Chapitre 3

#### Introduction

- "L'électronique, c'est du hardware"
- dans la réalité, rien n'est parfait...
  - les composants
  - les signaux
  - les alimentations
- ...mais on va devoir s'en contenter!
  - importance de connaître les "imperfections"

#### **PLAN**



- Signaux analogiques
  - perturbations et imperfections
  - rapport signal/bruit
  - bruit
  - dipôles parasites
  - couplages
- Résistances
- Condensateurs
- Autres composants

...

#### pas si idéaux!

- forme des perturbations
  - bruit
    - variation aléatoire du signal autour de sa moyenne
  - décalage / offset
  - pics
  - oscillations
  - réflexions
  - etc
- valable pour
  - lignes de signal
  - conducteurs d'alimentation et de masse

#### pas si idéaux!

- origine des perturbations
  - imperfections des composants
- 3 types d'imperfections
  - sources de bruit
  - dipôles parasites
  - couplages parasites
- exemple: un bout de fil
  - génère du bruit
    - bruit thermique typique des métaux
  - comportement inductif en HF
  - couplage inductif et capacitif avec autres conducteurs

#### caractérisation des perturbations

- rapport signal/bruit
  - = "signal-to-noise ratio"

$$SNR = 20 Log \frac{V_{eff} (signal \, utile + perturbations)}{V_{eff} (perturbations)}$$

- en dB!
- le plus élevé possible

#### **PLAN**

- Signaux analogiques
  - perturbations et imperfections
  - rapport signal/bruit



- bruit
- dipôles parasites
- couplages
- Résistances
- Condensateurs
- Autres composants

. . . .

#### bruit

- exemple
  - bruit thermique
- propriétés du bruit
  - variation aléatoire du signal
  - origine interne au composant
    - processus physique fondamental
- conséquence: "plancher" fondamental
  - ne peut être totalement éliminé
  - fixe une limite stricte à la précision de l'information
- parades?
  - approcher / déplacer le plancher

#### dipôles parasites

- définition
  - phénomènes physiques non désirés mais inévitables
    - "effets secondaires"
    - modélisables sous forme d'un dipôle électrique
- exemples
  - L n'existe pas sans R
  - R n'existe pas sans L
    - limite les performances des PC!
  - C n'existe pas sans R

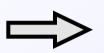
#### dipôles parasites

- conséquences
  - limitation de vitesse
    - cfr réponse d'un circuit RC ou RL à un échelon (ch. 2)
    - variation d'énergie dans les composants réactifs
  - oscillations parasites
    - L + C = circuit résonant
  - chutes de tension
    - résistive R.I
    - inductive L.di/dt
- parades
  - réduction par construction
  - compensation par d'autres éléments

#### couplages

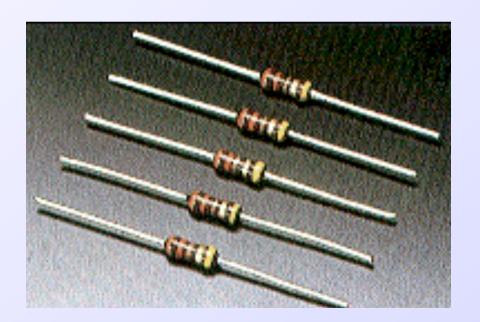
- définition
  - = "parasites"
  - pollution du signal utile par un signal extérieur
  - 3 éléments
    - source + couplage + cible
- propriétés
  - caractère non forcément aléatoire
  - origine externe au composant/montage

#### couplages


- types de couplages
  - galvanique
    - par un conducteur commun
  - inductif
    - par un champ magnétique
    - = f.e.m. induite (loi de Lenz)
  - capacitif / électrostatique
    - par un champ électrique
  - radiatif
    - par une onde électromagnétique
- exemples

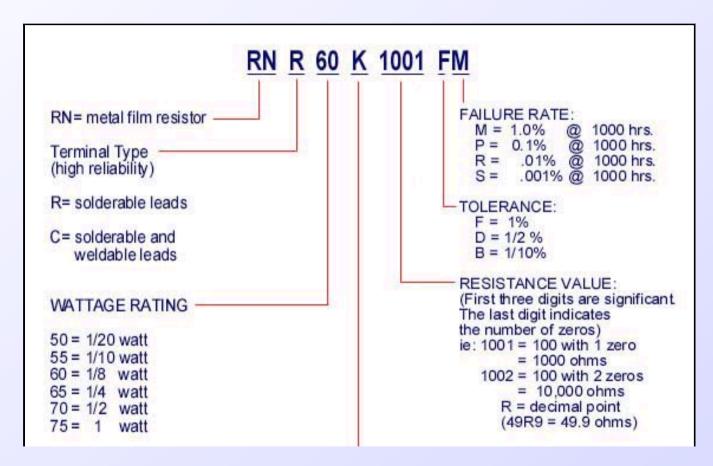
#### Conclusion

- monde réel beaucoup plus complexe que "schéma"
- parfois contraint d'approfondir le modèle pour tenir compte d'effets du second ordre
- tenir compte du second ordre, c'est faire de la compatibilité électromagnétique (CEM)
  - problèmes de câblage
  - blindages
  - routage des masses et des alimentations
  - etc
- devenu crucial vu la multiplication des équipements


#### **PLAN**

Signaux analogiques




- Résistances
  - résistances ordinaires
  - résistances de puissance
  - ajustables et potentiomètres
  - autres types de résistance
- Condensateurs
- Autres composants
- Circuits imprimés
- Types de composants

- procédés de fabrication
  - résistances à fil bobiné
  - résistances au carbone
    - mélange graphite + argile



#### Propriétés d'une résistance réelle

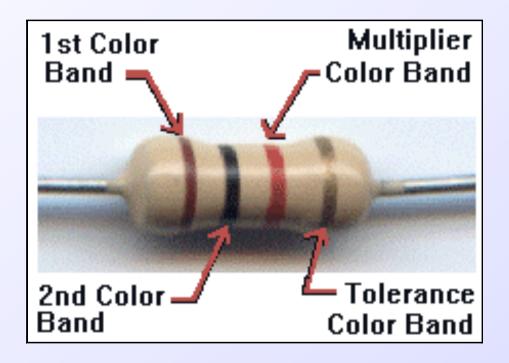
pas que la valeur ohmique (R)!



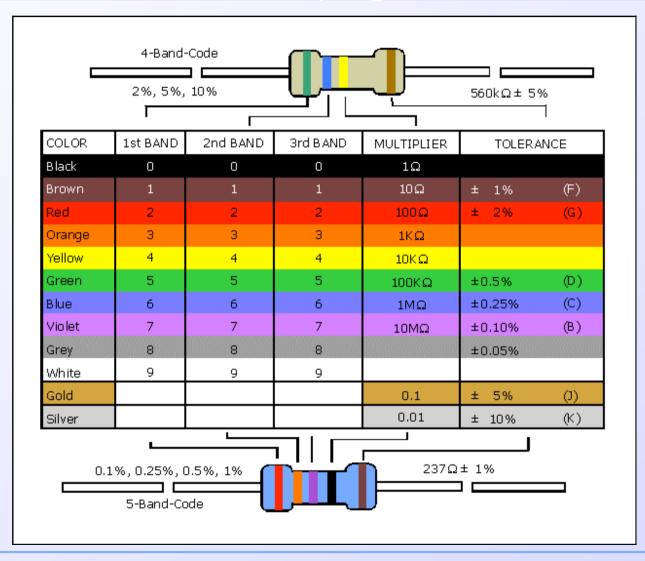
#### Propriétés d'une résistance réelle

- ▶ 1) fonction
  - loi idéale: loi d'Ohm V=RI
- 2) limites d'utilisation
  - limite de puissance
    - ordinaires: 1 à 2W
  - limite de température
    - gamme commerciale: 0 à 70°C
    - gamme militaire: -55°C à +125°C
  - limite de tension
    - tension de service max: 350V
  - au-delà: imprécision / altération / destruction

#### Propriétés d'une résistance réelle


- 3) écarts par rapport à la loi idéale
  - tolérance (=précision) sur R
    - typiquement 5%
  - coefficient de température
    - R = fct (T°)
    - en ppm/°C ou %/°C
  - bruit thermique
- 4) divers
  - forme, dimensions, durée de vie (MTBF), prix, etc
- procédé de fabrication
  - influence toutes les autres propriétés

#### valeurs disponibles


- organisées en "séries"
  - valeurs en progression géométrique
  - série "En" = n valeurs par décade
  - ◆ E3 = 1, 2.2, 4.7, 10
    - entre  $47\Omega$  et  $10M\Omega$
  - ◆ E6 = 1, 1.5, 2.2, 3.3, 4.7, 6.8, 10
  - ◆ E12 = ...

- valeurs quelconques
  - par mise en série et en parallèle

#### marquage



#### marquage



#### utilisations d'une résistance

- V=RI: que peut-on en faire?
- une seule résistance
  - conversion tension <> courant
  - limitation de courant
  - "découpler" des noeuds
    - permettre que deux noeuds, quoique reliés, soient à des potentiels différents
  - fixer le potentiel par défaut d'un noeud
    - résistances de pull-up et de pull-down
- plusieurs résistances
  - calcul analogique simple
    - diviseur de tension
    - sommateur

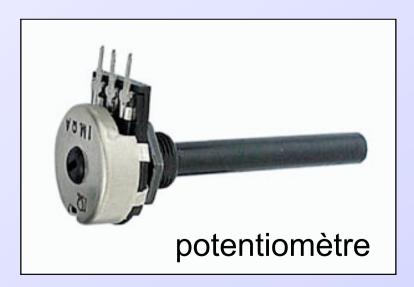
#### **PLAN**

- Signaux analogiques
- Résistances
- résistances ordinaires
  - résistances de puissance
  - ajustables et potentiomètres
  - autres types de résistance
- Condensateurs
- Autres composants
- Circuits imprimés
- Types de composants

# Résistances de puissance

## exemples





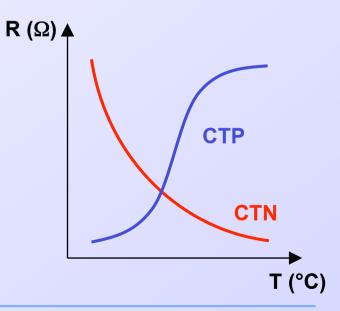

# Ajustables et potentiomètres

#### = résistances variables

- principe
  - R = fct (position)
  - 3 bornes
  - loi de variation
- ajustables
  - par tournevis
  - valeurs à modifier rarement
    - ex: calibration
- potentiomètres
  - manuellement
  - interface homme/machine



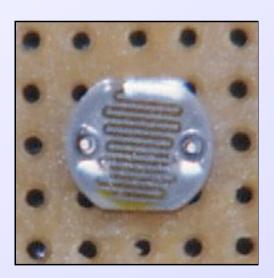



# Autres types de résistances

#### thermistance

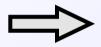
- thermistance
  - ♠ R = fct (T°)
  - fortement non linéaire
  - matériau semiconducteur (>< métal)</li>




- thermistance CTN
  - capteur T° faible précision
- thermistance CTP
  - protection



# Autres types de résistances


## photorésistance

- photorésistance
  - LDR = light dependent resistor
  - R = fct (éclairement)
  - capteur



#### **PLAN**

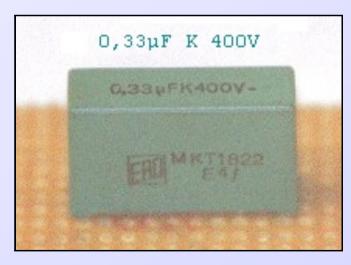
- Signaux analogiques
- Résistances
- Condensateurs



- 2 types de condensateurs
- condensateurs non polarisés
- condensateurs polarisés
- utilisations des condensateurs
- autres types de condensateurs
- Autres composants

...

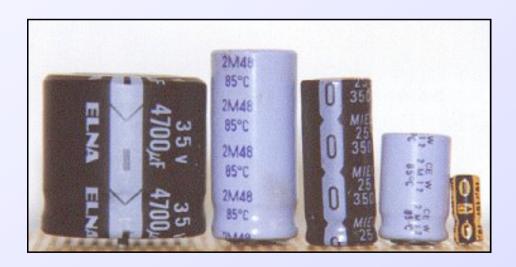
#### Introduction

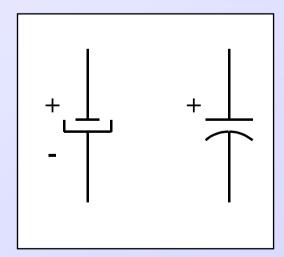

- vocabulaire
  - fonction (Q=CV): capacité
  - composant réel: condensateur
- plus de 20 types de condensateurs!
  - toujours armatures + diélectrique
- 2 familles de condensateurs
  - polarisés
  - non polarisés

#### Condensateurs non polarisés

- caractéristiques
  - pas de "sens" électrique
  - condensateurs de "faible" valeur
    - quelques pF à quelques μF
- principaux types =>
- propriétés
  - capacité C
  - tension de service
    - 50V à 400V
  - précision
    - au mieux 10%




condensateur céramique




condensateur à film plastique

#### Condensateurs polarisés

- possèdent un sens électrique
  - suppose une tension DC (+ faible composante AC)
    - "bague" pour discerner le sens
    - symbole spécifique
  - danger d'explosion si monté à l'envers





#### Condensateurs polarisés

- autres propriétés
  - condensateurs de valeur élevée
    - 1µF à qques mF
    - stocke une énergie importante
  - précision médiocre
    - au mieux 20%
  - encombrement
    - à ne pas négliger!
- principaux types
  - condensateurs électrochimiques (aluminium)
  - condensateurs au tantale

#### **PLAN**

- Signaux analogiques
- Résistances
- Condensateurs
  - 2 types de condensateurs
  - condensateurs non polarisés
  - condensateurs polarisés
  - utilisations des condensateurs
  - autres types de condensateurs
- Autres composants

...



#### Utilisation des condensateurs

- rappel
  - impédance variable en fonction de la fréquence
    - "infinie" en continu / faible à haute fréquence
  - => peut "séparer" le continu de l'alternatif
- utilisations
  - condensateur de liaison
    - entre deux étages d'un montage: laisse passer l'alternatif (signal) mais bloque le continu (polarisation)
  - condensateur de découplage
    - "court-circuite" un élément de polarisation en HF
  - filtrage
  - réserve d'énergie
  - conversion Q -> I

#### Utilisation des condensateurs

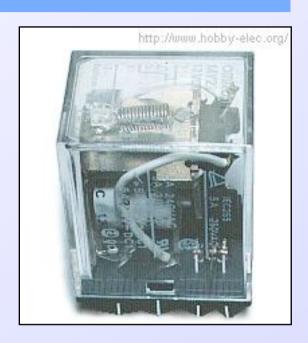
- exemple des circuits digitaux
  - longues pistes en HF = inductances
  - => chutes de tension inductives (pics)
    - à cause des commutations
  - => condensateurs pour absorber les pics
- utilisation des 2 types de condensateurs
  - non polarisés
    - bon comportement HF mais peu d'énergie
    - = > réserve locale près des circuits
  - polarisés
    - mauvais comportement HF mais beaucoup d'énergie
    - à l'entrée du montage pour compenser des variations lentes mais importantes

#### Autres types de condensateurs

- condensateurs variables
- "supercapacités"
  - de l'ordre du farad (!)
  - applications spécifiques

## Welcome to the real world

#### **PLAN**


- Signaux analogiques
- Résistances
- Condensateurs



- Autres composants
  - relais
- Circuits imprimés
- Types de composants

## Relais

- principe
  - interrupteur commandable électriquement
    - une des 2 fonctions d'un transistor
  - basé sur un électroaimant
    - interrupteur mécanique => lent
    - isolation galvanique
- applications
  - interface entre niveaux de puissance différents
    - pour commander une grosse puissance au moyen d'une petite puissance
  - ex: anciens centraux téléphoniques



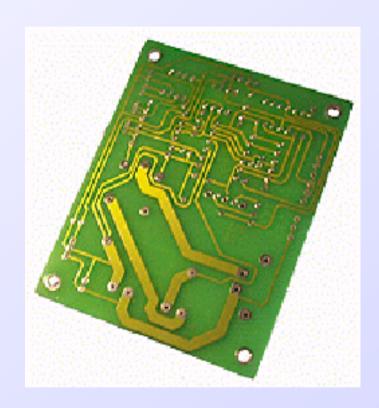






## Welcome to the real world

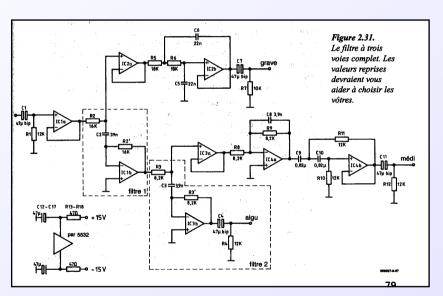
#### PLAN

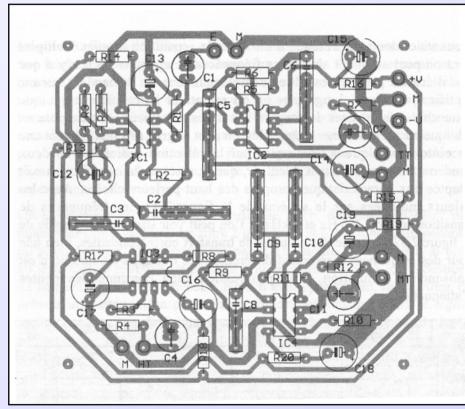

- Signaux analogiques
- Résistances
- Condensateurs
- Autres composants



- Circuits imprimés
  - Types de composants

# Circuit imprimé


- circuit imprimé ou "print"
  - PCB = printed circuit board
  - >< circuit intégré</p>
- principe
  - substrat isolant
    - diélectrique: "epoxy" ou "FR4"
  - couches conductrices
    - dessin par gravure chimique
- PCB simple
  - une couche
  - deux couches




# Circuit imprimé

### du schéma au PCB

routage par logiciels spécialisés





ELEC283 - 2003/04

# Circuit imprimé

### évolution actuelle

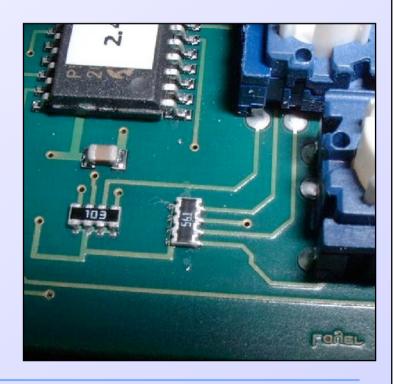
- circuits digitaux (PC)
  - de plus en plus rapides
  - de plus en plus complexes
- problème de routage
  - recours aux PCB multicouches
- problèmes de CEM
  - routage des pistes d'alimentation et de masse
  - couplages entre lignes de signal
  - réflexion des signaux digitaux
- => réservé aux spécialistes

## Welcome to the real world

#### PLAN

- Signaux analogiques
- Résistances
- Condensateurs
- Autres composants
- Circuits imprimés



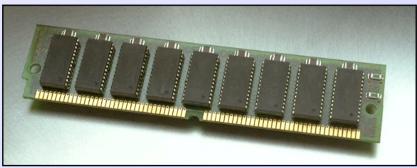

Types de composants

# Types de composants

### composants classiques >< SMD

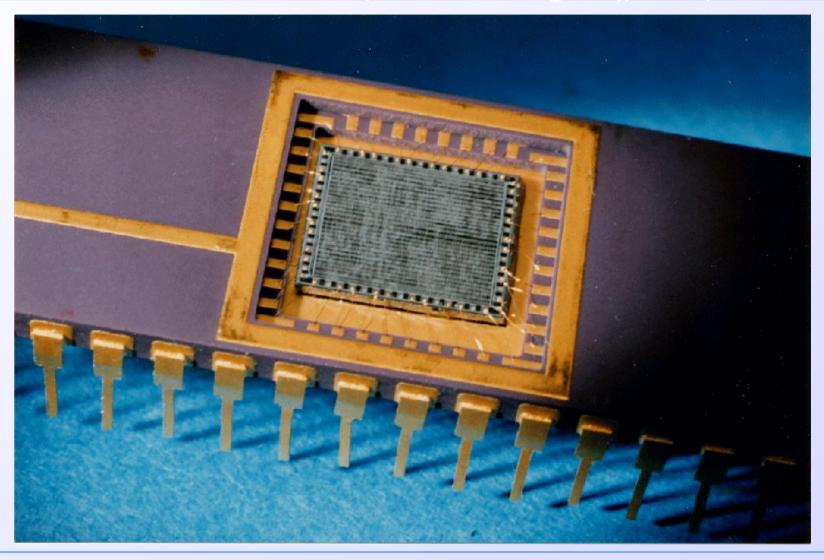
- composants classiques
  - traversent le substrat
  - soudure du côté opposé au composant
- composants à montage de surface
  - SMD = surface mount device
    - collage et soudure du même côté du PCB
  - composants très miniaturisés
    - pas de marquage
    - bonjour les réparations!






# Types de composants

### composants discrets >< intégrés


- composant discret
  - réalise une fonction élémentaire unique
    - R, L, C
    - diode
    - transistor
- composant intégré
  - comporte une "puce"
    - de 4 à >100 pattes
    - de 10 à >10<sup>6</sup> transistors
  - fonction +/- complexe
    - amplificateur intégré
    - microprocesseur
    - etc





# Types de composants

détail d'un composant intégré (puce)

