Chap. 2 – Vademecum d'électricité

2.4 - Composants réactifs et outils associés

Les 7 "péchés capitaux"

- 1) utiliser les mauvaises unités
- 2) utiliser des ordres de grandeur non réalistes
- 3) ne pas définir (sens des flèches, nom, etc) les grandeurs utilisées dans les équations
- 4) appliquer les théorèmes linéaires sur des systèmes non-linéaires
- 5) mal utiliser les axes dans un plan de Bode
 - ex: graphe à l'envers, log du log, etc
- 6) utiliser les phaseurs pour calculer une réponse indicielle
- 7) proposer pour une capacité ou une inductance un comportement non réaliste
 - = comportement contredisant les lois temporelles ou l'impédance

Plan

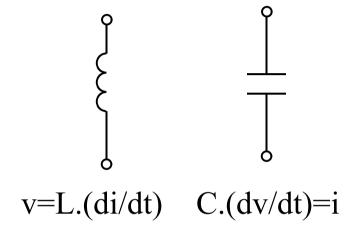
- Plan du module
 - 2.4.1 Analyse temporelle
 - 2.4.2 Analyse fréquentielle (I): impédances
 - ◆ 2.4.3 Analyse fréquentielle (II): fonctions de transfert

Chap. 2 – Vademecum d'électricité 2.4 – Composants réactifs

2.4.1 - Analyse temporelle

Introduction

- dipôles réactifs
 - inductance et capacité
 - ne consomment pas de puissance
 - stockent/restituent de l'énergie
 - électrostatique pour la capacité
 - magnétique pour l'inductance
 - "duals" l'un de l'autre



- que faire de C ou L dans un circuit?
 - 2 aspects: <u>temporel</u> et <u>fréquentiel</u>

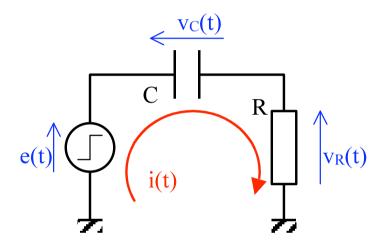
Capacité: comportement temporel

- charge et décharge
 - <u>charge</u> = augmentation de la |tension|
 - capacité chargée = tension >0 ou tension <0
 - décharge = diminution de la |tension|
 - capacité déchargée = tension nulle
- 3 lois fondamentales
 - c'est la ddp qui régit la charge/décharge
 - loi HF: la ddp ne varie pas instantanément
 - loi BF: pour t>>, le courant est nul
 - mais pas forcément la ddp!
- application: circuit RC

2.4.1 – Analyse temporelle

Circuit RC en temporel: circuit à résoudre

réponse à un échelon E en t=0



constatations

$$e(t) = v_R(t) + v_C(t)$$

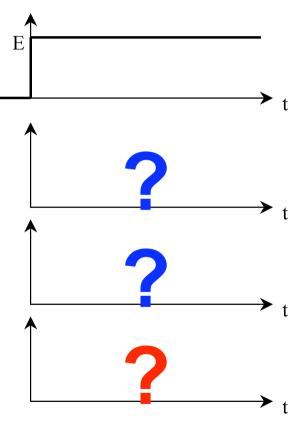
un seul courant
 $i(t) = v_R(t)/R$

e(t)

 $v_{C}(t)$

 $v_R(t)$

i(t)



Circuit RC en temporel: résolution analytique pour t>0

loi des mailles

$$e(t) = v_R(t) + v_C(t)$$

loi des composants

$$\begin{cases} v_R(t) = R.i(t) \\ v_C(t) = \frac{1}{C} \int_0^t i(\xi) d\xi + v_C(0) \end{cases}$$

$$e(t) = R.i(t) + \frac{1}{C} \int_0^t i(\xi) d\xi + v_C(0)$$

dérivation

$$\frac{de(t)}{dt} = R\frac{di(t)}{dt} + \frac{1}{C}.i(t) = 0$$

équa. dif. 1er ordre

$$\frac{di(t)}{dt} = -\frac{1}{RC}i(t)$$

Circuit RC en temporel: résolution analytique pour t>0

- solution du type:
 - exponentielle décroissante

$$i(t) = A.e^{\frac{-t}{RC}}$$

"A" fixé par conditions initiales capa déchargée = $v_c(0)=0$

$$=> V_{R}(0)=E$$

$$=> i(0) = E/R = A$$

solution:

$$i(t) = \frac{E}{R} . e^{\frac{-t}{RC}}$$

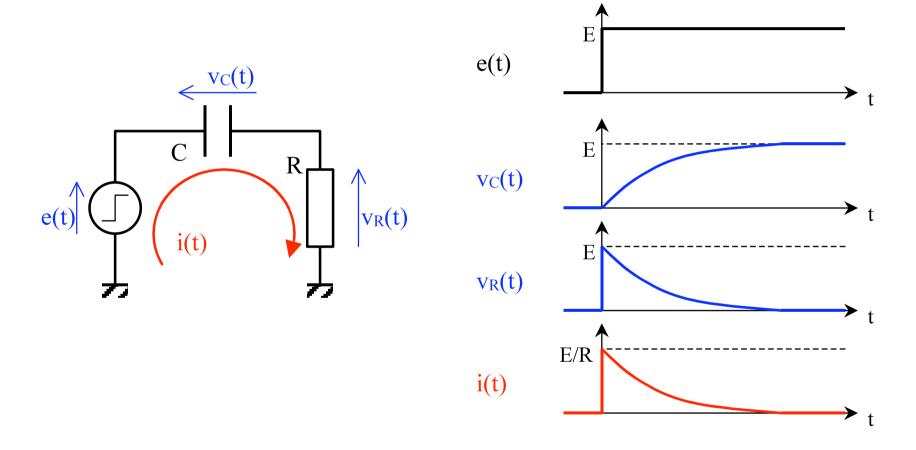
$$i(t) = \frac{E}{R} \cdot e^{\frac{-t}{RC}}$$

$$v_R(t) = R \cdot i(t) = E \cdot e^{\frac{-t}{RC}}$$

$$v_C(t) = \frac{1}{C} \int_0^t i(\xi) d\xi = E \cdot \left(1 - e^{\frac{-t}{RC}} \right)$$

Circuit RC en temporel: résultat

réponse à un échelon E en t=0



Circuit RC en temporel: discussion

- résolution analytique: avantages
 - rassurant!
 - moyen préféré des étudiants
- inconvénients
 - lent
 - pas de "feeling"
 - si erreur => aberrations
 - peu transposable à d'autres circuits
- conclusion
 - intéressant pour une première fois mais pas comme outil de résolution!
 - >< démarche "ingénieur"

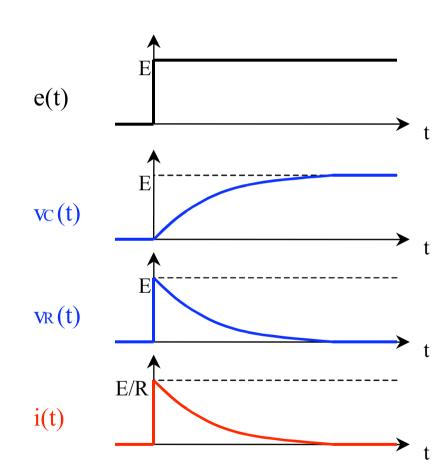
Circuit RC en temporel: résolution rapide

- rappel des 3 lois de la capacité:
 - c'est la ddp qui régit la charge/décharge
 - loi HF: la ddp ne varie pas instantanément
 - loi BF: pour t>>, le courant est nul
 - mais pas forcément la ddp!

2.4.1 – Analyse temporelle

Circuit RC en temporel: résolution rapide (échelon +E)

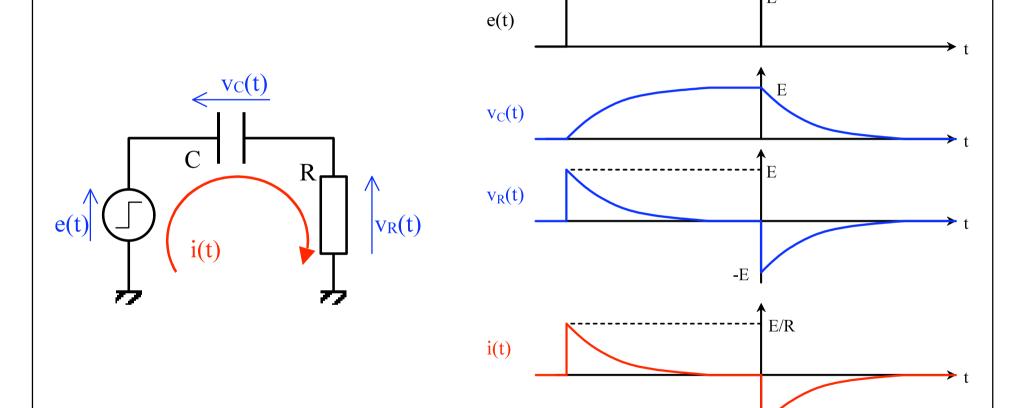
- conditions initiales
 - i=0 (loi BF); v_R=0
 - $v_C = 0$
- en t=0: échelon
 - $\mathbf{v}_{C}=0$ (loi HF)
 - $V_R = E$; i = E/R
- ensuite
 - i non nul => v_C croît (charge)
 - v_R décroît
 - exponentielles décroissantes
- → t>>
 - i=0 (loi BF); $v_R=0$
 - $V_C = E$



2.4.1 – Analyse temporelle

-E/R

Circuit RC en temporel: résolution rapide (échelon -E)



- CCL
 - passage en négatif à cause de la "rigidité" de la capa

Circuit RC en temporel: vocabulaire

- constante de temps
 - temps caractéristique de la charge/décharge de la capa
 - 63% après τ
 - 95% après 3τ
 - 99% après 5τ

$$\tau = RC$$

- filtres
 - v_C(t) est un filtre passe-bas de e(t)
 - v_R(t) est un filtre passe-haut de e(t)
- coupure
 - fréquence/pulsation de coupure
- bande passante

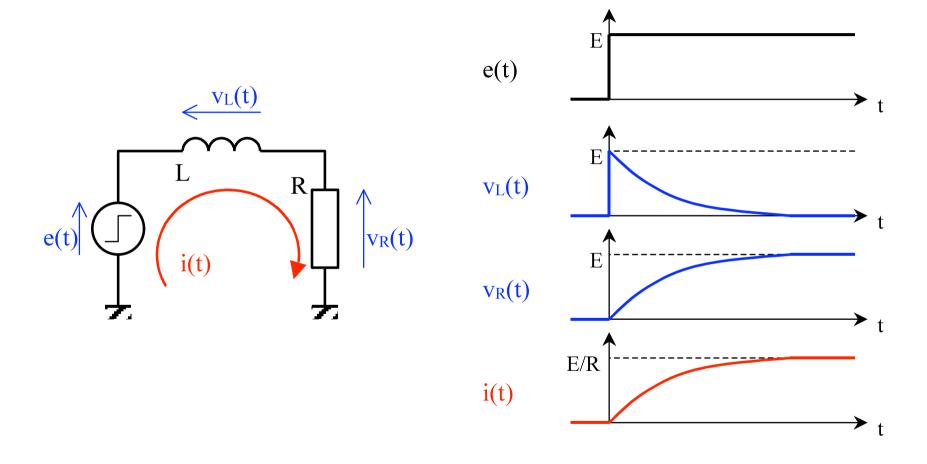
$$f_0 = \frac{1}{2\pi\tau} \qquad \omega_0 = \frac{1}{\tau}$$

Inductance: comportement temporel

- composant dual de la capacité
- magnétisation et démagnétisation
 - magnétisation = augmentation |courant|
 - démagnétisation = diminution |courant|
- lois fondamentales
 - loi HF: le courant ne varie pas instantanément
 - loi BF: pour t>>, la ddp est nulle
 - mais pas forcément le courant!
- application: circuit RL

2.4.1 – Analyse temporelle

Circuit RL en temporel: résultat



Circuit RL en temporel: vocabulaire

constante de temps

$$\tau = \frac{L}{R}$$

- filtres
 - v_L(t) est un filtre passe-haut de e(t)
 - v_R(t) est un filtre passe-bas de e(t)
- coupure
 - fréquence/pulsation de coupure
- bande passante

$$\omega_0 = \frac{1}{\tau} \qquad f_0 = \frac{1}{2\pi\tau}$$

Chap. 2 – Vademecum d'électricité 2.4 – Composants réactifs

2.4.2 – Analyse fréquentielle (I): impédances

2.4.2 – Analyse fréquentielle (I): impédances

Analyse fréquentielle: introduction

- "circuits linéaires en régime sinusoïdal"
 - linéaires => R, L, C constants
 - en régime => formes d'onde périodiques
 - sinusoïdal => monochromatique
- propriétés
 - une seule fréquence
 - un circuit linéaire ne modifie pas la fréquence
 - excitation sinusoïdale
 - Fourier
 - tout signal périodique est une somme de sinusoïdes
 - circuit linéaire => théorème de superposition
- principe
 - analyse à une seule fréquence (variable)

Analyse fréquentielle: AC et DC

- terminologie
 - signal continu = constant dans le temps
 - valeur moyenne du signal
 - signal alternatif = périodique de moyenne nulle
 - sinusoïde ou somme de sinusoïdes
 - signal quelconque = continu + alternatif
- en langage courant
 - AC = composante alternative
 - DC = composante continue
- appareils de mesure (oscilloscope)
 - AC = composante alternative
 - DC = tout le signal (alternatif + continu)

2.4.2 – Analyse fréquentielle (I): impédances

Valeur efficace

- définition
 - rms = "root mean square"

$$X_{eff} = X_{rms} = \sqrt{\frac{1}{T} \int_0^T X^2(t) dt}$$

interprétation

X_{eff} liée à la puissance contenue dans le signal valeur du courant DC de même puissance

cas particulier: sinusoïde rem: valeur efficace "vraie"

convention

par défaut: $1V = 1V_{eff}$

$$P_{moy} = \frac{1}{T} \int_0^T R.i^2(t) dt = R.I_{eff}^2$$

$$X_{eff} = \frac{\hat{X}}{\sqrt{2}}$$

- circuit linéaire en régime sinusoïdal
 - tous les signaux sont de la forme

$$X(t) = A_X \sqrt{2} \cos(\omega t + \varphi_X)$$

signal caractérisé par amplitude et phase

phaseur:

$$\underline{X} = A_X e^{j\varphi_X}$$

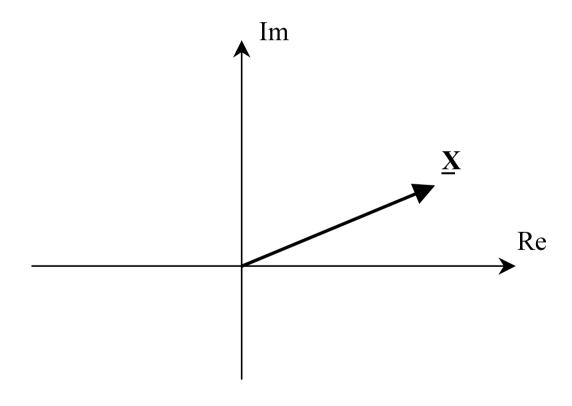
conversion phaseur <-> signal temporel:

$$X(t) = \sqrt{2}.\Re e\left\{ X e^{j\omega t} \right\}$$

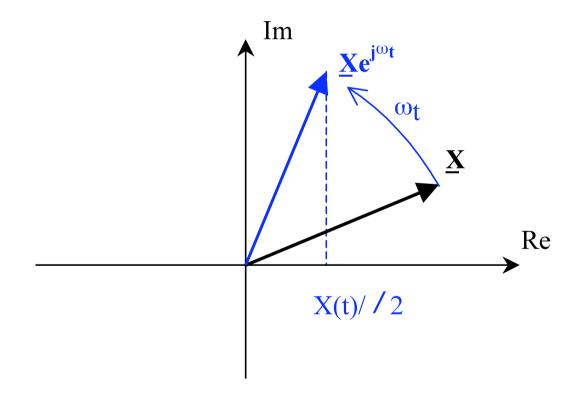
$$\underline{X} = A_X e^{j\varphi_X}$$

- interprétation
 - phaseur = nombre complexe / vecteur représentant un signal sinusoïdal
 - phase et amplitude
 - abstraction de la variation périodique d'un ensemble de signaux
- intérêt
 - concision de notation et de représentation
 - signal temporel variable -> nombre complexe constant
 - raisonnement plus facile
 - résolution du circuit électrique
 - éq. différentielles réelles -> éq. algébriques complexes
 - généralisation de la notion de résistance aux composants réactifs

représentation (plan complexe)



- représentation (plan complexe)
 - passage au signal temporel



Outils: impédance

impédance d'une inductance

$$v_{L}(t) = L \frac{di(t)}{dt}$$

$$\sqrt{2} \Re \{ e^{j\omega t} \} = L \frac{d}{dt} \left(\sqrt{2} \Re \{ e^{j\omega t} \} \right) = j\omega L \sqrt{2} \Re \{ e^{j\omega t} \}$$

$$\underline{V} = j\omega L \underline{I}$$

$$\underline{Z_{L}} = j\omega L$$

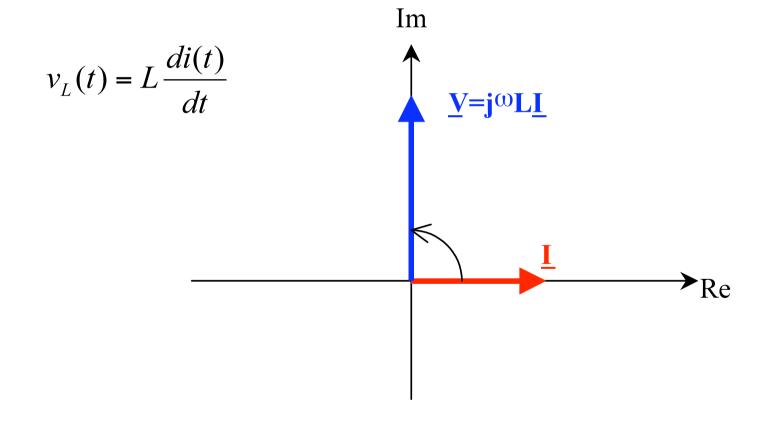
ELEC-H-301 - 2006/07

 $V = Z_I I$

2.4.2 – Analyse fréquentielle (I): impédances

Outils: impédance

- impédance d'une inductance
 - tension en avance de phase de 90° sur courant



impédance d'une capacité

$$v_L(t) = L \frac{di(t)}{dt}$$

$$\underline{V} = j\omega L\underline{I}$$

$$Z_L = j\omega L$$

$$\underline{V} = Z_L \underline{I}$$

$$\frac{dv(t)}{dt} = \frac{1}{C}i(t)$$

$$\underline{V} = \frac{1}{j\omega C}\underline{I}$$

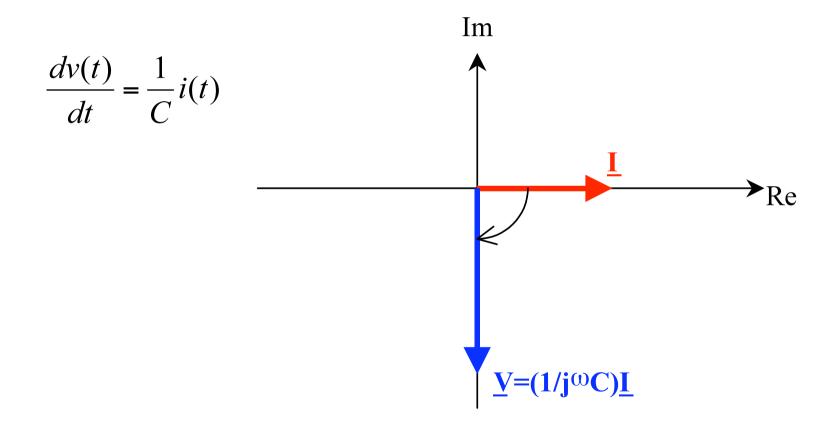
$$Z_C = \frac{1}{j\omega C}$$

$$\underline{V} = Z_C \underline{I}$$

2.4.2 – Analyse fréquentielle (I): impédances

Outils: impédance

- impédance d'une capacité
 - tension en retard de phase de 90° sur courant



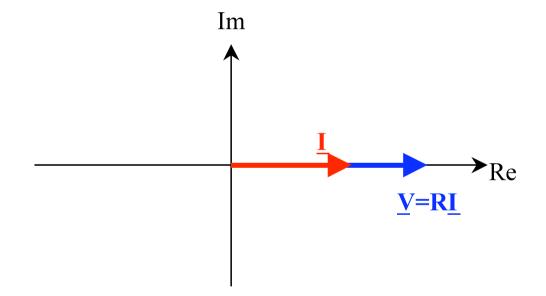
2.4.2 – Analyse fréquentielle (I): impédances

Outils: impédance

- impédance d'une résistance
 - tension et courant en phase

$$Z_R = R$$

$$\underline{V} = Z_R \underline{I}$$



Outils: impédance

- conclusion
 - impédance = généralisation de la notion de résistance aux composants réactifs

$$V = Z I$$

$$Z_L = j\omega L$$

$$Z_R = R$$

$$Z_C = \frac{1}{j\omega C}$$

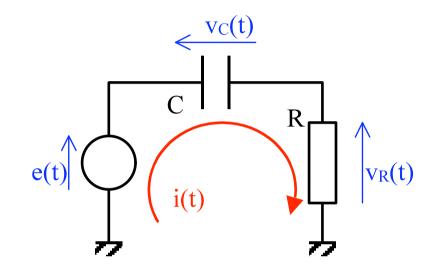
restent applicables:

lois de mise en série et en parallèle addition vectorielle dans le plan complexe procédure de résolution d'un circuit théorème de superposition équivalents de Thévenin/Norton

Exemple: circuit RC

calcul en phaseurs

$$\begin{cases} \underline{E} = A_E e^{j\varphi_E} \\ \underline{I} = A_I e^{j\varphi_I} \\ \underline{V_R} = A_R e^{j\varphi_R} \\ \underline{V_C} = A_C e^{j\varphi_C} \end{cases}$$



$$\underline{E} = Z_R \underline{I} + Z_C \underline{I} = R \underline{I} + \frac{1}{j\omega C} \underline{I} = \left(R + \frac{1}{j\omega C}\right)\underline{I}$$

$$\underline{V_R} = \frac{Z_R}{Z_R + Z_C} \underline{E}$$

$$\underline{I} = \frac{j\omega C}{1 + j\omega RC} \underline{E}$$

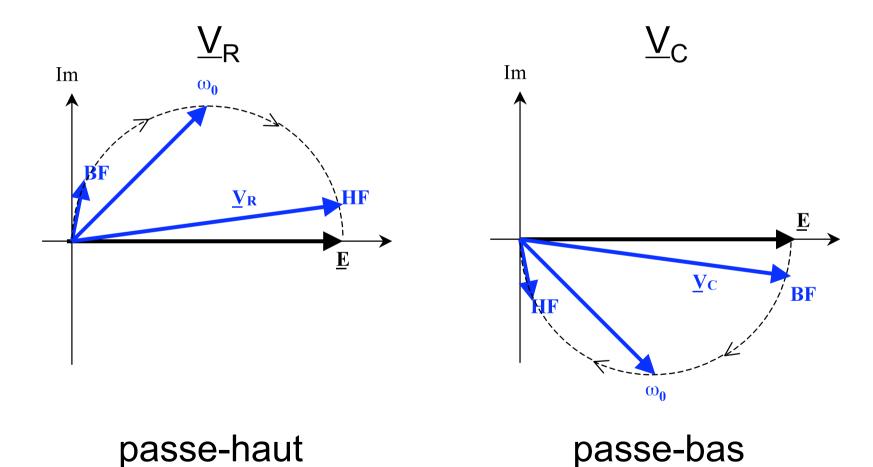
$$V_{\underline{R}} = R\underline{I} = \frac{j\omega RC}{1 + j\omega RC}\underline{E}$$

$$\left| \underline{I} = \frac{j\omega C}{1 + j\omega RC} \underline{E} \right| \qquad \left| \underline{V_R} = R\underline{I} = \frac{j\omega RC}{1 + j\omega RC} \underline{E} \right| \qquad \left| \underline{V_C} = \frac{1}{j\omega C} \underline{I} = \frac{1}{1 + j\omega RC} \underline{E} \right|$$

2.4.2 – Analyse fréquentielle (I): impédances

Exemple: circuit RC

résultat:



2.4.2 – Analyse fréquentielle (I): impédances

Remarques

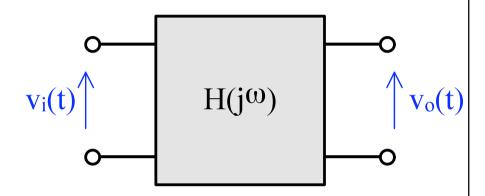
- Remarques
 - permet une analyse beaucoup plus rapide d'un circuit
 - via une analyse monochromatique, donne des conclusions sur tout type de signal
 - filtrage passe-haut/passe-bas

Chap. 2 – Vademecum d'électricité 2.4 – Composants réactifs

2.4.3 – Analyse fréquentielle (II): fonctions de transfert

Outils: fonction de transfert

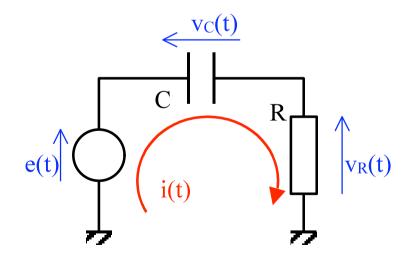
- fonction de transfert H(jω)
 - = rapport des phaseurs d'entrée et de sortie
 - "opération" réalisée par le circuit



circuit RC

2 fonctions de transfert:

$$\begin{cases} H_R(j\omega) = \frac{V_R}{\underline{E}} \\ H_C(j\omega) = \frac{V_C}{\underline{E}} \end{cases}$$



Outils: fonction de transfert

- nature d'une fonction de transfert
 - nombre complexe variable en fonction de la fréquence
 - amplitude A(ω)
 - phase $\varphi(\omega)$

$$H(j\omega) = A(\omega)e^{j\varphi(\omega)}$$

N.B.: H(jω) >< phaseur

plan de Bode

= représentation graphique de la fonction de transfert

gain: graphe bilogarithmique: Log $[A(\omega)] = fct(Log \omega)$

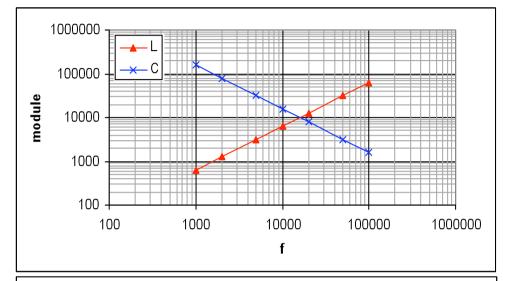
phase: graphe semi-logarithmique: $\varphi(\omega) = fct(Log \omega)$

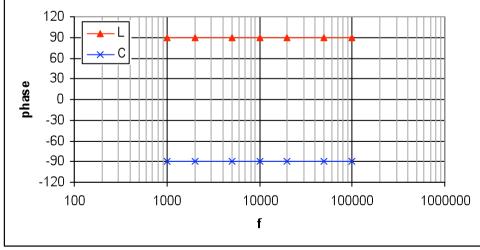
Outils: plan de Bode

$$Z_L = j\omega L$$

$$Z_L = j\omega L$$

$$Z_C = \frac{1}{j\omega C}$$





Outils: logarithmes (rappels)

- intérêt des logarithmes
 - notation concise de nombres variant sur de nombreux ordre de grandeur
 - multiplication -> addition
- application à l'électronique
 - gain: de 1 à 100000
 - fréquence: de 0Hz à plusieurs GHz
- vocabulaire
 - décade = x 10
 - octave = x 2

Outils: décibels (rappels)

- définition
 - unité adimensionnelle pour exprimer un rapport
 - rapport de tension ou de courant:

$$X[dB] = 20LogX$$

!! rapport de puissances:

$$X dB = 10 Log X$$

intérêt

équipement électronique = modules successifs => addition des décibels de chaque module

Outils: décibels (rappels)

valeurs courantes (rapport de tensions):

```
◆ 100000 = 100dB
```

$$1/\mathbb{W}2 = -3dB$$

$$1/2 = -6dB$$

$$1/10 = -20dB$$

$$1/1000 = -60 dB$$

Tracé d'une fonction de transfert dans le plan de Bode

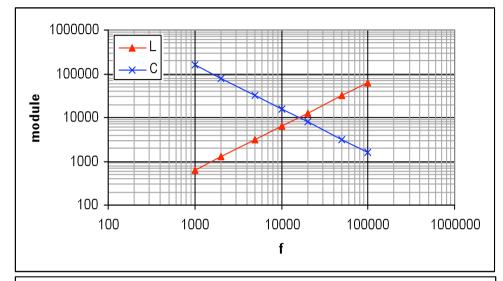
- pièges à éviter
 - 1) tenir le graphe à l'envers
 - 2) calculer le logarithme du logarithme
 - 3) mettre une graduation "0"
- tracé asymptotique
 - trouver les puissances de ω en BF et en HF
 - tout l'art est de négliger correctement

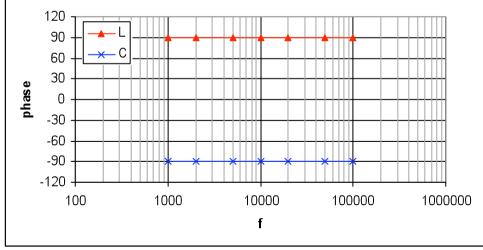
Tracé d'une fonction de transfert dans le plan de Bode

$$Z_L = j\omega L$$

$$Z_L = j\omega L$$

$$Z_C = \frac{1}{j\omega C}$$





Exemple: circuit RC

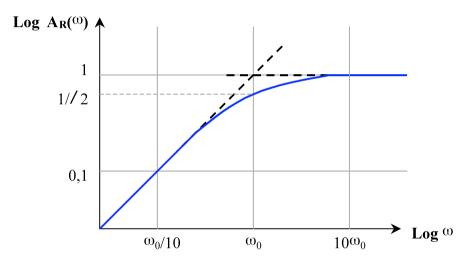
rappel des résultats en phaseurs

fonctions de transfert:

$$\begin{cases} H_R(j\omega) = \frac{\underline{V_R}}{\underline{E}} = \frac{j\omega RC}{1 + j\omega RC} \\ H_C(j\omega) = \frac{\underline{V_C}}{\underline{E}} = \frac{1}{1 + j\omega RC} \end{cases}$$

Exemple: circuit RC

fonctions de transfert du circuit RC



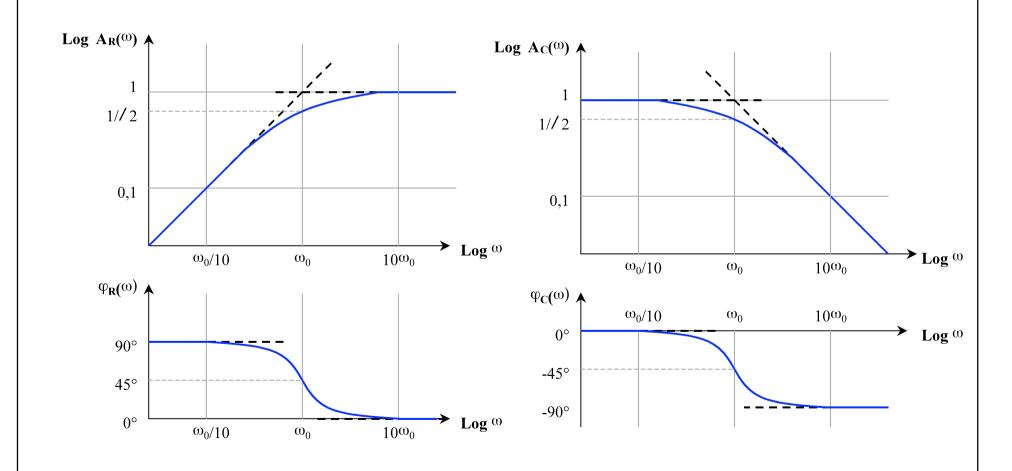
$$H_{R}(j\omega) = \frac{V_{R}}{\underline{E}} = \frac{j\omega RC}{1 + j\omega RC}$$

ELEC-H-301 - 2006/07

46

Exemple: circuit RC

fonctions de transfert du circuit RC



ELEC-H-301 - 2006/07

47