

Chap. 12: Fonderies et procédés

Traiter le silicium

12.1: Fonderies

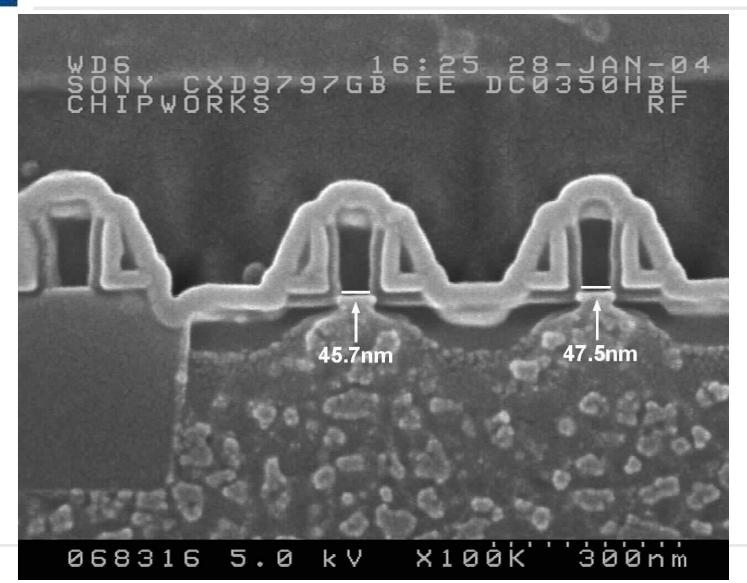
Fonderie de silicium

- fonderie = usine de circuits intégrés
- spécificités
 - procédés physico-chimiques
 - pureté des matériaux quasi au niveau atomique
 - températures élevées et très précises
 - positionnement micrométrique et élimination des vibrations

• ex: Fab2 (Mietec, 1993): 100M€ pour 3000m²

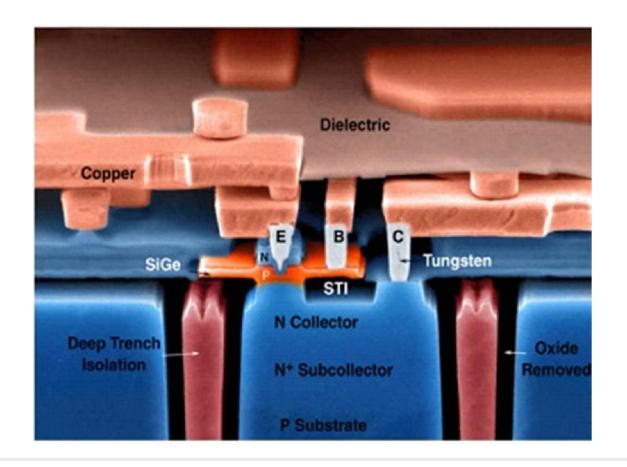
"Salles blanches"

- but: pureté de l'air
- classe 1 = moins de 1 particule de 0,1µm par pied³
- hôpital = classe10000



12.2: Principales opérations de fonderie (aperçu)

Chip= structure 3D à l'échelle du µm/nm

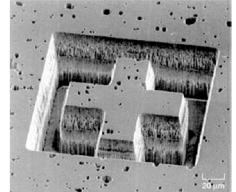


Chip= structure 3D à l'échelle du µm/nm

• ...obtenue par des processus 2D successifs

La base de tout: la tranche de silicium

• diamètre: 5 à 50cm / épaisseur: 500µm



La tranche subit une succession de procédés physico-chimiques

- graver un motif
 - photolithographie + gravure
- modifier les propriétés électriques du Si
 - dopage par diffusion
 - dopage par implantation ionique

- oxydation
- épitaxie
- dépôt de couches minces
- métallisation

Préparation du substrat: rappels

- semiconducteurs (Si)
 - 2 types de charges mobiles
 - conductivité modulable par dopage => zones P et N
 - => diodes et transistors

cristal

- solide constitué d'un arrangement périodique 3D d'atomes
- tranche = Si monocristallin
 - densité atomique: 5.10²² at/cm³
 - ne pas confondre avec le Si <u>poly</u>cristallin ("polysilicium«)

Préparation du substrat: silicium EGS

• matériau de départ: silice

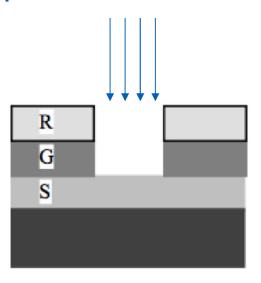
- => Si MGS (metallurgical grade)
 - impuretés: qques dizaines ppm

- => Si EGS (electrical grade)
 - impuretés << 0,002ppm

Préparation du substrat: tranches de Si

- croissance d'un monocristal à partir d'un germe
- découpage
- protection par oxyde

La gravure (*etching*) gravure chimique


- principe
 - graver = enlever une couche de matière de manière sélective (suivant un motif)
 - zones protégées par un film (resist)
- 1) gravure chimique
 - agent chimique attaquant le Si
 - motifs deviennent trop petits
 - inconvénient: attaque isotrope

La gravure (*etching*): gravure par effet de plasma

- 2) gravure par plasma
 - plasma = gaz ionisé (ions + e⁻ libres)
 - action physique (bombardement d'ions) + chimique
 - +: attaque anisotrope, meilleur respect du motif

Photolithographie

principe

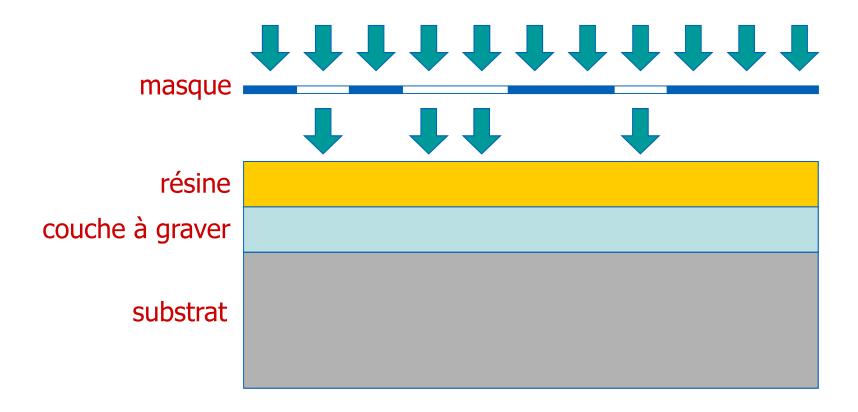
- dépôt d'un motif sur la tranche (sous forme d'un film de résine) en vue d'une opération de gravure ou de croissance d'un matériau
- intervient de manière répétée dans la fabrication

étapes

- 1) dépôt d'un film de résine uniforme
- 2) exposition aux UV au travers d'un masque => modification chimique des zones exposées
- 3) lavage au solvant => enlèvement des zones exposées
- 4) application d'un processus (ex. gravure)
- 5) nettoyage de la résine restante

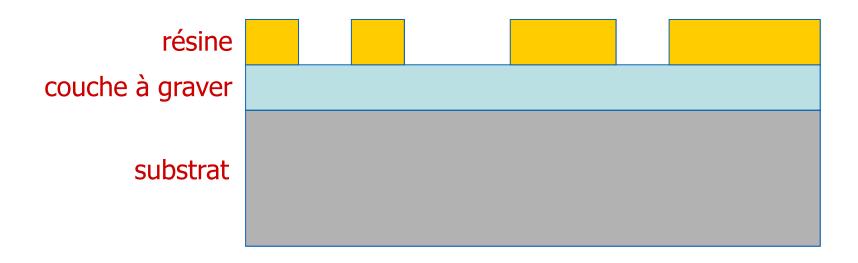
• 0) situation de départ

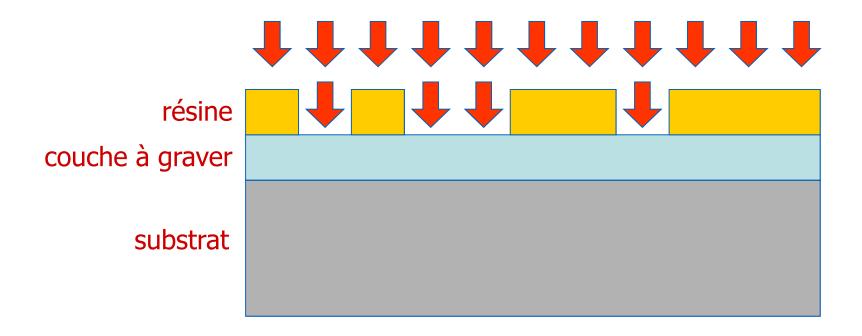
couche à graver	
substrat	

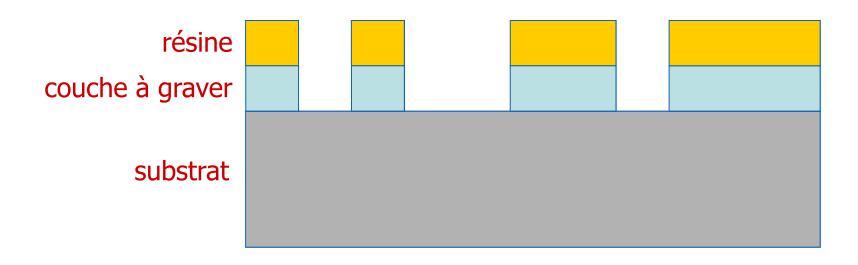

• 1) dépôt uniforme de résine

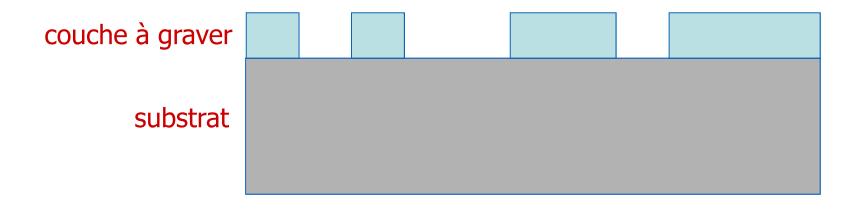
résine	
couche à graver	
substrat	

• 2) exposition à travers un masque


• 2) fin de l'exposition:


- 3) développement
 - lavage au solvant des zones exposées


• 4) gravure (ex: plasma)


• 4) fin de la gravure

- 5) nettoyage de la résine
 - le motif a été transféré sur le substrat

Photolithographie: masques

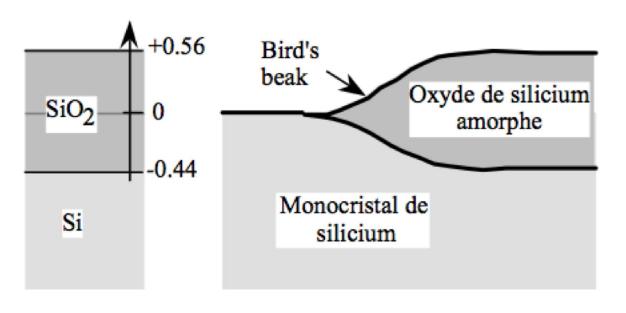
- masque = original du motif à transférer
 - réticule créé à partir d'un fichier informatique
 - duplication du réticule sur le masque (répéteur)
- coût très élevé (qques k€)
- difficultés
 - la diffraction limite les dimensions
 - motif plus fin => longueur d'onde plus courte
- évolutions récentes en photolithographie
 - lithographie aux rayons X
 - lithographie par faisceau électronique

L'oxydation

Principe

- croissance d'une couche SiO₂ amorphe sur le Si
 - chimiquement: très stable
 - électriquement: excellent isolant électrique

Usages

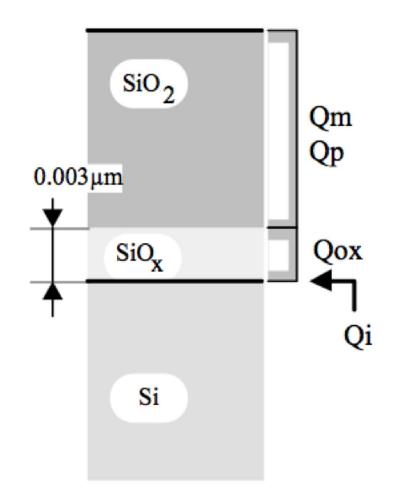

- couche protectrice (passivation)
- oxyde de champ (intercalaire entre éléments actifs)
- oxyde de grille (grille des MOS)
- oxyde mince (diélectrique pour condensateurs)

L'oxydation: profil "en bec d'oiseau"

• l'oxyde "s'enterre" dans le Si:

L'oxydation: détails techniques

- oxydation dans un four à 1100°C
- oxydation sèche
 - agent oxydant: O₂
 - $-0.2\mu m SiO_2$ / heure
 - réservé pour oxyde de grille (très bonne qualité)
- oxydation humide
 - agent oxydant: H₂O
 - 3µm SiO₂ / heure
 - pour autres usages (oxyde plus poreux)



Charges d'oxyde

 charges électriques emprisonnées dans l'oxyde de grille

=> influencent les propriétés des MOS

Le dépôt de couches minces (CVD) Chemical Vapor Deposition

Principe

- dépôt de matériau non métallique: polysilicium, oxydes, nitrure de silicium
- "chemical vapor deposition": favorisation de réactions chimiques déposant le matériau, initialement véhiculé par un gaz

Dépôt de polysilicium

- dépôt de Si polycristallin (grains 0,1 à 1μm)
 - gaz porteur: silane (SiH₄)
 - 650°C
- usages
 - grille des MOS + pistes conductrices associées
 - seconde couche conductrice

Dépôt d'oxydes (PYROX et SILOX)

- dépôt de SiO₂ , P₂O₅ (PyroGlass), etc
 - 400°C à 900°C
- usages
 - couches isolantes entre couches conductrices
 - couche de passivation finale (PyroGlass)
 - à ne pas confondre avec croissance d'oxyde à partir de la tranche ("oxydation")

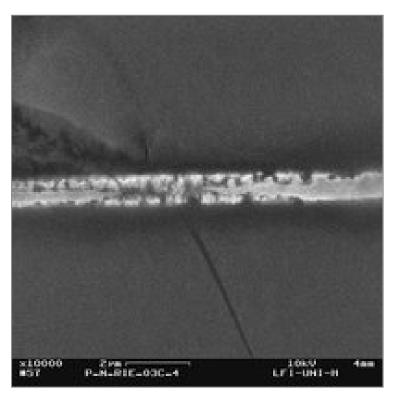
Dépôt de nitrure

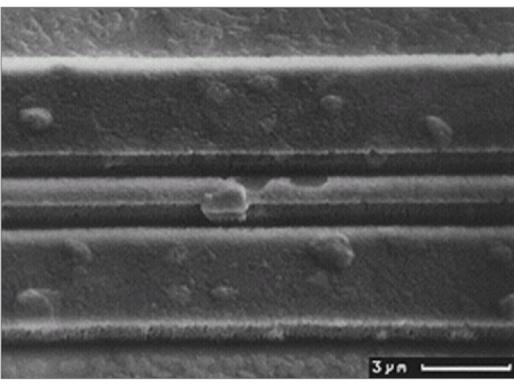
- dépôt de Si₃N₄
 - 700°C à 900°C
- usages
 - croissance d'un oxyde épais isolant les zones passives du circuit par rapport au substrat
 - couche de passivation

L'épitaxie

Principe

- croissance d'une couche supplémentaire de silicium prolongeant la structure cristalline du substrat
- couche de 3 à 10µm constituant la zone utile pour implanter les circuits
- intérêt
 - profils de dopage impossibles autrement
- détails techniques
 - apport de Si via gaz (+ haute T° que CVD)


La métallisation


- principe
 - dépôt de matériau métallique (AI)
 - similaire à CVD
- usage
 - réalisation des connexions (faible résistivité)
- difficultés
 - T° fusion Al = 650°C (basse!)
 - Al sensible à l'électromigration

l'électromigration

électromigration et délais de propagation

électromigration

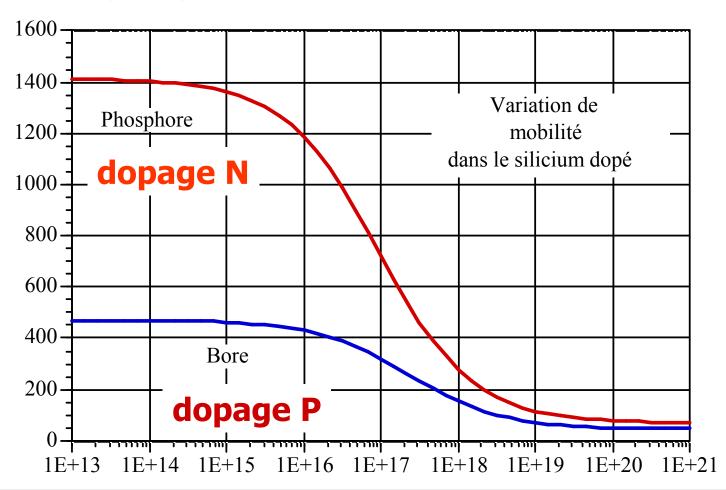
- arrachement d'atomes se manifestant pour des grandes densités de courant (>1 mA/μm²)
- phénomène destructif pouvant provoquer la rupture de la piste
- densités rencontrées en pratique!

interconnexions: alternatives au métal

- polysilicium
- silicides
 - matériaux céramiques (MoSi₂, TaSi₂, TiSi₂, WSi₂, etc)
 - avantage: T° fusion plus grande
 - inconvénient: résistivité plus grande
- technologies à plusieurs couches de métal

Le dopage

principe


- insertion d'atomes étrangers pour modifier la conductivité locale du Si
- => zones P et N plus ou moins dopées
- atomes dopants
 - atomes donneurs (d'e-): Sb, P, As
 - atomes accepteurs (d'e⁻): B, Al, Ga
 - 100% dopants ionisés à T° ambiante
 - taux de dopage usuel: 10¹⁴ à 10²¹ at/cm³
 - une faible concentration en dopants suffit pour modifier fortement la conductivité du Si

Le dopage: dopage et mobilité/conductivité

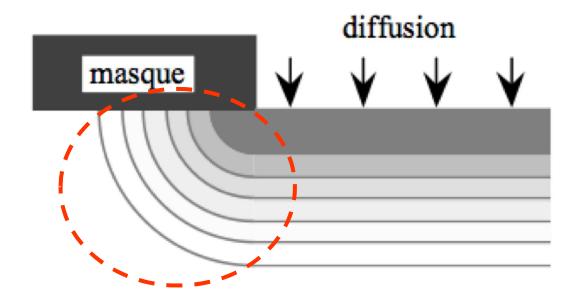
mobilité (cm²/V.s)

Le dopage: dopage et mobilité/conductivité

- canal MOS en matériau faiblement dopé
 - car transconductance proportionnelle à mobilité
 - et mobilité élevée obtenue pour faible dopage
- MOS de préférence à canal N
 - car mobilité des électrons supérieure à celle des trous
- Drain et Source fortement dopés pour haute conductivité

Dopage par diffusion

- Rappel: diffusion
 - phénomène général: réorganisation d'un groupe de "particules" mobiles suite à l'existence d'un gradient de concentration au sein de celles-ci
 - loi de Fick
 - $\delta C/\delta t = -\delta F/\delta x$
 - avec $F = -D(\delta C/\delta x)$

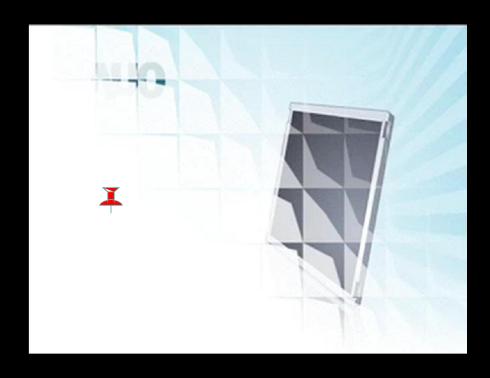

Dopage par diffusion

- 2 étapes:
- prédéposition (C_{surf} = constante)
 - gaz porteur (dopants) constamment renouvelé
 - but: introduire une quantité donnée de porteurs dans le matériau
- drive-in
 - en atmosphère neutre
 - but: égalisation des concentrations près de la surface

Dopage par diffusion: sous-diffusion

Dopage par implantation ionique

- principe
 - bombardement du Si par un faisceau d'ions
- avantages (>< diffusion)
 - profondeur d'implantation réglable via énergie des ions
 - meilleure précision sur la concentration
 - opération à température ambiante
 - effet de sous-diffusion moindre (anisotropie)
- inconvénient
 - nécessite un recuit (annealing) pour réparer les dommages dus aux collisions atomiques



La tranche subit une succession de procédés physico-chimiques

- graver un motif
 - photolithographie + gravure
- modifier les propriétés électriques du Si
 - dopage par diffusion
 - dopage par implantation ionique
- altérer Si ou déposer ou faire croître un matériau
 - oxydation
 - dépôt de couches minces
 - épitaxie
 - métallisation

fabrication d'un écran TFT

