. Fine gold wires are normally used to connect the pins of the package to the metallization pattern on the die. Finally, the package is sealed using plastic or epoxy under vacuum or in an inert atmosphere.

A.2 VLSI PROCESSES

Integrated-circuit fabrication was originally dominated by bipolar technology. But, by the late 1970s metal-oxide-semiconductor (MOS) technology was perceived to be more promising for VLSI implementation, owing to its higher packing density and lower power consumption. Since the early 1980s, complementary MOS (CMOS) technology has grown progressively to almost completely dominate the VLSI scene, leaving bipolar technology to fill specialized functions such as digital and high-speed analog and RF circuits. CMOS technologies continue to evolve, and in the late 1980s, the incorporation of bipolar devices led to the emergence of high-performance bipolar-CMOS (Bi-CMOS) fabrication processes that provide the best of both technologies. However, BiCMOS processes are very complicated and costly, since they require up to 15 to 20 masking levels per implementation—by comparison, standard CMOS processes may require only 10 to 12 masking levels.

The performance of CMOS and BiCMOS processes continues to improve, offering finer lithographic resolution. However, fundamental limitations in processing techniques and semiconductor properties have prompted us to explore alternate materials, Silicon-germanium (SiGe) and strained-Si technologies have emerged as good compromises which improve performance while maintaining manufacturing compatibility (hence low cost) with existing silicon-based CMOS fabrication equipment.

In the subsections that follow, we will examine, in turn, three aspects of modern IC fabrication, namely: typical CMOS process flow, the performance of the available components, and the inclusion of bipolar devices to form a BiCMOS process.

A.2.1 n-Well CMOS Process

Depending on the choice of starting material (substrate), CMOS processes can be identified as n-well, p-well, or twin-well processes, the latter being the most complicated but also the most flexible in the optimization of both the n- and p-channel devices. In addition, many advanced CMOS processes may make use of trench isolation, and silicon-on-insulator (SOI) technology to reduce parasitic capacitance (to achieve higher speed) and to improve packing density.

For simplicity, an n-well CMOS process is chosen for discussion. Another benefit of this choice is that it can also be easily extended into a BiCMOS process. The typical process flow is as shown in Fig. A.3a. A minimum of 7 masking layers is necessary. However, in practice most CMOS processes will also require additional layers such as n- and p-epoxies for better latchup immunity, a second polysilicon layer for capacitors, and multilayer metals for high-density interconnections. The number of layers would increase the total number of masking layers from 15 to 20.

The starting material for the n-well CMOS is a p-type substrate. The process begins with an n-well diffusion (Fig. A.3a). The n-well is required wherever n-type MOSFETs are to be
(a) Define n-well diffusion (mask #1)

Phosphorus diffusion

| n-type silicon substrate |

(b) Define active regions (mask #2)

Si₃N₄ SiO₂ Active region

(c) LOCOS oxidation

SiO₂ SiO₂ p Substrate

(d) Polysilicon gate (mask #3)

Polysilicon gate

(e) n+ diffusion (mask #4)

Arsenic implant

| n Substrate |

(f) p+ diffusion (mask #5)

Boron implant

| n Well |

(g) Contact holes (mask #6)

CVD oxide

| p Substrate |

(h) Metallization (mask #7)

A typical n-well CMOS process flow.

A thick silicon dioxide layer is etched to expose the regions for n-well diffusion. The unexposed regions will be protected from the n-type phosphorus impurity. Phosphorus is usually used for deep diffusions because it has a large diffusion coefficient and can diffuse faster than arsenic into the substrate.

The second step is to define the active region (where transistors are to be placed) using a technique called local oxidation (LOCOS). A silicon nitride (Si₃N₄) layer is deposited and patterned relative to the previous n-well regions (Fig. A.3b). The nitride-covered regions will not be oxidized. After a long wet oxidation step, thick-field oxide will appear in regions between transistors (Fig. A.3c). This thick-field oxide is necessary for isolating the transistors. It also allows interconnection layers to be routed on top of the field oxide without inadvertently forming a conduction channel at the silicon surface.

The next step is the formation of the polysilicon gate (Fig. A.3d). This is one of the most critical steps in the CMOS process. The thin oxide layer in the active region is first removed using wet etching followed by the growth of a high-quality thin gate oxide. Current 0.13 μm and 0.18 μm processes routinely use oxide thicknesses as thin as 20 Å to 50 Å (1 angstrom = 10⁻¹⁰ cm). A polysilicon layer, usually arsenic doped (n type), is then deposited and patterned. The photolithography is most demanding in this step, since the finest resolution is required to produce the shortest possible MOS channel length.

The polysilicon gate is a self-aligned structure and is preferred over the older type of metal gate structure. A heavy arsenic implant can be used to form the n-source and drain regions of the n-MOSFETs. The polysilicon gate also acts as a barrier to prevent the implant and prevents n regions from forming outside the active regions. A reversed photolithography step can be used to protect the n-MOSFETs during the p+ boron source and drain implant for the p-MOSFETs (Fig. A.3f). In both cases the separation between the source and drain diffusions—the channel length—is defined by the polysilicon gate mask alone, hence the self-alignment.

Before contact holes are opened, a thick layer of CVD oxide is deposited over the entire wafer. A photomask is used to define the contact window opening (Fig. A.3g) followed by a wet or dry oxide etch. A thin aluminum layer is then evaporated or sputtered onto the wafer. A final masking and etching step is used to pattern the interconnection (Fig. A.3h).

Not shown in the process flow is the final passivation step prior to packaging and wire bonding. A thick CVD oxide or pyrex glass is usually deposited on the wafer to serve as a protective layer.

A.2.2 Integrated Devices

Besides the obvious n- and p-channel MOSFETs, there are other devices that can be obtained by manipulating the masking layers. These include p-n junction diodes, MOS capacitors, and resistors.

A.2.3 MOSFETs

The n-channel MOSFET is preferred over the p-MOSFET (Fig. A.4). The electron surface mobility of the n-channel device is two to four times higher than that for holes. Therefore, with the same device size (W and L), the n-MOSFET offers higher current drive (or lower on-resistance) as well as higher transconductance.

In an integrated-circuit design environment, MOSFETs are characterized by their threshold voltage and device sizes. Usually the n- and p-channel devices are designed to have threshold voltages of similar magnitude for a particular process. The transconductance can be adjusted
APPENDIX A VLSI FABRICATION TECHNOLOGY

A.2 VLSI PROCESSES

A.2.4 Resistors

Resistors in integrated form are not very precise. They can be made from various diffusion regions as shown in Fig. A.5. Different diffusion regions have different resistivity. The n well is usually used for medium-value resistors, while the p+ and p+ diffusions are useful for low-value resistors. The actual resistance value can be defined by changing the length and width of diffused regions. The tolerance of the resistor value is very poor (20-50%), but the matching of two similar resistor values is quite good (5%). Thus circuit designers should design circuits that exploit resistor matching and avoid designs that require a specific resistor value.

All diffused resistors are self-isolated by the reversed-biased pn junctions. However, a serious drawback for these resistors is that they are accompanied by a substantial parasitic junction capacitance, making them not very useful for high-frequency applications. The reversed-biased pn junctions also exhibit a JFET effect, leading to a variation in the resistance value as the applied voltage is changed (a large voltage coefficient is undesirable). Since the mobilities of carriers vary with temperature, diffused resistors also exhibit a significant temperature coefficient.

A more useful resistor can be fabricated using the polysilicon layer that is placed on top of the thick-field oxide. The thin polysilicon layer provides better surface area matching and hence more accurate resistor ratios. Furthermore, the poly resistor is physically separated from the substrate, resulting in much lower parasitic capacitance and voltage coefficient.

A.2.5 Capacitors

Two types of capacitor structure are available in CMOS processes, MOS and interpoly capacitors (also MIM—metal-insulator-metal). The cross sections of these structures are as shown in Fig. A.6. The MOS gate capacitance, depicted in the center structure, is basically the gate-to-source capacitance of a MOSFET. The capacitance value is dependent on the gate area. The oxide thickness is the same as the gate oxide thickness in the MOSFET. This capacitor exhibits a large voltage dependence. To eliminate this problem, an additional n+ implant is required to form the bottom plate of the capacitors, as shown in the structure on the right. Both these MOS capacitors are physically in contact with the substrate, resulting in a large parasitic pn junction capacitance at the bottom plate.

The interpoly capacitor exhibits near ideal characteristics but at the expense of the inclusion of a second polysilicon layer to the CMOS process. Since this capacitor is placed on top of the thick-field oxide, parasitic effects are kept to a minimum.

A third and less often used capacitor is the junction capacitor. Any reverse-biased pn junction produces a depletion region that acts as a dielectric between the p and the n regions. The capacitance is determined by geometry and doping levels and has a large voltage coefficient. This type of capacitor is often used as a varistor (variable capacitor) for clamping circuits. However, this capacitor works only with reversed bias voltages.

For interpoly and MOS capacitors, the capacitance values can be controlled to within 1%. Practical capacitance values range from 0.5 pF to a few 10s of picofarads. The matching between similar-size capacitors can be within 0.1%. This property is extremely useful for designing precision analog CMOS circuits.

A.2.6 pn Junction Diodes

Whenever n-type and p-type diffusion regions are placed next to each other, a pn junction diode results. A useful structure is the n-well diode shown in Fig. A.7. The diode fabricated in an n well can provide a high breakdown voltage. This diode is essential for the input clamping circuits for protection against electrostatic discharge. The diode is also very useful as an on-chip temperature sensor by monitoring the variation of its forward voltage drop.

A.2.7 BiCMOS Process

An n-p vertical bipolar transistor can be integrated into the n-well CMOS process with the addition of a p-base diffusion region (Fig. A.8). The characteristics of this device depend on
A.2.8 Lateral pnp Transistor

The fact that most BiCMOS processes do not have optimized pnp transistors makes circuit design somewhat difficult. However, this would further complicate the process with the introduction of p-type epitaxy and one more masking step. Other variations on the bipolar transistor include the use of a polyemitter and self-aligned base contact to minimize parasitic effects.

A.2.9 p-Base and Pinched-Base Resistors

With the additional p-base diffusion in the BiCMOS process, two additional resistor structures are available. The p-base diffusion can be used to form a straightforward p-base resistor as shown in Fig. A.10. Normally, an n+ buried layer is used to reduce the series resistance of the collector, since the n well has a very high resistivity. However, this reduces the base width and the emitter area. The base width is determined by the difference in junction depth between the n+ and the p-base diffusions. The emitter area is determined by the junction area of the n+ diffusion at the emitter. The n well serves as the collector for the npn transistor. Typically, the npn transistor has a β in the range of 50 to 100 and a cutoff frequency greater than 10 GHz.

A.2.10 The SiGe BiCMOS Process

With the advent of wireless applications, the demand for high-performance, high-frequency RF integrated circuits is enjoying a tremendous growth. The fundamental limitations of physical material properties initially prevented silicon-based technology from competing with more expensive III-V compound technologies such as GaAs. By incorporating a controlled amount of germanium (Ge) into crystalline silicon (Si), the energy bandgap can be altered. The specific concentration profile of the Ge can be engineered in such a way that the energy bandgap can be gradually reduced from that in the pure Si region to a lower value in the SiGe region. This energy-bandgap reduction produces a built-in electrical field that can assist the movement of carriers, hence giving faster operating speed. Therefore, SiGe bipolar transistors can achieve significantly higher cutoff frequency (e.g., in the 50-70 GHz range). Another benefit is that the SiGe process is compatible with existing Si-based fabrication technology, ensuring a very favorable cost/performance ratio.

To take advantage of the SiGe material characteristics, the basic bipolar transistor structure must also be modified to further reduce parasitic capacitance (for higher speed) and to improve the injection efficiency (for higher gain). A symmetrical bipolar device structure is shown in Fig. A.11. The device makes use of trench isolation to reduce the collector sidewall capacitance between the n-well/p+ buried layer and the p-substrate. The emitter size and the p+ base contact site are defined by a self-aligned process to minimize the base-collector junction (Miller) capacitance. This type of device is called a heterojunction bipolar transistor (HBT), since the emitter-base junction is formed from two different types of material, polysilicon emitter and SiGe base. The injection efficiency is significantly better than a homojunction device (as in a
conventional BJT. Coupled with the fact that base width is typically only around 50 nm, it is easy to achieve a current gain of more than 100. In addition, not shown in Fig. A.1, multiple layers of metalization can be used to further reduce the device size and interconnect resistance. All these device features are necessary to complement the speed performance of the SiGe material.

A.3 VLSI LAYOUT

Each designed circuit schematic must be transformed into a layout that consists of the geometric representation of the circuit components and interconnections. With the advent of computer-aided design (CAD) tools, many of the conversion steps from schematic to layout can be carried out semi- or fully automatically. However, any good mixed-signal IC designer must have practiced full-custom layout at one point or another. To illustrate such a procedure we will consider the layout of a CMOS inverter.

Similar to the requirement in a printed-circuit-board layout to reduce crossover paths, the circuit must first be “flattened” and redrawn to eliminate any interconnection crossovers. Each process is made up of a specific set of masking layers. In this case, 7 layers are used. Each layer is usually assigned a unique color and fill pattern for ease of identification on a computer screen or on a printed color plot. The layout begins with the placement of the transistors. For illustration purposes (Fig. A.12), the p- and n-MOSFETs are placed in arrangements similar to that of the schematic. In practice, the designer is free to choose the most area-efficient layout that she can identify. The MOSFETs are defined by the active areas overlapped by the “Poly 1” layer. The MOS channel length and width are defined by the width of the “Poly 1” strip and that of the active region, respectively. The p-MOSFET is enclosed in an n-well. For more complex circuits, multiple n-wells can be used for different groups of p-MOSFETs. The n-MOSFET is enclosed by the n+ diffusion mask to form the source and drain, while the p-MOSFET is enclosed by the p+ diffusion mask. Contact holes are placed in regions that require connection to the metal layer. Finally, the “Metal 1” layer completes the interconnections.

The corresponding cross-sectional diagram of the CMOS inverter, viewed along the AA’ plane is shown in Fig. A.13. The poly-Si gates for both transistor are connected together to form the input terminal, X. The drains of both transistors are tied together via “Metal 1” to form the output terminal, Y. The sources of the n- and p-MOSFETs are connected to GND and VDD, respectively. Note that butting contacts consisting of side-by-side n+/p+ diffusions are used to tie the body potential of the n- and p-MOSFETs to the appropriate voltage levels.

When the layout is completed, the circuit must be verified using appropriate CAD tools including circuit extractor, design-rule checker (DRC), and circuit simulator. Once these verifications have been satisfied, the design can be “taped out” to a mask-making facility. A pattern generator (PG machine) can then draw the geometries on a glass or quartz photoplate using electronically driven shutters. Layers are drawn one-by-one onto different photoplates. When these plates have been developed, clear and dark patterns depicting the geometries on the layout will appear. A set of the photoplates for the CMOS inverter example is shown in Fig. A.14. Depending on whether the drawn geometries are meant to be opened as windows or kept as patterns, the plates can be “positive” or “negative” images with clear or dark fields. Note that these layers must be processed in sequence. In the steps of this sequence, they must be aligned within very fine tolerances to form the transistors and interconnections. Naturally, the greater the number of layers, the more difficult it is to maintain the alignment. A process with more layers also requires better photolithography equipment and possibly results in lower yield. Hence, each additional mask will be reflected in an increase in the final cost of the IC chip.
SUMMARY

This appendix presented an overview of the various aspects of VLSI fabrication procedures. This includes component characteristics, process flows, and layouts. This is by no means a complete account of state-of-the-art VLSI technologies. Interested readers should consult reference textbooks on this subject for more detailed discussions.

Two-Port Network Parameters

INTRODUCTION

At various points throughout the text, we make use of some of the different possible ways to characterize linear two-port networks. A summary of this topic is presented in this appendix.

B.1 CHARACTERIZATION OF LINEAR TWO-PORT NETWORKS

A two-port network (Fig. B.1) has four port variables: \(V_1, I_1, V_2, \) and \(I_2. \) If the two-port network is linear, we can use two of the variables as excitation variables and the other two as response variables. For instance, the network can be excited by a voltage \(V_1 \) at port 1 and a voltage \(V_2 \) at port 2, and the two currents, \(I_1 \) and \(I_2, \) can be measured to represent the network response. In this case \(V_1 \) and \(V_2 \) are independent variables and \(I_1 \) and \(I_2 \) are dependent variables, and the network operation can be described by the two equations

\[
\begin{align*}
I_1 &= y_{11}V_1 + y_{12}V_2 \\
I_2 &= y_{21}V_1 + y_{22}V_2
\end{align*}
\]

Here, the four parameters \(y_{11}, y_{12}, y_{21}, \) and \(y_{22} \) are admittances, and their values completely characterize the linear two-port network.

Depending on which two of the four port variables are used to represent the network excitation, a different set of equations (and a correspondingly different set of parameters) is obtained for characterizing the network. We shall present the four parameter sets commonly used in electronics.
B.1.1 y Parameters

The short-circuit admittance (or y-parameter) characterization is based on exciting the network by \(V_1 \) and \(V_2 \), as shown in Fig. B.2(a). The describing equations are Eqs. (B.1) and (B.2). The four admittance parameters can be defined according to their roles in Eqs. (B.1) and (B.2).

Specifically, from Eq. (B.1) we see that \(y_{11} \) is defined as

\[
 y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}
\]

(B.3)

Thus \(y_{11} \) is the input admittance at port 1 with port 2 short-circuited. This definition is illustrated in Fig. B.2(b), which also provides a conceptual method for measuring the input short-circuit admittance \(y_{11} \).

The definition of \(y_{12} \) can be obtained from Eq. (B.1) as

\[
 y_{12} = \frac{I_2}{V_1} \bigg|_{V_2=0}
\]

(B.4)

Thus \(y_{12} \) represents transmission from port 2 to port 1. Since in amplifiers, port 1 represents the input port and port 2 the output port, \(y_{12} \) represents internal feedback in the network. Figure B.2(c) illustrates the definition and the method for measuring \(y_{12} \).

The definition of \(y_{21} \) can be obtained from Eq. (B.2) as

\[
 y_{21} = \frac{I_1}{V_2} \bigg|_{V_1=0}
\]

(B.5)

Thus \(y_{21} \) represents transmission from port 1 to port 2. If port 1 is the input port and port 2 the output port of an amplifier, then \(y_{21} \) provides a measure of the forward gain or transmission. Figure B.2(d) illustrates the definition and the method for measuring \(y_{21} \).

The parameter \(y_{22} \) can be defined, based on Eq. (B.2), as

\[
 y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}
\]

(B.6)

Thus \(y_{22} \) is the admittance looking into port 2 while port 1 is short-circuited. For amplifiers, \(y_{22} \) is the output short-circuit admittance. Figure B.2(e) illustrates the definition and the method for measuring \(y_{22} \).

B.1.2 z Parameters

The open-circuit impedance (or z-parameter) characterization of two-port networks is based on exciting the network by \(I_1 \) and \(I_2 \), as shown in Fig. B.3(a). The describing equations are

\[
 Z_{11} + z_{12} I_2 = I_1 \\
 Z_{21} + z_{22} I_1 = I_2
\]

(B.7)

(B.8)

The definition of \(y_{21} \) can be obtained from Eq. (B.2) as

\[
 z_{21} = \frac{Z_{21}}{Z_{11}} \bigg|_{I_2=0}
\]

(B.9)

Thus \(z_{21} \) represents transmission from port 1 to port 2. If port 1 is the input port and port 2 the output port of an amplifier, then \(z_{21} \) provides a measure of the forward gain or transmission. Figure B.3(d) illustrates the definition and the method for measuring \(z_{21} \).

The parameter \(z_{22} \) can be defined, based on Eq. (B.2), as

\[
 z_{22} = \frac{Z_{22}}{Z_{11}} \bigg|_{I_2=0}
\]

(B.10)

Thus \(z_{22} \) is the admittance looking into port 2 while port 1 is short-circuited. For amplifiers, \(z_{22} \) is the output short-circuit admittance. Figure B.3(e) illustrates the definition and the method for measuring \(z_{22} \).
Owing to the duality between the z- and y-parameter characterizations, we shall not give a detailed discussion of z parameters. The definition and method of measuring each of the four z parameters are given in Fig. B.3.

B.1.3 h Parameters

The hybrid (or h-parameter) characterization of two-port networks is based on exciting the network by I_1 and V_2, as shown in Fig. B.4(a) (note the reason behind the name hybrid). The describing equations are

\[
V_1 = h_{11}I_1 + h_{12}V_2 \quad (B.9)
\]

\[
I_2 = h_{21}I_1 + h_{22}V_2 \quad (B.10)
\]

from which the definition of the four h parameters can be obtained as

\[
h_{11} = \frac{V_1}{I_1} \bigg|_{V_2=0}
\]

\[
h_{21} = \frac{I_2}{I_1} \bigg|_{V_2=0}
\]

\[
h_{12} = \frac{V_1}{V_2} \bigg|_{I_1=0}
\]

\[
h_{22} = \frac{I_2}{V_2} \bigg|_{I_1=0}
\]

Thus, h_{11} is the input impedance at port 1 with port 2 short-circuited. The parameter h_{12} represents the reverse or feedback voltage ratio of the network, measured with the input port open-circuited. The forward-transmission parameter h_{21} represents the current gain of the network with the output port short-circuited; for this reason, h_{21} is called the short-circuit current gain. Finally, h_{22} is the output admittance with the input port open-circuited.

The definitions and conceptual measuring setups of the h parameters are given in Fig. B.4.

B.1.4 g Parameters

The inverse-hybrid (or g-parameter) characterization of two-port networks is based on excitation of the network by V_1 and I_2, as shown in Fig. B.5(a). The describing equations are

\[
V_1 = g_{11}V_1 + g_{12}I_2 \quad (B.11)
\]

\[
I_2 = g_{21}V_1 + g_{22}I_2 \quad (B.12)
\]

The definitions and conceptual measuring setups are given in Fig. B.5.

B.1.5 Equivalent-Circuit Representation

A two-port network can be represented by an equivalent circuit based on the set of parameters used for its characterization. Figure B.6 shows four possible equivalent circuits corresponding...
APPENDIX B TWO-PORT NETWORK PARAMETERS

FIGURE B.6 Equivalent circuits for two-port networks in terms of (a) y, (b) z, (c) h, and (d) g parameters.

Finally, it should be mentioned that other parameter sets exist for characterizing two-port networks, but these are not discussed or used in this book.

PROBLEMS

B.1 (a) An amplifier characterized by the h-parameter equivalent circuit of Fig. B.6(c) is fed with a source having a voltage V_s and a resistance R_s, and is loaded in a resistance R_L. Show that its voltage gain is given by

$$\frac{V_o}{V_s} = \left(h_{21} + \frac{1}{R_L} \right) - h_{12} h_{21}$$

(b) Use the expression derived in (a) to find the voltage gain of the transistor in Exercise B.1 for $R_s = 1$ kΩ and $R_L = 10$ kΩ.

B.2 The terminal properties of a two-port network are measured with the following results: With the output short-circuited and an input current of 0.01 mA, the output current is 1.0 mA and the input voltage is 26 mV. With the input open-circuited and a voltage of 10 V applied to the output, the current in the output is 0.2 mA and the voltage measured at the input is 2.5 mV. Find values for the h parameters of this network.

B.3 Figure PB.3 shows the high-frequency equivalent circuit of a BJT. (For simplicity, r_x has been omitted.) Find the y parameters.
Some Useful Network Theorems

INTRODUCTION

In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin's theorem, Norton's theorem, and the source-absorption theorem.

C.1 THÉVENIN'S THEOREM

Thévenin's theorem is used to represent a part of a network by a voltage source V_t and a series impedance Z_t as shown in Fig. C.1. Figure C.1(a) shows a network divided into two parts, A and B. In Fig. C.1(b) part A of the network has been replaced by its Thévenin equivalent: a voltage source V_t and a series impedance Z_t. Figure C.1(c) illustrates how V_t is to be determined: Simply open-circuit the two terminals of network A and measure (or calculate) the voltage that appears between these two terminals. To determine Z_t, we reduce all external (i.e., independent) sources in network A to zero by short-circuiting voltage sources and open-circuiting current sources. The impedance Z_t will be equal to the input impedance of network A after this reduction has been performed, as illustrated in Fig. C.1(d).

C.2 NORTON'S THEOREM

Norton's theorem is the dual of Thévenin's theorem. It is used to represent a part of a network by a current source I_n and a parallel impedance Z_n, as shown in Fig. C.2. Figure C.2(a) shows a network divided into two parts, A and B. In Fig. C.2(b) part A has been replaced by its Norton equivalent: a current source I_n and a parallel impedance Z_n. The Norton's current source I_n can be measured (or calculated) as shown in Fig. C.2(c). The terminals of the network being reduced (network A) are shorted, and the current I_n will be equal simply to the short-circuit current. To determine Z_n, we first reduce the external excitation in network A to zero: That is, we short-circuit independent voltage sources and open-circuit independent current sources. The impedance Z_n will be equal to the input impedance of network A after this source-elimination process has taken place. Thus the Norton impedance Z_n is equal to the Thévenin impedance Z_t. Finally, note that $I_n = V_t/Z_t$, where $Z_n = Z_t$.

EXAMPLE C.1

Figure C.3(a) shows a bipolar junction transistor circuit. The transistor is a three-terminal device with the terminals labeled E (emitter), B (base), and C (collector). As shown, the base is connected to the dc power supply V^+ via the voltage divider composed of R_2 and R_3. The collector is connected to the dc supply V^+ through R_2 and to ground through R_3. To simplify the analysis we wish to apply Thévenin’s theorem to reduce the circuit.

Solution

Thévenin's theorem can be used at the base side to reduce the network composed of V^+, R_3, and R_2 to a dc voltage source V_{BB}.

$$V_{BB} = V^+ R_2 / R_3 + R_2$$
APPENDIX C SOME USEFUL NETWORK THEOREMS

(a) (b)

FIGURE C.3 Thévenin's theorem applied to simplify the circuit of (a) so that is (b). (See Example C.1.)

C.3 SOURCE-ABSORPTION THEOREM

Consider the situation shown in Fig. C.4. In the course of analyzing a network we find a controlled current source I_x appearing between two nodes whose voltage difference is the controlling voltage V_x. That is, $I_x = g_m V_x$ where g_m is a conductance. We can replace this controlled source by an impedance $Z_x = V_x/I_x = 1/g_m$, as shown in Fig. C.4, because the current drawn by this impedance will be equal to the current of the controlled source that we have replaced.

EXERCISES

C.1 A source is measured and found to have a 10-V open-circuit voltage and to provide 1 mA into a short circuit. Calculate its Thévenin and Norton equivalent source parameters. Ans. $V_T = 10$ V, $Z_T = 10$ kΩ, $I_N = 1$ mA.

C.2 In the circuit shown in Fig. EC.2 the diode has a voltage drop $V_D = 0.7$ V. Use Thévenin's theorem to simplify the circuit and hence calculate the diode current I_D. Ans. 1 mA.
APPENDIX C SOME USEFUL NETWORK THEOREMS

C.3 The two-terminal device M in the circuit of Fig. EC.3 has a current \(I_M = 1 \text{ mA} \) independent of the voltage \(V_M \) across it. Use Norton's theorem to simplify the circuit and hence calculate the voltage \(V_M \).

Ans. 5 V

FIGURE EC.2

C.3 Consider the Thevenin equivalent circuit characterized by \(V_T \) and \(Z_T \). Find the open-circuit voltage \(V_{oc} \) and the short-circuit current (i.e., the current that flows when the terminals are shorted together) \(I_{sc} \). Express \(Z_T \) in terms of \(V_{oc} \) and \(I_{sc} \).

C.4 Repeat Problem C.1 for a Norton equivalent circuit characterized by \(I_N \) and \(Z_N \).

C.5 A voltage divider consists of a 9-kΩ resistor connected to +10 V and a resistor of 1 kΩ connected to ground. What is the Thevenin equivalent of this voltage divider?

What output voltage results if it is loaded with 1 kΩ? Calculate this two ways: directly and using your Thevenin equivalent.

C.6 Repeat Example C.2 with a resistance \(R_B \) connected between B and ground in Fig. C.5 (i.e., rather than directly grounding the base B as indicated in Fig. C.3).

FIGURE PC.4

C.6 Figure PC.6(a) shows the circuit symbol of a device known as the p-channel junction field-effect transistor (JFET). As indicated, the JFET has three terminals. When the gate terminal G is connected to the source terminal S, the two-terminal device shown in Fig. PC.6(b) is obtained. Its i-v characteristic is given by

\[
i = I_{DSS} \left(\frac{v}{V_P} \right) \quad \text{for} \quad |v| < V_P
\]

\[
i = I_{DSS} \quad \text{for} \quad |v| \geq V_P
\]

where \(I_{DSS} \) and \(V_P \) are positive constants for the particular JFET. Now consider the circuit shown in Fig. PC.6(c) and let \(V_P = 2 \text{ V} \) and \(I_{DSS} = 2 \text{ mA} \). For \(V^+ = 10 \text{ V} \) show that the JFET is operating in the constant-current mode and find the voltage across it. What is the minimum value of \(V^+ \) for which this mode of operation is maintained? For \(V^+ = 2 \text{ V} \) find the values of \(I \) and \(V \).

FIGURE PC.6
Single-Time-Constant Circuits

INTRODUCTION

Single-time-constant (STC) circuits are those circuits that are composed of, or can be reduced to, one reactive component (inductance or capacitance) and one resistance. An STC circuit formed of an inductance L and a resistance R has a time constant $\tau = L/R$. The time constant τ of an STC circuit composed of a capacitance C and a resistance R is given by $\tau = CR$.

Although STC circuits are quite simple, they play an important role in the design and analysis of linear and digital circuits. For instance, the analysis of an amplifier circuit can usually be reduced to the analysis of one or more STC circuits. For this reason, we will review in this appendix the process of evaluating the response of STC circuits to sinusoidal and other input signals such as step and pulse waveforms. The latter signal waveforms are encountered in some amplifier applications but are more important in switching circuits, including digital circuits.

D.1 EVALUATING THE TIME CONSTANT

The first step in the analysis of an STC circuit is to evaluate its time constant τ.

EXAMPLE D.1

Reduce the circuit in Fig. D.1(a) to an STC circuit, and find its time constant.

Solution

The reduction process is illustrated in Fig. D.1 and consists of repeated applications of Thévenin's theorem. From the final circuit (Fig. D.1c), we obtain the time constant as

$$\tau = C(R_4/[R_3+(R_2\parallel R_1)])$$

D.1.1 Rapid Evaluation of τ

In many instances, it will be important to be able to evaluate rapidly the time constant τ of a given STC circuit. A simple method for accomplishing this goal consists first of reducing the excitation to zero; that is, if the excitation is by a voltage source, short it, and if by a current source, open it. Then if the circuit has one reactive component and a number of resistances, "grab hold" of the two terminals of the reactive component (capacitance or inductance) and find the equivalent resistance R_{eq} seen by the component. The time constant is then either L/R_{eq} or CR_{eq}. As an example, in the circuit of Fig. D.1(a) we find that the capacitor C "sees" a resistance R_4 in parallel with the series combination of R_3 and $(R_2\parallel R_1)$. Thus

$$R_{eq} = R_4/[R_3+(R_2\parallel R_1)]$$

and the time constant is CR_{eq}.

In some cases it may be found that the circuit has one resistance and a number of capacitances or inductances. In such a case the procedure should be inverted; that is, "grab hold" of the resistance terminals and find the equivalent capacitance C_{eq} or equivalent inductance L_{eq} seen by this resistance. The time constant is then found as $C_{eq}R$ or L_{eq}/R. This is illustrated in Example D.2.

EXAMPLE D.2

Find the time constant of the circuit in Fig. D.2.
Solution
After reducing the excitation to zero by short-circuiting the voltage source, we see that the resistance \(R \) "sees" an equivalent capacitance \(C_1 + C_2 \). Thus the time constant \(\tau \) is given by

\[
\tau = (C_1 + C_2)R
\]

Finally, in some cases an STC circuit has more than one resistance and more than one capacitance (or more than one inductance). Such cases require some initial work to simplify the circuit, as illustrated by Example D.3.

EXAMPLE D.3
Here we show that the response of the circuit in Fig. D.3(a) can be obtained using the method of analysis of STC circuits.

Solution
The analysis steps are illustrated in Fig. D.3. In Fig. D.3(b) we show the circuit excited by two separate but equal voltage sources. The reader should convince himself or herself of the equivalence

\[
\text{FIGURE D.3} \quad \text{The response of the circuit in (a) can be found by superposition, that is, by summing the responses of the circuits in (d) and (e).}
\]

D.2 CLASSIFICATION OF STC CIRCUITS

STC circuits can be classified into two categories, low-pass (LP) and high-pass (HP) types, with each category displaying distinctly different signal responses. The task of finding whether an STC circuit is of LP or HP type may be accomplished in a number of ways, the simplest of which uses the frequency-domain response. Specifically, low-pass circuits pass dc (i.e., signals with zero frequency) and attenuate high frequencies, with the transmission being zero at \(\omega = \infty \). Thus we can test for the circuit type either at \(\omega = 0 \) or at \(\omega = \infty \). At \(\omega = 0 \) capacitors should be replaced by open circuits \(1/j\omega C = \infty \) and inductors should be replaced by short circuits \(j\omega L = 0 \). Then if the output is zero, the circuit is of the high-pass type, while if the output is finite, the circuit is of the low-pass type. Alternatively, we may test at \(\omega = \infty \) by replacing capacitors by short circuits \(1/j\omega C = 0 \) and inductors by open circuits \(j\omega L = \infty \). Then if the output is finite, the circuit is of the HP type, whereas if the output is zero, the circuit is of the LP type. In Table D.1, which provides a summary of these results, s.c. stands for short circuit and o.c. for open circuit.

Figure D.4 shows examples of low-pass STC circuits, and Fig. D.5 shows examples of high-pass STC circuits. For each circuit we have indicated the input and output variables of interest. Note that a given circuit can be of either category, depending on the input and output variables. The reader is urged to verify, using the rules of Table D.1, that the circuits of Figs. D.4 and D.5 are correctly classified.

<table>
<thead>
<tr>
<th>Test At</th>
<th>Replace</th>
<th>Circuit is LP If</th>
<th>Circuit is HP If</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega = 0)</td>
<td>(C) by o.c.</td>
<td>output is finite</td>
<td>output is zero</td>
</tr>
<tr>
<td>(\omega = \infty)</td>
<td>(C) by s.c.</td>
<td>output is zero</td>
<td>output is finite</td>
</tr>
</tbody>
</table>
D.1 Find the time constants for the circuits shown in Fig. D.1.

D.2 Classify the following circuits as STC high-pass or low-pass: Fig. D.4(a) with output \(i_a \) in \(C \) to ground; Fig. D.4(b) with output \(i_a \) in \(R \) to ground; Fig. D.4(d) with output \(i_a \) in \(C \) to ground; Fig. D.4(e) with output \(i_a \) in \(R \) to ground; Fig. D.5(b) with output \(i_a \) in \(L \) to ground; and Fig. D.5(d) with output \(v \) across \(C \).

D.3 FREQUENCY RESPONSE OF STC CIRCUITS

D.3.1 Low-Pass Circuits

The transfer function \(T(s) \) of an STC low-pass circuit always can be written in the form

\[
T(s) = \frac{K}{1 + s/\tau_0}
\]

which, for physical frequencies, where \(s = j\omega \), becomes

\[
T(j\omega) = \frac{K}{1 + j\omega/\omega_0}
\]

where \(K \) is the magnitude of the transfer function at \(\omega = 0 \) (dc) and \(\omega_0 \) is defined by

\[
\omega_0 = 1/\tau
\]

with \(\tau \) being the time constant. Thus the magnitude response is given by

\[
|T(j\omega)| = \frac{K}{\sqrt{1 + (\omega/\omega_0)^2}}
\]

and the phase response is given by

\[
\phi(\omega) = -\tan^{-1}(\omega/\omega_0)
\]

Figure D.6 sketches the magnitude and phase responses for an STC low-pass circuit. The magnitude response shown in Fig. D.6(a) is simply a graph of the function in Eq. (D.3). The magnitude is normalized with respect to the dc gain \(K \) and is expressed in decibels; that is, the plot is for \(20 \log|T(j\omega)/K| \), with a logarithmic scale used for the frequency axis. Furthermore, the frequency variable has been normalized with respect to \(\omega_0 \). As shown, the magnitude curve is closely defined by two straight-line asymptotes. The low-frequency asymptote is a horizontal straight line at 0 dB. To find the slope of the high-frequency asymptote consider Eq. (D.3) and let \(\omega/\omega_0 \gg 1 \), resulting in

\[
|T(j\omega)| = \frac{K\omega_0}{\omega}
\]

It follows that if \(\omega \) doubles in value, the magnitude is halved. On a logarithmic frequency axis, doublings of \(\omega \) represent equally spaced points, with each interval called an octave. Halving the magnitude function corresponds to a 6-dB reduction in transmission (20 \(\log 0.5 = -6 \) dB). Thus the slope of the high-frequency asymptote is -6 dB/octave. This can be equivalently expressed as -20 dB/decade, where “decade” indicates an increase in frequency by a factor of 10.

The two straight-line asymptotes of the magnitude-response curve meet at the “corner frequency” or “break frequency” \(\omega_0 \). The difference between the actual magnitude-response curve and the asymptotic response is largest at the corner frequency, where its value is 3 dB.
To verify that this value is correct, simply substitute \(\omega = \omega_0 \) in Eq. (D.3) to obtain

\[
|T(j\omega_0)| = K/\sqrt{2}
\]

Thus at \(\omega = \omega_0 \) the gain drops by a factor of \(\sqrt{2} \) relative to the dc gain, which corresponds to a 3-dB reduction in gain. The corner frequency \(\omega_0 \) is appropriately referred to as the 3-dB frequency.

Similar to the magnitude response, the phase-response curve, shown in Fig. D.6(b), is closely defined by straight-line asymptotes. Note that at the corner frequency the phase is \(-45^\circ\), and that for \(\omega > \omega_0 \) the phase approaches \(-90^\circ\). Also note that the \(-45^\circ/\text{decade}\) straight line approximates the phase function, with a maximum error of 5.7°, over the frequency range 0.1 to 1000.

Example D.4

Consider the circuit shown in Fig. D.7(a), where an ideal voltage amplifier of gain \(\mu = 100 \) has a small (10-pF) capacitance connected in its feedback path. The amplifier is fed by a voltage source having a source resistance of 100 kΩ. Show that the frequency response \(V_o/V_i \) of this amplifier is equivalent to that of an STC circuit, and sketch the magnitude response.

Solution

Direct analysis of the circuit in Fig. D.7(a) results in the transfer function

\[
\frac{V_o}{V_i} = \frac{\mu}{1 + \mu RC s}
\]

which can be seen to be that of a low-pass STC circuit with a dc gain \(\mu = 100 \) (or, equivalently, 40 dB) and a time constant \(\tau = RC(\mu + 1) = 100 \times 10^{-3} \times 10 \times 10^{-12} \times 10 = 10^{-6} \) s, which corresponds to a frequency \(\omega_0 = 1/\tau = 10^6 \) rad/s. The magnitude response is sketched in Fig. D.7(b).

D.3.2 High-Pass Circuits

The transfer function \(T(s) \) of an STC high-pass circuit always can be expressed in the form

\[
T(s) = \frac{Ks}{s + \omega_0}
\]

which for physical frequencies \(s = j\omega \) becomes

\[
T(j\omega) = \frac{K}{1 + s/\omega_0}
\]

where \(K \) denotes the gain as \(s = \omega_0 \) approaches infinity and \(\omega_0 \) is the inverse of the time constant \(\tau \),

\[
\omega_0 = 1/\tau
\]

The magnitude response

\[
|T(j\omega)| = \frac{K}{\sqrt{1 + (\omega_0/\omega)^2}}
\]

and the phase response

\[
\phi(\omega) = \tan^{-1}(\omega_0/\omega)
\]
FIGURE D.8 (a) Magnitude and (b) phase response of STC circuits of the high-pass type.

are sketched in Fig. D.8. As in the low-pass case, the magnitude and phase curves are well defined by straight-line asymptotes. Because of the similarity (or, more appropriately, duality) with the low-pass case, no further explanation will be given.

EXERCISES

D.3 Find the dc transmission, the corner frequency \(f_c \), and the transmission at \(f = 2 \) MHz for the low-pass STC circuit shown in Fig. D.8.

\[
\text{Ans. } -6 \text{ dB}, 318 \text{ kHz}, -22 \text{ dB}
\]

D.4 Find the transfer function \(T(s) \) of the circuit in Fig. D.2. What type of STC network is it?

\[
\text{Ans. } T(s) = \frac{C_2}{C_1 + C_2 + \left(\frac{1}{C_1} + \frac{1}{C_2} \right) s}
\]

D.5 For the situation discussed in Exercise D.4, if \(R = 10 \text{ kΩ} \), find the capacitor values that result in the circuit having a high-frequency transmission of 0.5 V/V and a corner frequency \(f_c = 10 \text{ rad/s} \).

\[
\text{Ans. } C_1 = C_2 = 2 \mu\text{F}
\]

D.6 Find the high-frequency gain, the 3-dB frequency \(f_0 \), and the gain at \(f = 1 \) Hz of the capacitively coupled amplifier shown in Fig. D.6. Assume the voltage amplifier to be ideal.

\[
\text{Ans. } A = 10^3 \text{ V/V}, f_0 = 10 \text{ kHz}, A_f = 10^6
\]

D.4 STEP RESPONSE OF STC CIRCUITS

In this section we consider the response of STC circuits to the step-function signal shown in Fig. D.9. Knowledge of the step response enables rapid evaluation of the response to other switching-signal waveforms, such as pulses and square waves.

D.4.1 Low-Pass Circuits

In response to an input step signal of height \(S \), a low-pass STC circuit (with a dc gain \(K = 1 \)) produces the waveform shown in Fig. D.10. Note that while the input rises from 0 to \(S \) at \(t = 0 \), the output does not respond immediately to this transient and simply begins to rise exponentially toward the final dc value of the input, \(S \). In the long term—that is, for \(t \to \infty \)—the output approaches the dc value \(S \), a manifestation of the fact that low-pass circuits faithfully pass dc.

The equation of the output waveform can be obtained from the expression

\[
y(t) = Y_f - (Y_f - Y_0) e^{-t/T}
\]

where \(Y_f \) denotes the final value or the value toward which the output is heading and \(Y_0 \) denotes the value of the output immediately after \(t = 0 \). This equation states that the output at any time \(t \) is equal to the difference between the final value \(Y_f \) and a gap that has an initial value of \(Y_f - Y_0 \) and is "shrinking" exponentially. In one case, \(Y_f = S \) and \(Y_0 = 0 \); thus,

\[
y(t) = S(1 - e^{-t/T})
\]

FIGURE D.9 A step-function signal of height \(S \).
APPENDIX D
SINGLE-TIME-CONSTANT CIRCUITS

At
FIGURE D.10 The output $y(t)$ of a low-pass STC circuit excited by a step of height S.

$y(t)$

FIGURE D.11 The output $y(t)$ of a high-pass STC circuit excited by a step of height S.

The reader's attention is drawn to the slope of the tangent to $y(t)$ at $t=0$, which is indicated in Fig. D.10.

D.4.2 High-Pass Circuits

The response of an STC high-pass circuit (with a high-frequency gain $K=1$) to an input step of height S is shown in Fig. D.11. The high-pass circuit faithfully transmits the transient part of the input signal (the step change) but blocks the dc. Thus the output at $t=0$ follows the input, $y_0=0$ and then it decays toward zero, $y_0=0$

Substituting for y_0 and y_1 in Eq. (D.9) results in the output $y(t)$.

$y(t) = Se^{-t/T}$ (D.11)

The reader's attention is drawn to the slope of the tangent to $y(t)$ at $t=0$, indicated in Fig. D.11.

EXAMPLE D.5

This example is a continuation of the problem considered in Example D.3. For an input v_i that is a 10-V step, find the condition under which the output v_o is a perfect step.

Solution

Following the analysis in Example D.3, which is illustrated in Fig. D.3, we have

where

and

where

and

$\tau = (C_1+C_2)(R_1/R_2)$

Thus

$v_o = y_1 + y_2$

$= 10k + 10e^{-t/\tau}(k_1 - k_0)$

It follows that the output can be made a perfect step of height 10k volts if we arrange that

$k_0 = k_1$

that is, if the resistive voltage-divider ratio is made equal to the capacitive voltage divider ratio.

This example illustrates an important technique, namely, that of the "compensated attenuator." An application of this technique is found in the design of the oscilloscope probe. The oscilloscope probe problem is investigated in Problem D.3.

EXERCISES

D.7 For the circuit of Fig. D.4(f) find $v_o(t)$ if $i(t)$ is a 5-mA step, $R = 1$ kΩ, and $C = 100$ μF.

An. $3[1 - e^{-t/\tau}]$

D.8 In the circuit of Fig. D.5(f) find $v_o(t)$ if $i(t)$ is a 2-mA step, $R = 2$ kΩ, and $L = 10$ μH.

An. $4e^{-t/\tau}$

D.9 The amplifier circuit of Fig. D.6 is fed with a signal source that delivers a 20-mV step. If the source resistance is 100 kΩ find the time constant τ and $v_o(\tau)$.

An. $\tau = 2 \times 10^{-2}$ s, $v_o(\tau) = 1 \times 10^{-3}$

D.10 For the circuit in Fig. D.2 with $C_1 = C_2 = 0.5$ μF, $R = 1$ MΩ, find $v_o(t)$ if $v_i(t)$ is a 10-V step.

An. $5e^{-t}$

D.11 Show that the area under the exponential of Fig. D.11 is equal to that of the rectangle of height S and width τ.

D.5 PULSE RESPONSE OF STC CIRCUITS

Figure D.12 shows a pulse signal whose height is P and whose width is T. We wish to find the response of STC circuits to input signals of this form. Note at the outset that a pulse can be considered as the sum of two steps: a positive one of height P occurring at $t=0$ and a
The distortion of a pulse signal by a parasitic (i.e., unwanted) low-pass circuit is measured by its rise time and fall time. The rise time is conventionally defined as the time taken by the amplitude to increase from 10% to 90% of the final value. Similarly, the fall time is the time during which the pulse amplitude falls from 90% to 10% of the maximum value. These definitions are illustrated in Fig. D.13(b). By use of the exponential equations of the rising and falling edges of the output waveform, it can be easily shown that

$$t_r = t_f = 2.2\tau$$

(D.12)

which can be also expressed in terms of

$$t_r = \tau = \frac{0.35}{f_0}$$

(D.13)

Finally, we note that the effect of the parasitic low-pass circuits that are always present in a system is to "slow down" the operation of the system: To keep the signal distortion within acceptable limits, one has to use a relatively long pulse width (for a given low-pass time constant).

The other extreme case—namely, when \(\tau\) is much larger than \(T\)—is illustrated in Fig. D.13(c). As shown, the output waveform rises exponentially toward the level \(P\). However, since \(\tau > T\), the value reached at \(t = T\) will be much smaller than \(P\). At \(t = T\) the output waveform starts its exponential decay toward zero. Note that in this case the output waveform bears little resemblance to the input pulse. Also note that because \(\tau > T\) the portion of the exponential curve from \(t = 0\) to \(t = T\) is almost linear. Since the slope of this linear curve is proportional to the height of the input pulse, we see that the output waveform approximates the time integral of the input pulse. That is, a low-pass network with a large time constant approximates the operation of an integrator.

D.5.2 High-Pass Circuits

Figure D.14(a) shows the output of an STC HP circuit (with unity high-frequency gain) excited by the input pulse of Fig. D.12, assuming that \(\tau\) and \(T\) are comparable in value. As shown, the step transition at the leading edge of the input pulse is faithfully reproduced at the output of the HP circuit. However, since the HP circuit blocks dc, the output waveform immediately starts an exponential decay toward zero. This decay process is stopped at \(t = T\), when the negative step transition of the input occurs and the HP circuit faithfully reproduces it. Thus at \(t = T\) the output waveform exhibits an undershoot. Then it starts an exponential decay toward zero. Finally, note that the area of the output waveform above the zero axis will be equal to that below the axis for a total average area of zero, consistent with the fact that HP circuits block dc.

In many applications an STC high-pass circuit is used to couple a pulse from one part of a system to another part. In such an application it is necessary to keep the distortion in the pulse shape as small as possible. This can be accomplished by selecting the time constant \(\tau\) to be much longer than the pulse width \(T\). If this is indeed the case, the loss in amplitude during the pulse period \(T\) will be very small, as shown in Fig. D.14(b). Nevertheless, the output waveform still swings negatively, and the area under the negative portion will be equal to that under the positive portion.

Consider the waveform in Fig. D.14(b). Since \(\tau\) is much larger than \(T\), it follows that the portion of the exponential curve from \(t = 0\) to \(t = T\) will be almost linear and that its slope will be equal to the slope of the exponential curve at \(t = 0\), which is \(P/\tau\). We can use this value of...
D.15 APPENDIX D SINGLE-TIME-CONSTANT CIRCUITS

SINGLE-TIME-CONSTANT CIRCUITS

(a) 0 ^

T

1

FIGURE D.14 Pulse responses of three STC high-pass circuits.

the slope to determine the loss in amplitude \(\Delta P \) as

\[
\Delta P = \frac{\Delta P}{P} \frac{T}{t}
\]

(D.14)

The distortion effect of the high-pass circuit on the input pulse is usually specified in terms of the per-unit or percentage loss in pulse height. This quantity is taken as an indication of the "sag" in the output pulse.

Thus

\[
\text{Percentage sag} = \frac{\Delta P}{P} \times 100
\]

(D.15)

Finally, note that the magnitude of the undershoot at \(t = T \) is equal to \(\Delta P \).

The other extreme case—namely, \(\tau \ll T \)—is illustrated in Fig. D.14(c). In this case the exponential decay is quite rapid, resulting in the output becoming almost zero shortly beyond the leading edge of the pulse. At the trailing edge of the pulse the output swings negatively by an amount almost equal to the pulse height \(P \). Then the waveform decays rapidly to zero. As seen from Fig. D.14(c), the output waveform bears no resemblance to the input pulse. It consists of two spikes: a positive one at the leading edge and a negative one at the trailing edge.

Note that the output waveform is approximately equal to the time derivative of the input pulse. That is, for \(\tau \ll T \) an STC high-pass circuit approximates a differentiator. However, the resulting differentiator is not an ideal one; an ideal differentiator would produce two impulses. Nevertheless, high-pass STC circuits with short time constants are employed in some applications to produce sharp pulses or spikes at the transitions of an input waveform.

EXERCISES

D.12 Find the rise and fall times of a 1-V pulse after it has passed through a low-pass RC circuit with a corner frequency of 10 MHz.

Ans. 35 ns

D.13 Consider the pulse response of a low-pass STC circuit, as shown in Fig. D.13(c). If \(\tau = 100 \mu \text{s} \), find the output voltage at \(t = T \). Also, find the difference in the slope of the rising portion of the output waveform at \(t = 0 \) and \(t = T \). Express this as a percentage of the slope at \(t = 0 \).

Ans. 0.01 \%, 1%

D.14 The output of an amplifier stage is connected to the input of another stage via a capacitance \(C \). If the first stage has an output capacitance of 10 \(\mu \text{F} \), and the second stage has an input resistance of 40 k\(\Omega \), find the minimum value of \(C \) such that a 1-V pulse exhibits less than 1% sag.

Ans. 0.02 \(\mu \text{F} \)

D.15 A high-pass STC circuit with a time constant of 100 \(\mu \text{sec} \) is excited by a pulse of 1-V height and 100-\(\mu \text{sec} \) width. Calculate the value of the undershoot in the output waveform.

Ans. 0.663 \text{V}

PROBLEMS

D.1 Consider the circuit of Fig. D.3(a) and the equivalent shown in (d) and (c). There, the output \(V_o = V_{os} + V_{os} \) is the sum of outputs of a low-pass and a high-pass circuit, each with the time constant \(\tau = (C_1 + C_2)R/(R_2) \). What is the condition that makes the contributions of the low-pass circuit at zero frequency equal to the contribution of the high-pass circuit at infinite frequency? Show that this condition can be expressed as \(C_1R_2 = C_2R_1 \). If this condition applies, sketch \(V_o/V_r \) versus frequency for the case \(R_1 = R_2 \).

D.2 For the voltage divider rule to find the transfer function \(V_o/V_r \) of the circuit in Fig. D.3(a). Show that the transfer function can be made independent of frequency if the condition \(C_1R_2 = C_2R_1 \) applies. Under this condition the circuit is called a compensated attenuator. Find the transmission of the compensated attenuator in terms of \(R_1 \) and \(R_2 \).

D**D.3 The circuit of Fig. D.3(c) is used as a compensated attenuator (see Problems D.1 and D.2) for an oscilloscope probe. The objective is to reduce the signal voltage applied to the input amplifier of the oscilloscope, with the signal attenuation independent of frequency. The probe itself includes \(R_1 \) and \(C_1 \), while \(R_2 \) and \(C_2 \) model the oscilloscope input circuit. For an oscilloscope having an input resistance of 1 M\(\Omega \) and an input capacitance of 30 \(\text{pF} \), design a compensated 10-to-1 probe—that is, a probe that attenuates the input signal by a factor of 10. Find the input impedance of the probe when connected to the oscilloscope, which is the impedance seen by \(V_o \) in Fig. D.3(a). Show that this impedance is 10 times higher than that of the oscilloscope itself. This is the great advantage of the 10:1 probe.

D.4 In the circuits of Figs. D.4 and D.5, let \(L = 10 \text{ mH} \), \(C = 0.01 \text{ } \mu \text{F} \), and \(R = 1 \text{ } \mu \text{F} \). At what frequency does a phase angle of 45° occur?

D.5 Consider a voltage amplifier with an open-circuit voltage gain \(A_v = 100 \text{ V/V} \), \(R_2 = 0 \), and an input capacitance \(C_i \) (in parallel with \(R_2 \)) of 10 \text{ pF}. The amplifier has a feedback capacitance \(C_f \) connected between output and input \(C_f = 1 \text{ pF} \). The amplifier is fed with a voltage source \(V_i \) having a resistance \(R_{\text{source}} = 10 \text{ k}\Omega \). Find the amplifier transfer function \(V_{o}/V_{i} \) and sketch its magnitude response versus frequency (dB vs frequency) on a log axis.

D.6 For the circuit in Fig. D.6 assume the voltage amplifier to be ideal. Derive the transfer function \(V_{o}/V_{i} \). What type of STC response is this? For \(C = 0.01 \text{ } \mu \text{F} \) and \(R = 100 \text{ k}\Omega \), find the corner frequency.
APPENDIX D SINGLE-TIME-CONSTANT CIRCUITS

FIGURE D.6

For the circuits of Figs. D.4(b) and D.5(b), find \(v_0(t) \) if \(v_i \) is a 10-V step, \(R = 1 \, \text{kΩ} \), and \(L = 1 \, \text{mH} \).

Consider the exponential response of an STC low-pass circuit to a 10-V step input. In terms of the time constant \(\tau \), find the time taken for the output to reach 5 V, 9 V, 9.9 V, and 9.99 V.

The high-frequency response of an oscilloscope is specified to be like that of an STC LP circuit with a 100-MHz corner frequency. If this oscilloscope is used to display an ideal step waveform, what rise time (10% to 90%) would you expect to observe?

An oscilloscope whose step response is like that of a low-pass STC circuit has a rise time of \(t_s \) seconds. If an input signal having a rise time of \(t_w \) seconds is displayed, the waveform seen will have a rise time \(t_d \) seconds, which can be found using the empirical formula \(t_d = t_s + t_w^2 / t_s^2 \). What is the observed rise time for a waveform rising in 100 ns, 35 ns, and 10 ns? What is the actual rise time of a waveform whose displayed rise time is 49.5 ns?

A pulse of 10-ms width and 10-V amplitude is transmitted through a system characterized as having an STC high-pass response with a corner frequency of 10 Hz. What undershoot would you expect?

An RC differentiator having a time constant \(\tau \) is used to implement a short-pulse detector. When a long pulse with \(T > \tau \) is fed to the circuit, the positive and negative peaks outputs set of equal magnitude. At what pulse width does the negative output peak differ from the positive one by 10%?

A high-pass STC circuit with a time constant of 1 ms is excited by a pulse of 10-V height and 1-ms width. Calculate the value of the undershoot in the output waveform. If an undershoot of 1 V or less is required, what is the time constant necessary?

A capacitor \(C \) is used to couple the output of an amplifier stage to the input of the next stage. If the first stage has an output resistance of 2 \(\text{kΩ} \) and the second stage has an input resistance of 3 \(\text{kΩ} \), find the value of \(C \) so that a 1-ms pulse exhibits less than 1% sag. What is the associated 3-dB frequency?

An RC differentiator is used to convert a step voltage change \(V \) to a single pulse for a digital-logic application. The logic circuit that the differentiator drives distinguishes signals above \(V/2 \) as "high" and below \(V/2 \) as "low." What must the time constant of the circuit be to convert a step input into a pulse that will be interpreted as "high" for 10 ns?

Consider the circuit in Fig. D.7(a) with \(p = -100 \), \(C_f = 100 \, \text{pF} \), and the amplifier being ideal. Find the value of \(R \) so that the gain \(V_o / V_i \) has a 3-dB frequency of 1 kHz.

APPENDIX E s-Domain Analysis: Poles, Zeros, and Bode Plots

In analyzing the frequency response of an amplifier, most of the work involves finding the amplifier voltage gain as a function of the complex frequency \(s \). In this s-domain analysis, a capacitance \(C \) is replaced by an admittance \(sC \), or equivalently an impedance \(1/sC \), and an inductance \(L \) is replaced by an impedance \(sL \). Then, using usual circuit-analysis techniques, one derives the voltage transfer function \(T(s) = V_o(s)/V_i(s) \).

EXERCISE

E1 Find the voltage transfer function \(T(s) = V_o(s)/V_i(s) \) for the STC network shown in Fig. E.E.1.

Once the transfer function \(T(s) \) is obtained, it can be evaluated for physical frequencies by replacing \(s \) by \(j\omega \). The resulting transfer function \(T(j\omega) \) is in general a complex quantity whose magnitude gives the magnitude response (or transmission) and whose angle gives the phase response of the amplifier.

In many cases it will not be necessary to substitute \(s = j\omega \) and evaluate \(T(j\omega) \); rather, the form of \(T(s) \) will reveal many useful facts about the circuit performance. In general, for all
the circuits dealt with in this book, \(T(s) \) can be expressed in the form

\[
T(s) = \frac{a_n s^n + a_{n-1} s^{n-1} + \ldots + a_0}{s^m + b_{m-1} s^{m-1} + \ldots + b_0}
\]

where the coefficients \(a \) and \(b \) are real numbers, and the order \(n \) of the numerator is smaller than or equal to the order \(m \) of the denominator; the latter is called the order of the network. Furthermore, for a stable circuit—that is, one that does not generate signals on its own—the denominator coefficients should be such that the roots of the denominator polynomial all have negative real parts. The problem of amplifier stability is studied in Chapter 8.

Appendix E

E.1 POLES AND ZEROS

An alternate form for expressing \(T(s) \) is

\[
T(s) = a_n \frac{(s - Z_1)(s - Z_2)\ldots(s - Z_m)}{(s - P_1)(s - P_2)\ldots(s - P_m)}
\]

(E.2)

where \(a_n \) is a multiplicative constant (the coefficient of \(s^n \) in the numerator), \(Z_1, Z_2, \ldots, Z_m \) are the roots of the numerator polynomial, and \(P_1, P_2, \ldots, P_m \) are the roots of the denominator polynomial. \(Z_1, Z_2, \ldots, Z_m \) are called the transfer-function zeros or transmission zeros, and \(P_1, P_2, \ldots, P_m \) are the transfer-function poles or the natural modes of the network. A transfer function is completely specified in terms of its poles and zeros together with the value of the multiplicative constant.

The poles and zeros can be either real or complex numbers. However, since the \(a \) and \(b \) coefficients are real numbers, the complex poles (or zeros) must occur in conjugate pairs. That is, if \(s = \alpha + j\beta \) is a pole, then \(s = \alpha - j\beta \) must also be a pole. A zero that is pure imaginary \((a = 0)\) causes the transfer function \(T(j\omega) \) to be exactly zero at \(\omega = \beta \). This is because the numerator will have the factors \((s + j\beta)(s - j\beta) = (s^2 + \beta^2)\), which for physical frequencies becomes \((a^2 + \beta^2)\), and thus the transfer function will be exactly zero at \(\omega = \beta \). Thus the "tip" or the input at the antenna of a television set is a circuit that has a transmission zero at the particular interfering frequency. Real zeros, on the other hand, do not produce transmission nulls. Finally, note that for values of \(s \) much greater than all the poles and zeros, the transfer function in Eq. (E.1) becomes \(T(s) = a_n e^{-s} \). Thus the transfer function has \((n - m)\) zeros as \(s \to \infty \).

E.2 FIRST-ORDER FUNCTIONS

Many of the transfer functions encountered in this book have real poles and zeros and can therefore be written as the product of first-order transfer functions of the general form

\[
T(s) = \frac{a_1 s + a_0}{s + a_n}
\]

(E.3)

where \(-a_n\) is the location of the real pole. The quantity \(a_n \), called the pole frequency, is equal to the inverse of the time constant of this single-time-constant (STC) network (see Appendix D). The constants \(a_1 \) and \(a_0 \) determine the type of STC network. Specifically, we studied in Chapter 1 two types of STC networks, low pass and high pass. For the low-pass first-order network we have

\[
T(s) = \frac{a_0}{s + \omega_0}
\]

(E.4)

In this case the dc gain is \(a_0/\omega_0 \), and \(\omega_0 \) is the corner or 3-dB frequency. Note that this transfer function has one zero at \(s = 0 \). On the other hand, the first-order high-pass transfer function has a zero at dc and can be written as

\[
T(s) = \frac{a_0 s}{s + \omega_0}
\]

(E.5)

At this point the reader is strongly urged to review the material on STC networks and their frequency and pulse responses in Appendix D. Of specific interest are the plots of the magnitude and phase responses of the two special kinds of STC networks. Such plots can be employed to generate the magnitude and phase plots of a high-order transfer function, as explained below.

E.3 BODE PLOTS

A simple technique exists for obtaining an approximate plot of the magnitude and phase of a transfer function given its poles and zeros. The technique is particularly useful in the case of real poles and zeros. The method was developed by H. Bode, and the resulting diagrams are called Bode plots.

A transfer function of the form depicted in Eq. (E.2) consists of a product of factors of the form \(s + a \), where such a factor appears on top if it corresponds to a zero and on the bottom if it corresponds to a pole. It follows that the magnitude response in decibels of the network can be obtained by summing together terms of the form \(20 \log\left|\omega/\omega_0\right| \), and the phase response can be obtained by summing terms of the form \(\tan^{-1}(\omega/\omega_0) \). In both cases the terms corresponding to poles are summed with negative signs. For convenience, we can extract the constant \(a \) and write the typical magnitude term in the form \(20 \log \left(\omega/\omega_0\right) \).

On a plot of decibels versus log frequency this term gives rise to the curve and straight-line asymptotes shown in Fig. E.1. Here the low-frequency asymptote is a horizontal straight line

\[
20 \log \left(\sqrt{1 + \omega^2} \right) \text{ (dB)}
\]

FIGURE E.1 Bode plot for the typical magnitude term. The curve shown applies for the case of a zero. For a pole, the high-frequency asymptote should be drawn with a -6-dB/octave slope.
at 0-dB level and the high-frequency asymptote is a straight line with a slope of 6 dB/octave or, equivalently, 20 dB/decade. The two asymptotes meet at the frequency \(\omega_c = 1 \), which is called the corner frequency. As indicated, the actual magnitude plot differs slightly from the values given by the asymptotes; the maximum difference is 3 dB and occurs at the corner frequency.

For \(a = 0 \)—that is, a pole or a zero at \(s = 0 \)—the plot is simply a straight line of 6 dB/octave slope intersecting the 0-dB line at \(\omega_c = 1 \).

In summary, to obtain the Bode plot for the magnitude of a transfer function, the asymptotic plot for each pole and zero is first drawn. The slope of the high-frequency asymptote of the curve corresponding to a zero is +20 dB/decade, while that for a pole is -20 dB/decade. The various plots are then added together, and the overall curve is shifted vertically by an amount determined by the multiplicative constant of the transfer function.

Example E.1

An amplifier has the voltage transfer function

\[
T(s) = \frac{100}{(1 + s/10^2)(1 + s/10^5)}
\]

Find the poles and zeros and sketch the magnitude of the gain versus frequency. Find approximate values for the gain at \(\omega = 10, 10^3, \) and \(10^6 \) rad/s.

Solution

The zeros are as follows: one at \(s = 0 \) and one at \(s = \infty \). The poles are as follows: one at \(s = -10^2 \) rad/s and one at \(s = -10^5 \) rad/s.

Figure E.2 shows the asymptotic Bode plots of the different factors of the transfer function. Curve 1, which is a straight line intersecting the \(s \)-axis at 1 rad/s and having a +20 dB/decade slope, corresponds to the \(s \)-term (that is, the zero at \(s = 0 \)) in the numerator. The pole at \(s = -10^2 \) results in curve 2, which consists of two asymptotes intersecting at \(\omega = 10^2 \). Similarly, the pole at \(s = -10^5 \) is represented by curve 3, where the intersection of the asymptotes is at \(\omega = 10^5 \). Finally, curve 4 represents the multiplicative constant of value 10.

![Figure E.2](image)

Adding the four curves results in the asymptotic Bode diagram of the amplifier gain (curve 5). Note that since the two poles are widely separated, the gain will be very close to \(10^3 \) (60 dB) over the frequency range \(10^2 \) to \(10^5 \) rad/s. At the two corner frequencies (\(10^2 \) and \(10^5 \) rad/s) the gain will be approximately 3 dB below the maximum of 60 dB. At the three specific frequencies, the values of the gain as obtained from the Bode plot and from exact evaluation of the transfer function are as follows:

<table>
<thead>
<tr>
<th>Frequency (rad/s)</th>
<th>Approximate Gain</th>
<th>Exact Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>70 dB</td>
<td>70.00 dB</td>
</tr>
<tr>
<td>(10^3)</td>
<td>30 dB</td>
<td>30.00 dB</td>
</tr>
<tr>
<td>(10^5)</td>
<td>40 dB</td>
<td>39.96 dB</td>
</tr>
</tbody>
</table>

We next consider the Bode phase plot. Figure E.3 shows a plot of the typical phase term \(\tan^{-1}(f \omega / a) \), assuming that \(a \) is negative. Also shown is an asymptotic straight-line approximation of the arctan function. The asymptotic plot consists of three straight lines. The first is horizontal at \(\phi = -90^\circ \) and extends up to \(\omega = 0.1 a \). The second line has a slope of \(-45^\circ/\text{decade}\) and extends from \(0.1 a \) to \(a = 10a \). The third line has a zero slope and a level of \(\phi = -90^\circ \). The complete phase response can be obtained by summing the asymptotic Bode plots of the phase of all poles and zeros.

![Figure E.3](image)

Example E.2

Find the Bode plot for the phase of the transfer function of the amplifier considered in Example E.1.

Solution

The zero at \(s = 0 \) gives rise to a constant \(-90^\circ\) phase function represented by curve 1 in Fig. E.4. The pole at \(s = -10^2 \) gives rise to the phase function

\[
\phi_p = \tan^{-1}\left(\frac{10^2 \omega}{a}\right)
\]

![Figure E.4](image)
APPENDIX E I-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS

PROBLEMS

E.1 Find the transfer function \(T(s) = V_o(s)/V_i(s) \) of the circuit in Fig. PE.1. Is this an STC network? If so, of what type? For \(C_1 = C_2 = 0.5 \mu F \) and \(R = 100 \Omega \), find the location of the poles and zeros, and sketch Bode plots for the magnitude response and the phase response.

[Diagram of circuit with labels: \(V_i \), \(C_1 \), \(C_2 \), \(R \), and \(V_o \)]

E.2 (a) Find the voltage transfer function \(T(s) = V_o(s)/V_i(s) \) for the STC network shown in Fig. PE.2.

[Diagram of circuit with labels: \(V_i \), \(C \), \(R \), and \(V_o \)]

(b) In this circuit, capacitor \(C \) is used to couple the signal source \(V_i \) having a resistance \(R \) to a load \(R_L \). For \(R = 10 \Omega \), design the circuit, specifying the values of \(R_L \) and \(C \) to only one significant digit to meet the following requirements:

(i) The load resistance should be as small as possible.
(ii) The output signal should be at least 70% of the input at high frequencies.
(iii) The output signal should be at least 10% of the input at 10 Hz.

E.3 Two STC RC circuits, each with a pole at 100 rad/s and a maximum gain of unity, are connected in cascade with an intervening unity-gain buffer that ensures that they function separately. Characterize the possible combinations of low-pass and high-pass circuits by providing (i) the relevant transfer functions, (ii) the voltage gain at 10 rad/s, (iii) the voltage gain at 100 rad/s, and (iv) the voltage gain at 1000 rad/s.

E.4 Design the transfer function in Eq. (E.5) by specifying \(a_1 \) and \(a_0 \) so that the gain is 10 V/V at high frequencies and 1 V/V at 10 Hz.

E.5 An amplifier has a low-pass STC frequency response. The magnitude of the gain is 20 dB at 1 kHz and 0 dB at 100 kHz. What is the corner frequency? At what frequency is the gain 10 dB? At what frequency is the phase -90°?

E.6 A transfer function has poles at \(-3\), \(-7 + j10\), and \(-20\), and a zero at \(-1 - j20\). Since this function represents an actual physical circuit, where must other poles and zeros be found?

E.7 An amplifier has a voltage transfer function \(T(s) = \frac{10^3}{10^3/(s+10^6) + 10^6} \). Convert this to the form convenient for constructing Bode plots (that is, place the denominator factors in the form \((1 + s/a)^n\)). Provide a Bode plot for the magnitude response, and use it to find approximate values for the amplifier gain at 1, 10, 10², 10³, 10⁴, and 10⁵ rad/s. What would the actual gain be at 10 rad/s? At 10² rad/s?

E.8 Find the Bode phase plot of the transfer function of the amplifier considered in Problem E.7. Estimate the phase angle at 1, 10, 10², 10³, and 10⁴ rad/s. For comparison, calculate the actual phase at 1, 10, and 100 rad/s.

E.9 A transfer function has the following zeros and poles: one zero at \(s = 0 \) and one zero at \(s = -100 \) and one pole at \(s = -10^5 \). The magnitude of the transfer function at \(s = -10^7 \) rad/s is 100. Find the transfer function \(T(s) \) and sketch a Bode plot for its magnitude.

E.10 Sketch Bode plots for the magnitude and phase of the transfer function

\[T(s) = \frac{10^3}{10^3/(s+10^6) + 10^6} \]

From your sketches, determine approximate values for the magnitude and phase at \(s = -10^6 \) rad/s. What are the exact values determined from the transfer function?

E.11 A particular amplifier has a voltage transfer function \(T(s) = \frac{10^3}{10^3/(s+10^5) + 10^5} \). Find the poles and zeros. Sketch the magnitude of the gain in dB versus frequency on a logarithmic scale. Estimate the gain at \(10^3 \), \(10^4 \), \(10^5 \), and \(10^6 \) rad/s.

E.12 A direct-coupled differential amplifier has a differential gain of 100 V/V with poles at \(10^3 \) and \(10^6 \) rad/s, and a common-mode gain of \(10^{-2} \) V/V with a zero at \(10^5 \) rad/s and a pole at \(10^4 \) rad/s. Sketch the Bode magnitude plots for the differential gain, the common-mode gain, and the CMRR. What is the CMRR at \(10^5 \) rad/s? (Hint: Division of magnitudes corresponds to subtraction of logarithms.)
Standard Resistance Values and Unit Prefixes

Discrete resistors are available only in standard values. Table G.1 provides the multipliers for the standard values of 5%-tolerance and 1%-tolerance resistors. Thus, in the kilohm

<table>
<thead>
<tr>
<th>TABLE G.1 Standard Resistance Values</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5% Resistor Values (kΩ)</th>
<th>100-174</th>
<th>178-309</th>
<th>316-549</th>
<th>562-976</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>178</td>
<td>316</td>
<td>562</td>
</tr>
<tr>
<td>11</td>
<td>102</td>
<td>182</td>
<td>324</td>
<td>576</td>
</tr>
<tr>
<td>12</td>
<td>105</td>
<td>187</td>
<td>322</td>
<td>590</td>
</tr>
<tr>
<td>13</td>
<td>107</td>
<td>191</td>
<td>340</td>
<td>604</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>196</td>
<td>348</td>
<td>619</td>
</tr>
<tr>
<td>16</td>
<td>115</td>
<td>200</td>
<td>357</td>
<td>634</td>
</tr>
<tr>
<td>18</td>
<td>115</td>
<td>205</td>
<td>365</td>
<td>649</td>
</tr>
<tr>
<td>20</td>
<td>118</td>
<td>210</td>
<td>374</td>
<td>665</td>
</tr>
<tr>
<td>22</td>
<td>121</td>
<td>215</td>
<td>383</td>
<td>681</td>
</tr>
<tr>
<td>24</td>
<td>124</td>
<td>221</td>
<td>392</td>
<td>698</td>
</tr>
<tr>
<td>27</td>
<td>127</td>
<td>226</td>
<td>402</td>
<td>715</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>232</td>
<td>412</td>
<td>732</td>
</tr>
<tr>
<td>33</td>
<td>133</td>
<td>237</td>
<td>422</td>
<td>750</td>
</tr>
<tr>
<td>36</td>
<td>137</td>
<td>243</td>
<td>432</td>
<td>768</td>
</tr>
<tr>
<td>39</td>
<td>140</td>
<td>249</td>
<td>442</td>
<td>787</td>
</tr>
<tr>
<td>43</td>
<td>143</td>
<td>255</td>
<td>453</td>
<td>806</td>
</tr>
<tr>
<td>47</td>
<td>147</td>
<td>261</td>
<td>464</td>
<td>825</td>
</tr>
<tr>
<td>51</td>
<td>150</td>
<td>267</td>
<td>475</td>
<td>845</td>
</tr>
<tr>
<td>56</td>
<td>154</td>
<td>274</td>
<td>487</td>
<td>866</td>
</tr>
<tr>
<td>62</td>
<td>158</td>
<td>280</td>
<td>499</td>
<td>887</td>
</tr>
<tr>
<td>68</td>
<td>162</td>
<td>287</td>
<td>511</td>
<td>909</td>
</tr>
<tr>
<td>75</td>
<td>165</td>
<td>294</td>
<td>523</td>
<td>931</td>
</tr>
<tr>
<td>82</td>
<td>169</td>
<td>301</td>
<td>536</td>
<td>953</td>
</tr>
<tr>
<td>91</td>
<td>174</td>
<td>309</td>
<td>549</td>
<td>976</td>
</tr>
</tbody>
</table>

range of 5% resistors one finds resistances of 1.0, 1.1, 1.2, 1.3, 1.5, . . . In the same range, one finds 1% resistors of kilohm values of 1.00, 1.02, 1.05, 1.07, 1.10, . . .

Table G.2 provides the SI unit prefixes used in this book and in all modern works in English.

<table>
<thead>
<tr>
<th>TABLE G.2 SI Unit Prefixes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>femto</td>
<td>f</td>
<td>(\times 10^{-15})</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>(\times 10^{-12})</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>(\times 10^{-9})</td>
</tr>
<tr>
<td>micro</td>
<td>μ</td>
<td>(\times 10^{-6})</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>(\times 10^{-3})</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>(\times 10^{3})</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>(\times 10^{6})</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>(\times 10^{9})</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>(\times 10^{12})</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>(\times 10^{15})</td>
</tr>
</tbody>
</table>
Answers to Selected Problems

CHAPTER 1

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(a) 10 mA; (b) 100 kΩ; (c) 100 V; (d) 0.1 A 1.2 (a) 0.9 W; (c) 0.09 W; (g) 0.12 W; (h) 0.12 W</td>
</tr>
<tr>
<td>1.2</td>
<td>(a) 1/4 W 1.4 17; 5.7, 6.7, 8.0, 8.6, 10, 13.3, 14.3, 17.1, 20, 23.3, 28, 30, 40, 46.7, 50, 70 (all in kΩ)</td>
</tr>
<tr>
<td>1.4</td>
<td>30 Vpeak-to-peak of opposite phase, 60 Vpeak-to-peak. (a) 6 Vpeak-to-peak; (b) 6 Vpeak-to-peak; (c) 56 Vpeak-to-peak; (a) 0 Vpeak-to-peak; (b) 0 Vpeak-to-peak; (c) 19.8 Vpeak-to-peak; (a) 28.0 86 dB; 500 Hz; 10 MHz; 2.83 GHz; 19 kHz; 1.99 Vpeak-to-peak 2.84 40 Vpeak-to-peak; 2.89 (a) 0.1; 1/4 W 3.0 kHz 3.1</td>
</tr>
</tbody>
</table>
13.47 \(R_1 = R_2 = 10 \, \text{k}\Omega \) (say); 3.18 V. 13.49 \(R_1 = 1 \, \text{M}\Omega; \quad R_2 = 45 \, \text{k}\Omega; \quad R_3 = 1 \, \text{M}\Omega; \quad C = 0.16 \, \mu\text{F} \) for a corner frequency of 1 Hz. 13.53 Use op amp circuit with \(\text{u}_{\text{in}} \) connected to positive input, LED between output and negative input and resistor \(R_4 \) between negative input and ground; \(f_{\text{LIM}} = \frac{V_\text{LIM}}{R_2}; \quad 13.54 \, \text{LIM} = \frac{C}{R_4}; \quad f_{\text{LIM}} = C \times 1.53 \Omega; \) Acts as a linear frequency meter for fixed input amplitudes; with \(C \) has a dependence on wave order frequency of 1.272 mA. 13.55 10 mV, 20 mA, 100 mV; 50 pulses, 100 pulses, 200 pulses

CHAPTER 14

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

INDEX
Bipolar pairs, 725-726
Bipolar differential pairs, 723-726, 733-735
Binary number systems, 11
BJTs (bipolar junction transistors), 377-542
Bit lines, 1029
Bilinear transfer functions, 1098
individual
Basic circuits and devices
dc circuits, 421-436, 524-528
TTL circuits, 951-952
MOSFETs, 280-287, 367-368
VLSIs, A9-A10
logic gates, 1070-1071
inverters, 1067-1069
input bias, 102-105, 725-726, 899-901
overviews and summaries, 19-22, 436
E multipliers biasing, 1246-1249
collector-to-base feedback resistors, 441-442
overviews and summaries, 436
diodes, 141
differential amplifiers, 725-726
currents, 102-105
1098-1106, 1160-1161
power amplifiers, 1249-1256, 1279-1280
high frequency models, 485—491
single-stage amplifiers, 460^-685, 533-537
cutoff modes, 379
collectors, 443^445
collector currents, 443-445
resistance reflection rules, 472
low-frequency responses, 497-503
Miller effect, 496
forward base-transit times, 486
examples, 512-516
signal separations, 448
overviews and summaries, 443, 458^459
collectors, 443-445
resistance reflection rules, 472
low-frequency responses, 497-503
Miller effect, 496
forward base-transit times, 486
examples, 512-516
signal separations, 448
overviews and summaries, 443, 458^459
collectors, 443-445
resistance reflection rules, 472
low-frequency responses, 497-503
Miller effect, 496
forward base-transit times, 486
examples, 512-516
signal separations, 448
overviews and summaries, 443, 458^459
Op amps (operational amplifiers), 651-654
individual topics
- ideal, 651-657
- inverted configurations, 657-662
- large signal operations, 662-667
- BJTs operations, 729-734
- op amp-RC oscillator circuits, 1179-1181
- inverter operations, 956-961
- class B output stage operations, 1236
- resistances, input
- Miller integrators, 107-112
- impedances, 105-107
- problems, 1278-1283
- differential signals, 67-68
- unity gain amplifiers, 79-80
- closed-loop gain, 77-78
- characteristics, 78
- rated output voltage, 94
- virtual grounds, 69-70
- single difference amplifiers, 81-86
- open-loop gain, 78-79
- differential amplifiers, 81
- CMRR, 81-82
- DC loop gain, 84-85
- hFE
- signal waveforms, 1233
- transfer characteristics, 1236
- problems, 1278-1283
- compound devices, 1257-1259
- circuit operations, 1242-1243
- transfer characteristics, 1231-1233
- noise, 1234-1235
- output noise, 1236-1237
- output power, 1238-1239
- noise equivalent input current, 1240-1241
- noise equivalent input voltage, 1242-1243
- noise factor, 1244-1245
- signal-to-noise ratio, 1246-1247
- output noise, 1248-1249
- output power, 1250-1251
- open-loop gain, 1252-1253
- frequency response, 1254-1255
- distortion, 1256-1257
- noise, 1258-1259
- thermal noise, 1260
- output noise, 1261-1262
- output power, 1263-1264
- closed-loop gain, 1265-1266
- frequency response, 1267-1268
- distortion, 1269-1270
- output noise, 1271-1272
- output power, 1273-1274
- circuits
- Miller integrators, 107-112
- CMOS
- virtual grounds, 69-70