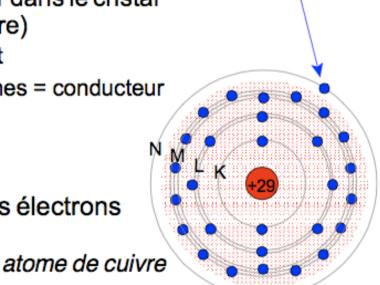

6 – Fonctionnement interne des composants électroniques

- Introduction
- 6.1 Physique des semiconducteurs
- 6.2 Jonction PN et diode
- 6.3 MOSFET

Les composants électroniques courants sont en silicium

- Pourquoi utiliser du silicium pour faire les composants électroniques?
 - Quelles sont ses propriétés particulières?
 - En quoi le Si permet-il plus facilement que d'autres matériaux de réaliser les fonctions d'interrupteurs électroniques indispensables aux diodes et transistors?

Semi-conducteurs = mauvais conducteurs, mauvais isolants

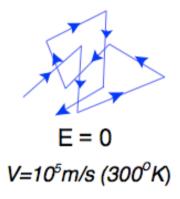

Corps	catégorie	résistivité à 25°C	conductivité à 25°C
		[Ohm.m]	[Ohm ⁻¹ .m ⁻¹]
Cuivre	conducteur	1,673E-08	5,977E+07
Aluminium	conducteur	2,655E-08	3,767E+07
Silicium	semi-conducteur	1,000E-03	1,000E+03
Germanium	semi-conducteur	4,600E-03	2,174E+02
Steatite	isolant	1,00E+12	1,000E-12
Teflon	isolant		

6. l Physique des semi-conducteurs

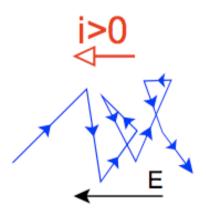
- Solides conducteurs
- Cristal de Si (pur)
- Dopage
- Synthèse

Solides conducteurs: origine de la conductivité

- cristal
 - ex: sucre
 - arrangement
 - liés par des liaisons chimiques
- conduction électrique
 - due aux charges capables de se mouvoir dans le cristal
 - = électrons de valence (couche extérieure)
 - T=0°K: toutes charges immobiles = isolant
 - T>0°K: agitation thermique ionise les atomes = conducteur
- métal (Cu, Al, Au, Ag)
 - électrons peu liés à l'atome
 - énergie de liaison faible
 - agitation thermique libère facilement des électrons
 - beaucoup d'électrons libres
 - => conductivité élevée

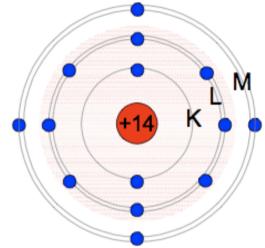


électron de

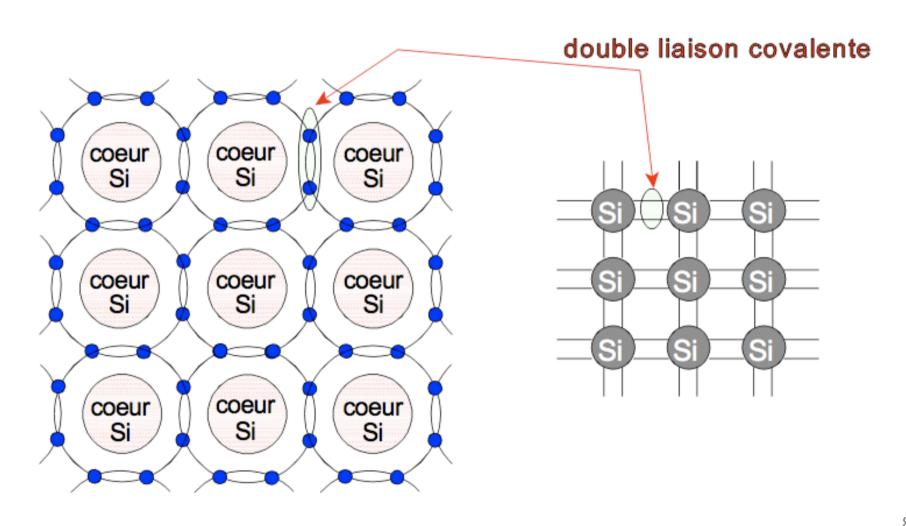

valence

Solides conducteurs: courant électrique

- Tension appliquée nulle
 - agitation thermique => mouvement aléatoire similaire à celui des molécules d'un gaz (I_{net}=0)



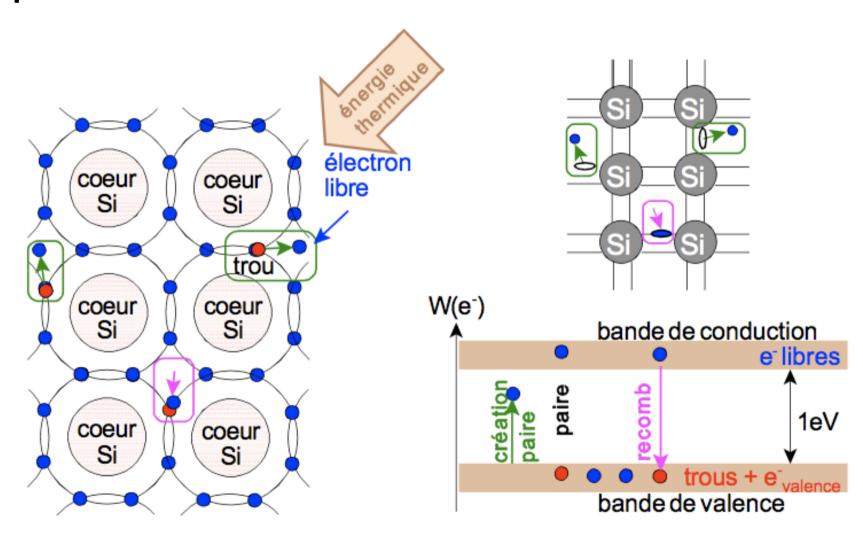
- Tension appliquée non nulle
 - déplacement d'ensemble des électrons sous l'effet d'un champ extérieur (ddp)
 - sens conventionnel = inverse du déplacement des électrons


Cristal de Si pur: structure atomique et cristalline

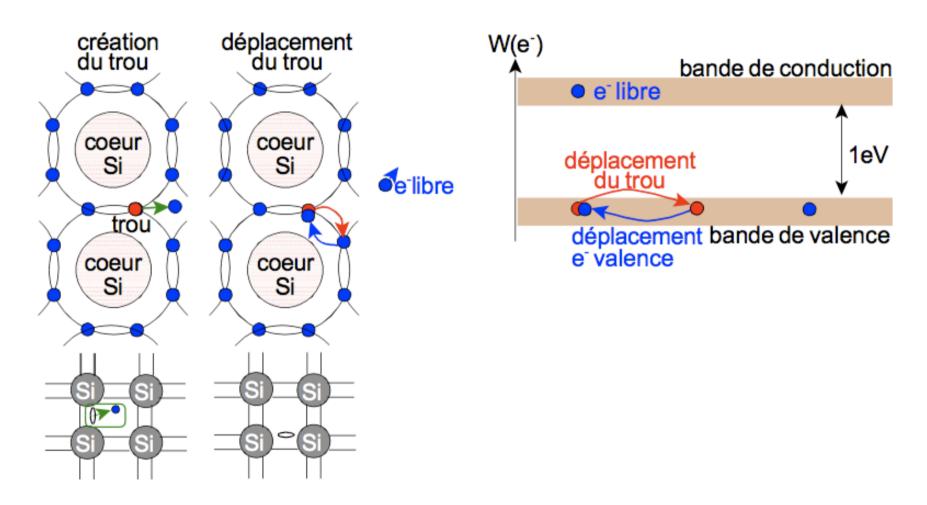
- structure atomique différente
 - moins de couches électroniques
 - 4 électrons de valence au lieu d'un
 - charge du coeur plus élevée
 - coeur = noyau + couches internes

- arrangement en cristal comme les métaux
 - compléter couche périphérique pour avoir 8 électrons
 - => 8 liaisons covalentes
 - liaison covalente = mise en commun d'un e entre 2 atomes
 - chaque atome met 4x un e⁻ en commun avec ses voisins
 - total: 8 liaisons covalentes

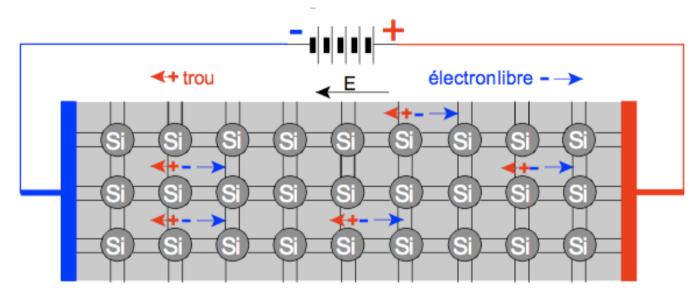
Cristal de Si pur: structure du cristal à 0°K


Cristal de Si pur charges mobiles et conductivité

- Liaisonélectron/atome
 - énergie de liaison électron/atome plus élevée (Si: 1eV à 25°C)
 - moins de couches => e de valence plus proches du noyau
 - électrons de valence plus nombreux => coeur plus chargé
 - tous les électrons de valence bloqués dans des liaisons covalentes
 - => agitation thermique libère difficilement des électrons
 - seul 1 atome sur 1000000000000 (10¹²) fournit un électron libre!!


$$N_{Si} = 5.10^{28} \text{ [/m}^3\text{]}$$
 $n_{Si} (25^{\circ}\text{C}) = 6.8.10^{16} \text{ [/m}^3\text{]}$ $n_{CII} (25^{\circ}\text{C}) = 10^{29} \text{ [/m}^3\text{]}$

- Conductivité
 - peu d'électrons libres => conductivité médiocre
 - la libération d'un électron crée un "trou"
 - trou = charge positive mobile correspondant à un défaut d'électron


Si pur (300°K): création/recombinaison de paires électron/trou

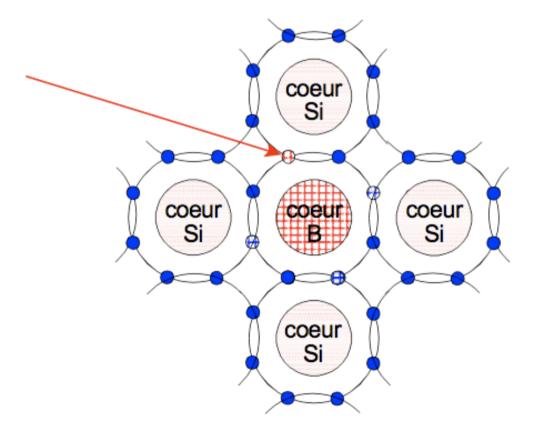
Si pur (300°K): déplacement d'un trou

Cristal de Si pur: synthèse

- 2 types de charges mobiles
 - négative:
 - positive:trou
 - silicium pur: autant d'électrons que de trous (électroneutralité)
- en présence d'un champ appliqué (tension extérieure)
 - se déplacent dans des sens opposés
 - deux courants différents contribuant à la conductivité

Dopage = injecter dans le cristal de silicium pur des atomes étrangers ("dopants")

- une très faible quantité de dopant permet de modifier considérablement les propriétés
- pratiquement
 - technique de fabrication microélectronique bien maîtrisée
 - microélectronique = fabrication des composants intégrés
 - on peut choisir de doper différemment des zones différentes d'un bloc de silicium


Dopage par atome donneur: introduction d'un donneur d'électron

- adjonction d'atomes pentavalents (5 e⁻ de valence)
 - P,As,Sb
- électron excédentaire

Dopage par atome accepteur: introduction d'un accepteur d'électron

- adjonction d'impuretés trivalentes
 - Al,B,Ga
- trou excédentaire

Dopage: SC intrinsèque et SC extrinsèque

- semi-conducteur intrinsèque
 - = propriétés du semi-conducteur dépendent uniquement de ses caractéristiques propres
 - silicium pur
 - silicium dopé à haute température
- semi-conducteur extrinsèque
 - = propriétés dépendent essentiellement du dopant
 - silicium dopé de type P ou N

Dopage par atome donneurs: augmentation du nombre d'électrons

- Soit un cristal de silicium de densité atomique
 - $N_{Si} = 5.10^{28} [atome/m^3]$
- Dopons-le à raison de 1 atome donneur par 50 millions:
 - $N_d = 10^{21} [atome/m^3]$
 - chaque atome donneur fournit un électron libre
- à 300°K, le nombre d'électrons libres passe:
 - de 6,8.10¹⁶ [m-3] (silicium pur)
 - à 10²¹ [m-3] (silicium dopé)
- => la densité d'électrons libres croît considérablement et ne dépend plus que de la densité des donneurs

Dopage par atomes donneurs: diminution du nombre de trous

- le produit des densités d'électrons et de trous est une constante dépendant uniquement de la température
 - sans démo, découle du principe d'électroneutralité
- ▶ à 300°K, le dopage fait passer le nombre de trous:
 - de 6,8.10¹⁶ [m⁻³] (silicium pur)
 - à 4,6.10¹² [m⁻³] (silicium dopé)
- > => il y a environ 2.108 fois plus d'e que de trous
 - les électrons deviennent nettement majoritaires
 - les trous deviennent nettement minoritaires

Effet de la température: p et n dépendent fortement de la T°

$$p.n \propto T^3 e^{-\frac{W_G}{kT}}$$

- ▶ le produit des densités de charges mobiles (e⁻ et trou)
 - ne dépend que de la température
 - croît fortement avec la température
 - => les propriétés des SC sont très dépendantes de la température
- ▶ au-delà d'une certaine T° (≈ 200°C)
 - n devient ≥ Na ou Nd (densité de dopants)
 - ♦ le Si redevient intrinsèque, il n'y a plus de type "p" ou "n"
 - toutes les propriétés aquises par le dopage sont perdues !
 - => attention à la surchauffe des composants électroniques!!

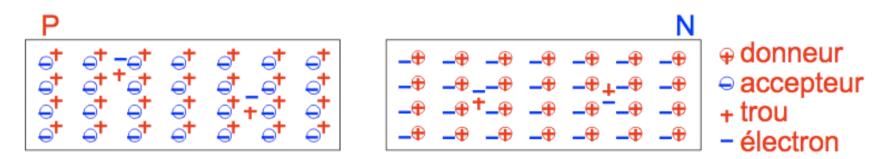
Dopage par atomes donneurs: synthèse

- le dopage par une "faible" quantité de donneurs modifie radicalement la composition des porteurs mobiles
 - "faible": par rapport au nombre d'atomes de Si mais élevée par rapport au nombre d'électrons libres dans le Si intrinsèque
- la densité d'électrons devient celle des donneurs et croît dans une proportion importante (x10⁴ ou plus)
 - les électrons sont devenus majoritaires
- la densité de trous baisse dans la même proportion
 - les trous sont devenus minoritaires
- on parle de <u>semi-conducteur de type n</u>
 - "n" car les charges libres négatives sont majoritaires

Dopage par atomes accepteurs: conclusions symétriques

- le dopage par une faible quantité d'accepteurs modifie radicalement la composition des porteurs mobiles
- la densité de trous devient celle des accepteurs et croît dans une proportion importante (x1E+4 ou >)
 - les trous sont devenus majoritaires
- la densité d'électrons baisse dans la même proportion
 - les électrons sont devenus minoritaires
- on parle de <u>semi-conducteur de type p</u>
 - "p" car les charges libres positives sont majoritaires

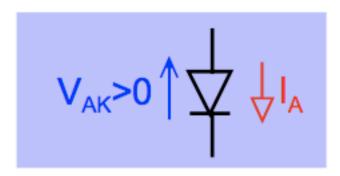
Semi-conducteurs synthèse

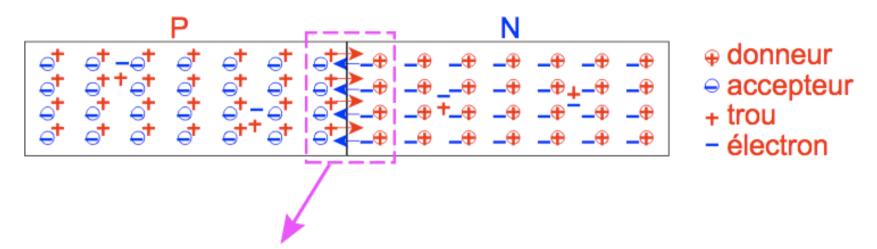

- Pourquoi utiliser du silicium pour faire les composants électroniques?
 - Pour ses propriétés de semi-conducteur:
 - 2 types de charges mobiles
 - on peut, par dopage, maîtriser sa conductivité en tout point
- En quoi cela permet-il de réaliser les fonctions d'interrupteurs électroniques indispensables aux diodes et transistors?
 - Suspense...

Jonction PN et diode

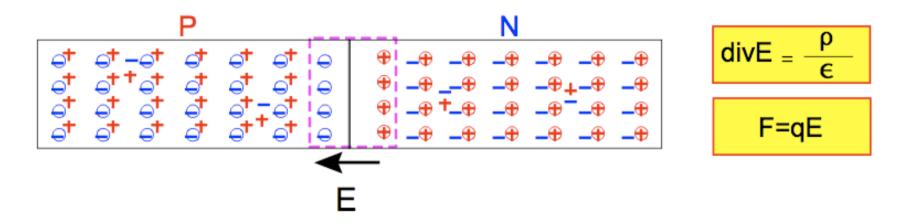
- Jonction PN
- Jonction PN polarisée
- Caractéristique réelle d'une diode

Jonction PN: définition

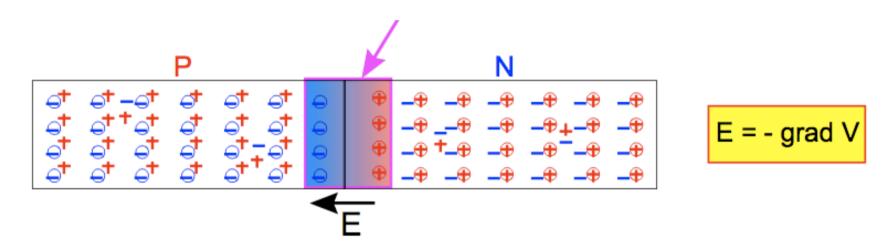

- Jonction PN
 - = frontière entre deux blocs de semi-conducteur accolés
 - SC type N: porteurs majoritaires = électrons
 - SC type P: porteurs majoritaires = trous
 - en pratique: dopage sélectif d'un bloc de Si


 Cette frontière possède des propriétés particulières sur lesquelles reposent tous les semi-conducteurs

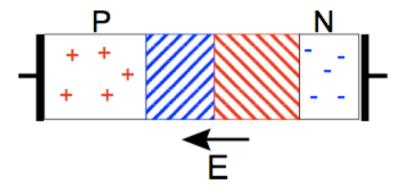
Diode = jonction PN dont on métallise les extrémités



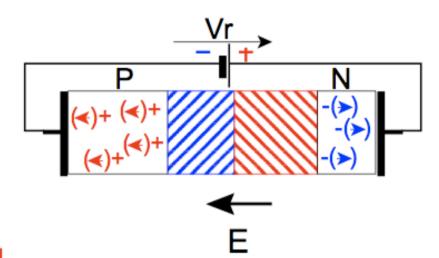
Zone de charge d'espace


- à la frontière (=jonction), les porteurs majoritaires se recombinent
 - électrons provenant du côté N
 - trous provenant du côté P

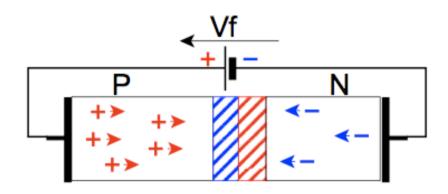
Zone de charge d'espace


- aux abords de la frontière, l'électroneutralité n'est plus assurée
 - il n'y a plus de charges mobiles pour compenser les charges fixes
- les atomes du cristal (fixes et chargés) créent un champ électrique dirigé de N vers P qui:
 - repousse les porteurs majoritaires
 - attire les rares porteurs minoritaires

Zone de charge d'espace

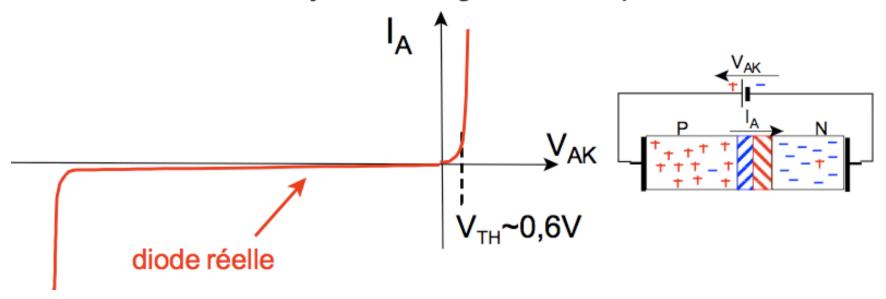

- > => formation d'une zone "appauvrie" en charges mobiles
 - = zone de charge d'espace
 - = zone "d'appauvrissement" ou zone "de transition"
- barrière de potentiel entre les 2 côtés de la zone de transition
 - due au champ électrique
 - empêche le passage des porteurs majoritaires (de gauche à droite)

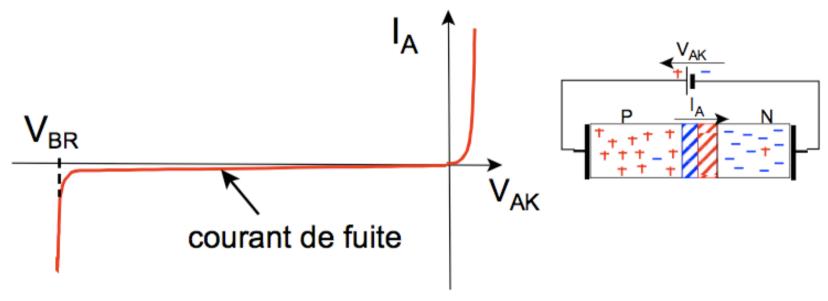
Jonction PN récapitulatif


- grâce à la présence
 - de 2 types de charges fixes
 - de 2 types de charges mobiles
- on crée un champ électrique (=barrière de potentiel) qui empêche le passage du courant (majoritaires)
 - la jonction PN est spontanément "fermée" au courant
 - comment l'ouvrir?

Polarisation inverse

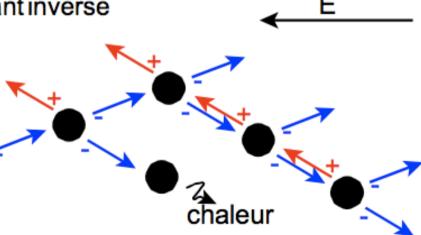
- Polarisation inverse
 - = tension positive du côté N
- > => éloigne les majoritaires de la zone de transition
 - la zone de transition s'élargit
 - la barrière de potentiel augmente
 - la tension appliquée s'ajoute au potentiel d'équilibre
 - la diode reste imperméable au courant


Polarisation directe


- Polarisation directe
 - = tension positive du côté P
- => rapproche les majoritaires de la zone de transition
 - la zone de transition se rétrécit
 - la barrière de potentiel diminue
 - les majoritaires ont plus de facilité à passer la barrière
 - + => vers 0,6V, la diode devient passante
 - la barrière de potentiel est contrée par la source extérieure
 - recombinaisons e⁻/trous massives dans la zone de transition

Caractéristique réelle

- ▶ polarisation directe (V>0, I≠0)
 - courbe exponentielle l=f(V)
 - ◆ "coude" de la courbe = seuil de conduction V TH
 - valeur pour laquelle la polarisation "contre" la barrière de potentiel "naturelle" de la diode
 - le courant de majoritaires augmente brusquement


Caractéristique réelle: courant de fuite

- polarisation inverse: courant de fuite
 - origine:
 - rares porteurs majoritaires ayant assez d'énergie pour franchir la barrière de potentiel
 - porteurs minoritaires des régions P et N (peu nombreux)
 - paires électron/trou générées dans la jonction
 - courant de surface

Caractéristique réelle de la jonction PN: avalanche

- électrons fortement accélérés
 - => collision des électrons avec les atomes
- si énergie faible
 - échauffement (peut détruire la jonction)
- si énergie plus élevée (E>20kV/mm)
 - => ionisation des atomes: création d'une paire électron/trou
 - => effet "boule de neige"
 - => augmentation brusque du courant inverse

Jonction PN synthèse

- une barrière de potentiel s'établit naturellement à la jonction entre un SC de type P et un SC de type N
 - phénomène d'origine électrostatique
 - empêche le passage du courant (sauf courant de fuite inverse)
 - mis à profit pour fabriquer une diode
- la polarisation permet de contrer cette barrière de potentiel
 - polarisation par une source de tension extérieure
 - à 0,6V, la diode devient brutalement passante
- => commande en tout ou rien du courant à partir de la tension = interrupteur électronique

Jonction PN Synthèse

- En quoi le silicium permet-il plus facilement que d'autres matériaux de réaliser les fonctions d'interrupteurs électroniques des diodes et transistors?
- le rôle de "vanne électronique" des semi-conducteurs est lié au comportement à deux visages de la jonction
 - conductrice si polarisée en direct
 - bloquante si polarisée en inverse
- la jonction PN est la base de tous les semi-conducteurs

6.3 Transistor MOSFET

transistor MOS

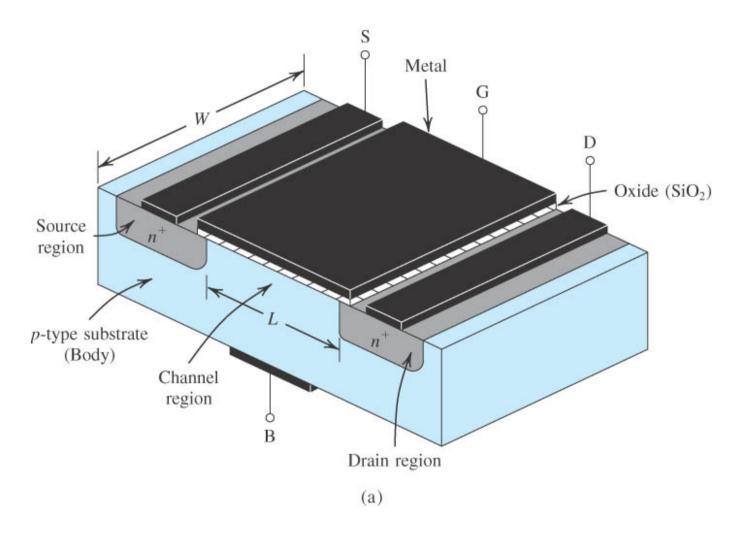
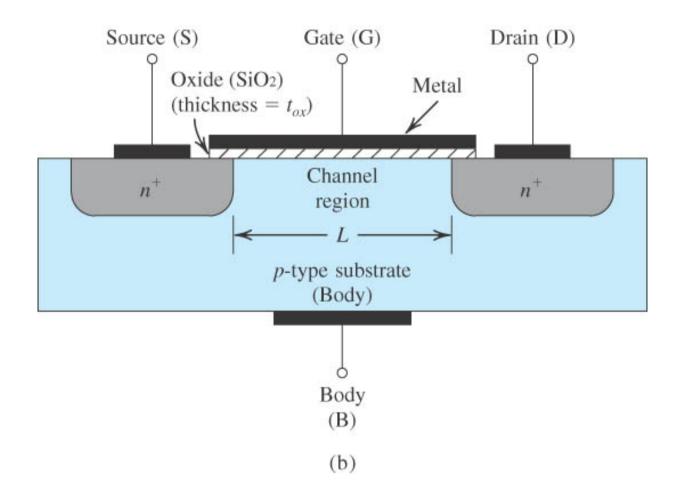
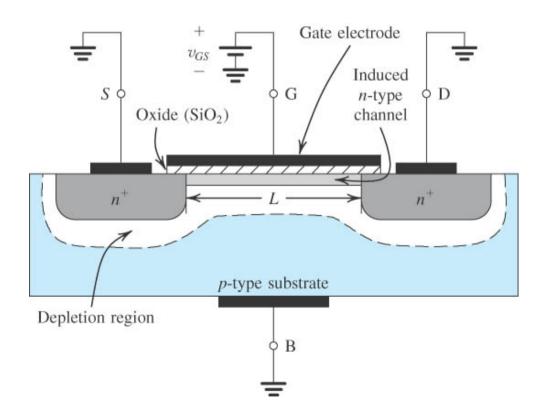
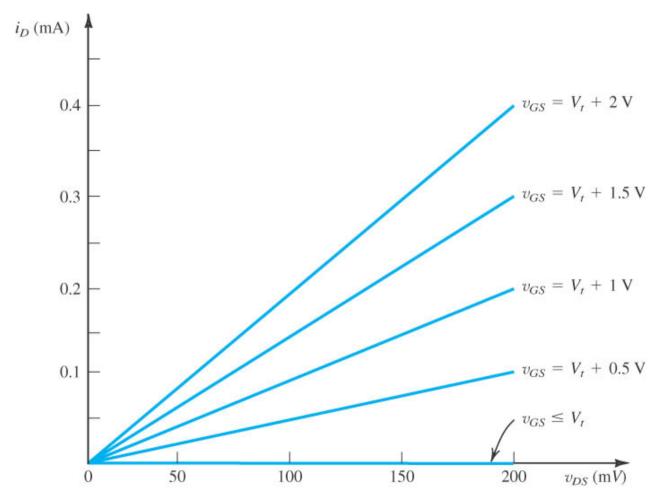



Figure 4.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross-section. Typically L = 0.1 to 3 μ m, W = 0.2 to 100 μ m, and the thickness of the oxide layer (t_{ox}) is in the range of 2 to 50 nm.

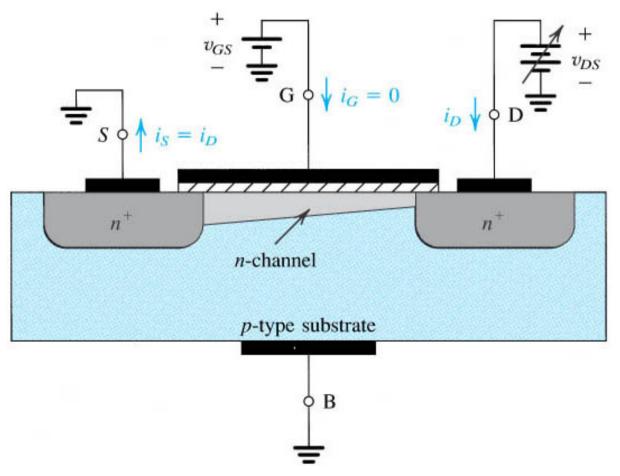

38

transistor MOS

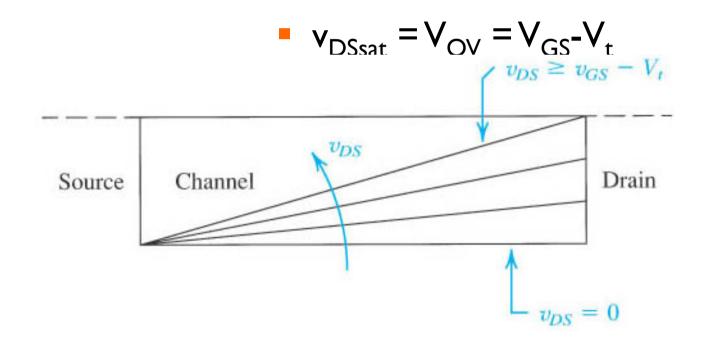


Etablissement d'un canal

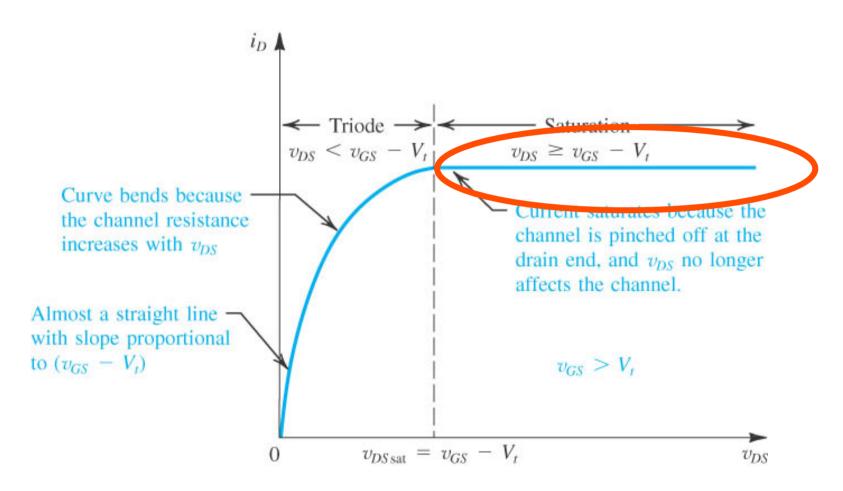
overdrive voltage V_{OV}=V_{GS}-V_t



V_{DS} faible: Le canal se comporte comme une "resistance" (contrôlée par v_{GS} - V_{T})


Figure 4.4 The i_D – V_{DS} characteristics of the MOSFET in Fig. 4.3 when the voltage applied between drain and source, V_{DS} is kept small. The device operates as a linear resistor whose value is controlled by V_{GS} .

Valeurs plus élevées de v_{DS}...


Figure 4.5 Operation of the enhancement NMOS transistor as v_{DS} is increased. The induced channel acquires a tapered shape, and its resistance increases as v_{DS} is increased. Here, v_{GS} is kept constant at a value v_{CS} is increased.

saturation: lorsque $v_{DS}=v_{OV}$ ($v_{GD}=0$)

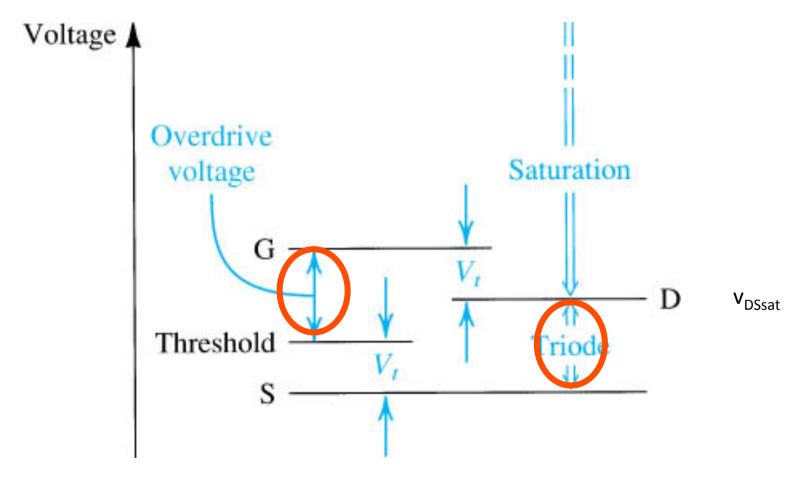


Figure 4.7 Increasing v_{DS} causes the channel to acquire a tapered shape. Eventually, as v_{DS} reaches $v_{GS} - V_t$ the channel is pinched off at the drain end. Increasing v_{DS} above $v_{GS} - V_t$ has little effect (theoretically, no effect) on the channel's shape.

saturation: lorsque $v_{DS}=v_{OV}$ ($v_{GD}<V_{T}$)

Figure 4.6 The drain current i_D versus the drain-to-source voltage v_{DS} for an enhancement-type NMOS transistor operated with $v_{GS} > V_r$.

Figure 4.14 The relative levels of the terminal voltages of the enhancement NMOS transistor for operation in the triode region and in the saturation region.