

www.ashampoo.com

Szukaj nas takze na

http://ashampoo.downloadcluster.com/public/sop/3110/ashampoo_burning_studio_elements_10.0.9_10297.exe

 The Industry’s
First Commercial
 Pentesting
 Drop Box.

F E A T U R E S :

� Covert tunneling
 � SSH access over 3G/GSM cell networks
 � NAC/802.1x bypass
 � and more!

t) @pwnieexpress e) info@pwnieexpress.com p) 802.227.2PWN

 The Industry’s
First Commercial

 Pentesting
 Drop Box.

F E A T U R E S :

� Covert tunneling
 � SSH access over 3G/GSM cell networks
 � NAC/802.1x bypass
 � and more!

t) @pwnieexpress e) info@pwnieexpress.com p) 802.227.2PWN

Air Freshener?

Printer PSU?
...nope

First Commercial First Commercial
P

w
n

 P
lu

g
.

Discover the glory of
Universal Plug & Pwn

@ pwnieexpress.com

pwnplug - Dave-ad3-203x293mm.indd 1 1/5/12 3:32 PM

http://pwnieexpress.com

Managing:
Michał Wiśniewski
m.wisniewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

Editor in Chief:
Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Art Director:
Marcin Ziółkowski

DTP:
Marcin Ziółkowski
www.gdstudio.pl

Production Director:
Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director:
Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Proofreadres:
Bob Folden, I. Motz, Michał Wiśniewski

Top Betatesters:
Tom Updegrove, Lou Lombardy,
Rissone Ruggero, Ismael Valenzuela, Eder Lira,
Gerardo Iglesias Galvan, Kiran Vangaveti,
Daniel Sligar, David von Vistauxx, I. Motz,
Tahir Saleem, Bert White, Rissone Rugero,
Marek Janac, Tyler Hudakville, Ayo Tayo-
Balogun, Patrik Gange, Massimiliane Sembiante,
Kapo Li, Dan Dieterle, Nana Onumah,
Jeff Smith, Tim Thorniley, Jonathan Ringler,

Publisher: Software Media Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
www.hakin9.org/en

Whilst every effort has been made to ensure
the high quality of the magazine, the editors
make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine
were used only for informative purposes.
All rights to trade marks presented in the
magazine are reserved by the companies which
own them.
To create graphs and diagrams we used
program by Mathematical formulas created
by Design Science MathType™ DISCLAIMER!

The techniques described in our articles may
only be used in private, local networks. The
editors hold no responsibility for misuse of the
presented techniques or consequent data loss.

To hack
or not to hack
– that is
the question

Dear Hakin9 Extra Followers, we
are giving you the latest fruit of
our labour. Honeypots are our le-
itmotiv this month. Especially for

you, our dear followers, we have selected
the choicest articles within the topic of Ho-
neypots/Honeynets. I sincerely hope that we
sufficiently expanded on the topic to satisfy
your needs and we quenched your appetite
for Hakin9 knowledge. I am also very happy
that we managed to have an exclusive inte-
rview with Dr. Fred Cohen – the „father” of
computer viruses and that, once again, our
respected authors helped us with their con-
tributions. This month: Jeremiah Brott will,
in great detail, tell you about different ty-
pes of honeypots and their use. Roberto Saia
is going to present you „Proactive Network
Defence Through Simulated Networks”. Hari
Kosaraju’s article will expose honeypot as a
system which sole purpose is to be attacked
and as Fred Cohen stated: „One person’s at-
tack is another person’s intelligence opera-
tion.” Client Honeypots, their use and inter-
-actions are described in the article written
by Miroslav Ludvik and Michal Srnec. Davi-
de Canali will show you how to use honeyc-
lients in malware detection. Speaking of mal-
ware, Michael Boelen will present you the
stories behind giving name to malware. Are
you satisfied now? If not, especially for you
dear readers we have an interview with Fred
Cohen. Dr. Cohen agreed to talk about ne-
twork defence, his beginnings, honeypots, fa-
vourite S-F tv series and many more. Check
us out by grabbing Hakin9 Extra.

On behalf of Hakin9 Extra I would like to
wish you: happy violentines, Hakin9 Valenti-
nes or simply..Happy Valentines. We hope that
after this issue you will love Hakin9 Extra
even more (how can one love Hakin9 Extra
more?) and follow us in every step.

Stay Tuned!!!

Michał, Hakin9 Extra

http://www.todo-backup.com/business/advanced-server-backup.htm

Hakin9 EXTRA

8. Honey Pots – the Sitting Duck on the Network
 by Jeremiah Brott
 The purpose of this article is to provide details on what honey pots are, the characteristics of the two types

down to the mechanics of how each one works. It will also analyze the bene�ts and pitfalls to explore multiple
uses of a honey pot, from detection to prevention. It will also analyze some implementation techniques, design
ideas and the possible legal issues surrounding them. Also explored is a honey pot speci�cally designed for
malware analysis.

18. The Game of Giving Malware a Name
 by Michael Boelen
 While running a honeypot, it suddenly gets “infected” with a piece of malware. After a quick look, it seems this

catch could be an unknown species. After validating it with several malware scanning tools, it seems no one has
ever seen it, or created an appropriate signature for it yet. So is this really a new piece of malicious software or
simply one of the utilities used by the intruder? The hunt to �nd the identity of this odd visitor is about to start…

22. Proactive Network Defence through Simulated Network
 by Roberto Saia
 A honeypot-based solution realizes a credible simulation of a complete network environment where we can add

and activate one or more virtual hosts (the honeypots) in various con�guration: a network of honeypot systems
is named honeynet.

32. Using Honeypots to Strengthen Network Security
 by Hari Kosaraju
 Honeypots have emerged as a new class of network security technology to address some of the shortfalls of

existing solutions. In this article, we will �rst discuss the limitations of current network threat detection techno-
logies. Next we will introduce various classes of Honeypots and how they di�er. Third, we will examine how a
potential attacker could detect a Honeypot and then, we will learn how Honeypots can be used to detect Zero
Day attacks. We will conclude by discussing cloud based Honeypot architectures.

38. Client Honeypots
 by Michal Srnec and Miroslav Ludvik
 Development of security tools has been on the rise in recent years. The main reason of that is the wide variety

of attack trends against computer systems. This new technologies like intrusion detection systems (IDS), anti-
viruses and �rewall, help to address this issues. One of this new technologies is honeypot. Honeypot is pretty
new technology which use di�erent technique to help address security problems. One of the many de�nition of
honeypot is a resource whose value is in being probed, attacked or compromised. Another resource de�ne honey-
pots like: A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource.
In other (user friendly) words: Underlying strategy is simple but really powerful – to allure potential attackers to
fake network node and tracking the attacker operations. Based on this observation, system administrators can
build the security policy.

42. Detecting Malware with Honeyclients
 by Davide Canali
 This article will �rst introduce you to the state of the art in the matter of malware detection using honey-

clients, showing a short history of honeyclients and the di�erent types of honeyclients on the market. Then,
you’ll learn how to setup one of the most recent and complete open source honeyclient systems, allowing
you to analyze any kind of content (URLs, executable �les, PDFs, documents, ...) on a virtual machine running
Windows. In order to understand this article, you’ll need only some basic knowledge of Linux and of the Vir-
tualBox virtualization solution. A basic knowledge of Python is a plus, even though not necessary.

50. Exclusive Interview with Fred Cohen
 by Nick Baronian
 First o�, protecting information is not the goal of information protection. The de�nition of protection is

keeping from harm. That is, keeping people (and other creatures that feel pain and pleasure, live and die,
etc.) from being harmed (information doesn’t feel pain and is not harmed when altered). But harm associa-
ted with information...Information protection is a complex issue involving many equities. One person’s at-
tack is another person’s intelligence operation. Is it protecting information in the form of �nancial records
to not aggressively break into the systems of those who attack those same records? When you are attacked
(whatever that may be) should you not be able to aggressively defend?

8

Hakin9 EXTRA

2/2012 (9)

How can attacks be mitigated
if they are not understood?
This is where a honey pot will come in to play. The purpose
of this article is to provide details on what honey pots are, the
characteristics of the two types down to the mechanics of how
each one works. It will also analyze the benefits and pitfalls to
explore multiple uses of a honey pot, from detection to pre-
vention. It will also analyze some implementation techniques,
design ideas and the possible legal issues surrounding them.
Also explored is a honey pot specifically designed for malware
analysis.

Honey pots are basically a system which has been designed
to provide value by being attacked, probed or compromised.
Unlike typical security devices, honey pots are designed to
attract attackers, for the sole purpose of learning about an
attacker(s) tools & techniques by closely interacting with them,
while hopefully unbeknownst ‘to the attacker(s)’ logging details
of the attack.

Using honey pots you can also learn a lot more about the
tools & techniques being used by attacker(s) targeting your
network, or information about the latest worm, malware, kiddie
with a scanner, <insert threat name here> floating about on
the internet.

Honey pots generally serve no production value from a cor-
porate point of view, but they become invaluable when de-
ployed properly from a computer security point of view. Some
honey pots can be deployed for a purpose of attack preven-
tion, while others are deployed for detection, information gath-
ering or research purposes. Whatever type and deployment
method you choose should be based on the results you wish
to achieve from deploying such a tool.

If you plan on deploying a honey pot as a detection device,
early warning system or as your network burglar alarm, then
it is recommended to deploy a low-interaction based setup.
See below.

If you plan on gathering extensive information on threats,
0 day vulnerabilities or learning more detailed information
about the tools and techniques employed. Then you should be
looking into a high-interaction based setup. See below.

Honey Pots – What are they?
A honey pot in the security world is known as a trap - it de-
tects, deflects, or in some cases attempts to interact with the
attacker(s). They are closely monitored machines that can
function as a decoy. They can distract an attacker from more
fruitful targets by appearing to be both vulnerable and impor-
tant. They can also serve as an early warning alert system
about new attacks and threats that are facing a network.

Since the purpose of a honey pot is to attract attackers, it is
crucial that they are not deployed in a way that will allow them
to interact with critical assets on a network.

HONEY POTS
THE SITTING DUCK ON
THE NETWORK
There is an old saying that states in order to draw a good face you
must first learn how to draw near perfect circles. After all, circles are
the basic fundamental of drawing a face. Computer security follows
this same suggestion. With the continuously evolving threats on
the Internet, the basics must be covered first. Failure to learn the
fundamental tools and techniques will result in the inability to draw
the “perfect face”, in relation to computer security.

JEREMIAH BROTTW

Honey Pots

www.hakin9.org/en 9

The information obtained from running a honey pot can
raise awareness about new attacks and trends, while also al-
lowing people to gain insight into the attacker’s methodology
both during and after the exploitation.

Honey pots can be a highly flexible tool in your arsenal. Like
other tools in computer security, they don’t fix any one single
problem. Security is a process, not a product. A honey pot is
a useful tool for information gathering, prevention or detec-
tion. The primary role of a honey pot depends on how it is
deployed. Despite all the differences and customization op-
tions available for various honey pot setups, they all share
a common function – to be attacked and compromised.

Before deploying a honey pot, it is important to understand
how they are classified. The classification is based on the
amount of interaction between the attacker and the honey pot.
There are generally two categories they are broken down into:
Low Interaction and High Interaction.

Low Interaction
These setups will always have a limited interaction with attack-
ers. As a consequence, there will only be limited information to
obtain. The Low Interaction honey pots generally function by
emulating a service on a specific operating system. Although
the Low Interaction machines do not give as much information
about an attack as the High

Interaction machines do, there are some specific advantag-
es. The first advantage is that they are very easy to deploy and
maintain. They also have a much lower risk level compared to
High Interaction honey pots due to the nature of the service

being emulated. They could be considered the “plug-n-play” of
the honey pot world.

Software
Deception Toolkit (open source) – ? DTK was the first open
source honeypot to ever be released. Released in 1997 by
Fred Cohen, DTK was a collection of Perl scripts and C source
code that could emulate a variety of listening services. Its pri-
mary purpose was to deceive attackers. This tool is very dated
and hard to find, but was well worth the mention since it was
one of the first honey pots ever released.

Honeyd (open-source Linux) – covered by this article
– http://www.honeyd.org/ Honeyd is a small daemon that cre-
ates virtual hosts on a network. The hosts can be configured
to run arbitrary services, and their personality can be adapted
so that they appear to be running certain operating systems.
Honeyd enables a single host to claim multiple addresses.

mwcollect (open-source Linux) - covered by this article
– http://code.mwcollect.org/ mwcollectd v4, a next-generation
low-interaction malware collection honey pot. It’s written in
C++, but the easy integration of additional Python modules
means that malware researchers around the world can easily
extend the honey pot with new protocols and features. Mwc-
ollect was started using the best features of nepenthes and
honey trap, licensed under the LGPL.

LaBrea Tarpit (open-source) – http://labrea.sourceforge.net/
LaBrea is a unique honey pot, in that it is designed to slow
down or stop attacks by acting as a ‘sticky’ honey pot. Also has
the ability to run on multiple operating systems.

Figure 1.

10

Hakin9 EXTRA

2/2012 (9)

KFSensor (commercial Windows) - http://www.keyfocus.
net/kfsensor/.

KFSensor is a Windows based system that acts as a honey
pot to attract and detect hackers and worms by simulating vul-
nerable system services and Trojans. By acting as a decoy
server it can divert attacks from critical systems and provide
a higher level of information than can be achieved by using
firewalls and NIDS alone.

Specter(commercial Windows) – http://www.specter.com
Specter is a windows based low-interaction honey pot. It can
emulate 13 different operating systems, monitor up to 14 ports,
and comes loaded with configuration and notification options.

High Interaction
These setups are the other side of the duct tape. They are sig-
nificantly more complex in their design and setup, as well as
their overall maintenance. These honey pots do not emulate
services at all. On the contrary, they employ actual services.
This allows the honey pot’s administrator to obtain much more
detailed information concerning the attack.

They also have several advantages over low interaction
honey pots. One of the advantages is that the honey pot
makes no assumption about how an attacker will interact. In-
stead, they behave as though they were a host in a normal
production environment. High interaction setups allow for the
acquisition of extensive amounts of information, which is what
gives the High interaction honey pots the biggest advantage
over lower interaction. Since the services aren’t emulated, the
honey pot can capture unexpected behavior, or even informa-
tion pertaining to malicious software, such as a root kit.

 High Interaction honey pots are also more useful and com-
prehensive than low interaction honey pots, but they are often
more costly and require external technology in order to deploy
them properly.

Software
Honeywall CDROM (open-source LiveCD) – http://www.
honeynet.org/project/HoneywallCDROM Honeywall is a CD ROM
provided by the Honey net Project. This CD allows you to cre-
ate architecture that allows you to deploy both low-interaction
and high-interaction honey pots, but is mainly designed for
high interaction deployments. The tools included allow for cap-
turing, controlling and analyzing attacks.

Honey Nets
The primary focus on deploying high-interaction based honey
pots within a honey net should always be on the bridging or
firewall device that is separating the malicious honey net from
the production network.

You can think of honey nets as a fish bowl in the pet store,
but instead of fish with submarine diver inside, you have vul-
nerable Linux and Windows servers. Just as you would see
fish interacting with these environments, attacker(s) will be in-
teracting with your honey net environments.

The actual honey pots that live within the honey net should
be various old operating systems, which are full of vulnerabili-
ties just waiting to be attacked. The actual gateway or bridging
device can be custom built or to save time and headaches
it is recommended to use the Honeywall CDROM from the
Honeynet Project.

Implementation and Design
There are four key requirements that should be used for a suc-
cessful honey net implementation. These requirements are as
follows: Data Control, Data Capture, Data Analysis and Data
Collection(optional).

Data control is the means of containing the activity within the
honey net this is how you will mitigate the risk. Risk of running
a honey pot comes into play as there is always a potential for
an attacker to run some code that will enable them to either at-
tack or otherwise harm other non-honey net related systems.

Data Capture is how you will monitor and log all of the
threats activities within the honey net. Using this captured data
will allow you to further analyze the information to learn about
the tools, techniques and motives used by the attacker(s). The
primary challenge faced with data capturing, is the ability to
capture as much information as possible without alerting the
attacker(s) of the capturing activity.

Data Analysis serves the third requirement for a successful
implementation. Honey pots are all about information at the
end of the day. Without the ability to convert the data collected
from a honey pot into meaningful information essential ren-
ders a honey pot useless.

Data Collection comes in handy when you have deployed
multiple honey nets across various locations, data collection is
only useful when you wish to combine data for trending analy-
sis.

While it all sounds daunting to implement, the fine folks at
the Honeynet Project have cured this problem. The solution is
a tool called Honeywall CDROM, the cdrom is a bootable envi-
ronment which allows you to rapidly deploy a gateway device
which implements all of the above requirements.

Figure 2.

Honey Pots

www.hakin9.org/en 11

Deployment Example
The diagram below is an example diagram of what a honey
net architecture should look like. Using this architecture gives
the ability to create a highly controlled network that can be
closely monitored for malicious activities within it. In this setup,
the Honeywall CDROM has been used.

The Honeywall CDROM acts as a bridge into and from the
honey net. Using this method all traffic must pass through the
Honeywall before entering or leaving the honey net. Since
the Honeywall CDROM acts as a bridging device, the device
should be invisible to anyone interacting with the honey pots.

The diagram below illustrates a honey net architecture. The
honey pots in the deployment have been meshed within a pro-
duction network, using the methods explained above.

In this setup the bridging device Honeywall Gateway has 3
interfaces. The first 2 interfaces (eth0 and eth1) will be used
for the actual bridge. These interfaces will be what seper-
ates the honey net from the production network or everyone
else on the network. These bridged interfaces simply act as
a bump in the wire, meaning they have no IP stack. The third
interface (eth2) is what is used for the management interface.
Sometimes place on what is known as an OOBMN or Out Of
Band Management Network.

Honey Pots continued...
In order to further classify honey pots, they can be broken
down into two more sub-categories: production based and re-
search based.

You will also hear the term, honey net. Honey nets are sim-
ple architecture designs. Meaning they are a network that con-
tains more than one honey pot. Since honey nets are not pro-
duction systems providing services, any interactions within the
honey net its self implies malicious behaviour or un-authorized
activities.

Commercial products such as TrustWave Mirage use simi-
lar techniques for the NAC based deployments. Any outbound
activities from a honey net, automatically indicates evidence
of a compromised system or malicious activities. Any inbound
connections to the honey net will indicate signs of a scan or
an incoming attack.

Deploying a honey net makes tracking and monitoring of
malicious activity simple. Using IPS and firewall logs with
correlation tools is still a daunting task for identifying attacks
with you have terabytes of log data. Anything captured within
a honey net is automatically assumed to be unauthorized and
can be analyzed easier for malicious activities.

A production based setup is usually deployed using com-
mercial or freely available open-source software, and are pri-
marily used by a company or corporation. Production based
honey pots are often found inside of an enterprise network,
scattered amongst other production servers. This allows them
to act like decoys in their environment.

In order for them to function as a decoy, the honey pot must
assume that an attacker will go for easy targets first. These
types of honey pots are considered to be Low interaction,
since they are given a specific function or service to emulate
within these environments. The purpose of these honey pots
is to mitigate attacks, not necessarily research them.

A research honey pot is usually utilized by private security
firms, “hobby” hackers, military and/or government, or per-
haps just someone who is interested in the tactics and motives
of hackers. These types of honey pots are incredibly useful for
exposing the current threats that organizations face on a daily

basis. The information that is obtained by these honey pots is
used to develop better ways to protect assets.

Understanding the value of a Honey pots
Some people may be wondering where the value is in deploy-
ing a honey pot. When you need to determine the value of the
honey pot you are deploying, you first have to look at which
sub category you will be using. Production honey pots can
be deployed with a sole purpose of protection an organization
by either preventing, detecting or acting as an early warning/
alerting system. All of these will allow the organization to hope-
fully better respond to an attack before it hits a critical system.

When deploying a honey pot for a research or curiosity pur-
pose, they are simply a tool to collect information. The value of
the information depends on the intentions of the person run-
ning the honey pot. Organizations may deploy research based
honey pots in order to aid law enforcement, or their own trend-
ing or tracking of malicious activities on the network.

Typically a high-interaction honey pot is deployed for re-
search purposes, while a low-interaction honey pot would be
deployed for production purposes. It usually all boils down to
risk and threat levels. However it is up to the person(s) respon-
sible for deploying and maintaining the honey pots as to which
type will be used, both low and high interaction honey pots can
serve a valid purpose in either research or production based
deployments.

When honey pots are used within a production deployment,
they will benefit the organization in one of three ways: preven-
tion, detection and response.

A very well known example of using honey pots for a re-
search purpose can be found on the Honey net Project web-
site. http://www.honeynet.org

Deploying a Low-Interaction Honey pot
If this is your first experience with a honey pot, we advise
against a high-interaction based setup. Start out using a low-
interaction setup in order to get your feet wet.

If you’re planning to deploy a honey net, you must first have
a proper architecture in place to accommodate the honey pots
safely away from other devices on your existing network. This
is normally some sort of gateway/firewall device that segre-
gates your honey pots from everyone else.

Any traffic going to or from the honey net MUST pass
through this device. Using tools like the Honey net Honeywall
CDROM, will simplify deploying a layer 2 bridging device that
is invisible to anyone interacting with the honey pots that you
have deployed.

The gateway device should contain a minimal of three (3)
network interface cards. The first two (2) network cards will
be used for segregating the honey pots from everything else
on the network. These interfaces will act as a bridge between
the two networks and contain no IP stack. The third interface
has a valid IP stack which will allow for monitoring and admin-
istrating the gateway. An ideal scenario this would be on what
is known as an OOBMN, Out of Band Management Network.

The main requirements of the gateway can be met with im-
plementing the following: Data Control, Data Capture, Data
Analysis and Data Collection.

Data Control is how you can define the activity will be con-
tained within the honey net without the attacker(s) noticing it.

Data Capture is the ability to capture ALL of the attacker(s)
activities without being noticed. Data Analysis is the ability to
analyze the data in real-time, while Data Collection allows you

12

Hakin9 EXTRA

2/2012 (9)

to collect the data from multiple honey pots within you’re hon-
ey net to a single/central source.

Guide Requirements
In order to follow along with this guide, several things will be
required.

Debian 6 – (Virtual or Physical). This will be used for install-
ing Honeyd & mwcollect.

NOTE: Virtual machine users will need to configure the abil-
ity for the VM to set promiscuous mode.

Honeyd
Honeyd is the BMW when it comes to low-interaction honey
pots. First released in 2002 by Niels Provos, was written in C
and designed for the UNIX platform. Honeyd is very unique
as it has introduced multiple new concepts into the honey pot
world. These including the ability to monitor millions of un-al-
located IP addresses, implements IP stack spoofing and can
simulate 100s of different operating systems at the same time.
It can also monitor any TCP or UDP port.

Setup Overview
Note: In order to follow along with this guide, ensure you have
the following available.
 Honeyd – Available via Debian repo

Attacker Machine (optional)
 Main Host – Honeyd host.

IP Address: 192.168.2.1
 Virtual Honey pot #1 - Microsoft Windows NT 4.0 SP3

IP Address: 192.168.2.100
 Virtual Honey pot #2 - IBM AIX 4.2

 IP Address: 192.168.2.200

Installation
To install Honeyd & supporting packages on Debian 6 is
very simple. From a terminal, issue the following command:

apt-get -y install farpd honeyd-common libdbi0 libdumbnet1

 libreadline5 librrd4 rrdtool ttf-dejavu

 ttf-dejavu-extra iisemulator librrds-perl

Configuration
From a terminal, issue the following commands:

 cd /etc/honeypot

 mv honeyd.conf honeyd.conf.backup

 vi honeyd.conf

Add in the following to honeyd.conf

create template

set template personality “Microsoft

Windows XP Professional SP1”

set template uptime 1728650

set template maxfds 35

add template tcp port 80 “sh /usr/share/honeyd/scripts/win32/

web.sh”

add template tcp port 22 “/usr/share/

honeyd/scripts/test.sh $ipsrc $dport”

add template tcp port 23 proxy $ipsrc:23

add template udp port 53 proxy 8.8.8.8:53

set template default tcp action reset

 create default

 set default default tcp action block

 set default default udp action block

 set default default icmp action block

 create router

 set router personality “Cisco 1601R

router running IOS 12.1(5)”

 set router default tcp action reset

 add router tcp port 22 “/usr/share/

honeyd/scripts/test.sh”

 add router tcp port 23 “/usr/share/

honeyd/scripts/router-telnet.pl”

 bind 192.168.2.100 template

 bind 192.168.2.200 router

 set 192.168.2.100 personality

“Microsoft Windows NT 4.0 SP3”

 set 192.168.2.200 personality “IBM AIX

4.2”

Save the file and exit VI. By default Honeyd will run as the
user ‘nobody’ with this configuration. So to make things happy
we will need to change a few of debians defaults. In-order for the
scripts to be able to log, the default permissions on ‘/var/log/
honeypot’ will need to be changed. As root issue the following
commands:

 chown -R nobody /var/log/honeypot

Running Honeyd

Running farpd
Farpd replies to any ARP request for an IP address matching
the specified destination network with the hardware MAC ad-
dress of the specified interface, but ONLY if the IP address is
currently unallocated.

Any IP address that is claimed by farpd is eventually forgot-
ten after a period of inactivity or after a hard timeout. The IP
will be released immediately if a real machine claiming the IP
address shows up on the network. When farpd is used in con-
junction with Honeyd, it allows you to populate the unallocated
address space with virtual honey pots. To start farpd listening
on the network, in a terminal prompt. Issue the following com-
mand:

 farpd -i eth0 ‘192.168.2.0/24’

As long as no errors come up within a few minutes, farpd
will be responding to all unallocated IP addresses within the
192.168.2.0/24 network.

You should see something like:

 arpd[1933]: listening on eth0: arp and

 (dst net 192.168.2.0/24) and not ether src xx:xx:xx:xx:xx:xx

Running Honeyd
You can now run honeyd by issuing the following command:

 honeyd -d -f honeyd.conf -p nmap.prints -x xprobe2.conf -a

 nmap.assoc ‘192.168.2.100-192.168.2.200’

You should see something like the following, if everything is
successful.

honeyd[2294]: listening promiscuously on eth0: (arp or ip proto

Honey Pots

www.hakin9.org/en 13

47 or (udp and src port 67 and dst port

68) or (ip and (dst net 192.168.2.100/30

or dst net 192.168.2.200/32))) and not

ether src xx:xx:xx:xx:xx

honeyd[2294]: Demoting process privileges

to uid 65534, gid 65534

Testing the honeyd
Now that Honeyd is running, your virtual honey pots should be
alive and well. Best of all they are ready to be attacked! From
another machine on your network, fire up a console and launch
nmap at 192.168.2.100 & 192.168.2.200.

192.168.2.100

 Starting Nmap 5.21 (http://nmap.org)

at 2012-01-21 23:16 EST

 Nmap scan report for 192.168.2.100

 Host is up (0.038s latency).

 Not shown: 997 closed ports

 PORT STATE SERVICE

 22/tcp open ssh

 23/tcp open telnet

 80/tcp open http

 Nmap done: 1 IP address (1 host up) scanned in 0.42 seconds

192.168.2.200

 Starting Nmap 5.21 (http://nmap.org)

at 2012-01-21 23:17 EST

 Nmap scan report for 192.168.2.200

 Host is up (0.031s latency).

 Not shown: 998 closed ports

 PORT STATE SERVICE

 22/tcp open ssh

 23/tcp open telnet

 Nmap done: 1 IP address (1 host up) scanned in 0.42 seconds

That’s it you have now configured and setup two (2) low-inter-
action honey pots using honeyd. During this guide we have
only covered a small portion of what you can do with honeyd.
For more available configuration options check out the guide
located at: http://www.honeyd.org/configuration.php or for
more scripts check out some examples at http://www.honeyd.
org/contrib.php, or you can also use these as a reference point
for creating your own scripts.

Mwcollectd
Mwcollect is a honey pot for tracing and detecting malware
and attacks. Mwcollect combines the best of honeytrap and
nepenthes into one tool.

The authors of mwcollect have made a debian package
available for those who do not wish to compile everything from
scratch. At the time of this writing the latest available version
can be found here: http://code.mwcollect.org/deb/mwcollectd-
git_20111123-1_i386.deb

Installation

Dependencies
Libudns: http://ftp.us.debian.org/debian/pool/main/u/udns/
libudns0_0.0.9-3_i386.deb

After downloading the above debian package, you can
nstall and the other required dependencies from a terminal by
issuing the following commands:

 dpkg –i libudns0_0.0.9-3_i386.deb

 apt-get install libnetfilter-queue1 libpq5

 Installing mwcollectd

 dpkg –i mwcollectd-git_20111123-1_i386.deb

Configuration
If everything goes well, you should now have a ‘/opt/mwcol-
lectd’ directory created with all of the related files installed. The
main configuration file for mwcollect is located at:

/opt/mwcollectd/etc/mwcollected/mwcollectd.conf

For the purpose of this demo, nothing in the defaults will need
to be changed. See Default modules explained for information
about the default loaded modules and their purpose.

IPTables NFQUEUE
Mwcollectd uses NFQUEUE to accept connections on arbi-
trary ports. One of the options below must be used in order for
mwcollect to function properly.

If you wish for mwcollectd to use on specific IP address, use:

iptables –A INPUT –d $IP –p tcp –-tcp-flags SYN,RST,ACK,FIN SYN

–j NFQUEUE

If you wish to run multiple NFQUEUE services on the same
box, add in a unique queue number by using:

iptables –A INPUT –d $IP –p tcp –-tcp-flags SYN,RST,ACK,FIN SYN

–j NFQUEUE --queue-num $QUEUE

NOTE: Make sure to edit /opt/mwcollected/etc/mwcollected/
dynserv-nfqueue.conf accordingly.

Figure 3.

14

Hakin9 EXTRA

2/2012 (9)

Default modules explained

• embed-python.so – This module embeds Python 3.x into
mwcollectd.

• dynserv-nfqueue.so – This modules enables the creation
of dynamic servers using Linux netfilter queue or short
NFQUEUE interface. If this module is enabled, traffic on
unknown ports, regarding unknown vulnerabilities can be
monitored.

• dynserv-mirror.so – Interacts with the attacker(s) in way
to create network-dialogue in-order to trigger the proper
downloading of shell code.

• filestore-streams.so – All network data that is seen by mw-
collectd is stored per-connection stream recorders. Upon
connection close, these are examined for shell code that
might have been overlooked by the known vulnerabilities
implementation or was sent during an unknow connection,
such as in mirror mode. This module stores all of the traffic
that has happened on these connections in the local file-
system for further examination.

• filestore-binaries.so – Stores all malware samples in the
local file system, uses MD5, SHA256 or SHA512. Default
is SHA512.

• shellcode-libemu.so – libemu is a x86 emulation and shell
code detection library. In mwcollected, it is useful for find-
ing out what a shell code does and how the attacking mal-
ware can be downloaded.

• download-tftp.so – This module solely listens to shellcode.
download events and downloads malware binaries via the
TFTP protocol.

• download-curl.so – This modules listens to download.re-
quest and shellcode.download events and checks if these

reference http(s) or ftp URL’s. If so, this module will then
use the libcurl library to download these files and provide
them as events.

• log-file.so – This module simply stores mwcollectd log out-
put onto the local file system.

Extra modules explained

• log-irc.so – This module supports logging of output to an
IRC server.

• submit-mwserv.so – mwserv is the malware aggrega-
tion service used by the mwcollect Alliance,it is a HTTPS
based malware submission service that reports both new
binaries and instances of already seen malware samples.
The protocol mwserv uses is not complex, making it very
easy to setup your ownweb server with a Python, PHP or
Perl script as a backend to start collecting your own sam-
ples centrally.

Running mwcollectd
A good way to run mwcollectd is within a screen session so
you can view the information coming in real time. You can do
so by executing the following in a terminal prompt at the com-
mand line:

screen –S mwcollect

ulimit –c unlimited

/opt/mwcollectd/sbin/mwcollectd –l

If everything goes well, you should see something similar to
the following.

Figure 4.Figure 4.

Honey Pots

www.hakin9.org/en 15

Testing mwcollectd
From another machine on the network, run a quick nmap scan
against the host running mwcollectd. On the screen session,
you should see something like the following.

That’s it you have now configured another Low-Interaction
honey pot mwcollectd. Now sit back and enjoy collecting some
new malware for your collection!

Are honey pots legal?
There is three (3) main issues that are commonly discussed
about the legalities of honeypots.: entrapment, privacy, and
liability.

Entrapment
Entrapment, by definition is “a law-enforcement officers or gov-
ernment agent’s inducement of a person to commit a crime, by
means of fraud or undue persuasion, in an attempt to later
bring a criminal prosecution against that person.” [Black’s Law
Dictionary, 7th Ed]

By this definition, entrapment is when you would trick or in-
duce someone into doing something they would not normally
do. Honeypots do not induce anyone, an attacker that discov-
ers and exploits a honeypot are doing so on their own initiative.
The attacker has usually already committed un-authorized ac-
tivity in order to find the honeypot, the honeypot is merely just
another system for them to attack.

Privacy
Privacy laws in the US may limit your right to capture data
about an attacker, even when the attacker is breaking into
your honeypot. The main challenge surrounding privacy laws
and honeypots is the fact that there is no single statute that
covers privacy. Instead we have things like: Federal Wiretap
Act and the Electronic Communication Privacy Act. To make
this issue more complicating, which legal statuses does one
apply?

In the United States sometimes the state law can supple-
ment federal law when privacy is concerned as it currently is in
California. What happens if you have a honeypot in Georgia,
but the attacker comes from California. Which laws should/will
apply, Atlanta, California or the Federal? Without even bring-
ing countries into the mix, you can see how convoluted this is
becoming.

The use of honeypots affects the privacy issues as well.
The reason for this is very important because of something

called the exemption under Service Provider Protection. What
this exemption means is that security technologies can collect
information on people and (would be attackers), as long as
the technologies that are being used is serving a purpose of
protecting or securing an environment. So in laymen terms,
these technologies could possibly be exempt from privacy re-
strictions. As long as they protect or secure the environment in
which they are used.

Federal Wiretap Act - http://www.cybercrime.gov/usc2511.htm
Electronic Communication Privacy Act - http://www.cyber-
crime.gov/usc2701.htm

Liability
The third issue is liability. Liability implies you could be sued
if your honey pot is used to harm others. For example, if it
is used to attack other systems or resources, the owners of
those may sue. Liability is not a criminal issue, but civil. While
this has been a discussion of legal experts for many years
on the liability of an organization that has ben compromised
and in turn was then used to attack or compromise another
system or organization. To date I have been unable to find
any published decision addressing whether the operator of an
insecure system can be liable to other entities for the misuse
of the system by an attacker. So while liability will also be an
issue surrounding honeypots, there is no recorded case of it
happening with a compromised system.

My Opinion
First off I am not a lawyer, nor have I been one on tv. So my
legal research has been provided via google searching.

I personally do not see any legal issues surrounding the use
of a honeypot from a security or research purpose. Though
everyone should exercise with caution and educate them-
selves on the local laws where it is intended to deploy the
honeypot/nets.

JEREMIAH BROTT
Jeremiah currently holds a lead role with Access2Networks Toron-
to as an Information Security Consultant. In addition to holding nu-
merous certi�cations, Jeremiah is also the professor of Malicious
Code – Design & Defense along with Ethical Hacking at Sheridan In-
stitute for the Applied Information Sciences System Security degree
program.

Protect your important data before it is too late!

No-one likes to consider the worst case scenario, but are

you prepared for a loss of all computer assets?

Computers are easily replaced, but your critical data and

files are something money can’t buy.

zebNet offers powerful, easy-to-use and leading backup

solutions for all major web browsers and email clients

which are designed to protect you as much as possible.

With a backup solution from zebNet you will always be

protected from the worst case scenario at an affordable

price, starting at just $9.99

Visit www.zebnet.us to be protected!

Highlighted features at a glance:

 Fast and reliable backup and recovery

 Self-restoring backup files

 Backup reserve copies

 Backup to any FTP server

 Scheduled backups on a regular basis

 Data migration between different computers

 Support for portable editions of your web browser/email client

 Create a portable edition of your web browser/email client

 And many more

Exclusive limited-time offer for you as a Hakin9 subscriber:

Get a 50% DISCOUNT off any zebNet backup solution you
wish by simply entering the discount code “Hakin9” in our
store at www.zebnet.us

zebNet backup solutions are available for Microsoft Outlook, Windows Live Mail, Microsoft Internet Explorer, Mozilla Firefox,

Mozilla Thunderbird, Mozilla Seamonkey, Google Chrome, Opera, Apple Safari, Postbox and IncrediMail.

For any questions you may have, please get in touch with us directly at info@zebnet.us or visit www.zebnet.us

www.zebnet.us

For more information on being a part of this summit, contact: Ali Khalid Rana, Marketing Manager
Email: alir@cyberdefencesummit.com, Tel: +971 4455 7962

Platinum Sponsor Gold Sponsors Silver Sponsor

Bronze Sponsors Media Partners

DEFENDING YOUR VIRTUAL BORDERS
MIDDLE EAST IS GATHERING TO DEFEND IT’S CRITICAL INFRASTRUCTURE

April 2nd - 3rd 2012
Grand hyatt hotel, Muscat, Oman

www.cyberdefencesummit.com

Endorsed by

www.cyberdefencesummit.com

18

Hakin9 EXTRA

2/2012 (9)

 Malware in the wild
While running a honeypot, it suddenly gets “infected” with
a piece of malware. After a quick look, it seems this catch
could be an unknown species. After validating it with several
malware scanning tools, it seems no one has ever seen it,
or created an appropriate signature for it yet. So is this really
a new piece of malicious software or simply one of the utilities
used by the intruder? The hunt to find the identity of this odd
visitor is about to start…

Analysis of malware, especially wild samples, can be a use-
ful exercise. But what if you catch an unknown threat and want
to get protected against it? In this article we have a look at the
history and the challenges related to naming malware sam-
ples properly. We also dive into some basic analysis to find the
right name for new catches, with the goal of finding our new
friend’s identity.

The rush
When anti-virus companies detect a new sample, they start
a sophisticated process. This new threat is put on an opera-
tion table, to be dissected and analyzed. By means of static
and dynamic analysis it will be checked to determine what
the specimen is intended for. Such goals could be placing
a backdoor, hiding and spreading itself to new victims, or sim-
ply becoming part of a botnet with the goal to assist in a denial-
of-service attack at a later time. The goal of the malware sam-
ple isn’t the only important thing. Also the form, its behaviors
and the requirements to run, can be useful to the researchers.
Last but not least, even if we have all this precious information
collected, it would be good to find specific identifiers, to create
a digital signature and provide proper detection in the future.

The analysis by the security professionals, usually working
for anti-virus companies, consists of automatic scanning with
intelligent software and where needed some manual research.
The goal of the research is usually to get a clear picture on the

characteristics of the malware and find some sort of “identity”
tag. The chance to find such a tag is usually very small though.
This is the point where the creativity of researchers comes into
play, with the goal of finding a proper name.

Researchers can give a sample every name they wish, as
long as it follows some of the game rules of proper malware
naming. One obvious, but important rule is that every speci-
men should get a unique name. While this sounds pretty sim-
ple, it’s also the cause for a lot of confusion. Chances are very
high that different anti-virus companies discover the specific
sample at the same day. With the rush to analyze and name
it, some malware samples will end up with different names.

The issue
Although one might think that multiple names for a single sam-
ple isn’t such a big deal, this was certainly the case in the past.
People had only limited and expensive access to the internet
and therefore relied on finding information and details quickly.
Users and system administrators wanted to find details about
a particular virus or worm as soon as possible, to determine
the cause of their instable or nonfunctional machines. With
several aliases being used for the same specific piece of mal-
ware, people had difficulties in determining what exactly had
infected their machines. Having the right name was, but also
still is, crucial to find the antidote to an infection. We will have
a look at how the anti-virus community dealt with this problem.

Working together
To deal with all those different malware names, several an-
ti-virus companies formed a group called CARO (Computer
Antivirus Researcher’s Organization) [2], to research all kinds
of malware. This group created a naming convention, to give
future malware samples proper name tags.

The name would be crafted from several parts, shown in
the scheme below. The scheme can be found on the website

THE GAME OF GIVING
MALWARE A NAME

Viruses, worms and trojan horses are a few common examples of
malicious software. With a lot of new malware samples crafted
and distributed each day, security researchers have a busy job
discovering, analyzing and identifying them. So what happens when
a wild malware sample is found and doesn’t have a name tag yet?
We’ll have a look at this intriguing game of giving bad software the
right name.

MICHAEL BOELEN

The game of giving malware a name

www.hakin9.org/en 19

of CARO and contains fields like the malware type, platform,
family name, variant and if needed, some additional charac-
teristics.

• <family_name >
• <malware_type >://
• <platform >/
• .<group_name >
• .<infective_length >
• .<sub-variant >[[<devolution >]
• <modifiers >

– :<locale_specifier >
– #<packer >
– @”’m’”:mailingmodifier.html |‘mm’
– !<vendor-specific_comment >

When looking at scheme, the fields family_name, malware_
type, platform, sub-variant and vendor-specific comment are
the most commonly used. Let’s have a small introduction for
a few of these fields:

Family_name:
An unique name to identify which “family” a malware specimen
belongs to. The family name is the easiest identification tag
for users, to see what “thing” they are dealing with and giving
them a clear reference name to search for. This part of the
full name is usually what is being used on news sites, when
a particular virus or worm is on the loose and getting new vic-
tims at a high rate.

Family names are only created when a specimen isn’t di-
rectly based on earlier piece of malware. For other situations
where the main code is the same, the scheme allows to add
a variant name. It is common to have several malware sam-
ples within one family, especially when the author decided to
tweak an earlier version to avoid detection.

Malware_types:
The type of the malware itself. Possible values are virus, tro-
jan, dropper, intended, kit or garbage.

Surprisingly enough a worm is not a defined type. According
to the specification it belongs to the “virus” type.

Platform:
The platform on which this particular sample will run, for ex-
ample “W32”, which is used as prefix for a Windows 32-bits
binary, “OSX” for Macintosh malware and “Linux” for Linux
malware. The platform “Unix” is used when dealing with mal-
ware which runs on several Unix alike platforms.

Although there is a clear convention on how to name mal-
ware, most of the anti-virus companies have created their own
scheme based on the scheme of CARO. One of the reasons
to use their own naming convention is that they already had
a convention of their own. Another reason is the confusion
about some of the more advanced malware samples. For ex-
ample, a trojan horse containing a self-spreading worm part,
but also with some DDoS functionality embedded. Each ven-
dor has their own idea on the type, or at least the “main” type
of the related malware piece, resulting in different names.

Beside the format differences these companies have, there
are even more different values within the common fields like
the platform. For example, Bitdefender uses “Win32” (instead
of “W32”). This small change to the schema gives it a subtle,
but important difference, when searching for a specific worm in

your favorite search engine. If we look at Microsoft, a relative
newcomer in this field, it’s obvious they didn’t comply either.
Their threat naming convention looks like this: Type : Platform
/ Family Name . Variant ! Additional info.

An example for a recent threat would be “Trojan:Win32/
Sirefef.P”. It’s a trojan horse, running on a 32 bits Windows
version and part of the Sirefef family, with the variant being “P”
(implying it has some older siblings). In this particular naming
sample, it becomes clear that anti-virus vendors not only have
a different format, but often also completely different names.
In the case of this “Sirefef” trojan, the aliases presented on the
Malware Protection page of Microsoft shows the following ali-
ases: Win32/Sirefef.DK (ESET), Trojan.Win32.Jorik.ZAccess.
qe (Kaspersky), FakeAlert-GA.gen.r (McAfee), Trojan.Gen.2
(Symantec), Cryp_FakeAV-56 (Trend Micro).

With the exception of the ESET name, there is clearly a big
difference in how the vendors identified this particular malware
threat.

Another important aspect of naming differences has to do
with 64 bits operating systems being more common now. Al-
though a malware threat could be 32 bits, it still can fully ruin
a 64 bits system. This is due to the 32 bits API’s being avail-
able to the system, to support backwards compatibility. This
could result in a malware specimen where there is one ver-
sion affecting either platform, or several versions optimized for
each platform. In the case of Sirefef, there is actually a 64 bits
version identified by Microsoft (e.g. Trojan:Win64/Sirefef.B).
Although one would expect the aliases to be similar to its 32
bits brother, the truth is otherwise.

These small examples give an impression on how messy
this naming game can get. Although there is a set of guidelines
available on how to name malware samples, it seems anti-
virus vendors are not that strictly following it, or are confused
as well.

Blasts from the past
To better understand how malware was named before, let’s
have a look at a few examples from the past.

Brain virus
About 26 years ago, two brothers from Pakistan named Ba-
sit and Amjad, created the first known virus for MS-DOS.
These gentlemen were intrigued by the possibility of creating
a fairly innocent “virus”, with the intent to protect their medi-
cal software and target only those people making illegal
copies of it. With the exception of wasting valuable memory
space and slowing down floppy drives, the virus was safely
programmed and instructed to infect media in floppy drives
only. Since these side effects weren’t always noticeable to
those who copied the software, the “protection” didn’t get
much attention.

This virus had an interesting side. The names of the two
brothers, the company name and even their telephone num-
ber were all included in the virus. People with an infected ma-
chine could use this information to contact the company to get
a “vaccination”.

The malicious code of the brothers was called the “Brain
virus”, not due to the smart body part used by the brothers,
but the name of the company being listed within the virus as
“BRAIN COMPUTER SERVICES”. The name of the virus was
at that time a logical chosen one. It clearly reflected a unique
name, however with the risk that others would craft viruses to
be named after them or their company as well.

20

Hakin9 EXTRA

2/2012 (9)

Duqu
A more recent malware threat comes from Duqu. With a lot of
reused code from Stuxnet together with a new stolen certifi-
cate, it had its share on the news sites in the last year.

Without going too much into details on this particular threat,
the researchers from CrySyS in Budapast (Hungary), opted
for the name Duqu after seeing file names created by the re-
lated key logger, starting with “~DQ…” [1].

If we look at some aliases on this threat from Trend soft-
ware, we see different names for Duqu: TROJ_SHADOW.
AF [Trend], TROJ_DUQU.ENC [Trend], TROJ_DUQU.DEC
[Trend], RTKT_DUQU.A [Trend].

The first alias could indicate they renamed the threat, after
Duqu becoming the primary name of this particular threat.

Sobig
When Sobig entered the digital world in 2003, it didn’t take
long before different anti-virus companies got their hands on a
copy. This was mainly due to the high infection and spreading
rate of the worm. Also in this case, we see that a company like
Sophos originally named this worm “Palyh” (W32/Palyh-A),
but changed it later to Sobig as well. The original “Palyh” was
simply added as an alias.

Kaiten
Kaiten, or its alias Linux/Tsunami, is a tool to perform DDoS
attacks. Pieces of its code were used in the Slapper worm. It
infected many Linux systems which were running unpatched
versions of the Apache webserver software.

In the case of Kaiten the name was assigned as a result of
a line in the source code, mentioning this particular word.

Send(sock,”NOTICE %s :Kaiten wa goraku\n”,sender);
The origin of the word Kaiten still remains a mystery. Some

researchers think the tool could be of Japanese origin, but no
clear proof has been found so far. The source of Kaiten was
also the basis for a ported version to Mac OS X, with the name
OSX/Tsunami.A (F-Secure). Although Kaiten is not focused on
the Windows platform, Microsoft’s anti-virus suite can detect
the tool as well (detected as Backdoor:IRC/Kaiten.C).

Malware on the Unix platform
While the anti-virus companies agreed to some degree on how
to name malware, several authors of Unix related tools didn’t.
The main reason is that these tools, usually created by open
source developers, were not belonging to these multinational
companies. With these individuals eager to discover, analyze
and improve their tools to find malicious software, they didn’t
have company guidelines on how malware samples should be
named. Another reason was the lack of anti-virus scanners for
the Unix platform, with the existing software focusing only on
the MS-DOS and Windows platforms.

With still a relatively low amount of malware being around
for Unix based systems, individual samples can be identified
easily and given a unique name. Usually it’s only a small num-
ber of security researchers discovering a particular sample
and checking the related paths, file names or strings and give
the malware kit an appropriate name. For example in the case
of rootkits, there was often a clear file name or string to be
used as part of the name.

With more vendors building a Linux, BSD or Mac OS X
scanner, malware on these platforms will receive more atten-
tion and is expected to be named according to the guidelines
the world is accustomed to.

Naming rules
Now we had a look at all these differences and exceptions,
we can still use the guidelines from CARO to properly name
a malware sample.

As mentioned before, the most important part of the malware
name, is the “family name”. When creating a new family name,
make sure that it is easy recognizable for other researchers, or
unfortunate end-users in the future.

A family name should not be given the name of a company,
brand, trademark or the name of a person. Also the name
of the author itself or the intended name by the author is
usually not suitable to use. This is to avoid malware authors
bragging about their “piece of art”. Beside names, do not use
identifiers which restrict in time, location or origin either, as
family names should be able to “contain” several variants. Us-
ing one of those specifics would force the need of creating
several new family names, when a new version has a different
time event, location or origin.

With these rules in mind and to exercise reasonable due
care as a security researcher, you are advised to follow at
least the following rules. Besides the proper naming tagging,
it also decreases the chance for a malware author to achieve
“fame” with his or her creation.

Practical steps
So if you are fairly sure you found a new malware specimen
and are the first one to analyze and report on it, finding an
appropriate name is the only thing remaining. Together with
a good analysis of the malware, a proper name will make it
much easier for other researchers to identify it more quickly.

Although the goal of this article isn’t to dive deeply into mal-
ware analysis, some commands or resources are provided to
help with the process of finding the right name. One particular
useful Linux distribution to do this kind of analysis is REMnux
[3]. It’s time to proceed to the steps from catching a piece of
malware, to finding the right name.

There is no use in submitting an alleged malware sample if it
turns to be just a harmless script, document or binary. So first
check the file type, size and possible readable text strings, to
determine if any analysis is really needed. In general a file with
a length of 0 bytes will not do much harm, nor does a normal
file containing a password dictionary.

Related commands: file, cat, hexdump
Run several well-known and up-to-date virus scanners and

let it test the related file(s). Another possibility is to use the
website from VirusTotal [4]. This service enables users to up-
load a sample via the web page and check it against many
anti-virus and malware scanning tools.

Figure 1: Check if the sample is really harmfulFigure 1 Check if the sample is really harmful

The game of giving malware a name

www.hakin9.org/en 21

The terms-of-service state that all uploaded files may be
stored and shared with other companies, including anti-virus
vendors. For the security and protection of end-users it makes
sense that this website collects possible harmful files and
shares them within the security community. Be careful with
uploading files containing personal or sensitive information.

If the file or files look suspicious, start with a static analy-
sis of the file to determine its goals, origin or even references
to other malicious code. In case of external references (e.g.
an external URL), take precautions when downloading ad-
ditional code or script. To protect your privacy and integrity
of the system, it is preferable to perform such downloads in
a sandboxed environment and behind an anonymizer service.

After the static analysis, it’s time to do the dynamic analysis
and check earlier assumptions. This includes investigating the
possible actions a sample could perform. While debugging the
code, check also for suspicious network traffic, disk IO or ac-
cess to specific parts of the operating system (like memory,
registry, and temporary directories). The real intent of the code
should show up sooner or later.

The analysis can sometimes reveal special details found
in unsuspected areas of the malware sample. Files could be
storing some comment field, like binary files on the Windows
platforms have additional fields as part of the PE binary file
format. Also self-extracting archives (SFX) have this kind of
meta-data sometimes available, to be extracted with tools like
WinRAR or 7-Zip. Tar balls on platforms like Linux could give
hint to a different original file name, which can be discovered
with the `file` command, like shown in the example below.

root@malware:/analysis/malware# file kit.tar kit.tar: gzip
compressed data, was “psybnc-linuxRO.tar”, from FAT file-
system (MS-DOS, OS/2, NT), last modified: Thu Sep 25
11:25:14 2008

The analysis phase of a malware specimen usually reveals
particular strings or identifiers. When analyzing a wild sample,
writing these specifics down can be useful, especially when
having to think about a name later on. Related commands and
software: strings command, debugging tools, disassemblers,
packer identification tools (e.g. PeID).

If the particular sample still has no name, this is the time
to give a name tag. Creating a new name could be as simple
as combining a few syllables of common words, together with
strings found in the malware file or kit. After creating a few fic-
titious names, look them up in your favorite search engine to
double check that the name is not vulgar or otherwise insulting
in a different language for example.

In general, names are easy to remember if they are pro-
nounceable, short and consist of 2 or 3 syllables. Strings
found in binaries or scripts could be used as input for final
family name.

Remember to avoid the names which are intentionally add-
ed by the malware authors. Promoting their names will give
them credit for their work, with the risk of them writing more
samples and achieve “fame” under their peers.

After the analysis phase, it is time to properly document all
findings. This helps in capturing the time and effort you invest-
ed in analyzing this particular malware sample. It gives others
a better understanding of the intent and “tricks” used by this
new threat. It also can be used to learn more about the steps
taken in the analysis, possible missed areas or how to improve
automating analysis in future.

Both the malware sample and your analysis, can be seen
as a piece of art, with obvious the first one being more of a
dark art. Still, both the malware and the analysis could be of
great interest to other researchers. Be careful with distributing
malware or malware snippets, especially if no proper detection
is available yet.

 After finishing the analysis of a malware sample, the com-
munity should be made aware of this new threat. By writing an
analysis report and providing the malware sample to anti-virus
vendors and other security researchers, it will give them quick
insight in the related risk of the newly discovered threat. With
all the technical details and a proper name, it shouldn’t take
them long to implement detection methods!

Conclusion
Although there isn’t a real consent between anti-virus vendors
on how to name malware, there are at least some ground
rules. Most of them adhere to the naming scheme of CARO
or use a similar format and fields. Regarding the naming con-
fusion in the past, we can conclude that this issue is mostly
gone, as most anti-virus vendors provide aliases of their col-
leagues. With the help of these aliases, it’s doesn’t take long
to find the “right” malware name. Also, it isn’t the name that is
the most important part, but the proper detection and provid-
ing some basic information for the threat. The web has usually
enough pages covering the particular threat, including tips for
proper removal. Specific tools to detect or remove new threats
are usually quickly available as well, often provided by the
well-known anti-virus vendors.

If you are ever in the opportunity to name a new malware
threat, it’s important to know the guidelines from CARO and
the general tips provided in this article. In the end it’s also the
creativity of the analyst and the possible damage from this
malware. Even the best name won’t impress if the malware
doesn’t reach the news.

MICHAEL BOELEN
is working as a consultant for Snow B.V., a Dutch consultancy company with
specialists in Unix and product groups focusing on system integration, ne-
tworking, storage, database and security. As the original author of Rootkit
Hunter, Michael gained extensive knowledge of malware threats on the Unix
platform, including how to detect and protect against these threats. Cur-
rently he maintains Lynis, an open source auditing tool for Unix systems. In
his spare time Michael likes to sport, visit friends, watch TV series or go for
an occasional malware hunt. He can be reached via his website at http://
www.rootkit.nl, the source for his software tools and related information,
or via Twitter (@MBoelen).Figure 2: Check the sample against existing de�nition �les

22

Hakin9 EXTRA

2/2012 (9)

Albeit at first glance it may seem an irrational way to face
this kind of problems, the passive approach is a part of
a precise defensive scheme that, if well used, can real-

ize a powerful tool for the network defence.
Despite in computer science literature we can found differ-

ent solutions based on this kind of approach, the most known
are the IDS (Intrusion Detection System) and the Honeypots
(a composite word that sounds like ‘a honey pot used as de-
coy’), in this article we will only focus on the latter type of solu-
tion, because it seems to offer more benefits in the proactive
defence environment.

A honeypot-based solution realizes a credible simulation of
a complete network environment where we can add and acti-
vate one or more virtual hosts (the honeypots) in various con-
figuration: a network of honeypot systems is named honeynet.

The great potential of this defence mechanism arises when
this operates within a real network with a certain number of
real systems, because, first of all, it provides an effective dis-
traction for potential aggressors and also, not least important,
it allows us to get a lot of information about methods and tech-
niques used during their attacks.

An honeynet is able to simulate thousands of different hosts
and, depending on the software used, its simulation can be ex-
tremely sophisticated, involving a large number of parameters
such as network services, delays, time of latency, and so on.

It is evident that there is a direct connection between the
simulation level and the credibility of this one. For this reason,
the choice of the software used must necessarily be followed
by long and careful configuration activity.

Unlike what happens in the IDS systems that operate only
with real systems and have many false-positive alerts, the
whole traffic inside a honeynet can be considered as suspect,
because it is not real, all inside systems are simulated and do
not exist.

There is variety of honeynet/honeypot software, both com-
mercial and open source, designed to run on different operat-
ing systems: in this article we will refer to only one, Honeyd
for Linux, one of the first products of this type; a software with
very interesting features which is distributed under the GNU
(General Public license), therefore completely free (http://
www.honeyd.org).

Although the development of this software has stopped a

PROACTIVE NETWORK
DEFENCE THROUGH
SIMULATED
NETWORKS

Although most of the protections applied to our networks are
based on an active approach that, more or less in real time, try to:
contrast the attackers’ attempts to violate the connected systems
(for example, when we use a firewall) and find another way to
operate, based on a diametrical opposite approach, a way that
involves systems characterized by a passive attitude towards these
events: we are speaking about simulated systems and networks, well
known as Honeypots and Honeynets.

ROBERTO SAIA

How to use some techniques and tools in order to deceive
the potential intruders in our network

Proactive Network Defence Through Simulated Networks

www.hakin9.org/en 23

few years ago and nowadays more sophisticated solutions are
available, its simplicity makes it ideal to start taking the first
steps in this area.

In this article we will see how to create a proactive defence
scheme, something that works to distract the attention of po-
tential attackers from real hosts and, equally important, to col-
lect as much information as possible about the techniques and
methods used by them during their unauthorized activity on
the network.

Honeyd daemon
Honeyd runs on Linux as a daemon (so as a service) and per-
mits to simulate a large number of virtual hosts, each of them
with a specific IP address: these hosts can be configured by
changing some files in order to perform certain services and in
addition we can choose the platform service to emulate (Hon-
eyd is able to emulate different operating systems).

Using a single system, Honeyd can simulate the activity of
several distinct hosts (even thousands) and this allows us to
implement a policy of masquerading of the real hosts, a policy
oriented to confuse the potential aggressors: in a context with
thousands of real and simulated systems that offer network
services; against what system/service should an intruder
launch the first attack?

Considering that the virtual systems respond to the activi-
ties of the attacker just like real ones, the probability that he/
she is able to identify the real hosts with no other information
is really negligible.

In addition to managing the simulated services on the same
host, Honeyd can use a proxy mechanism in order to redirect
the requests to another host where a real service of this type
is running. However, the service will appear originated by the
first host.

In a few words, Honeyd is an excellent open-source product
be able to make a very efficient simulation: for example, we
can freely modify the virtual network topology in order to cre-
ate a very complex structures with a large number of router
interconnections and even simulate the packet loss during
communication by setting their latency. For security reason,

the host or the hosts used to run the Honeyd daemon should
not be the production systems but hosts specifically dedicated
to this particular activity.

We can install the package honeyd using the standard Linux
modalities: after that we have downloaded the source from the
official site of Honeyd (http://www.honeyd.org), we can install
them by using an account with administrator privileges (login
as root or by sudo command), the correct sequence is as
follows:

tar –xzf <nome_del_pacchetto>.tar.gz

cd <nome_del_pacchetto>

./configure

make

make install

By this modality we need to solve manually unmet dependen-
cies, otherwise we can install the package through the use of
the command apt in order to automatically solve all needed
dependencies:

apt-get install honeyd

When the installation is finished, we need to change our IP-
forwarding setting in order to prevent that packets directed to
simulated systems that are forwarded outside the host, creat-
ing duplications that would compromise the correct operation
of the system. The command to execute is the following:

echo 0 > /proc/sys/net/ipv4/ip_forward

We can check the old value (or the new after the setting) using
the following command:

cat /proc/sys/net/ipv4/ip_forward

The system is now ready to operate but before starting the op-
erational phase, it is useful to take a look at the Table 1, where
the Honeyd operating modality is summarized.

Table 1. Honeyd operating modality

Step Description

1 The packets addressed to the simulated hosts
are intercepted

2 Based on the con�guration, each connection will
bind to a speci�c simulated service

3
Before they are forwarded to outside, each packet
is modi�ed in accord with the operating system to
be simulated

Honeyd is able to deceive scanning tools used to obtain sys-
tems fingerprinting, that is, those applications that are de-
signed to detect which type of operating system is installed on
a remote host.

To efficiently perform this task, Honeyd uses the same data-
bases used by the scanning software, databases with a large
collection of operating system signatures.

Honeyd creates virtual hosts operating within the range of
addresses specified, it simulates the network stack of a real
host and it is able to run services based on protocols as TCP,
UDP and ICMP: by default all UDP ports are closed and,
based on our configuration, Honeyd will generate an ICMP

How to use some techniques and tools in order to deceive
the potential intruders in our network

Figure 1. Functional diagram of the honeyd daemon

24

Hakin9 EXTRA

2/2012 (9)

type 3 (Port Unreachable) message. The command line op-
tions we can use to run the Honeyd daemon can be viewed
using the ‘man honeyd’ command. The most important of them
are summarized in Table 2.

Table 2. Some Honeyd running options

Option Description

-d
Do not daemonize,
and enable verbose debugging
messages.

-l logfile Log packets and connections to the
log�le speci�ed by log�le.

-p fingerprints Read nmap style �ngerprints.

-x xprobe
Read xprobe style �ngerprints; this
�le determines how honeyd reacts
to ICMP �ngerprinting tools.

-a assoc
Read the �le that associates nmap
style �ngerprints with xprobe style
�ngerprints.

-f file Read the con�guration in �le.

-i interface Listen on interface; it is possible to
specify multiple interfaces.

The mentioned Nmap software (abbreviation of Network Map-
per) is one of the most powerful tool currently available for
network scanning, an open-source software freely distributed
under the GNU-GPL (http://nmap.org).

Honeyd configuration
The Honeyd configuration file is based on the CFG (Content
Free Grammar, http://en.wikipedia.org/wiki/Context-free_

grammar) in according to the formalism BNF (Backus-Naur
Form, http://it.wikipedia.org/wiki/Backus-Naur_Form), it uses
a set of derivation rules written in the following format:

 <symbol>:: = <expression>

In a few words, the symbol on the left of the rule can be re-
placed by any sequence among those present on the right
(optional symbols are enclosed in square brackets).

For example, from reading this file it is simple to identify the
different choices for the ‘create’ directive:

creation= “create” template-name | “create” “default” |

“dynamic” template-name

A simple example of this configuration file is the following:

Simulation of a Web Server (Windows NT4)

create winsvr

set winsvr personality “Microsoft Windows Server 2003”

add winsvr1 tcp port 80 proxy localhost:80

add winsvr1 tcp port 139 open

add winsvr1 udp port 138 open

add winsvr1 udp port 137 open

add winsvr1 tcp port 135 open

set winsvr1 default tcp action reset

set winsvr1 default udp action reset

bind 10.0.1.51 winsvr1

Simulation of a Cisco Router

create rtr1

set rtr1 personality “Cisco IOS 11.3 - 12.0(11)”

set rtr1 default tcp action reset

set rtr1 default udp action reset

set rtr1 uptime 2208866

bind 10.0.1.1 rtr1

The presence of obsolete operating systems such as Micro-
soft Windows NT, is a very powerful appeal to the potential

Figure 2. Three Way HandshakingFigure 2. Three Way Handshaking

Proactive Network Defence Through Simulated Networks

www.hakin9.org/en 25

attackers. In the previous example, we have created two dif-
ferent personalities: the first one is a Web server based on
the Microsoft Windows NT4 operating system that we have
used in two virtual systems (honeypots) with IP addresses
10.0.1.51 and 10.0. 1:52, the second one is a Cisco router
device with IP address 10.0.1.1.

The ‘create’ command defines a template, a model that will
later be combined with one of the personality that we have just
described in accord with a certain behaviour (ports and proto-
cols used): in the previous example are active TCP and UDP
ports 80, 139, 137 and 135.

Table 3 shows ports, protocols and related services that we
have enabled in our simulation: we must be very careful in
the choice of services to be activated in order to avoid incon-
sistencies (for example, activating a typical Linux service as
‘finger’ on a Microsoft Windows host) and consequentially in-
validate the simulation credibility.

Table 3. Emulate services

Protocol:Port Description

TCP:80 World Wide Web HTTP

UDP:135 Remote Procedure Call

TCP:137 and UDP:137 NETBIOS Name Service

TCP:139 NETBIOS Session Service

During configuration, it should also be specified that the closed
ports must respond by sending a flag type RST (reset) when
the protocol is TCP and with a message ‘Port Unreachable’
when the protocol is UDP.

As we can see, the emulation of a service (HTTP, Telnet,
etc..) invokes a specific script written in Perl, for example, the
HTTP service calls the script ‘scripts/iis-0.95/iisemul8.pl’ in or-
der to emulate a Microsoft web server IIS (Internet Information
server).

Other directives as ‘set’ and ‘add’ are used to modify the
behaviour of the simulated hosts (we have already shown
how we can use ‘set’ in order to define the default behaviour
of each protocol). The possible replies of the TCP, UDP and
ICMP protocols are summarized in Table 4.

Table 4. Possible replies of protocols

Azione Descrizione

Open Related to TCP and UDP protocols, it open all ports
by default

Block All packets are discarded by default without any no-
ti�cation to sender

Reset

All ports are closed by default: in case of TCP,
it sends a RST response packet when receive
a SYN; in case of UDP, it sends a ‘port unreachable’
ICMP message

In order to understand the contents of the table above, we
have to brush up the concept of ‘TCP/IP session’ between
two hosts, a process named ‘Three Way Handshaking’ (http://
en.wikipedia.org/wiki/Transmission_Control_Protocol) that fol-
lows certain precise rules, rules summarized in Figure 2.

A simple example of the ‘set’ directive is the following:

create myhost

set myhost default tcp action block

set myhost default udp action block

set myhost default icmp action block

It creates a new template named ‘myhost’ which, by default,
does not reply with all protocols: a typical use of these direc-
tives is the temporary exclusion of a number of hosts within a
specific IP range, using the directive:

bind <ip_address> myhost

that we already seen before.
Using the ‘delete’ directive we can modify ‘on the fly’ an ex-

isting and running configuration in order to change or remove
existing templates: when we make this, all active connections
directed to simulated services will continue to operate regu-
larly. Another directive is ‘include’, it is useful when we need
to split the configuration file in more parts (in case of complex
configurations).

Another important directive that we can use within the con-
figuration file concerns the MAC address of simulated hosts.

Although honeyd can automatically do this , we can explic-
itly set a particular MAC address in this way:

set 10.0.0.1 ethernet “00-0F-EA-4C-07-93”

Otherwise, as we already said, Honeyd will set the MAC ad-
dress in a smart way, based on the type of emulation (for ex-
ample, in case of a Cisco router, will be selected a typical MAC
address used in this kind of devices).

MAC Address
Acronym of ‚Media Access Control’, the MAC is an unique iden-
ti�er assigned to network interfaces for communications on the
physical network segment; MAC addresses are used in the ‘Me-
dia Access Control’ protocol sub-layer of the ISO/OSI (Internatio-
nal Organization for Standardization/ Open Systems Intercon-
nection) Model (http://en.wikipedia.org/wiki/MAC_address).

Event logging
Honeyd can record network events in different modalities, it is
able to generate very detailed records that contain all sorts of
useful information related to connections in progress.

Honeyd can also send these information to a specific syslog
server: this kind of server is used to collect all network logs in

Figure 3. Example of collected data

26

Hakin9 EXTRA

2/2012 (9)

a unique point (the syslog server), a standard service that usu-
ally operates through the UDP port 514.

There are two different levels of logging, PLL (Packet Log-
ging Level) and SLL (Service Level Logging): respectively,
they record the packet traffic and the service activities.

The next Figure 3 shows an example of information type
collected in each modality.

Honeyd creation
On the basis of the above information, we now begin to define
the configuration file that will allow us to activate a fully work-
ing honeynet.

The network topology we are going to create consists of 6
subnets connected by 4 routers, one of these subnets repre-
sents the entry point to the honeynet.

The first step is to determine the extension of the network
and calculate its subnet mask: this operation is quite simple,
we have only to convert to binary the first and the last address
used, then perform a logical AND operation from left to right
until the first zero, and from this point insert only zeros.

The correct subnet mask to use is the result value converted
in decimal format (the Table 4 summarizes the characteristics
of each subnet used).

Table 4. Used subnets

IP Address Class Description

10.0.0.0 C external

10.0.1.0 C Subnet 2

10.0.2.0 C Subnet 1

10.0.3.0 C Subnet 4

10.0.4.0 C Subnet 3

10.0.5.0 C Subnet 5

In Figure 4 we can see the result of the operation described
above performed on the range from 10.0.0.0 to 10.0.5.255
(the first and the last address potentially assignable).

The resulted 255.255.248.0 is the subnet mask that we
need to configure our system: the notation used by Honeyd is
based on the number of bits set to 1 in the subnet mask: then
we have to use ‘/ 8’ for a class A network with 255.0.0.0 sub-
net mask, ‘/ 16’ for a class B network with 255.255.0.0 subnet
mask, ‘/ 24’ for a class C network with 255.255.255.0 subnet
mask and, in our case, ‘/ 21’ to indicate a 255.255.248.0 sub-
net mask.

This information will be used for writing the configuration file
that as first directive needs to know the network entry point:
this is the border router with address 10.0.0.0/21. The next
configurations regard the further subnets reachable from the
outside: we want all subnets are reachable (in Figure 5 we can
observe our honeynet topology).

The following instructions show the first part of the configu-
ration file, the part where are placed all routing directives:

#border router interface and reachable networks

route entry 10.0.0.1 network 10.0.0.0/21

Class of reachable addresses

route 10.0.0.1 link 10.0.0.0/24

Networks and addresses directly reachable from

border router 1

route 10.0.0.1 add net 10.0.1.0/24 10.0.1.1

route 10.0.0.1 add net 10.0.2.0/24 10.0.2.1

route 10.0.1.1 link 10.0.1.0/24

route 10.0.2.1 link 10.0.2.0/24

Networks and addresses reachable from router 2

route 10.0.1.2 add net 10.0.4.0/24 10.0.4.1

route 10.0.4.1 link 10.0.4.0/24

route 10.0.0.1 add net 10.0.4.0/24 10.0.4.1

Networks and addresses reachable from router 3

route 10.0.1.3 add net 10.0.3.0/24 10.0.3.2

route 10.0.3.2 link 10.0.3.0/24

route 10.0.0.1 add net 10.0.3.0/24 10.0.3.2

Networks and addresses reachable from router 4

route 10.0.2.2 add net 10.0.3.0/24 10.0.3.1

route 10.0.3.1 link 10.0.3.0/24

route 10.0.0.1 add net 10.0.3.0/24 10.0.3.1

route 10.0.2.2 add net 10.0.5.0/24 10.0.5.1

route 10.0.5.1 link 10.0.5.0/24

route 10.0.0.1 add net 10.0.5.0/24 10.0.5.1

...

The first directive indicates the router interface connected to
the external networks (10.0.0.1) and the reachable internal
hosts (10.0.0.0/21). Subsequent groups of directives indicate
networks and addresses reachable from each router and the
last instructions that are the possible paths from the internal
networks to the external networks.

The next step is to define some templates to be used for the
simulated hosts (honeypots) that we decide to activate inside
the subnets:

...

#Create default template

create default

set default default tcp action block

set default default udp action block

set default default icmp action block

#Server template

create winsvr

set winsvr personality “Microsoft Windows Server 2003”

add winsvr tcp port 80 proxy localhost:80

add winsvr tcp port 139 open

add winsvr udp port 138 open

add winsvr udp port 137 open

add winsvr tcp port 135 open

set winsvr default tcp action reset

set winsvr default udp action reset

#Client template

create winclt

set winclt personality “Microsoft Windows XP Professional SP1”

add winclt tcp port 445 open

Figure 4. Calculation of the subnet mask

Proactive Network Defence Through Simulated Networks

www.hakin9.org/en 27

add winclt tcp port 139 open

add winclt udp port 138 open

add winclt udp port 137 open

add winclt tcp port 135 open

set winclt default tcp action reset

set winclt default udp action reset

...

The first operation was the definition of a default template that
will apply to all those hosts that do not use a specific template:
inside our range of addresses, these kind of hosts will be in-
active because our model does not provide any response to
received requests (for all protocols).

The next step will be to define the router templates: we
can choose the available models inside ‘\etc\honeypot\nmap.
prints’ file: in our case we have chosen to simulate a ‘Cisco
7206 router (IOS 11.1 (17)’ and a ‘DLink DI-604 ethernet rout-
er’ (we must do this very carefully, writing the string of text
exactly as in the file). The result is as follows:

...

#Routers template

create rtr1

set rtr1 personality “Cisco 7206 router (IOS 11.1(17)”

set rtr1 default tcp action reset

set rtr1 default udp action reset

add rtr1 tcp port 23 “/usr/bin/perl scripts/router-telnet.pl”

set rtr1 uid 502 gid 502

set rtr1 uptime 2208866

create rtr2

set rtr2 personality “DLink DI-604 ethernet router”

set rtr2 default tcp action reset

set rtr2 default udp action reset

add rtr2 tcp port 23 “/usr/bin/perl scripts/router-telnet.pl”

set rtr2 uid 502 gid 502

set rtr2 uptime 2309901

...

Now we need to use the ‘bind’ directive in order to bind cre-
ated templates to the hosts/routers used in our honeynet:

...

#Subnet 1 hosts

bind 10.0.2.200 winsvr

bind 10.0.2.101 winsvr

bind 10.0.2.102 winclt

bind 10.0.2.103 winclt

Figure 5. Honeynet topologyFigure 5. Honeynet topology

28

Hakin9 EXTRA

2/2012 (9)

bind 10.0.2.104 winclt

bind 10.0.2.105 winclt

#Subnet 2 hosts

bind 10.0.1.100 winsvr

bind 10.0.1.101 winsvr

bind 10.0.1.102 winclt

bind 10.0.1.103 winclt

bind 10.0.1.104 winclt

bind 10.0.1.105 winclt

#Subnet 3 hosts

bind 10.0.4.101 winsvr

bind 10.0.4.102 winsvr

bind 10.0.4.103 winclt

bind 10.0.4.104 winclt

bind 10.0.4.105 winclt

bind 10.0.4.106 winclt

#Subnet 4 hosts

bind 10.0.3.111 winsvr

bind 10.0.3.112 winsvr

bind 10.0.3.113 winclt

bind 10.0.3.114 winclt

bind 10.0.3.115 winclt

bind 10.0.3.116 winclt

#Subnet 5 hosts

bind 10.0.5.111 winsvr

bind 10.0.5.112 winsvr

bind 10.0.5.113 winclt

bind 10.0.5.114 winclt

bind 10.0.5.115 winclt

bind 10.0.5.116 winclt

#Router 1 - Cisco 2600

bind 10.0.0.1 rtr1

bind 10.0.1.1 rtr1

bind 10.0.2.1 rtr1

#Router 2 - Cisco 2600

bind 10.0.1.2 rtr1

bind 10.0.4.1 rtr1

#Router 3 - DLink DI-604

bind 10.0.1.3 rtr2

bind 10.0.3.2 rtr2

#Router 4 - DLink DI-604

bind 10.0.2.2 rtr2

bind 10.0.3.1 rtr2

bind 10.0.5.1 rtr2

...

Honeyd simulation improvements
We can refine our simulated network by using particular direc-
tives. We have already used one of these during the router
template configuration, where we had set the ‘uptime’ param-
eter in order to emulate the device working time (this is a pa-
rameter used by the network scanners as Nmap to perform
correctly their ‘fingerprinting’ operations):

set router uptime 2208866

As we can see in the following directives, we can also specify
the bandwidth, the latency, and the packet loss over connec-
tions: a credible simulation of the behaviour of a real network:

route 10.1.0.1 add net 10.2.0.0/16 10.2.0.1

 latency 9ms bandwidth 10Mbps

route 10.2.0.1 add net 10.2.1.0/24 10.2.1.1 latency 6ms loss 0.5

Another useful directives are those relating to the ‘dynamic
templates’. Based on certain parameters (summarized in Ta-
ble 5) they allow us to dynamically change the behaviour of
the simulated network.

Table 5. Dynamic templates parameters

Parameter

Source Address Connection source address determines
the template to use

Operating System
Operating system of the source host, de-
termined through a passive �ngerprin-
ting, determines the template to use

Time

Template is chosen by time criteria
in order to simulate the switching
on and o� of the hosts within
the network

A simple example of this directives is the following:

dynamic magichost

add magichost use linux if source ip=192.168.1.0/16

add magichost use windowsxp if source os=windows

add magichost use invisible if time between 10:00am – 12:00am

add magichost otherwise use default

bind source ip=192.168.1.0/16 10.10.0.200 cisco

bind source ip=10.22.83.0/16 10.10.0.200 juniper

where we have used what we have just said.

Nonlinear Assignment of addresses
In a real context the number of active honeypots should be ap-
propriate to real hosts on the network and also their addresses
must be assigned in a nonlinear way in order to confuse poten-
tial attackers.

Honeyd testing and logging
Although the configuration phase is completed, you must
perform an extra step before you start the system: in the real
system where the Honeyd daemon is running we need to con-
figure the packets destination directed to the external network
(10.0.0.0).

At this point we need to decide if we want to interface the
system towards the outside, or use it only inside the host
where it is running. For our tests we choose to use the last
option that we implement in this way (all following commands
must be executed as root):

route –n add –net 10.0.0.0/21 gw 127.0.0.1

Proactive Network Defence Through Simulated Networks

www.hakin9.org/en 29

After this, all traffic directed toward the mentioned network will
be routed to the gateway 127.0.0.1 (loopback interface). Now
we can run the daemon:

honeyd –f myfile.conf –d –i lo 10.0.0/21

The name of configuration file is ‘myfile.conf’; by ‘-d’ option
we operate in debug modality (it operates in foreground in or-
der to show information during its operation); by ‘-i’ option we
can specify what is the network interface and the class of ad-
dresses to be checked.

We can also logged all activities related to packet traffic and
services activities, simply adding these options:

-l packets.log –s services.log

This creates two files containing this information. The correct
operation of the system can be carried out through the stand-
ard operating system tools such as the ‘ping’ and ‘traceroute’
commands, respectively, to verify the reachability and the
routing paths. However we can also use tools more sophisti-
cated such as the Nmap port scanner.

For example, we can verify the correct routing of the packets
(based on our configuration) in relation to the Microsoft Win-
dows XP honeypot that belongs to the subnet 5 (10.0.5.0), the
client with IP address 10.0.5.116:

user@system:~$ traceroute 10.0.5.116

We should obtain an output like the following:

traceroute to 10.0.5.116 (10.0.5.116), 30 hops max, 60 byte

packets

1 10.0.0.1 (10.0.0.1) 0.186 ms 0.160 ms 0.168 ms

2 10.0.5.1 (10.0.5.1) 8.133 ms 8.117 ms 8.094 ms

As shown, the path is correct: from the border router 1 port
10.0.0.1 the packet is forwarded to router 4 port 10.0.2.2 and
from this one it proceeds to the destination host 10.0.5.116
through the 10.0.5.1 port.

By the same way we can check all paths. The whole hon-
eynet is shown in Figure 6.

A more detailed control is possible using the Nmap tool in
order to verify, for example, the number of active hosts within
a certain range of addresses:

user@system:~$ nmap 10.0.2.1-254

Starting Nmap 5.00 (http://nmap.org) at 2012-02-04 11:55 CET

Interesting ports on 10.0.2.2:

Not shown: 999 closed ports

PORT STATE SERVICE

23/tcp open telnet

Interesting ports on 10.0.2.101:

Not shown: 997 closed ports

PORT STATE SERVICE

80/tcp open http

135/tcp open msrpc

139/tcp open netbios-ssn

Figure 6. The whole honeynet.Figure 6. The whole honeynet.

30

Hakin9 EXTRA

2/2012 (9)

Interesting ports on 10.0.2.102:

Not shown: 997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

Interesting ports on 10.0.2.103:

Not shown: 997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

Interesting ports on 10.0.2.104:

Not shown: 997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

Interesting ports on 10.0.2.105:

Not shown: 997 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

Interesting ports on 10.0.2.200:

Not shown: 997 closed ports

PORT STATE SERVICE

80/tcp open http

135/tcp open msrpc

139/tcp open netbios-ssn

Nmap done: 254 IP addresses (7 hosts up)

 scanned in 10.54 seconds

We have already seen the use of the ‘-d’ option in order to
create two log files related to the packets traffic and services
activity: we can have a simply access to content of these files
using the ‘tail’ system command:

user@system:~$ tail -f packets.log services.log

==> packets.log <==

2012-02-04-12:52:06.8696 honeyd log started ------

==> services.log <==

2012-02-04-12:52:06.8698 honeyd log started ------

By this command we can get only the last rows of the files,
therefore the latest logged events: their updates will be in real
time and we can open two different terminal in order to obtain
a better data view.

Conclusion
Based on what has been said in this article, we should be
able to configure and run a honeynet in order to create an ef-
fective distraction aimed to confuse potential attackers of our
network: related to our real networks, this kind of approach
implements a proactive defence and presents two attractive
advantages.

The first one is certainly the honeynet’s ability to distract the
attention of the attackers, making difficult the identification of
real systems.

The second one, even more important, is the possibility to
define the security policies (related to traditional defence sys-
tems as, for example, firewall and IDS) basing it on the Hon-
eyd logs analysis, a precious source of information about the
intruders behaviour. The logical process to follow is showed
in Figure 7.

In conclusion, an honeynet offers us a different point of view
on the attacker activities; we can log a large number of at-
tacks and, much important aspect, each related activity can
be logged step-by-step.

Based on this information, the operators can better under-
stand the threats they face and how to defend against them.

Honeyd add-ons
The developer o�cial website and several other internet places
o�er us numerous third-parties add-ons for Honeyd as, for exam-
ple, scripts for emulation of a large number of services, as well as
information and practical examples.

ROBERTO SAIA
Graduated in Computer Science, Roberto Saia professionally works in the
ICT sector; for several years he has been managing computers network
and security of a large national company; author of numerous books on
programming, administration and system/network security, for some
time his interest is mainly focused to the security environment, in the
broadest sense of this term (http://www.robertosaia.it).

Figure 7. Proactive defence model

CODENAME:
SAMURAI SKILLS COURSE

32

Hakin9 EXTRA

2/2012 (9)

Introduction
Honeypots have emerged as a new class of network secu-
rity technology to address some of the shortfalls of existing
solutions. In this article, we will first discuss the limitations of
current network threat detection technologies. Next we will
introduce various classes of Honeypots and how they differ.
Third, we will examine how a potential attacker could detect
a Honeypot and then, we will learn how Honeypots can be
used to detect Zero Day attacks. We will conclude by discuss-
ing cloud based Honeypot architectures.

The Limitations of Current
Network Security Devices
Network security is currently accomplished by firewalls, intru-
sion detection systems (IDS) and host based antivirus soft-
ware. These systems are useful for blocking many known
threats. Security practitioners know however that IDS and
host-based antivirus are only as strong as their signatures.
These signatures are crafted by vulnerability research teams
at various security vendors. They may also be contributed by
security professionals in the field. The problem occurs when a
slight variant of a piece of malware for which a signature has
been written starts propagating and this slight variation is able
to thwart even a well crafted IDS rule. Another class of attacks
are known as Zero Day Attacks. These attacks expose vulner-
abilities in software packages that haven’t even been publicly
announced. Zero day attacks do not have signatures to detect
them. The abundance of encrypted traffic now traversing net-
works exposes another limitation of current threat detection
technologies. IDS cannot examine the payloads of encrypted
traffic to detect threats. SSL Decryption technologies do exist
but they work using a man in the middle approach and require
client side certificate loading. Finally, IDS systems suffer from

false positives. This occurs when a signature is too generic
and triggers alerts that are unfounded. This causes many se-
curity administrators to unload that particular signature and
potentially leave their network somewhat unprotected. With
these many limitations, the current technology leaves us vul-
nerable. It is clear that the black hats are not slowing down
and “script kiddies” are more than happy to try out the latest
threat SDK to attack our networks. How do we know when
a new strain of malware has bypassed our IDS or when some-
one has exploited a zero day vulnerability and is not actively
performing reconnaissance on our network?

An approach that can help in these cases is to deploy
a Honeypot. A Honeypot is a resource which is meant to act as
a system whose sole purpose is to be attacked. This means
that any traffic that is entering it or probing it is by definition
malicious and suspicious. The idea of Honeypots has been
around for a while and was first described in the book “Inside
the Cuckoo’s Egg: Tracking a Spy Through the Maze of Com-
puter Espionage” by Clifford Stoll. In the book, Stoll traces the
actions of a hacker that has compromised the systems at Law-
rence Berkley National Labs by setting up dummy machines
and monitoring the hacker’s actions. Honeypot technology has
definitely progressed since this book was written in 1989 but
the core principle remains the same : set up a dummy sys-
tem that an attacker can’t help but try and compromise. When
trying to improve network security, it is important to not only
be able to detect a new threat but also understand how an
attacker will act once they have compromised the system. An-
other useful article by Bill Cheswick explains how he stealthily
traced the actions of a hacker who thought he had exploited
vulnerability in AT & T Bell Laboratories’ Internet gateway. In
order to be able to do this, it is very important for an attacker to
not realize they are in a Honeypot. There is typical set of steps

USING HONEYPOTS
TO STRENGTHEN
NETWORK SECURITY

Security Practitioners know that their Intrusion Detection Systems
and host-based antivirus software is limited to already classified
threats. They may be missing many other threats that are not
detected. This article describes how they can better detect and
characterize threats that may not have been caught by other means
by using Honeypots.

HARI KOSARAJU

Using Honeypots to Strengthen Network Security

www.hakin9.org/en 33

that a hacker follows in compromising a system. The first step
is a reconnaissance phase where network scanning tools are
used to find vulnerable hosts running services that are known
to contain exploitable interfaces. Then a compromise that has
already been crafted is exploited on that system. This usually
ends with the attacker getting some sort of a shell access to
the exploited system. Once they get access to the system,
they will typically cover their tracks by either erasing their logs,
or installing a root kit of binaries that suppress logging. If you
leave a system on the public internet, you will find that it is
probed quite often. Further inspection will reveal that these
probes are typically scans to find either open ports or to find
specific services running. Often times these scans are auto-
mated but often also use specific tools like nessus or nmap.
Hackers look for systems that have known exploits. Attackers
may even use search engines to find vulnerabilities in specific
web applications. This means, that there are a few ways to
attract attackers to your system in order to learn more about
them. Specifically, you may want to have specific ports open
and even services running that have known exploits. This is
just asking for trouble – but that is exactly what is wanted
when driving attackers to a Honeypot.

Honeypot Variants
There are two major classes of Honeypots: Low Interaction
and High Interaction. They differ in how many services they
expose to attackers, whether these services are emulated
or real and the amount of risk that comes in the event that
a hacker is able to compromise the system. These classes of
Honeypots also differ in how they are implemented.

Low Interaction Honeypots
Low Interaction Honeypots are Honeypots that emulate only
certain services and thus limit the attack vector space. They
are useful because they cannot be compromised to attack oth-
er hosts. In low interaction Honeypots, vulnerable services are
emulated by using special handlers and not the real service.
This tricks malware that happens to be probing a port that the
service runs on into interacting with the service and having
itself copied into a safe place where it cannot replicate or com-
promise the host. There are many examples of low interaction
Honeypots including Dionaea and Honeytrap.

How exactly do low interaction Honeypots actually trap
a piece of malware? The first step of capturing the malware is
to look for when a piece of malware tried to connect to a given
TCP port. To understand this, we need to remember how the
TCP Three way handshake works. The first step is for the TCP
Server to bind to a specific port and start listening for connec-
tions. The client will send the server a TCP packet with the
SYN bit set. This will then cause the server to send the client
a SYN-ACK packet. Finally, the client will acknowledge this
and send the server an ACK packet. Now what happens if a
server is not in a listening state on that port and a client tries
to connect? Well the server will send the client a TCP Reset
(RST) which will tell the client to close its side of the connec-
tion. Low interaction Honeypots such as HoneyTrap will sniff
outbound packets for this TCP Reset. It will then intelligently
start a listening service on that port. The next time the ma-
licious caller attempts to connect, it will be successful. The
other way HoneyTrap does this is by having ipTables send
SYN packets to HoneyTrap directly so that it can open the
corresponding port. Now that we have a connection open to
the attacker, there are a couple of things that can be done.

HoneyTrap emulates service responses by sending the client
back the contents of local response files for a particular ser-
vice. It can also either mirror the traffic back to the client to
have it basically attack itself. Another interesting option is to
have it work as a proxy to send the malicious traffic to another
dedicated machine.

If HoneyTrap is running in Service emulation mode, all of the
exploit data will be logged to the file system where it can be
analyzed by a host of applications.

High Interaction Honeypots
High interaction Honeypots are typically complete systems
running a full suite of services. They allow a high level of in-
teraction with the attacker. None of the services being offered
on these systems are emulated. The advantage of a high in-
teraction Honeypot is that you learn more about an attacker’s
actions especially in the reconnaissance phase of their opera-
tions. High interaction Honeypots have their disadvantages as
well. They are more difficult to instrument and they do carry
much more risk in the event they are compromised. For in-
stance, if the attacker is able to compromise this type of Hon-
eypot and they launch an attack on another network from your
Honeypot, you will be held liable. This risk is not present with
low interaction Honeypots.

There are a few different options when considering con-
struction of a high interaction Honeypot. You may choose to
use a physical high interaction Honeypot which is basically a
well characterized server. You also have the option of using
a virtual high interaction Honeypot. There are a few common
ways to do this: User-mode Linux and VMWare. User-Mode
Linux allows you to run multiple virtual Linux instances as pro-
cesses on a host computer. VMWare will allow you to con-
struct a virtual machine that is running an operating system of
your choice on a host computer. This provides flexibility with
respect to the operating system of the high interaction Hon-
eypot and also adds a layer of protection. What this means is
that if an attacker is able to compromise the virtual machine,
they are not attacking the native hardware platform. The other
advantage of using a virtualized approach is that it is easier to
revert to a “clean uncompromised” state. A final advantage of
using a virtualized environment is that you can run Honeypots
of multiple operating systems on one hardware platform. This
enhances your attack surface and allows for the collection of
information on more attack vectors.

Once we set up a high interaction Honeypot, we need to
start gathering attack intelligence. There are a couple of ways
to get information from a Honeypot on how the attack occurred.
The first is to examine the log files. This can be problematic
because the first thing an attacker does is to either modify
system logs or delete them altogether. For this reason, it is im-
portant to first set up the Honeypot to use distributed logging.
This ensures that the logs cannot be erased easily. The other
piece of instrumentation that is useful is the use of a key log-
ger. The command history that the attacker used in the exploit
is useful. The other thing that is useful is an understanding of
how they installed a rootkit. Typically, the login binary will be
replaced with something that gives an attacker easy access to
the system [8]. To learn which files that have been replaced by
a rootkit, tools such as the TripWire file integrity checker are
useful. You should use tcpdump to capture the packets that
are entering and exiting the Honeypot. Note that this should
not be lots of traffic because by definition your high interac-
tion Honeypot should only be getting malicious traffic. Kernel

34

Hakin9 EXTRA

2/2012 (9)

level information is also useful. For instance, by instrumenting
a layer between user space and all kernel level system calls,
we can without a doubt tract the attacker’s actions. This is how
the Sebek high interaction Honeypot works.

Honeynets
A Honeynot is a network of Honeypots that are characterized
by a honeywall to divide parts of the Honeynot from other parts
of the network. The honeywall is a firewall that prevents ma-
licious traffic from leaving the Honeynot and attacking other
networks. When talking about Honeynets, there is often a dif-
ferentiation between Gen 1 and Gen 2 architectures. Gen 1
Honeynets have a simplistic firewall to block outbound mali-
cious traffic. In Gen 2 Honeynets, this firewall setup is more
sophisticated so that it can actually manipulate outbound traf-
fic to make it benign. Honeynets capture three critical types of
information about attacks which makes them very useful. First
of all, there is a firewall log. In most cases, if ipTables is used
as the Honeywall, these messages can be logged to /var/log/
messages. Another piece of the data capture component of
Gen 2 Honeynets is a packet sniffer to record all traffic coming
in and out of the Honeynet. Since this is malicious traffic, we
do not expect large volumes of packet capture. The final com-
ponent is a kernel module like Sebek to record the hacker’s
actions in a way that happens after traffic has been decrypted.

Detecting a Honeypot
It is important to understand how a Honeypot can be detected
because savvy attackers will likely abort their mission if they
believe they are being in a monitoring environment. Many
malware now currently incorporate Honeypot detection within
their logic so that they will “self destruct” on Honeypot detec-
tion. This makes it more difficult to contain malware so that
effective signatures can be developed for it.

One of the most popular ways to log the actions of an at-
tacker in a high interaction Honeypot is to use a tool called
Sebek. Sebek is essentially a kernel module that can log key-
strokes and operations to a log. Sebek actually has two com-
ponents to it: A kernel module and a server piece. The server
piece is designed to run on the honeywall whereas the kernel
module is loaded on the Honeypot itself. Sebek is essentially
a kernel level root kit. The reason it is implemented this way
is because hackers had started installing their own binaries to
circumvent user space logging. Since Sebek is implemented
in Kernel space, this is not modifiable by the user. Specifically,
it replaces the default read() function in the system call table
with a new version and has the new version funnel data to
a data logger function. This approach is interesting because it
even deals with encrypted shell sessions because data is de-

crypted by the time it reaches the Sebek read function. Sebek
actually does use a few methods to obfuscate itself from the
attacker. First of all, it installs a second kernel module that acts
to remove Sebek from the linked list of installed modules. Se-
bek also takes steps to hide the packets it sends from the Hon-
eypot to the server. The way it does this is it by generating its
own packets and not even using the raw socket interface upon
which libpcap is based. There is still a problem though where
if two Honeypots are installed on the same LAN, Honeypot
A would be able to see Sebek packets from Honeypot B. Sebek
circumvents this by installing its own Raw Socket implementa-
tion that silently ignores all Sebek packets. It is now clear that
many of the obfuscation techniques that have been coded into
Sebek have been broken. For instance, it is possible to de-
tect kernel modules even if they have been cleaned. This ap-
proach has to do with searching for the kernel module header
structure which happens to still be in memory. Another way to
detect Sebek is to look at the System Call Table on a host and
to compare that to a normal configuration. This approach looks
for modified function pointers. Many security researchers know
are the limitations of Sebek as a high interaction Honeypot and
have been working on alternatives such as Qebek. That being
said, if the attacker is not savvy enough to look for evidence of
the Honeypot using these principles, it may still stay hidden.
There are even techniques to disable Sebek on the windows
platform, which make it even less desirable.

It is also possible to detect that a Honeypot is running in
a virtualized environment. The key thing to remember about
running in a virtualized environment is that execution timing is
altered because of the virtualization layer. For example, if you
look at ICMP Echo response times between a virtual machine
and a physical machine, there is a delay. This is likely due
to the fact that the packet traverses the TCP/IP stack of the
virtual machine and not just the physical host machine. More
instructions must be executed which therefore adds delay.

Another way that attackers can determine if they are in a
virtualized Honeypot environment is by using Execution Path
Analysis. EPA is enabled by connecting the syscall handler
(int 80) and the debug exception handler (int 1) in the IDT
(Interrupt Description Table). Then, by setting the TF bit (mask
0x100) in the EFLAGS register, the new handlers are able to
count each SIGTRAP generated when an instruction is ex-
ecuted. This approach does have a few limitations in that the
attacker needs high level privileges to execute these changes
and also, the modification of the system calls are not covert.

Virtual machine detection can be done in other ways that
namely examine, file and registry artifacts, running processes
and directories. It is also possible to examine memory to find
evidence of a virtual machine. For example, in host machines,

Figure 1: The pros and cons of High and Low Interaction Honeypots

Honeypot Type Pros Cons

Low Interaction

Less Risk of Host OS Compromise
Lower Cost since services emulated and lighter weight
Scales to many hundreds of instances well
Can capture malware fairly easily

You need to be running vulnerable services which means
running already known exploits
Attack surface limited to the services you are running
Limited understanding of hackers reconnaissance and
other hiding techniques

High Interaction

Simulates real world conditions and helps learn about
unknown attack vectors
You can run multiple Operating systems on one physical
host to increase coverage
Can be as simple as setting another host on your network

High risk in the event of compromise
Costly to implement on a large scale due to hardware co-
sts and resource requirements
Monitoring is more complicated since more services are
typically deployed

Using Honeypots to Strengthen Network Security

www.hakin9.org/en 35

the interrupt descriptor table is in low memory while on the
guest machine, it will be usually be higher in memory. This
approach can be extended to look at the location of the GDT
(Global Descriptor Table) and the LDT (Local Descriptor Table)
in addition to the IDT (Interrupt Descriptor Table). The third
way to detect a virtualized environment is to look for virtual
hardware. In a Linux environment, one standard check is to
look for VMware specific naming in the proc filesystem and
also to look for well known VMWare devices. Another interest-
ing way to detect that you are running within a virtual machine
is to look for Virtual Machine specific instruction support. Vir-
tual machines support instructions that are not available on
a host machine. These instructions are namely there to facili-
tate guest to host interaction. There are tools to discover this
trait by attempting to execute the VM specific instructions and
then seeing if their exception handler was triggered. If it was,
then that means the instruction was not supported and we are
executing on a host. If the exception handler is not triggered, it
means that we are running in a VM.

The point with discussing how an attacker may detect a vir-
tual machine is to shed some light on the sophistication of
current malware. Many of the latest types of malware are able
to exploit these detection schemes and not execute their most
sensitive operations to prevent detection. These methods can
and have been tightened up in many cases but are the evi-
dence of a Honeypot that a hacker will look for after gaining
access to a system. It really is a constant back and forth to
hide virtual machines from the latest hacker detection tech-
nique. You should assume that the hacker knows everything
that is written here because it is all publicly available informa-

tion. Honeypots are no panacea for catching the bad guy but
that does not mean they are not valuable.

Detecting Zero Day Attacks using Honeypots
One of the limitations of most cyber security technology is
detecting the zero day threat. These threats have yet to be
characterized and thus are not part of the rules of any secu-
rity vendor’s threat database. Honeypots can help in detecting
these threats. This section of the article describes the latest
work with respect to detecting zero day attacks. Some of the
latest malware is self replicating and mutating. This means
that it does not fit into readily defined signatures. Honeypots
can help us characterize and protect against this threat.

Some interesting work is being done to determine how to
detect zero day threats by using Virtual Honeypots. The Argos
Emulator is a virtual high interaction Honeypot designed to
capture Zero Day Attacks. Argos employs QEMU which is an
open source emulator and virtualizer and uses an idea called
Dynamic Taint Analysis to determine when network traffic is
executed. If you think of what a zero day attack is, it is basi-
cally when network traffic payload ends up being executed on
the host. A processor’s conventional control flow is diverted
by the attacker and code that they have injected is executed,
which often launches a shell for the attacker to login and fur-
ther compromise the system by disabling logging or installing
a rootkit. Argos tries to detect these instances. By correlat-
ing the network traffic with information logged by the QEMU
emulator, Argos is also able to generate intrusion detection
signatures to prevent the attack which are immune to changes
in the payload. This means they cannot be manipulated to

Figure 2: How Argos Detects Zero Day Attacks and Generates SignaturesFigure 2: How Argos Detects Zero Day Attacks and Generates Signatures

QEMU running
dynamic taint

analysis

Host OS

Forensic
Applications

Network
Traffic

analysis

Packet
Capture

Memory Dump of
Tainted Data

Correlation of
tainted memory

with network
data

Signature
Generation

Network
Threat
Observed

Network Signature
Generated

36

Hakin9 EXTRA

2/2012 (9)

produce an undetected variant. This approach apparently has
very low false positives.

Latest Trends in Honeypot Architectures
Antivirus companies have been using Honeypot and Honeynet
technology to capture and produce signatures for malware for
quite some time. For instance, Avira has deployed a distrib-
uted Honeynet to capture and analyze malware samples. The
problem they had faced was that malware tends to try and in-
fect hosts with similar IP addresses because there is a higher
probability that the IP will have been allocated. The Avira Hon-
eynet was a low interaction Honeypot which emulated various
vulnerabilities to gather worm variants that used that particular
exploit. These samples are transported from various clients
to a centralized server for further analysis. This is an exam-
ple of a distributed Honeynet. Taking this idea a step further
is the use of cloud computing concepts for Honeynets. This
is interesting because it is couples the virtual machine based
aspects of virtual Honeypots with this distributed data collec-
tion architecture described by the work done at Avira and oth-
ers. Migrating Honeynets to the cloud is the future as global
companies continue their migration to cloud based application
architectures. This also means that cloud based security is
becoming more critical. For instance, many cloud customers
would like to ensure that their virtual instances have not been
compromised. Some researchers have proposed what a cloud
based Honeypot architecture would be and have proposed
Honeypots as a service. It is not public at this point whether
Amazon EC2 or RackSpace have implemented a Honeypot as
a service since it is not currently listed on their sites. Amazon
web services do detect when port scanning is happening and
it is explicitly against their acceptable use policy, however it is
not clear what tools they use to detect it. Further, it is appar-
ently not possible for one tenant of the Amazon Web Services
to sniff the traffic of another tenant by putting their Virtual Ma-
chine in promiscuous mode because the hypervisor will not
deliver frames to them. Even two virtual instances owned by
the same customer cannot listen to one another’s traffic.

Conclusion
In summary, Honeypots come in many different varieties
which each have their own pros and cons. They are very valu-
able tools for finding network attacks that otherwise go un-
detected with conventional network security tools. Distributed
Honeynets, cloud based Honeypots and Honeypots running in
emulated environments to detect zero day attacks are inter-
esting areas that should be monitored closely for their future
contributions to improving network security.

HARI KOSARAJU
has over 10 years of software engineering experience focused on Linux Ap-
plication Development in C/C++, Real Time Embedded Systems, Protocol De-
sign and Deep Packet Inspection. He is currently a lead engineer on the Man-
taro SessionVista™ product line of Network Intelligence Technology. This
product line is used for Network Forensics, Lawful Intercept and Cyber Secu-
rity through industry leading deep packet inspection at high data rates. Ha-
ri’s interests lie in understanding network based threats and developing the
technologies to detect and stop them.
Hari holds a bachelors degree in Systems and Computer Engineering from
Carleton University in Ottawa, Canada. He also completed a joint MBA/
MS at the Robert H. Smith School of Business at the University of Maryland,
College Park.

PC Fix

Before you
continue:

Improve PC Stability and performances

Clean you registry from Windows errors

Free scan your Computer now!

https://www.plimus.com/jsp/redirect.jsp?contractId=2922412&referrer=1032926

www.mdsec.co.uk

38

Hakin9 EXTRA

2/2012 (9)

Honeypot is pretty new technology which use different
technique to help address security problems. One of
the many definition of honeypot is “a resource whose

value is in being probed, attacked or compromised”. Another
resource define honeypots like: “A honeypot is an information
system resource whose value lies in unauthorized or illicit use
of that resource”. In other (user friendly) words: Underlying strat-
egy is simple but really powerful - to allure potential attackers to
fake network node and tracking the attacker operations. Based
on this observation, system administrators can build the secu-
rity policy.

The aforementioned definition fits very well with traditional
honeypot – server honeypot. This traditional honeypot waits
for attack from remote side. Of course, it not only waits, but
tries to allure potential attacker using different techniques like
open and unsecured ports, emulate another OS etc. As for the
types of attacks, we must consider that most malicious attacks
occur from client-side attacks. Client-side attacks refer to at-
tack against end-user. Given this, it has been necessary to
develop new kind of active honeypot, which can track and an-
alyze client-side attacks. This new type of honeypot is called
client honeypot. This active honeypot emulate (manually or
automatically) the normal series of a regular user steps. Client
honeypots aim to identify malicious websites which want to
abuse client application vulnerabilities.

This ultimate concept of client honeypots was firstly articu-
lated by Lance Spitzner in 2004. Nowadays, we know several
implementation of this new kind of honeypots like Honeyclient,
HoneyMonkey, HoneyC and Capture. However, the progress
in development of the client honeypot is conspicuous, this
technology is still toddling.

Client honeypots vs. server honeypots
The main difference can be formulated like: rather then “pas-
sively” wait for attacks, client honeypot actively searches for
malicious websites. Client-side honeypots should by designed
according to server protocol (the client depends on server it
is working with). This idea can by achieved by simulating a

human behaviour to determine whether the server is exploit-
ing the client system. This is one of the reason why they must
be active, which means send requests to server, and analyze
the response by using various techniques. Main difference
between this two kinds of honeypots can be summarized as
follow:

• Type of simulated software: client-side honeypots simulate
client software and not the server based services to be at-
tacked

• Activities: actively initiate interaction with remote servers to
be attacked

• Identifying: by server honeypots all traffic can by consid-
ering as malicious. Client honeypots must discern which
server is malicious and which is not.

Client honeypots approaches
As we proposed the main goal of client honeypots is to detect
and identify any malicious activity coming from the Internet.
Ideal client honeypots should be summarized as follows:

• Detect any know and unknown threats against any cli-
ent user application and should be able to check various
URLs, with rate zero false positive.

• Should detect the attacks in real-time.
• Should be able to change detection and secure policy

rules as a response to current situation

General approach involve two phases:

• Crawling: this phase is common for all client honeypots;
firstly we must look for malicious websites.

• Detecting: in this phase honeypot identifies if the queued
sites are malicious or not. To do this, client honeypots use
two methods:
– Pattern-Matching: used by low-interaction client honey-

pots
– State Change Check: used by high-interaction client

honeypots

CLIENT HONEYPOTS

Development of security tools has been on the rise in recent years.
The main reason of that is the wide variety of attack trends against
computer systems. This new technologies like intrusion detection
systems (IDS), antiviruses and firewall, help to address this issues.
One of this new technologies is honeypot.

ING. MICHAL SRNEC, ING. MIROSLAV LUDVIK, PH.D.

Client honeypots

www.hakin9.org/en 39

Crawling
At first, honeypot needs to actively search through the network
to find servers to interact with. Given the size of the Internet
(which involve millions servers) is not a trivial issue. Usage of
this techniques needs to satisfy three requirements:

• Obtaining high speed
• Avoiding overloading
• Avoiding sample bias

Crawling speed depends on more factors – hardware, band-
width and crawling algorithm.

The second issue is information overloading. Crawling al-
gorithm should avoid crawling of the same content. Avoid-
ance of crawling of the same content is important because
modern websites are machine-ganerated with URL as
a transport layer for information. Some client honeypots (aka
MonkeySpider) uses URL normalization techniques to avoid
unnecessary overhead, while downloading the same content
multiple times.

Third issues is sample bias. Various techniques/schemes
can be used to determine and sort website for inspection.
Some queuing techniques depend on premise that malicious
websites contain particular type of content such as por-
nography. Another algorithms create queues of web pages
based on keyword or extracted links from SPAM. However,
this scheme will lead to miss many malicious websites, be-
cause attacker can use less suspicious keywords to build
malicious website. In generality, this approach can not cover
large scope of the Internet, because most malicious web
pages do not fit to this schema. The second method uses
hyperlink structure on retrieved documents to access other
websites. However, this method has its vices: popular web-
sites are linked with higher rate and random crawling would
lead to bias in the sample. Various researchers try to solve
this shortcoming by adjustments based on page popularity.
Although the bias is reduced, it is not removed. Further, this

method misses any pages for which no hyperlinks exist. An-
other method can be used to determine scope of inspected
website. Third method lies on generation random IP address
and check the presence of web servers. If server is present,
crawling algorithm selects random page from hosted web
pages on the web server. From the methods mentioned, the
last one (generating random IP address) will create most un-
biased random sample.

Pattern-Matching
Client honeypots use simulated clients and they do not use
fully functional operating system – they often emulate web
browsers, or web crawlers. They have only limited abilities for
interaction with attackers. Low-interaction client honeypots
send HTTP requests to the web servers and apply “signature-
based or heuristic methods” to the servers response to detect
malicious server. Applying this method can directly detect se-
curity violation. A honeypot which uses this method can be
expected to quickly detect attacks. However, some unimple-
mented attacks will by likely missed by using this method. Ex-
amples of client low-interaction honeypots which use pattern
matching method are Spybye, HoneyC, Monkey-Spider.

Detecting – State changes Check (Integrity check)
Client honeypots which use this approach are based on high-
interaction honeypots – attacker interact with real system
rather then with simulation. This method (integrity check) is
the only way that allows high-interaction honeypots detect se-
curity violations. This method relies on access to suspicious
websites and simultaneously detects whether any changes
happen on the client system. If any changes are given, the
system has been exploited. Detection, whether the system
has been exploited involves monitoring the following:

• Filesystem activities.
• Registry entries.
• Processes.
• Network connections.
• Memory. This is the ultimate state change check.

However, such checking is not easy to implement.
Current high-interaction client honeypots are limited to mon-

itor filesystem, registry and processes in order to obtain faster
and easier implementation.

With this method we have to pay more attention to avoid
false positives i.e. many websites create cookies on our sys-
tem to save information about our visit. Thus, we should have
some exclude list to avoid false positives.

Figure 1 presents an overview of high-interaction honeypot.
User can set various parameters using front-end configura-
tion. These parameters can, for example, be keywords, depth
and breadth of crawling or number of URLs after which client
honeypot stops its execution. Browser simulator module emu-
lates the web browser, URL analyzer handles the dialog boxes
and integrity check module checks the state of our system to
detect any changes. All log files are stored in remote data-
base to enable centralized logging. Client honeypot can run in
virtual machine like Vmware, which is helpful when we need
reset the machine to clean state.

Detection issues
Various detection problems can occur when we use detections
approaches discussed before. Figure 1.

40

Hakin9 EXTRA

2/2012 (9)

Human behaviour simulation
One of the main client honeypot goals is to behave like a hu-
man. However, low-interaction even high-interaction honey-
pots do not have features to achieve this purpose completely.
Lets look closer into this problem i.e. by dealing with dialog
boxes. More websites use typically pop ups with two options:
Ok or Cancel. The reactions of the websites can be different,
depends on user selection. Malicious websites could make
this problem harder, because they implement boxes which
have to be filled in by user. In this case, user reaction is nec-
essary to determine the server response. Example of this “fill
out dialboxes” is CAPTCHA, which is typically challenge-re-
sponse test. This CAPTCHA is often used by benign websites
as a protection against spam robots. On malicious websites,
CAPTCHA allows to hide malicious activity. Current client-side
honeypots (SpyBye, HoneyMonkey, Capturem MonekySpider,
HoneyC) do not simulate user interaction with dial box. Ex-
ploits which need more complex user interaction with website
cannot be automated by current implementation of client-side
honeypots.

Delayed Exploit
A delayed exploit is a very important issue, if we consider
high-interaction honeypot which uses integrity control check
mechanism. In some cases, the delay between the initial in-
fection and the complete compromise may occur. This delay
occurs only within high-interaction honeypot, because low-in-
teraction honeypots apply directly pattern-matching algorithm
on the server response. There are three possible reasons of
this delay:

• One of the possible scenarios could be: web pages suc-
cessfully exploit our system. Then, they download and
prepare to install more malicious software on our sys-
tem. Time which is necessary to detect malicious soft-
ware on our system is consumed by downloading mal-
ware.

• Logic or time bomb. Principle of this bombs relies on ex-
ploits which contain malicious web page where the exploit
triggers only after a given period of time.

• Exploits triggered by user. Some kind of malicious soft-
ware needs to by triggered by some interaction with user:
clicking mouse, opening some application etc.

Real-Time Integrity Check
Integrity check method can found out whether websites are
modified or change something on client system. To find out
if something causes changes, we need some time (maybe
a couple of minutes). Installed malicious software can hide
itself by using various rootkit techniques, and thus make it
harder to detect any changes. In another simple word, this
integrity control is unreliable. Therefore, the integrity check
should be performed in real-time. This integrity control check
could be achieved using API hooking, which is interception
of API calls that could be used to change the execution flow.
Attackers use this method to exploit client systems using
rootkits.

Attacks Against Internal Security Policies
Most current implementation of high-interaction honeypots
uses integrity control check to detect malicious software. But
in other words, they can not detect exploits that do not make
any persistent-state changes or make those changes inside

the browser. Attacks against internal policies, like unauthor-
ized access to the history or cookies, might be neglected.

0day Attacks
This kind of attacks may not be detected using low-interaction
client honeypot, as this kind of honeypots use algorithm, which
relies on the signatures of known attacks. If this attacks make any
change it could be detected using high-interaction honeypots.

Invisibility of client honeypots
Similar to server honeypots, the client-side should have the
“invisibility” features too. Invisibility means, that malicious soft-
ware cannot recognize that the HTTP request is sent by client
honeypot. Various techniques can be used to aim this feature.

Anti-crawling techniques
Malicious web pages use fingerprint of client honeypots to de-
tect that request is sent by honeypot. This fingerprinting by
malicious web pages is done because client honeypot use
automated crawlers. If malicious web pages can detect the
honeypot, they can also change they behaviour. This problem
is hard to be solve, so client honeypots should behave like a
browser as much as possible. Another issue which is related
with anti-crawling techniques is: the amount of sent requests.
Anti-crawlers can limit amount of requests to one IP address.
Solution to this problem lies in using intelligent crawling in-
stead of crawling the whole web site – by looking for suspi-
cious files, scripts and images .

Virtual Environment Detection
Using virtual machines by honeypots is a good practice, be-
cause we have ability to easily reset the exploiting machine
without influence of our real system. On the other side, the
presence of virtual machines can be easily detected using
various methods. Virtual machine detection codes can be em-
bedded on the exploited web page. If the malicious web page
detects the virtual machines, it can stop triggering the exploit,
behave differently, block the honeypot IP or do something to
keep it hidden from detection. Thus, honeypots should take a
measurements to protect virtual machine from fingerprinting
and detections. This ability provide the another technologies
called dynamic honeypots.

Geo-location Attacks
Nowadays, it is not a surprise that the user can be geologically
located by his IP address. This options use some attackers to
compromise visitors in certain country or location. This prob-
lem can be handled in two ways:

• Honeypot run across many different networks
• Hiding honeypot behind TOR service proxies

Integration of client honeypots
Until today, there have been few complete client honeypot
developments that integrate various detection methods and
capabilities of both low and high-interaction honeypots, and
are available to the public. Furthermore, no open source client
honeypot is coupled with commercial tool to provide real-time
security for the end-user. We must keep in mind that honeypot
is new technology used to add the value to secure client-side
systems. Client-side honeypot faced large web spaces, vari-
ous web technologies, browser behavior and strong integra-
tions with operating system.

Client honeypots

www.hakin9.org/en 41

Effectiveness of client honeypots
We can see that honeypots act like computer-human interac-
tion tool and their effectiveness can be defined by accuracy
and completeness of client attacks. Given this, we can meas-
ure three factors of client honeypots: speed, detection accu-
racy and invisibility.

Speed
Speed is a significant expressions to describe the ability of the
client and can be expressed by number of sites which can be
connected and inspected in a certain period of time. If we con-
sider the aim of client honeypots, which is to inspect websites
for malware and the size of the Internet, it is clear the client
honeypots should have high speed to achieve their goals. This
speed influences mostly:

• resources and hardware, network connections
• client honeypot implementation (more complex implemen-

tation honeypot, the slower honeypots are)
• detection algorithm play one of the main role too. The pat-

tern-matching method is faster than integrity control check
method.

Detection Accuracy
It is clear, that client honeypot should have high accuracy rate.
This accuracy can be measured by false positive and false
negative rate. In the case of the high-interaction client honey-
pots, false positive rate can by neglected, thus false negative
provides the accuracy of detecting malicious web pages. With
low-interaction client honeypots, both false positive and false
negative are expected to exist. The ability of client-side honey-
pots to detect malicious web pages is influenced by honeypots
themselves and the operation environment characteristics
such as:

• detection algorithm
• delayed exploits (logic bombs etc)
• evasion techniques

Invisibility
The value of honeypots depends on gathered data, but un-
like server honeypots, client honeypots do not require to use
deception to entice hacker to initiate attack. Client honeypots
should be kept undetectable from malicious websites. This
ability allows client honeypots gather more data and then iden-
tify more attacks.

Dynamics Honeypots
Now we know how different type of honeypots work, and how
they can help us. All types of honeypots have one common
property: blending with the system. This property aims to fa-
cilitate technology called Dynamic Honeypots.

The most critical part of dynamic honeypot is how it learns
about our network – what systems do we use and how the
systems are being used. One way to do this is to: actively
probe the network , determine which systems are alive, type
of system and which services they provide. This approach is
not very elegant, because we would constantly need to scan
out environment to get last system update.

Another approach is to utilize the power of fingerprints. In-
stead of actively probing the systems, the passive fingerprint-
ing sniffs traffic from the network and analyzes. Sniffed finger-
prints can be consulted with database of known fingerprints of

specific systems. This method significantly reduces network
bandwidth. This sniffing is continuous – so as an organization
network changes, these changes can be captured in real time.
This becomes critical for maintenance of honeypot over long
term. Major disadvantage of this method is that it works well
only in LAN, not in across routed networks. Given this, we
can deploy more than one dynamic honeypot, depending on
organization size, configuration and network topologies.

Once the honeypot is deployed (as appliance or single box),
it spends some time watching and learning the organization
of network. By capturing, it finds information about operations
systems, which kind of services are offered etc. Once the
honeypot learn the environment, it can begin to deploy more
honeypots. Power of this kind of honeypot lies in the ability
to mirror your environment. Given this, the honeypot seam-
lessly blend in, making much more difficulty for the attacker
to identify it. Moreover, this passive learning does not stop, it
continuously monitors the network. Dynamic honeypots really
dynamically response to network changes. As we can see dy-
namic honeypots vastly reduce configuration time and main-
tain them in constantly changing environment.

Dynamic honeypots can radically help in deployment and
maintenance of honeypots. With these features like learning
and monitoring network in real time, they become a solution
of a future for the honeypots. They not only become cost-ef-
fective to deploy and maintain, but they have better integration
with organization network.

Conclusion
Client honeypot is pretty new technology that aims to solve
the weaknesses of traditional server honeypots and other se-
curity tools. This kind of honeypots use two methods to detect
client-side attacks. Each approaches has benefits and short-
comings. So far, more sophisticated method has not been
developed yet. Some implementation try to combine both ap-
proaches to reach best detections method. We have to keep
in mind that the current client honeypots are still in the phase
of development.

Honeypot dramatically changes the strategy of protection.
Rather then passively protect, it allures attacker or even search
malicious websites. As it has been mentioned earlier, this pow-
erful concept has many advantages but the best advantage is
that honeypot can fend off various techniques which are used
by malicious software.

MR. LUDVIK
graduated at Czech Technical University in 1996. In 2005 he succesfully de-
fended his Ph.D. thesis on Data Security in Comupter Networks and I was
awarded Ph.D. degree. In 2000 he participated on securing the Internatio-
nal Monetary Fund conference in Prague. He provides counseling to Ministry
of Informatics Czech Republic and Czech Data Protection O�ce. He provi-
des also counseling for private sector and among my client are e.g. bank and
prestigious legal �rms. He teaching on prestige private Czech University and
cooperate with University of Žilina. He holds an o�ce of Technical Director in
the 4safety, a.s company.

MR. MICHAL SRNEC
graduated at University of Žilina http://www.fri.uniza.sk in 2011. From 2011
is postgraduate student on Faculty of informatics science and management
department of information networks www.kis.fri.uniza.sk. Works for http://
www.4safety.cz/ as security consultant focusing on secure calling.

42

Hakin9 EXTRA

2/2012 (9)

This article will first introduce you to the state of the art
in the matter of malware detection using honeyclients,
showing a short history of honeyclients and the different

types of honeyclients on the market. Then, you’ll learn how to
setup one of the most recent and complete open source hon-
eyclient systems, allowing you to analyze any kind of content
(URLs, executable files, PDFs, documents, ...) on a virtual ma-
chine running Windows. In order to understand this article, you’ll
need only some basic knowledge of Linux and of the VirtualBox
virtualization solution. A basic knowledge of Python is a plus,
even though not necessary.

Honeyclients
Traditionally, when we talk about an honeypot, we imagine
a server that has been specifically setup to be attacked, in order
to be able to observe and study the moves of the attacker dur-
ing an eventual compromise of the system.

Another kind of honeypot exists, though: client honeypots,
aka honeyclients, are the client counterpart of classic honey-
pots. As such, honeyclients are active clients used to test serv-
ers that are possibly found responsible for delivering malicious
content to visitors.

In most of the cases, honeyclients emulate a browser - in or-
der to detect drive-by-download exploits on the web - or other
applications, such as PDF and document readers, often used
to infect computers running outdated versions of Windows,
MS Word or PDF readers.

Research on honeyclients has recently become quite a hot
topic, and the last couple of years have given birth to a wide
variety of client honeypot systems, both open- and closed-
source.

There are two main categories of client honeypots: high in-
teraction and low interaction.

A high interaction honeyclient is usually a full system,
equipped with real software and with no functional limitations:
this type of honeyclient is usually run in a sandboxed environ-
ment, so that if an exploit occurs, its side effects can be easily
contained. That’s why, in general, high interaction honeycli-
ents are run inside virtual machines: apart from containing the
attacks, this solution allows to detect exploits just by monitor-
ing state changes on the virtualized operating system. Some
well known high interaction honeyclients are the MITRE Hon-

eyClient, Microsoft’s HoneyMonkey, CaptureHPC, or Google
Safe Browsing’s honeyclients. These are all used to detect
malicious web pages and run a web browser on a real operat-
ing system inside a virtual machine.

Low interaction honeypots, on the other hand, use light-
weight clients to interact with servers. In general, these con-
sist in fake applications, developed ad-hoc, simulating the be-
havior of a real client. In this kind of honeypot the detection
of exploits is done through pattern matching and the use of
heuristics, as in this case there’s no real system to exploit and
the attack can not succeed. Projects employing this approach
for the detection of exploits on web pages are Wepawet, Pho-
neyC, JSUnpack, NOZZLE.

Why do these different types of client honeypot exist? Well,
because each of these categories has its advantages and dis-
advantages. The drawback of high-interaction

 honeyclients is the fact that the analysis is expensive. Con-
sidering that these honeyclients run in a virtual machine, in
order to analyze a resource they often need to fetch it and
render (in the case of web pages or documents) or execute it
(in the case of executables) with the correct client application.
Finally, after the analysis of each resource, the virtual machine
needs to

 be restored, since an exploit could have been triggered and
the platform can no longer be trusted. It’s easy to understand,
then, that the analysis of a single resource with a high interac-
tion honeyclient can take up to several minutes, and there’s
not much we can do to speed it up, apart from using paral-
lelization (e.g., running several virtual machines at the same
time). Another drawback of this kind of honeypots is that, in
order to detect an attack, they require the exact vulnerable
configuration to be installed on the system, e.g. Windows XP
SP 1 equipped with Internet Explorer 7 and Flash Player 3.0.
If this is not the case, certain classes of attacks won’t be trig-
gered simply because our system is not vulnerable.

Low-interaction honeyclients, on the other hand, have the
advantage of not requiring a special configuration in order to
detect attacks, as they employ fake, emulated clients that are
able to emulate several vulnerable configurations at the same
time. Another advantage of this is that, employing fake clients,
these systems cannot be exploited, so it’s not necessary to re-
initialize the environment after analyzing each resource. The

DETECTING MALWARE
WITH HONEYCLIENTS
In this article I’ll explain you what an honeyclient is and how
honeyclients work, before putting hands on the code to see in
practice how to set up one for our needs, using one of the most
recent and freely available honeyclient solutions.

DAVIDE CANALI

Detecting malware with honeyclients

www.hakin9.org/en 43

disadvantages of using low interaction honeyclients are that,
compared to high interaction ones, they’re usually built for the
detection of a specific class of attacks, and as such they can
have lower detection capabilities especially if used for detect-
ing a broad range of exploits. In addition to this, the analysis is
still, usually, quite slow, as emulating one or more real clients
at the same time is no easy task.

Existing solutions
As I said in the beginning of this article, many honeyclient
projects have been proposed in the last couple of years, and
some of them have attracted the attention of academic and
industrial security communities. So, if you want to detect mal-
ware out there, on web pages, Word documents, or in execut-
able files, chances are that a solution to your problem has
already been proposed, and if you’re lucky, it may even be
open source :)

Let’s thus have a look at some of the most known, or recent,
honeyclient solutions.

• Capture-HPC, a well known client honeypot developed at
the Victoria University of Wellington, NZ, is one of the first
client honeypots systems to be published on the web. The
analyses are done on VMWare server virtual machines,
but the project doesn’t seem to be active anymore (the lat-
est release is from 2008)

• The MITRE Honeyclient, a high-interaction honeyclient de-
veloped at MITRE. It’s a browser based client honeypot
used mainly for the detection of malicious websites, and
for this purpose it also incorporates a crawler that can be
seeded with a list of initial URLs from which to start the
analysis.

• HoneyMonkey is a high-interaction honeyclient developed
by Microsoft Research for the detection of malicious web-
sites. It is proprietary and not available for download.

• SHELIA is a client honeypot developed mainly for the
analysis of emails. It receives emails through Outlook Ex-
press, IMAP connections or manual submission and vis-
its every link appearing in the messages, as well as open-
ing/executing all the attachments, in order to detect pos-
sible exploits.

• HoneyC, another project developed at the Victoria Univer-
sity of Wellington. It’s a low interaction honeypot that emu-
lates a browser visiting an URL; it makes use of static sig-
natures in order to detect attack pages.

• PhoneyC, a low interaction client honeypot that emulates
a web browser and uses dynamic analysis to deobfuscate
the contents of malicious web pages.

• Wepawet is a framework for the analysis of web based
threats. It is based on emulation and can detect exploits
on web pages (JavaScript based), PDF files and Flash re-
sources. It’s offered as a web service and it’s widely used
and appreciated in the security community thanks to its de-
tailed reports and ability to deobfuscate malicious code.

• Trigona, a quite recent, VirtualBox-based, high interaction
honeyclient, It consists of just a couple of Perl scripts inter-
acting with VirtualBox, and it’s not difficult to setup and ex-
tend.

• Cuckoo Sandbox, a very recent and still active project,
proposing a modular solution for the analysis of malware.
Mainly written in Python, and (currently) based on Virtu-
alBox, this framework has a modular and easily extensi-
ble architecture allowing users to create their own analysis

modules and scripts for parsing the results.
In the following sections, I’ll explain you how to set up Cuckoo
to build your own honeyclient for the analysis of malicious web
pages.

Among all the available projects, my choice of Cuckoo is
due to its high customizability and ease of use, advantages
that I haven’t found, to the same extent, in several other pro-
jects I personally tried. Finally (and quite surprisingly in this
field, I would say :P), Cuckoo has also a well written documen-
tation, which is always a good news and saves users from a lot
of unnecessary headaches.

As stated on the homepage of the Cuckoo project (http://
www.cuckoobox.org), Cuckoo Sandbox is a malware analy-
sis system allowing the user to retrieve:

• Trace of performed relevant win32 API calls
• Dump of network traffic generated during analysis
• Creation of screenshots taken during analysis
• Dump of files created, deleted and downloaded by the mal-

ware during analysis
• Trace of assembly instructions executed by malware pro-

cess

Of course, as I already said, Cuckoo is very versatile and easy
to extend, so nothing will stop you from using it for analyzing
whatever kind of resource you want!

Setting up Cuckoo
Let’s then proceed to the installation. For this, we need: a
Linux operating system, a recent release of VirtualBox and the
latest stable release of Cuckoo. On VirtualBox we also need to
set up a Windows virtual machine, so a Windows installation
CD might come in handy.

In the following, I’ll take Ubuntu Linux as reference oper-
ating system, since this is the most common end-user distro
out there and it’s the one on which Cuckoo has been tested
the most. In case you use a different GNU/Linux distribution,
some of the commands may vary.

Installing and configuring the Guest OS
First, we need to install VirtualBox and set up a proper Win-
dows virtual machine for running the experiments. I won’t
cover the basic steps in detail, so please refer to VirtualBox
documentation for more details in case you need some help.

If you don’t have it already, dowload and install VirtualBox,
either downloading it from https://www.virtualbox.org/wiki/
Downloads or via synaptic/apt/aptitutde.

Create a new virtual machine and install Windows on it. If
you can, I suggest you to install an old version of Windows,
such as Windows XP SP3 or previous, as these versions are
more vulnerable to exploits than the latest ones. As for the
virtual machine options (RAM, hard disk space, etc.) you can
choose anything you want. I called my virtual machine cuckoo.

Once you have your VM set up, install the VirtualBox Guest
Additions on it (once the VM is running, on its window select
Devices → Install Guest Additions...)

For Cuckoo to execute and control the analysis, we need
Python 2.6 or greater installed on Windows. So, from the
guest OS point your browser to http://python.org/download/
and download the most recent Python 2.X installation pack-
age. Install it.

Optionally, if you want your Cuckoo setup to take screen-
shots and dump assembly instructions, you need to install

44

Hakin9 EXTRA

2/2012 (9)

the Python Image Library (PIL) and WinAppDbg, respectively.
At this point, your guest OS is ready to execute malware. How-
ever, in order to trigger the majority of exploits, we need to in-
stall the client software we expect to be exploited, and to tune
some system settings. In this article, since we want to ana-
lyze URLs, we’ll make sure to have an old version of Internet
Explorer, an old Firefox release and an old version of Adobe
Reader (to analyze PDFs we might find online).

These are just suggestions, and you can install any app you
want based on what you want to analyze. For malicious web
pages, Internet Explorer 6 shipped by default on every Windows
XP SP3 release is a great choice, as it’s full of security holes!
If you’re seriously concerned about the detection capabilities
of your Cuckoo box, then I suggest you to search and install
client applications based on the amount of exploits against
them, or at least the number and severity of CVEs published
for them. You may also want to set up multiple Windows virtual
machines to run with Cuckoo, each one with a different con-
figuration, so that an exploit that doesn’t get triggered by the
first VM might be triggered by the second one.

So, let’s make sure we have IE 6 installed, and let’s find and
install old releases of Firefox and of Adobe Reader.

Note: finding old software releases is not always an easy
task! For security and compatibility reasons, many software
companies discontinue old releases of their applications, and
make them not available for download. In this case, websites
like oldversion.com and oldapps.com can be useful.

Finally, make sure the software update feature is disabled
for every software we install: an automatic update during the
analysis might interfere with our results, and generate unwant-
ed disk and network activity that will be unnecessarily logged.
The same advice should be followed on the operating sys-
tem side, so make sure you disabled the Windows Fire-
wall and the Automatic Update feature before continuing.
Another advice is to set, for all the applications you intend to
use in your honeyclient, all the security settings to their lowest
allowed values, or to completely disable them. As an example,
in the browsers you plan to use, disable all the security set-
tings, enable ActiveX controls, Java applets, and accept all
kinds of content. This will increase the chances your honeycli-
ent will be hit by an attack. In the following picture you can see
an example of setting such properties on IE 6.

At this point, we’ve almost set up everything on the guest.
Before finalizing the VM setup, we need to install Cuckoo and
prepare the environment needed for guest OS and host OS to
communicate.

Setting up Cuckoo
Before installing Cuckoo, we need to install Python and some
Python libraries. Python 2.6 or 2.7 are the current preferred
versions.

$ sudo apt-get install python python-magic python-dpkt

python-mako

Figure 1: setting custom security settings in Internet Explorer

Detecting malware with honeyclients

www.hakin9.org/en 45

Download Cuckoo from its website: http://www.cuckoobox.org/
The current stable release is 0.3.2; however, being the pro-

ject recent and very active, you can expect new releases to be
rolled out quite frequently. You can also download the latest
development stage from Cuckoo’s git repository, but I would
not recommend it for a production usage.

Once you have the cuckoo package, choose its installation
directory and uncompress it to this destination:

$ tar -xzvf cuckoo_0.3.2.tar.gz -C /cuckoo_install_dir

Now, let’s create a cuckoo user: in order to allow it to control
VirtualBox, we need to add it to the VirtualBox users’ group (by
default, it is ‘vboxusers’ – check in your /etc/group file if such a
group exists).

$ sudo adduser cuckoo

$ sudo adduser cuckoo vboxusers

As a side note, whenever you add a new user for an applica-
tion, it’s always a good practice to make sure it does not have
the permission of logging in remotely on the system. E.g., if
you have ssh installed, you should add it to the DenyUsers list
in the sshd_config file, or set its login shell to /bin/false

That’s it. The installation is completed. Before starting to an-
alyze malware, though, we need to customize Cuckoo’s con-
figuration, in order to tell it, at least, where to store the analysis
results, which virtual machine to run, and few other details.

Configuration
Once inside Cuckoo’s installation directory, move to the sub-
directory conf/.

The first file we find here is cuckoo.conf: this it is the main
configuration file of the system, and controls its general be-
havior and analysis options. Luckily for us, every option is well

documented so feel free to modify it at your own will. I’ll just
change and comment a couple of options:

analysis_timeout = 120

watchdog_timeout = 300

These options set, respectively, the default duration of the
analysis (2 minutes), and the maximum time span during
which Cuckoo should wait for the guest OS to finish its op-
eration (5 minutes). If the watchdog_timeout is hit, this usu-
ally means the VM or the analyzer are stuck and need to be
killed.

The choice of good timeouts depends on several factors:
since, once a malicious binary is run, the exploit can be trig-
gered at any point in time, nothing prevents malware writers
to wait some seconds, if not minutes or hours, for the real
infection to begin. That’s why a longer analysis time usually al-
lows for higher detection rates; on the other hand, though, this
means that our system will be slower and will analyze a lower
number of samples per day.

sniffer = off

In this case, we leave this option as is, as we haven’t set up
tcpdump for sniffing network traffic from the VM. However,
this does not mean we won’t have a network trace, but sim-
ply indicates that we’ll use VirtualBox’s built-in network tracing
capability. If you want to use tcpdump, refer to Cuckoo’s docu-
mentation in order to set it up for sniffing the virtual machines’
traffic.

engine = VirtualBox

enabled = cuckoo1

mode = gui

python = C:\Python27\python.exe

Figure 2: �rst execution of Cuckoo

46

Hakin9 EXTRA

2/2012 (9)

The first line indicates that we’re going to use VirtualBox as
virtualization engine. So far, this is the only supported choice.

The second line sets Cuckoo’s internal name(s) of the vir-
tual machines we want it to run. In case we want multiple VMs,
a comma separated list of strings has to be supplied.

mode has to be set to ‘gui’ if we want Cuckoo to show the
GUI of the VM while the analysis is running, or to ‘headless’
if we don’t want it to spawn the graphical interface. For the
moment, I set this value to ‘gui’ for testing purposes, but once
your malware analysis system is correctly set up you may
want to set this value to ‘headless’ so that the analysis can

run in background or on systems not having a graphical user
interface.

Finally, the last line has to be set to the path in which python
has been installed (on the Windows virtual machine).

For each name you specified in the enabled comma sepa-
rated list, then, you need to create a section named as the
Cuckoo’s internal name of the VM. In this case, we only have
one machine called cuckoo1:

[cuckoo1]

name = cuckoo

Listing 1: the code of the cuckoo_run() function inside the ie.py analysis package

def cuckoo_run(target_path):

 config = ConfigParser.ConfigParser()

 config.read(target_path)

 url = config.get(“InternetShortcut”, “URL”)

 pids = []

 internet_explorer = “C:\\Program Files\\Internet Explorer\\iexplore.exe”

 suspended = False

 (pid, h_thread) = cuckoo_execute(internet_explorer, url, suspended)

 cuckoo_monitor(pid, h_thread, suspended)

 pids.append(pid)

 return pids

Listing 2: the code of our custom url.py URL analysis package

import os

import sys

import ConfigParser

import urllib2

sys.path.append(“\\\\VBOXSVR\\setup\\lib\\”)

from cuckoo.execute import cuckoo_execute

from cuckoo.monitor import cuckoo_monitor

TEMPFILE=’C:\\temp\\temporary.pdf’

def download(url):

 try:

 uh = urllib2.urlopen(url)

 resp = uh.read()

 uh.close()

 tempfile = open(TEMPFILE,’wb’)

 tempfile.write(resp)

 tempfile.close()

 except Exception:

 return False

 return True

def cuckoo_run(target_path):

 config = ConfigParser.ConfigParser()

 config.read(target_path)

 url = config.get(“InternetShortcut”, “URL”)

 pids = []

 #adjust these paths to match your own configuration

 internet_explorer = “C:\\Program Files\\Internet

Explorer\\iexplore.exe”

 acrobat = “C:\\Program Files\\Adobe\\Reader 8.0\\

Reader\\AcroRd32.exe”

 firefox = “C:\\Program Files\\Mozilla Firefox\\

firefox.exe”

 suspended = False

 #very basic check to see if the URL is possibly a

PDF.

 #If so, launch adobe reader; otherwise, IE and FF

 if (url.lower().endswith(‘.pdf’)):

 #download and read with acrobat

 if download(url):

 (pid, h_thread) = cuckoo_execute(acrobat,

TEMPFILE, suspended)

 cuckoo_monitor(pid, h_thread, suspended)

 pids.append(pid)

 else:

 #download failed: nothing to analyze

 pass

 else:

 #Firefox

 (pid, h_thread) = cuckoo_execute(firefox, ‘”%s”’ %

(url), suspended)

 cuckoo_monitor(pid, h_thread, suspended)

 pids.append(pid)

 #IE

 (pid, h_thread) = cuckoo_execute(internet_

explorer, ‘”%s”’ % (url), suspended)

 cuckoo_monitor(pid, h_thread, suspended)

 pids.append(pid)

 return pids

def cuckoo_check():

 return True

def cuckoo_finish():

 return True

Detecting malware with honeyclients

www.hakin9.org/en 47

username = admin

password = cuckoo

share = shares/cuckoo1

name is the name we used to register the virtual machine
in VirtualBox. Remember, also, to set username and pass-
word to the credentials used on your Windows account,
for each VM you want to run with Cuckoo, since they’re
required for the host to run commands on the guest OS.
Finally, share is the shared folder that will be used to exchange
data between host and guest OS. You can choose any path
you want for it, but the last directory must have the same name
as Cuckoo’s current machine ID (the name in square brack-
ets). Before launching the first analysis, make sure this direc-
tory exists (all paths, if relative, are relative to cuckoo’s main
installation directory).

The other configuration file we’re interested in is reporting.
conf. This file contains switches that enable, respectively, re-
ports to be generated in json format (useful to be exported and
parsed by different applications), txt or HTML format. All the
formats are enabled by default, and you can set them on or off
singularly, depending on your needs.

Putting it all together
Now that we have set up both Cuckoo and VirtualBox, we can
put them at work together.

Before launching our first analysis, we still need to modify
a couple of details on our virtual machine. Go back to Virtu-
alBox, and add two shared folders: their location on the host

is already configured, in the shares/ directory inside Cuckoo’s
installation folder.

Let’s first power off the VM:

$ VBoxManage controlvm “cuckoo” poweroff

Then:

$ VBoxManage sharedfolder add “cuckoo” --name “setup”

 --hostpath “/cuckoo_install_dir/shares/setup” --readonly

$ VBoxManage sharedfolder add “cuckoo”

 --name “cuckoo1” --hostpath “/cuckoo_install_dir/

 shares/cuckoo1”

The first folder will be shared in read only mode, and will con-
tain the analysis scripts we will launch on the guest. The sec-
ond one will instead be used for moving data from the guest to
the host after the analysis, that why it has not to be mounted
in read only mode. If you prefer, shared folders can be also
configured via the GUI.

We proceed, then, to enable VirtualBox’s builtin network
tracing capabilities on cuckoo:

$ VBoxManage modifyvm “cuckoo” --nictrace1 on

 --nictracefile1 /cuckoo_install_dir/shares/cuckoo1/dump.pcap

This configures the virtual machine named cuckoo to dump
all its network traffic on the path specified (which, as you can
see, is on the virtual machine’s writable shared folder, but is
not necessary to store it there). Finally, we are ready to save
our machine’s state into a snapshot, that will be restored at

Figure 3: Cuckoo running our custom analysis. You can see that both Firefox and Internet Explorer are in execution.

48

Hakin9 EXTRA

2/2012 (9)

the beginning of each analysis. Before taking the snapshot,
restart the VM and let it boot completely. Once the machine
is ready, type:

$ VboxManage snapshot “cuckoo” take “first snapshot” --pause

This will put the machine in a paused state, and take a snap-
shot of it. Once this is done, you can close the VM and restore
the snapshot:

$VBoxManage controlvm “cuckoo” poweroff

$VBoxManage snapshot “cuckoo” restorecurrent

Or, do the same using the GUI.

Analysis and customization
At this point, we can finally launch Cuckoo:

$./cuckoo.py

So far, nothing exciting happens. Cuckoo is just waiting for us
to submit a file or a URL to analyze.

Let’s open another terminal and try to submit a URL:

$./submit.py -u “http://www.google.com/”

We get a message saying that we didn’t specify any package,
so Cuckoo is going to use the default Internet Explorer pack-
age. This makes us understand that Cuckoo provides different
analysis packages. In fact, several packages are provided,
and they’ll be automatically selected depending on the kind
of resource we submit or chosen manually by us at the time
of submission. Available packages are: exe, dll, pdf, doc, php,
ie, firefox, tracer. The use of a package can be forced calling
submit.py -p package_name

Since in this article I propose you to analyze web pages,
we’ll always submit URLs via the -u option of submit.py. How-
ever, this script offers several possibilities of submitting re-
sources to Cuckoo, the most general of which is ./submit.py
filepath (in this case Cuckoo automatically detects the kind
of resource and spawns the analysis using the package con-
sidered the most appropriate). In order to see all the options
available for submission, type:

$./submit.py --help

There are also other ways to submit files to Cuckoo: interact-
ing with its SQLite database and using Cuckoo’s python library
functions, but I won’t cover them in this article. You’re encour-
aged to read Cuckoo’s documentation for details about them.

If the submission went fine, the terminal on which we
launched cuckoo should inform us that cuckoo is starting in
“gui” mode and we should see the virtual machine GUI pop-
ping up and opening Internet Explorer. After, approximately,
the number of seconds we set as analysis_timeout, the virtual
machine will be powered off. Cuckoo will then inform us that
the results of the analysis are available:

(Task #1) [Core.Analysis.SaveResults] INFO: Analysis results

successfully saved to “analysis/1”.

At this point, the next job in queue, if any, will be started, re-
storing the snapshot and analyzing its resource.

Let’s check the contents of the folder in which the analysis
task we just ran saved its results. There will be at least 3 fold-
ers: files/ (containing all the files that were created or deleted
during the analysis), logs/ (containing behavioral traces of the
executed system calls), reports/ (containing the reports in the
different formats we enabled in the reports.conf configuration
file), plus shots/ and trace/ if the Python Image Library and
WinAppDbg were installed, respectively.

Apart from this, the folder should contain a dump.pcap
network trace that you can analyze with your favorite packet
analyzing tool (e.g., Wireshark, tshark, …) and where, if you
ever analyze a drive-by-download web page and you’re lucky
enough, you will find unexpected connections to redirection,
exploit and Command and Control servers.

A very nice feature of Cuckoo is, finally, its web interface.
You can launch it running the script web.py:

$./web.py

This will create a web server listening on localhost, port 8080,
to which we can point our browser and see the results of our
analyses in a nice and user-friendly format (if reporthtml is on
in reporting.conf).

Customizing the analysis
We want to finish setting up our honeyclient for the detection
of web pages hosting malware. A nice feature of our system
would be that of being able to analyze an URL with more than
one browser (or different versions of the same) so that the
chances the exploit will be triggered are higher.

I mentioned that Cuckoo is highly customizable, and writing
your own analysis package is quite easy. In this last section,
so, I’ll guide you step-by-step into creating our own analysis
module, allowing us to launch the analysis of a target URL on
two different browsers in parallel (in this case, Internet Explor-
er and Firefox). This way, we’ll be able to detect web pages
containing exploits that target either one of the two browsers.
And, since the web is full of (malicious) PDF documents and it
would be a pity to miss them, we’ll also write a couple of lines
of code to handle the situation in which the URL we want to
analyze points to a PDF.

For more details on how to write your own analysis pack-
ages, please refer to the exhaustive documentation provided
on Cuckoo’s website.

Before starting, make sure to have both Firefox and Acrobat
Reader installed on your virtual machine, and of taking a new
snapshot once these apps are installed and configured.

Let’s take a look at how an analysis package looks like.
Open the file shares/setup/packages/ie.py

This file is responsible for analyzing URLs launching Inter-
net Explorer. Three functions are defined: cuckoo_run(), cuck-
oo_check() and cuckoo_finish(). They’re respectively called at
the beginning of the analysis, every second during the analy-
sis, and at the end of the analysis.

Let’s have a deeper look at the (very short and simple) cuck-
oo_run(): The first four lines can be a bit confusing. Anyway,
keep in mind that we are analyzing an URL, and this URL has
to be passed to the VM for analysis. In order to do this, Cuckoo
actually writes this URL into a file, which is then passed to the
guest OS via the shared folder mechanism. The first 3 lines of
the function are used to read the URL from the file.

Note: when analyzing a regular file, instead, the parameter
target_path of cuckoo_run() can be used directly as a regular

Detecting malware with honeyclients

www.hakin9.org/en 49

path and doesn’t need any special processing. Have a look at
other packages, such as pdf.py or exe,py to see an example
of this.

In the following lines of code, the variable internet_explorer
is set to the path of Internet Explorer’s binary, then the browser
is launched calling cuckoo_execute(). This function accepts,
as parameters, the path to the executable, the URL to be ana-
lyzed (in general, any arguments to pass to the application),
and a flag that has to be set to true if we want the process to
be created in suspended state. It returns the process PID and
a handle to the thread.

Finally, cuckoo_monitor() is executed. This is probably
Cuckoo’s framework most important function, as it injects and
starts monitoring the process we just created, allowing to col-
lect its system call trace.

What we want, then can be coded easily in a few more lines
of code. Let’s take ie.py as a stub, so copy it, give it the name
you want and place it in shares/setup/packages/. I called it url.
py; its code is very similar to the original ie.py and contains
only some additions to the cuckoo_run() function.

I just added a very naïve check on the filename, to try under-
stand if the URL we’re going to analyze is a PDF document. If
it’s not, both Firefox and Internet Explorer will be executed to
visit the same URL.

If, instead, the URL appears to end in ‘.pdf’, we’ll consider it
a PDF document. In order to analyze it, we first need to down-
load the file to a temporary location (because Adobe Reader
doesn’t open URLs directly) and then spawn and monitor an
old version of Adobe Reader trying to read it. The download
code is contained in the download() function and should be
self explanatory.

We’re finally ready to use our client honeypot :)

Let’s launch it on the website of the magazine, using our
new custom analysis package:

$./submit.py -p url -u ‘http://hakin9.org/’

Here is a screenshot of Cuckoo running with our custom anal-
ysis package, called “url”.

And, finally, Cuckoo’s web interface showing the results of
this analysis.

Conclusion
In the first part of the article, after explaining what an honeycli-
ent is, I gave an overview of the current state of the art in the
matter of malware analysis using honeyclients. In the second
part of the article, using a hands-on approach, I introduced
the reader to the recent Cuckoo project, an easily extensible
and modular malware analysis system, and accompanied him
through the process of installing and configuring it in order
to build a customized client honeypot for the analysis of web
pages.

DAVIDE CANALI
is currently a Ph.D. Student at EURECOM (France) and member
of iSecLab, the International Secure Systems Lab. He holds a BSc. and
a MSc. in Computer Engineering, both from Università di Bologna,
and has been active in the �eld of web security for more than
5 years. His research interests include Web and Network Security and
Malware Analysis. Prior to joining EURECOM, Davide worked one
year as intern at the Computer Security Lab of University of Califor-
nia, Santa Barbara.

50

Hakin9 EXTRA

2/2012 (9)

Fred Cohen is best known for coining the
term “computer virus”, he is also the
founding father of majority of known vi-

rus defense techniques. Mr. Cohen significantly
contributed to the development of digital forensic
evidence examination. The keyword here is: “de-
ception”, as it has always been used in Cohen’s
research within the field of information protection
(the invention of Deception Toolkit). Chronologi-
cally speaking, in the 70s, he devised network
protocols for secure digital networks carrying:
voice, video and data. In the 80s, he came up
with integrity mechanisms for secure operating
systems and in 1984, he presented his abstract on computer
viruses which had major impact on IT-Security field. Dr. Cohen
worked as a consultant for major companies, he is an inventor,
a teacher, a researcher and an analyst – a geniune IT-Security’s
jack of all trades but his capabilities and ambitions reach far be-
yond that. Currently, Fred Cohen is the President of California
Sciences Institute and CEO of Fred Cohen & Associates. Apart
from working for the government and industry, Dr. Cohen con-
tributes to non-profit organizations and undertakings to make
sure his knowledge serves the right cause. He holds a Ph.D. in
Electrical Engineering from the University of Southern California
(1986). Source: http://all.net/resume/bio.html

In the computer field, you are well-known for your coining
the term”viruses”, your defense techniques and your work
in honeypots. Your experiments and your papers helped
set the way for many security researchers. For those not
familiar with your work would you mind describing your
initial virus experiment?
They are detailed at http://all.net/ -> Research -> Technical
Safeguards -> 1984: Computer Viruses - Theory and Experi-
ments and in other papers in that collection.

Can you describe the idea behind your Deception Toolkit
and port 365?
They are detailed at http://all.net/ -> Research -> Deception for
Protection AND under http://all.net/dtk/index.html

Since DTK’s first release in 1999, how has DTK changed to
match current trends and attacks?
I think it was first released on November of 1998. The last of-
ficial update was in http://all.net/dtk/v1999-08-18.html The idea

of DTK was that it only needs to be changed by al-
tering the scripts for services, and not by changing
the code itself. After that, we went to the new and
improved approach of the various now-patented
technologies including things like the one detailed
in the deception area above under “2002: Method
and Apparatus Providing Deception and/or Altered
Operation in Information Systems”

 PLC’s (programmable logic controllers) and
DCS’ (distributed control systems) aren’t
known for their robust security practices
and implementations. You were active in

PCCIP, what trends are you seeing in that critical infra-
structures?
PCCIP ended at the end of the Clinton era, but I am still active.
The main trend is that we are putting weaker systems in control
of more critical assets, producing increased risk with only mini-
mal benefits. At the same time, we are connecting it all together
through the Internet to further weaken the infrastructures and
increase unnecessary interdependencies. But I can manage the
traffic lights from your iPad on the beach!

Have you done any work in mobile space (phones, tablets)?
What are your thoughts on security on mobile platforms?
As an approximation, take PCs from the late 1990s, make them
smaller, better connected, and less controllable by the IT de-
partment and users, add in the improvements in attacker skills,
capabilities, motives, etc. but not the defense technology ad-
vances, and that’s the security situation with most mobile de-
vices today.

Considering the advanced hacks and APT`s nowadays,
honeypots and honeynets need to change as well. What is
your view on this topic and what will the future bring when
it comes to honeypots/nets to keep up with these kind of
threats?
Deception technology doesn’t really need to improve so much
as to be properly applied. Honeynets/pots are not really much
more than the birds in mineshafts of old. They were nev-
er intended to be defenses per se - just sensors. Deception
ToolKit was intended to do more than most honeypots (i.e., to
disrupt attack methods and tools, not just detect them) , but
the follow-on technology in deception is good enough so that
it is practically undetectable by attackers if properly managed
and operated.

HAKIN9 EXTRA
EXCLUSIVE INTERVIEW
WITH FRED COHEN

Hakin9 Extra Exclusive Interview with Fred Cohen

www.hakin9.org/en 51

What do you believe to be the involvement of government
and military structures in computer virus development to-
day?
I don’t know what (if) they are doing (it) in secret, but I imagine
they are (governments in general).

How many signatures/algorithms do you think a computer
should have to detect malware?
0/1

What do you believe to be one of the best ways to protect
information?

First off, protecting information is not the goal of information pro-
tection. The definition of protection is ‘keeping from harm’. That
is, keeping people (and other creatures that feel pain and pleas-
ure, live and die, etc.) from being harmed (information doesn’t
feel pain and is not harmed when altered). But harm associated
with information (symbolic representations in the most general
sense) can come in many forms and to many parties. You might
want to direct your readers toward http://all.net/ -> “2012-01-31:
Influence Operations” as well.

I don’t believe there is one best way. Information protection
is a complex issue involving many equities. One person’s at-
tack is another person’s intelligence operation. Is it protecting
information in the,form of financial records to not aggressively
break into the systems of those who attack those same records?
When you are attacked (whatever that may be) should you not
be able to aggressively defend?

Would you consider yourself the father of viruses?
I describe my role as “the person who defined the term “comput-
er virus” and the inventor of most of the widely used computer
virus defense techniques, “ I also did most of the early scientific
work in the field and published most of the peer reviewed papers
in scientific journals in the early years (pre-1993).

What challenges did you endure while your programming
skills were in their infancy?
Programming skills are not particularly a problem for me. I was
writing programs in the 1960s. I learned Pitt Interpretive language
(PIL) in grade school, was a systems admin and learned PDP
somethings (punched paper tape - way better than card decks)
and other minicomputer languages and systems in the 1960s,
then lisp and APL (IBM mainframe), then PDP8 assembler (and
hardware) in high school by reading the hardware manual, then
basic, then microcode, and so forth. As I learned electrical engi-
neering in college and graduate school, I tended to write software
by defining finite state automata and using the available language
to express them. I only ever had one actual course in (comput-
er) programming and it was a comparative languages course in
maybe 1974. By then I was already a night operator of PDP10s,
one of the early IMPs in the ARPAnet, and so forth. I think out
ARPAnet node was number 8 or some such thing.

In my experience, the hard part is figuring out what to pro-
gram, not programming it.

What was your first person/homebrew computer?
In the early 1960s (maybe when I was 7 or 8 years old) I built a
mechanical computer. I guess that’s homebbrew enough. I liked
the radio shack TRS80 and related computers when they came
out - far more usable and really consumer products. Storage on
audio tape - not so good...

What would you like your legacy to be within the field of
security?
I’m not that old yet. My view when I was young was that the on-
ly important things in life are the things that last. I viewed (and
still view) computer viruses as the first truly artificial life form on
Earth (who knows what happened somewhere else in the Uni-
verse when - and time is relative...). I thought, and still do, that
reproducing symbol sequences with the potential to evolve in
general ways are a life form, and can find no definition of life
that isn’t purely directed toward ruling them out, that disagrees
with this. I also believe that they have all the potential for good
and evil of any other advancement in science and/or engineer-
ing. That has nothing to do with security, but I think it is pretty
interesting and worthwhile.

I view my body of work in information protection (I prefer that
term - keeping from harm by symbolic representations) as just
that. A body of work. I enjoy it, I am interested in it, and I think
there is a lot to do. To the extent that I can help bring forward
a more humane and positive future for people as we enter the
information age, I certainly would like to do so, but I am unsure
of how much effect a single person really has. Computer viruses
were, I think, bound to happen. The conditions were right and
getting more so. The fertile field cannot remain unseeded ex-
cept in a sterile environment. The real question is how the field
evolves depending on how it is seeded. I hope that I seed things
in a direction that benefits humanity in the long run, but it’s hard
to tell the future. I believe that more thoughtful people will tend
to do better, but perhaps what’s more important is people that
care about other people. If you combine caring with thoughtful-
ness, I think you do better still. I hope that my work helps people
become more caring and thoughtful.

Any pointers for anyone starting out in the security field
Start by reading everything at http://all.net/ (it’s all free) and
allof the references and their references and their references.
Work hard, study hard, and play hard. It takes all 3. Recog-
nize going in that there are people involved and work on your
understanding of the human cognitive system and condition.
Seek to build a science and engineering discipline - and call
snake oil what it is. You can’t do your job if you are worried
about losing your job.

Consider very seriously your personal ethics. You can do a lot
of harm and a lot of good in this field. Try to work toward freedom
and justice for all, even if the path forward is not always easy to
see and no known solution is perfect.

Always remember, you are fallible. “Ain’t a horse that can’t be
rode, ain’t a man that can’t be throwed”

and finally Star Wars or Star Trek?
I like them both (prefer early Star Trek over later Star Trek,
Episode 4 and 5 to the others in Star Wars) - and Battlestar
Galactica - and 2001 - and a very long list of other outstanding
science fiction going back to Jules Verne. I have a collection of
perhaps a few thousand of them - old time radio as well as TV.
The Twilight Zone, the original Mission Impossible series, etc.

Thanks again for your time and your contribution to the
security field.
Pleasure.

interview by Nick Baronian

Keeping You At the
Top of Your Game.

Paper • eBooks • Dropbox

B
o
o
k
s
h
e
lf

P
ra
g
m
a
ti
c

www.pragprog.com

www.pragprog.com

C

M

Y

CM

MY

CY

CMY

K

IVIZ_ad_final.pdf 1 27-07-2011 18:57:12

www.ivizsecurity.com

