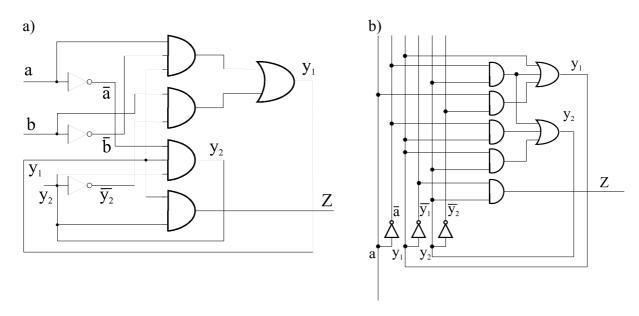
Bio, Electro And Mechanical Systems


http://beams.ulb.ac.be/beams/

ELEC –H-305 Circuits Logiques et Numériques

<u>Séance 8</u> Synthèse des circuits

1. Quels sont les équations logiques correspondant à ces deux schémas? Dresser la table d'Huffman et déduisez-en les graphes d'état.

- 2. Un ouvre porte est muni d'un code secret commandé par deux boutons poussoirs a et b. Z_1 est la sortie qui, si elle vaut 1, commande l'ouvre porte. Le code consiste à enfoncer et relâcher a deux fois de suite, puis b, puis encore a. Toute fausse manœuvre conduit à mettre à 1 la sortie Z_2 (alarme) et le retour à ab=00 remet le système dans son état de départ. Faire le graphe et la table de Hauffman correspondante à ce problème.
- 3. Construire la table des conditions d'équivalence pour la table d'états suivantes:

	00	01	11	10	ab	S_1S_0
1	<u>1</u>	2	3	10		00
2	7	<u>2</u>	9	4		11
3	7	6	<u>3</u>	4		10
4	7	2	5	<u>4</u>		01
5	11	8	<u>5</u>	12		10
6	11	<u>6</u>	5	10		11
7	<u>7</u>	8	5	4		00
8	1	<u>8</u>	3	4		11
9	7	8	9	12		10
10	11	6	9	<u>10</u>		01
11	<u>11</u>	8	9	10		00
12	7	2	5	<u>12</u>		11